JP5013396B2 - Catalyst for dehydration / hydrogenation of polyhydric alcohol having 3 carbon atoms and method for producing hydrocarbon using the same - Google Patents

Catalyst for dehydration / hydrogenation of polyhydric alcohol having 3 carbon atoms and method for producing hydrocarbon using the same Download PDF

Info

Publication number
JP5013396B2
JP5013396B2 JP2006237521A JP2006237521A JP5013396B2 JP 5013396 B2 JP5013396 B2 JP 5013396B2 JP 2006237521 A JP2006237521 A JP 2006237521A JP 2006237521 A JP2006237521 A JP 2006237521A JP 5013396 B2 JP5013396 B2 JP 5013396B2
Authority
JP
Japan
Prior art keywords
catalyst
platinum
zeolite
hydrocarbon
hydrocarbons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006237521A
Other languages
Japanese (ja)
Other versions
JP2008055370A (en
Inventor
和久 村田
功 高原
仁 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006237521A priority Critical patent/JP5013396B2/en
Publication of JP2008055370A publication Critical patent/JP2008055370A/en
Application granted granted Critical
Publication of JP5013396B2 publication Critical patent/JP5013396B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、炭素数3の多価アルコールを脱水/水素化して対応する同一炭素数(炭素数3)の炭化水素を合成する際に用いられる新規な触媒に関する。   The present invention relates to a novel catalyst used when synthesizing a corresponding hydrocarbon having the same carbon number (3 carbon atoms) by dehydrating / hydrogenating a polyhydric alcohol having 3 carbon atoms.

石油を原料とする化学工業の基幹物質であるプロピレンなどの炭化水素の工業的な製造方法は、1)900°C程度でのナフサのスチーム分解、2)プロパンの脱水素または酸化脱水素、などが代表的なものである。
他方、石油資源の枯渇の懸念と共に、非石油系原料とりわけバイオマス由来アルコールからのプロピレン製造方法の開発が、今後ますます必要になると予想されている。炭素数3の多価アルコール(以下、C3多価アルコールともいう)の原料としては、発酵法による1,2-プロパンジオール、バイオディーゼル製造の副生物であるグリセリン、などが原料として想定されており、これらC3多価アルコールから対応するプロピレン等のC3の炭化水素(以下、C3炭化水素ともいう)の合成方法が強く求められている。
The industrial production method of hydrocarbons such as propylene, which is a key material of the chemical industry using petroleum as a raw material, is 1) steam decomposition of naphtha at around 900 ° C, 2) propane dehydrogenation or oxidative dehydrogenation, etc. Is a typical one.
On the other hand, it is expected that development of a method for producing propylene from non-petroleum-based raw materials, particularly biomass-derived alcohol, will become more and more necessary in the future due to concerns about the exhaustion of petroleum resources. As raw materials for polyhydric alcohols with 3 carbon atoms (hereinafter also referred to as C3 polyhydric alcohols), 1,2-propanediol by fermentation and glycerin, a byproduct of biodiesel production, are assumed as raw materials. Therefore, a method for synthesizing a corresponding C3 hydrocarbon such as propylene (hereinafter, also referred to as C3 hydrocarbon) from these C3 polyhydric alcohols is strongly demanded.

しかしながら、一価のイソプロパノールの脱水によるプロピレン合成の例は多数知られているものの、C3多価アルコールからC3炭化水素を効率よく製造した例はあまり見あたらない。
最近、C3の多価アルコールの一つであるグリセリンを原料とし、これをPt/Al2O3触媒の存在下で改質ガス化して水素とCO2を得る方法が提案されている(非特許文献1)が、この反応は炭素−炭素結合を切断して、グリセリンを水素とCO2などのガスに変換するものであり、水素と共に0.7mol%程度(CO2の約1/50)のプロパンが得られることは記載されているとしても、炭素−炭素結合を保持したままで、脱水/水素化を行い、対応するC3炭化水素を得るものでなかった。
However, although many examples of propylene synthesis by dehydration of monovalent isopropanol are known, there are not many examples of efficiently producing C3 hydrocarbons from C3 polyhydric alcohols.
Recently, a method has been proposed in which glycerin, which is one of C3 polyhydric alcohols, is used as a raw material, and this is reformed in the presence of a Pt / Al2O3 catalyst to obtain hydrogen and CO2 (Non-patent Document 1). This reaction breaks the carbon-carbon bond and converts glycerin into hydrogen and gas such as CO2, and it is described that about 0.7 mol% (about 1/50 of CO2) propane can be obtained together with hydrogen. Even if it was, dehydration / hydrogenation was carried out while retaining the carbon-carbon bond, and the corresponding C3 hydrocarbon was not obtained.

