JP5011658B2 - Manufacturing method of electrolyte membrane for fuel cell and electrolyte membrane for fuel cell - Google Patents

Manufacturing method of electrolyte membrane for fuel cell and electrolyte membrane for fuel cell Download PDF

Info

Publication number
JP5011658B2
JP5011658B2 JP2005148116A JP2005148116A JP5011658B2 JP 5011658 B2 JP5011658 B2 JP 5011658B2 JP 2005148116 A JP2005148116 A JP 2005148116A JP 2005148116 A JP2005148116 A JP 2005148116A JP 5011658 B2 JP5011658 B2 JP 5011658B2
Authority
JP
Japan
Prior art keywords
electrolyte membrane
electrolyte
membrane
dispersion
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005148116A
Other languages
Japanese (ja)
Other versions
JP2006324193A (en
Inventor
憲俊 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005148116A priority Critical patent/JP5011658B2/en
Publication of JP2006324193A publication Critical patent/JP2006324193A/en
Application granted granted Critical
Publication of JP5011658B2 publication Critical patent/JP5011658B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Description

本発明は、燃料電池用電解質膜の製造方法及び燃料電池用電解質膜に係り、特に固体高分子型の燃料電池用電解質膜の製造方法及び燃料電池用電解質膜に関する。   The present invention relates to a method for manufacturing an electrolyte membrane for a fuel cell and an electrolyte membrane for a fuel cell, and more particularly to a method for manufacturing an electrolyte membrane for a solid polymer type fuel cell and an electrolyte membrane for a fuel cell.

固体高分子型燃料電池は、固体型高分子固体電解質として作用する隔膜の両側に、触媒が担持されたガス拡散電極を接合し、一方のガス拡散電極が存在する側の室である燃料室に燃料である水素を、他方のガス拡散電極が存在する側の室である酸化剤室に酸化剤である酸素や空気等の酸素含有ガスをそれぞれ供給し、両ガス拡散電極間に外部負荷回路を接続することにより燃料電池として作用させる。   A polymer electrolyte fuel cell has a gas diffusion electrode carrying a catalyst bonded to both sides of a diaphragm acting as a solid polymer solid electrolyte, and a fuel chamber which is a chamber on the side where one gas diffusion electrode exists. Hydrogen, which is a fuel, is supplied to an oxidant chamber, which is a chamber on the other gas diffusion electrode side, and an oxygen-containing gas such as oxygen or air, which is an oxidant, and an external load circuit is connected between both gas diffusion electrodes By connecting, it acts as a fuel cell.

このような固体高分子型燃料電池において、隔膜には、通常プロトン伝導性を有する電解質膜が使用される。特に電池耐久性向上のために、多孔質膜に、陽イオン交換樹脂、すなわち電解質樹脂を、何らかの方法で含浸させたものが用いられる。   In such a polymer electrolyte fuel cell, an electrolyte membrane having proton conductivity is usually used as the diaphragm. In particular, in order to improve battery durability, a porous membrane impregnated with a cation exchange resin, that is, an electrolyte resin by some method is used.

例えば特許文献1には、このような電解質膜として、ポリテトラフルオロエチレン(PTFE)多孔質膜にスルホン酸基を有するパーフロロ系イオン交換ポリマーを含浸するものが開示される。ここでは、多孔質PTFEにパーフロロ系イオン交換樹脂液を十分に含浸させる方法等が述べられる。   For example, Patent Document 1 discloses such an electrolyte membrane in which a polytetrafluoroethylene (PTFE) porous membrane is impregnated with a perfluoro-based ion exchange polymer having a sulfonic acid group. Here, a method of sufficiently impregnating porous PTFE with a perfluoro-based ion exchange resin solution is described.

また、特許文献2には、化学的に安定な多孔質PTFEの改質としてコバルト60によるγ線を照射してスチレンモノマーとグラフト重合反応させ、スルホン酸系イオン交換樹脂をベースとする溶液を含浸させて乾燥させ、孔をスルホン酸系イオン交換樹脂で埋めることが開示されている。そしてその後HCl溶液に浸漬し、水洗浄を繰り返し官能基をH型とし、ついでNaOH溶液に浸漬し、HCl水溶液で中和することが述べられる。   In Patent Document 2, as a modification of chemically stable porous PTFE, γ-rays from cobalt 60 are irradiated to cause graft polymerization reaction with a styrene monomer, and impregnated with a solution based on a sulfonic acid-based ion exchange resin. And drying and filling the pores with a sulfonic acid ion exchange resin. Then, it is described that the substrate is dipped in an HCl solution and washed repeatedly with water to make the functional group an H-type, and then dipped in an NaOH solution and neutralized with an aqueous HCl solution.

特許文献3には、多孔質膜に陽イオン交換樹脂を積層する方法が述べられる。ここでは多孔質膜と、スルホン酸基を有するパーフルオロカーボン系イオン交換樹脂膜とを加熱加圧ラミネート法で形成する方法が述べられる。   Patent Document 3 describes a method of laminating a cation exchange resin on a porous membrane. Here, a method of forming a porous membrane and a perfluorocarbon-based ion exchange resin membrane having a sulfonic acid group by a heat and pressure laminating method is described.