また、ソルビトール(C6H8(OH)6)の脱水/水素化でヘキサン(選択率54mol%)やペンタン(同24mol%)と共に、7mol%のプロパンが副生する報告例(非特許文献2)があるが、この報告例には、C3の多価アルコールを用いた場合に果たしてどのような反応が生起し如何なる生成物が得られるか否かについて教示するものでなかった。   In addition, there is a report example (Non-patent Document 2) in which 7 mol% of propane is by-produced together with hexane (selectivity 54 mol%) and pentane (24 mol%) in the dehydration / hydrogenation of sorbitol (C6H8 (OH) 6). However, this report does not teach what kind of reaction occurs and what kind of product is obtained when a C3 polyhydric alcohol is used.

Nature, 418, 964-967 (2002).Nature, 418, 964-967 (2002). Angew. Chem. Int. Ed., 43, 1549-1551 (2004)..Angew. Chem. Int. Ed., 43, 1549-1551 (2004) ..

本発明は、グリセリンなどの炭素数3の多価アルコールの脱水/水素化により、高められた選択率と空時収率(STY)でプロピレンなどの炭素数3の炭化水素を合成することのできる新規な触媒、及びそれを用いたC3炭化水素の工業的に有利な製造方法を提供することを目的とする。   The present invention can synthesize C3 hydrocarbons such as propylene with increased selectivity and space time yield (STY) by dehydration / hydrogenation of C3 polyhydric alcohols such as glycerin. It is an object of the present invention to provide a novel catalyst and an industrially advantageous method for producing C3 hydrocarbons using the same.

本発明者らは、前記課題を解決すべく種々の触媒群について鋭意研究を重ねた結果、本発明を完成するに至った。
即ち、この出願によれば、以下の発明が提供される。
(1)触媒と、水素及び水の存在下、炭素数3の多価アルコールを脱水及び水素化して対応する炭素数3の炭化水素を合成する際に用いられる炭化水素合成用触媒であって、
金化合物で修飾されたシリカ又はゼオライトからなることを特徴とする炭化水素合成用触媒。
(2)前記ゼオライトが、シリカ/アルミナ比が小さいゼオライトであることを特徴とする上記(1)の炭化水素合成用触媒。
と、水素及び水の存在下で、炭素数3の多価アルコールを脱水及び水素化して対応する炭素数3の炭化水素を合成する炭化水素の製造方法であって、
前記触媒として、白金化合物で修飾されたシリカ又はゼオライトからなる触媒を用いることを特徴とする炭化水素の製造方法。
前記ゼオライトが、シリカ/アルミナ比が小さいゼオライトであることを特徴とする上記(3)の炭化水素の製造方法。
As a result of intensive studies on various catalyst groups in order to solve the above problems, the present inventors have completed the present invention.
That is, according to this application, the following invention is provided.
(1) A catalyst for hydrocarbon synthesis used in synthesizing a corresponding hydrocarbon having 3 carbon atoms by dehydrating and hydrogenating a C3 polyhydric alcohol in the presence of hydrogen and water,
Hydrocarbon synthesis catalyst, characterized in that it consists of modified silica or zeolite platinum of compounds.
(2) The hydrocarbon synthesis catalyst according to (1), wherein the zeolite is a zeolite having a small silica / alumina ratio.
(3) catalyst and medium, in the presence of hydrogen and water, a process for the preparation of hydrocarbons for synthesizing hydrocarbons with a carbon number of 3 corresponding dehydrated and hydrogenated polyhydric alcohols having 3 carbon atoms,
A method for producing hydrocarbons , wherein a catalyst comprising silica or zeolite modified with a platinum compound is used as the catalyst .
( 4 ) The method for producing a hydrocarbon according to (3), wherein the zeolite is a zeolite having a small silica / alumina ratio.

本発明の触媒を用いれば、水素及び水の存在下で、グリセリンなどの炭素数3の多価アルコールの脱水及び水素化により、高められた選択率と空時収率(STY)でプロピレンなどのC3炭化水素を合成することができる。 With the catalyst of the present invention, propylene and the like can be produced with increased selectivity and space-time yield (STY) by dehydration and hydrogenation of C3-polyhydric alcohols such as glycerin in the presence of hydrogen and water . C3 hydrocarbons can be synthesized.

本発明は、グリセリンなどのC3の多価アルコールを脱水/水素化して、プロピレンなどのC3の炭化水素を合成する際に用いられる触媒として、白金族金属を含む化合物で修飾された固体酸化物を用いたことを特徴としている。   The present invention relates to a solid oxide modified with a compound containing a platinum group metal as a catalyst used when dehydrating / hydrogenating a C3 polyhydric alcohol such as glycerin to synthesize a C3 hydrocarbon such as propylene. It is characterized by the use.

固体酸化物としては、白金族金属を含む化合物と共存、またはその表面に白金等の化合物を担持できるものであればいかなる酸化物も含まれるが、一般に触媒担体として知られている金属酸化物(非多孔性であっても多孔性であってもよい)や多孔性酸化物を用いることが好ましい。   The solid oxide includes any oxide as long as it can coexist with a compound containing a platinum group metal or can carry a compound such as platinum on the surface thereof, but is generally a metal oxide known as a catalyst support ( It may be non-porous or porous) and a porous oxide is preferably used.

金属酸化物としては、たとえば、シリカ、アルミナ、ジルコニア、チタニア、セリアなどの通常用いられる金属酸化物が挙げられる。またシリカ−アルミナなどの複合酸化物を用いることも可能である。   Examples of the metal oxide include commonly used metal oxides such as silica, alumina, zirconia, titania, and ceria. It is also possible to use a composite oxide such as silica-alumina.

多孔性酸化物としては、ゼオライト化合物などが挙げられる。
ゼオライト化合物としては、Y-型、L-型、モルデナイト、フェリエライト、ベータ型、H-ZSM-5などを挙げることができる。またゼオライト化合物以外の多孔性酸化物としては、TS-1、MCM-41、MCM-22、MCM-48、ガロシリケート、などの結晶性メタロシリケート、大口径シリカ化合物などを挙げることができる。
Examples of the porous oxide include zeolite compounds.
Examples of the zeolite compound include Y-type, L-type, mordenite, ferrierite, beta-type, and H-ZSM-5. Examples of the porous oxide other than the zeolite compound include crystalline metallosilicates such as TS-1, MCM-41, MCM-22, MCM-48, and gallosilicate, and large-diameter silica compounds.

またこれらの多孔性酸化物にはチタン、アルミニウム、バナジウム、ニオブ、タンタル、ホウ素、ジルコニウムなどの元素を含有するものや非晶質多孔性シリカ化合物も含まれる。   These porous oxides include those containing elements such as titanium, aluminum, vanadium, niobium, tantalum, boron, zirconium, and amorphous porous silica compounds.

これらの固体酸化物は、塩酸、硝酸、硫酸などにより表面処理してから用いることもできる。なお、本発明でとりわけ好ましく使用される固体酸化物は、グリセリン等をその細孔の中に包含でき、またグリセリンのOH基にプロトンを供給して脱水を促すことができる、シリカ/アルミナ比が小さなゼオライト化合物などを挙げることが出来る。   These solid oxides can be used after surface treatment with hydrochloric acid, nitric acid, sulfuric acid or the like. The solid oxide particularly preferably used in the present invention can include glycerin and the like in its pores, and can supply a proton to the OH group of glycerin to promote dehydration, and has a silica / alumina ratio. Small zeolite compounds can be mentioned.

本発明で用いる固体酸化物はその使用に当たって、白金族金属を含む化合物で修飾しておくことが必要である。修飾法としては、固体酸化物に白金等の化合物を含有させ、空気中で焼成する方法等が採られる。
ここで、白金族金属を含む化合物(以下、白金等の化合物ともいう)とは、白金、パラジウム、ルテニウム、ロジウム、オスミニウムおよびイリジウムの少なくとも一種を含む化合物を意味する。
The solid oxide used in the present invention must be modified with a compound containing a platinum group metal before use. As the modification method, a method of containing a compound such as platinum in a solid oxide and firing in air is adopted.
Here, the compound containing a platinum group metal (hereinafter also referred to as a compound such as platinum) means a compound containing at least one of platinum, palladium, ruthenium, rhodium, osmium and iridium.