特公平5−75835号公報Japanese Patent Publication No. 5-75835 特開2004−273298号公報JP 2004-273298 A 特開2004−178995号公報Japanese Patent Laid-Open No. 2004-177895

電解質樹脂を多孔質膜に含浸する方法のうち、電解質樹脂を多孔質膜の孔に直接含浸させるには、特許文献1のように電解質樹脂液にPTFE多孔質膜を含浸させ、あるいは、特許文献2のように、その後アルカリ加水分解、酸中和が行われる。この方法は、PTFEが疎水性であるのに対し、電解質樹脂はプロトン伝導性を有するため親水性であり、したがってその溶液は水溶液あるいはアルコール液等が用いられるので、どうしてもPTFEと電解樹脂溶液とが馴染みにくい。そのため、多孔質の細孔に染み込みにくく、PTFEの多孔質体に空孔が残りやすい。また、馴染みを改善するためのグラフト加工は上記のようにγ線照射等の工程が余分に必要となる。   Of the methods for impregnating the porous membrane with the electrolyte resin, in order to directly impregnate the pores of the porous membrane with the electrolyte resin, the electrolyte resin solution is impregnated with the PTFE porous membrane as in Patent Document 1, or As in 2, alkaline hydrolysis and acid neutralization are then performed. In this method, while PTFE is hydrophobic, electrolyte resin is hydrophilic because it has proton conductivity. Therefore, since an aqueous solution or an alcohol solution is used as the solution, PTFE and the electrolytic resin solution are inevitably used. Difficult to get used to. Therefore, it is difficult to soak into the porous pores, and voids are likely to remain in the porous body of PTFE. Further, the grafting process for improving the familiarity requires an extra process such as γ-ray irradiation as described above.

また、特許文献3に述べられる積層法は、電解質膜に要求される薄膜化が困難である。例えば燃料電池等で使用される電解質膜の厚さとしては、約10〜20μm程度の薄さが望まれるが、押出機を用いてフィルムを延伸する押出製膜法では、膜厚調整が困難である。また、チューブ状に樹脂を押し出しその後膨らませてプラスチック薄膜フィルムを成形するインフレーション法は、素材に溶融張力を要し、適用が困難である。   In addition, the lamination method described in Patent Document 3 is difficult to reduce the thickness required for the electrolyte membrane. For example, the thickness of the electrolyte membrane used in a fuel cell or the like is desired to be about 10 to 20 μm, but it is difficult to adjust the thickness by an extrusion film forming method in which the film is stretched using an extruder. is there. Further, the inflation method in which a plastic thin film is formed by extruding a resin in a tube shape and then expanding is difficult to apply because the material requires melt tension.

このように、従来技術においては、電解質樹脂を多孔質膜に十分含浸透することが困難である。   Thus, in the prior art, it is difficult to sufficiently permeate the electrolyte resin into the porous membrane.

本発明の目的は、多孔質膜への電解質樹脂の充填性を向上させる燃料電池用電解質膜の製造方法及びその方法による燃料電池用電解質膜を提供することである。   The objective of this invention is providing the manufacturing method of the electrolyte membrane for fuel cells which improves the filling property of the electrolyte resin to a porous membrane, and the electrolyte membrane for fuel cells by the method.

本発明に係る燃料電池用電解質膜の製造方法は、固体高分子型の燃料電池用電解質膜の製造方法であって、
の構造式で示される−SO 2 F基を有する重合体を前駆体として、その前駆体を疎水性物質に馴染む有機溶媒に添加し、分散処理して、疎水性物質に馴染む電解質前駆体分散体を生成する分散体生成工程と、
多孔質の疎水性電解質膜基体に電解質前駆体分散体を塗布乾燥しその後焼成して、
の構造式で示される−SO 2 F基を有する重合体を多孔質の細孔に充填した疎水性電解質膜基体と前駆体焼成層との複合膜を生成する複合膜生成工程と、
複合膜を加水分解処理し
の構造式で示される−SO 2 F基を有する重合体を
の構造式で示される−SO 3 H基を有する重合体に変換し、親水性の電解質膜を生成する親水処理工程と、
を含むことを特徴とする。
A method for producing an electrolyte membrane for a fuel cell according to the present invention is a method for producing an electrolyte membrane for a solid polymer type fuel cell,
A polymer having a -SO 2 F group as a precursor represented by the structural formula, was added to the organic solvent and fits the precursor hydrophobicity material was dispersed, a hydrophobic substance fits electrolyte precursor dispersion A dispersion generating step for generating
The electrolyte precursor dispersion is applied to a porous hydrophobic electrolyte membrane substrate, dried, and then fired.
A composite film production step for producing a composite film of a hydrophobic electrolyte membrane substrate in which porous pores are filled with a polymer having a —SO 2 F group represented by the structural formula of FIG