固体酸化物に白金等の化合物を含有させる方法としては、物理混合法や,含浸法、沈殿法、混練法、インシピエントウェットネス法等の従来公知の方法を採用することが出来る。   As a method of incorporating a compound such as platinum into the solid oxide, a conventionally known method such as a physical mixing method, an impregnation method, a precipitation method, a kneading method, or an incipient wetness method can be employed.

白金等の化合物としては、代表的には、白金化合物、パラジウム化合物などが挙げられ、白金化合物としては、塩化白金酸、塩化第一白金アンモニウム、塩化第2白金ナトリウム、シアン化第一白金カリウム、ジクロロテトラアンミン白金、テトラミン硝酸白金、ビス−アセチルアセトナト白金、テトラキストリフェニルフォスフィン白金等が挙げられる。パラジウム化合物としては、酢酸パラジウム、ビス−アセチルアセトナトパラジウム、塩化パラジウム、四塩化パラジウムアンモニウム、六塩化パラジウムナトリウム、ジアミノ亜硝酸パラジウム、テトラキストリフェニルフォスフィンパラジウム、硝酸パラジウム、硫酸パラジウム等が挙げられる。   As a compound such as platinum, typically, a platinum compound, a palladium compound, and the like can be given. Examples of the platinum compound include chloroplatinic acid, ammonium platinum chloride, sodium platinum chloride, potassium potassium cyanide, Examples include dichlorotetraammine platinum, tetramine platinum nitrate, bis-acetylacetonatoplatinum, tetrakistriphenylphosphine platinum, and the like. Examples of the palladium compound include palladium acetate, bis-acetylacetonato palladium, palladium chloride, ammonium ammonium tetrachloride, sodium palladium hexachloride, palladium diaminonitrite, tetrakistriphenylphosphine palladium, palladium nitrate, and palladium sulfate.

これらの白金等の化合物は、通常、水溶液として固体酸化物に担持される。またアセトン、イソプロパノール、ベンゼンなどの有機溶媒も用いられる。白金等の化合物を含有させたシリカやゼオライト酸化物等の焼成温度は、300〜900℃,好ましくは500〜700℃程度である。白金等の担持量は、白金金属として、担体酸化物100g当たり、0.001〜10g、好ましくは0.1〜10gである。   These compounds such as platinum are usually supported on a solid oxide as an aqueous solution. Organic solvents such as acetone, isopropanol, and benzene are also used. The firing temperature of silica or zeolite oxide containing a compound such as platinum is about 300 to 900 ° C, preferably about 500 to 700 ° C. The supported amount of platinum or the like is 0.001 to 10 g, preferably 0.1 to 10 g, per 100 g of the carrier oxide as platinum metal.

本発明に用いる炭素数3の多価アルコールとしては、グリセリン、1,2-プロパンジオール、1,3-プロパンジオールを挙げることが出来る。   Examples of the polyhydric alcohol having 3 carbon atoms used in the present invention include glycerin, 1,2-propanediol, and 1,3-propanediol.

本達明による炭化水素の合成は、前記した触媒と、水素及び水の存在下で、グリセリン等を脱水及び水素化することにより、対応する同一炭素数の飽和または不飽和炭化水素に変換することにより実施される。
本発明の合成反応はグリセリンを例にとると以下の反応式で示すことができる。
すなわち、この合成反応は、脱水/水素化反応(下式(1))及び水蒸気改質(同(2)式)が通常併発し、全体では、グリセリンからC3炭化水素(プロピレン+プロパン)、CO2及び水が生成していると考えられる(同(3)式)。
(化1)
7/2C3H5(OH)3 +7H2 → 7/2C3H6+ 21/2H2O (1)
C3H5(OH)3 +3H2O → 3CO2 + 7H2 (2)
9C3H5(OH)3 → 7C3H6 +6CO2 + 15H2O (3)
Synthesis of hydrocarbons according to our Ming, the catalyst described above, in the presence of hydrogen and water, by dehydrating and hydrogenating glycerin, be converted to saturated or unsaturated hydrocarbons of the corresponding same carbon number Is implemented.
The synthesis reaction of the present invention can be represented by the following reaction formula when glycerin is taken as an example.
That is, in this synthesis reaction, a dehydration / hydrogenation reaction (the following formula (1)) and a steam reforming (the same formula (2)) are usually combined, and as a whole, glycerin is converted to C3 hydrocarbon (propylene + propane), CO2 In addition, it is considered that water is generated (formula (3)).
(Chemical formula 1)
7 / 2C 3 H 5 (OH) 3 + 7H 2 → 7 / 2C 3 H 6 + 21 / 2H 2 O (1)
C 3 H 5 (OH) 3 + 3H 2 O → 3CO 2 + 7H 2 (2)
9C 3 H 5 (OH) 3 → 7C 3 H 6 + 6CO 2 + 15H 2 O (3)

本発明の合成反応方法は気相及び液相のいずれで行うこともできるが、概して高沸点原料を対象としているため、液相がより好ましい。この場合の反応温度は、50〜500℃、好ましくは150〜300℃の条件下であり、また反応圧力は任意であるが加圧が好ましく、0.01Mpa〜100Mpa、好ましくは0.5MPa〜10MPaである。
雰囲気ガスには、反応として水素化を含むため、水素が用いられる。水素の使用割合は、多価アルコール1モル当たり、0.05〜50モル、好ましくは0.1〜5モルの割合である。また水素は、窒素、ヘリウム、アルゴンガス等の不活性ガスで希釈して用いることができる。
Although the synthetic reaction method of the present invention can be carried out in either a gas phase or a liquid phase, the liquid phase is more preferable because it generally targets high-boiling-point raw materials. In this case, the reaction temperature is 50 to 500 ° C., preferably 150 to 300 ° C., and the reaction pressure is arbitrary, but pressurization is preferable, and 0.01 MPa to 100 MPa, preferably 0.5 MPa to 10 MPa. .
The atmospheric gas, for containing hydrogen as reaction, hydrogen is used. The use ratio of hydrogen is 0.05 to 50 moles, preferably 0.1 to 5 moles per mole of polyhydric alcohol. Hydrogen can be diluted with an inert gas such as nitrogen, helium, or argon gas.

本発明では溶媒として水を共存させる。この場合の水の使用割合は、多価アルコール1モル当たり、0.05〜500モル、好ましくは0.5〜50モルの割合である。多価アルコールと水などの溶媒との相溶性は概して良いので、相分離することは少ないが、混合比によってはまれに2層に分離することも考えられるが、反応の進行上何ら影響はない。 In the present invention, water is allowed to coexist as a solvent . The proportion of water used in this case is 0.05 to 500 mol, preferably 0.5 to 50 mol, per mol of polyhydric alcohol. Since the compatibility between polyhydric alcohols and solvents such as water is generally good, phase separation is rare, but depending on the mixing ratio, it may be rarely separated into two layers, but there is no effect on the progress of the reaction. .

次に本発明を実施例によりさらに詳細に説明する。   Next, the present invention will be described in more detail with reference to examples.

実施例1
富士シリシア製シリカ(Cariact G-10)にジクロロテトラアンミン白金(白金換算で5wt%)を含浸させ、333Kで一晩乾燥、さらに373Kで3時間乾燥後、873Kで5時間空気焼成した。こうして得られた5%Pt/SiO2を1g、グリセリン/水=100mmol/220mmolを100mlのオートクレーブに入れ、水素と窒素の混合ガス(体積比(水素/窒素=84.3/15.7))を全圧2.0MPaにて導入して、523Kで12時間反応させた。反応後の生成物をガスクロマトグラフにより分析したところ,グリセリン転化率5.13%,C3炭化水素選択率20.3%、C3炭化水素空時収率85.8mmol/kg-cat/hにてC3炭化水素が生成した(表1)。副生物として,メタン、C2炭化水素、CO2の他(表1)、アセトン、1-プロパノール、ジエチルエーテルなどの含酸素化合物が少量検出された。
Example 1
Silica manufactured by Fuji Silysia (Cariact G-10) was impregnated with dichlorotetraammine platinum (5 wt% in terms of platinum), dried at 333 K overnight, further dried at 373 K for 3 hours, and then air calcined at 873 K for 5 hours. 1 g of 5% Pt / SiO2 thus obtained and glycerin / water = 100 mmol / 220 mmol were put into a 100 ml autoclave, and a mixed gas of hydrogen and nitrogen (volume ratio (hydrogen / nitrogen = 84.3 / 15.7)) was supplied at a total pressure of 2.0 MPa. And reacted at 523K for 12 hours. Analysis of the product after the reaction by gas chromatography revealed that C3 hydrocarbons were produced at a glycerol conversion of 5.13%, C3 hydrocarbon selectivity of 20.3%, and C3 hydrocarbon space time yield of 85.8 mmol / kg-cat / h. (Table 1). As by-products, a small amount of oxygen-containing compounds such as acetone, 1-propanol and diethyl ether were detected in addition to methane, C2 hydrocarbons and CO2 (Table 1).

グリセリン転化率,Cn炭化水素及びCOx選択率,C3空時収率は便宜的に以下のように計算した。
(1)グリセリン転化率= (ΣCn*n (n=1-4)+CO+CO2)/(GLY初期導入量) X 100.
ここでCnは炭素数nの炭化水素モル数(n=1-4)。
(2)Cn選択率 = (Cn*n)/((ΣCn*n: n=1-4)+CO+CO2)x100
COx選択率= (CO+CO2)/((ΣCn*n: n=1-4)+CO+CO2).
*は積を表す。
(3)C3空時収率 = C3 (mmol)/触媒量(1g)/反応時間(12h)
The glycerin conversion, Cn hydrocarbon and COx selectivity, and C3 space time yield were calculated as follows for convenience.
(1) Glycerin conversion rate = (ΣCn * n (n = 1-4) + CO + CO 2 ) / (GLY initial introduction amount) X 100.
Here, Cn is the number of moles of hydrocarbons having n carbon atoms (n = 1-4).
(2) Cn selectivity = (Cn * n) / ((ΣCn * n: n = 1-4) + CO + CO 2 ) x100
COx selectivity = (CO + CO2) / ((ΣCn * n: n = 1-4) + CO + CO 2 ).
* Represents a product.
(3) C3 space time yield = C3 (mmol) / amount of catalyst (1 g) / reaction time (12 h)

実施例2
Cariact G-10の代わりにH-モルデナイト(MOR)(シリカ/アルミナ比=240)を用い、同様に白金換算で5.0wt%担持/焼成することにより調製した5.0wt%Pt/H-MORを1g用いた以外は実施例1と同様にして反応させたところ、グリセリン転化率1.16%,C3炭化水素選択率13.5%、C3炭化水素空時収率12.9mmol/kg-cat/hにてC3炭化水素が生成した(表1)。
Example 2
1 g of 5.0 wt% Pt / H-MOR prepared by loading / burning 5.0 wt% in the same manner as platinum using H-mordenite (MOR) (silica / alumina ratio = 240) instead of Cariact G-10 The reaction was carried out in the same manner as in Example 1 except that the glycerin conversion was 1.16%, the C3 hydrocarbon selectivity was 13.5%, and the C3 hydrocarbon space-time yield was 12.9 mmol / kg-cat / h. (Table 1).

比較例1
白金を使用せず、H-MOR担体のみを用いた以外、実施例2と同様にして反応させたところ、グリセリン転化率0.83%,C3炭化水素選択率4.71%、C3炭化水素空時収率3.21mmol/kg-cat/hとなり、実施例2に比べ、C3炭化水素選択率は1/3に、またC3空時収率は1/4に低下していることがわかる(表1)。
Comparative Example 1
The reaction was carried out in the same manner as in Example 2 except that only H-MOR carrier was used without using platinum. As a result, the glycerol conversion was 0.83%, the C3 hydrocarbon selectivity was 4.71%, and the C3 hydrocarbon space-time yield was 3.21. It becomes mmol / kg-cat / h, and it can be seen that the C3 hydrocarbon selectivity is reduced to 1/3 and the C3 space time yield is reduced to 1/4 compared to Example 2 (Table 1).

実施例3
ジクロロテトラアンミン白金の代わりにテトラミン硝酸白金を用い、担持率を0.5wt%、反応温度を498Kとした以外は実施例2と同様にして反応させたところ、グリセリン転化率1.77%,C3炭化水素選択率19.1%、C3炭化水素空時収率27.8mmol/kg-cat/hにてC3炭化水素が生成した(表1)。
Example 3
The reaction was conducted in the same manner as in Example 2 except that tetramine platinum nitrate was used in place of dichlorotetraammine platinum, the loading rate was 0.5 wt%, and the reaction temperature was 498 K. The glycerin conversion rate was 1.77% and the C3 hydrocarbon selectivity. C3 hydrocarbons were produced at 19.1%, C3 hydrocarbon space time yield of 27.8 mmol / kg-cat / h (Table 1).

実施例4
ジクロロテトラアンミン白金の担持率を1wt%、担体をH-ZSM-5(シリカ/アルミナ比=1900)、グリセリン/水のモル比を= 0.016mol/ 0.500molとした以外は実施例2と同様にして反応させたところ、グリセリン転化率1.95%,C3炭化水素選択率49.1%、C3炭化水素空時収率13.5mmol/kg-cat/h、と高められた選択率にてC3炭化水素が生成した(表1)。
Example 4
The same procedure as in Example 2 except that the loading ratio of dichlorotetraammine platinum was 1 wt%, the carrier was H-ZSM-5 (silica / alumina ratio = 1900), and the molar ratio of glycerol / water was 0.016 mol / 0.500 mol. As a result of the reaction, C3 hydrocarbons were produced with increased selectivity such as glycerol conversion 1.95%, C3 hydrocarbon selectivity 49.1%, C3 hydrocarbon space time yield 13.5 mmol / kg-cat / h ( Table 1).

実施例5
担体をH-モルデナイト(MOR)(シリカ/アルミナ比=18.3)を用い、グリセリン/水のモル比を= 0.016mol/ 0.500molとし、反応温度を270°Cとした以外は実施例2と同様にして反応させたところ、グリセリン転化率79.6%,C3炭化水素選択率30.4%、C3炭化水素空時収率367mmol/kg-cat/h、と圧倒的に高められたグリセリン転化率とC3空時収率にてC3炭化水素が生成した(表1)。
Example 5
The same procedure as in Example 2 was conducted except that H-mordenite (MOR) (silica / alumina ratio = 18.3) was used as the carrier, the molar ratio of glycerin / water was 0.016 mol / 0.500 mol, and the reaction temperature was 270 ° C. The glycerol conversion rate was 79.6%, the C3 hydrocarbon selectivity was 30.4%, and the C3 hydrocarbon space-time yield was 367 mmol / kg-cat / h. C3 hydrocarbons were produced at a rate (Table 1).

Figure 0005013396
Figure 0005013396

Claims (4)

触媒と、水素及び水の存在下、炭素数3の多価アルコールを脱水及び水素化して対応する炭素数3の炭化水素を合成する際に用いられる炭化水素合成用触媒であって、
金化合物で修飾されたシリカ又はゼオライトからなることを特徴とする炭化水素合成用触媒。
A catalyst for synthesizing hydrocarbons used in synthesizing corresponding hydrocarbons having 3 carbon atoms by dehydrating and hydrogenating polyhydric alcohols having 3 carbon atoms in the presence of hydrogen and water,
Hydrocarbon synthesis catalyst, characterized in that it consists of modified silica or zeolite platinum of compounds.
前記ゼオライトが、シリカ/アルミナ比が小さいゼオライトであることを特徴とする請求項1に記載の炭化水素合成用触媒。The hydrocarbon synthesis catalyst according to claim 1, wherein the zeolite is a zeolite having a small silica / alumina ratio. と、水素及び水の存在下で、炭素数3の多価アルコールを脱水及び水素化して対応する炭素数3の炭化水素を合成する炭化水素の製造方法であって、
前記触媒として、白金化合物で修飾されたシリカ又はゼオライトからなる触媒を用いることを特徴とする炭化水素の製造方法。
And catalyze, in the presence of hydrogen and water, a process for the preparation of hydrocarbons for synthesizing hydrocarbons with a carbon number of 3 corresponding dehydrated and hydrogenated polyhydric alcohols having 3 carbon atoms,
A method for producing hydrocarbons , wherein a catalyst comprising silica or zeolite modified with a platinum compound is used as the catalyst .
前記ゼオライトが、シリカ/アルミナ比が小さいゼオライトであることを特徴とする請求項3に記載の炭化水素の製造方法。The said zeolite is a zeolite with a small silica / alumina ratio, The manufacturing method of the hydrocarbon of Claim 3 characterized by the above-mentioned.
JP2006237521A 2006-09-01 2006-09-01 Catalyst for dehydration / hydrogenation of polyhydric alcohol having 3 carbon atoms and method for producing hydrocarbon using the same Expired - Fee Related JP5013396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006237521A JP5013396B2 (en) 2006-09-01 2006-09-01 Catalyst for dehydration / hydrogenation of polyhydric alcohol having 3 carbon atoms and method for producing hydrocarbon using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006237521A JP5013396B2 (en) 2006-09-01 2006-09-01 Catalyst for dehydration / hydrogenation of polyhydric alcohol having 3 carbon atoms and method for producing hydrocarbon using the same

Publications (2)

Publication Number Publication Date
JP2008055370A JP2008055370A (en) 2008-03-13
JP5013396B2 true JP5013396B2 (en) 2012-08-29

Family

ID=39238750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006237521A Expired - Fee Related JP5013396B2 (en) 2006-09-01 2006-09-01 Catalyst for dehydration / hydrogenation of polyhydric alcohol having 3 carbon atoms and method for producing hydrocarbon using the same

Country Status (1)

Country Link
JP (1) JP5013396B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2912131B1 (en) * 2007-02-05 2009-03-13 Rhodia Poliamida E Especialidades Ltda PROCESS FOR OBTAINING PROPIONIC ACID

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4148835A (en) * 1978-04-14 1979-04-10 Mobil Oil Corporation Hydrocarbon manufacture from alcohols
NZ536672A (en) * 2002-05-10 2007-01-26 Wisconsin Alumni Res Found Low-temperature hydrocarbon production from oxygenated hydrocarbons
SE526429C2 (en) * 2003-10-24 2005-09-13 Swedish Biofuels Ab Intensifying fermentation of carbohydrate substrate for, e.g. producing one to five carbon alcohols, involves using amino acid leucine, isoleucine, and/or valine as source of nitrogen
CA2634712C (en) * 2005-12-21 2015-11-24 Virent Energy Systems, Inc. Catalysts and methods for reforming oxygenated compounds
EP1892280A1 (en) * 2006-08-16 2008-02-27 BIOeCON International Holding N.V. Fluid catalytic cracking of oxygenated compounds

Also Published As

Publication number Publication date
JP2008055370A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
JP5231786B2 (en) Process for producing polyhydric alcohol hydrocracked product
JP2012508736A (en) Integrated process for producing vinyl acetate from acetic acid via ethylene
US9340423B2 (en) Catalysts
EP2671861B1 (en) Selective oxidation of hydrocarbons using heterogeneous catalysts
TW200535129A (en) Process for preparing carboxylic acids and derivatives thereof
JP2008143798A (en) Method for preparing propanediol
Shalygin et al. Light olefins synthesis from C 1-C 2 paraffins via oxychlorination processes
JP2008289991A (en) Catalyst for synthesis of propylene
EP3036213B1 (en) Production of 1,6-hexanediol from adipic acid
JP5013396B2 (en) Catalyst for dehydration / hydrogenation of polyhydric alcohol having 3 carbon atoms and method for producing hydrocarbon using the same
US9475742B2 (en) Glycerol conversion by heterogeneous catalysis
CN109748777B (en) Method for preparing 1, 6-hexanediol by catalytic hydrogenolysis of 1,2, 6-hexanetriol
JP6522599B2 (en) Process for producing furan and its derivatives
CN107406775B (en) Fischer-tropsch process using a reduction-activated cobalt catalyst
JP5273724B2 (en) Catalyst for hydrogenolysis of triglycerides
JP5717535B2 (en) Process for producing 1,3-propanediol and catalyst for hydrogenation reaction of glycerin
JP2022541096A (en) Method for preparing glycolic acid
RU2607902C1 (en) Method of increasing stability of oxygen-containing components of motor fuel and controlling oxygen content therein
KR102192380B1 (en) Method for Preparing Alcohol in Aqueous Phase by Using the Same and Catalyst for Preparing Alcohol in Aqueous Phase
JP4002971B2 (en) Propylene oxide production method
KR101883993B1 (en) Preparation method of 1,3-cyclohexanedicarboxylic acid
EP3317261A1 (en) Process for the production of 1,4-butanediol and tetrahydrofuran from furan
KR101786910B1 (en) Preparation method of 1,4-cyclohexanedimethanol
KR101843049B1 (en) Catalyst composition for hydrogenation reaction and method of preparing 1,4-cyclohexanediol using the same
JP4586193B2 (en) Method for producing phenol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120530

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees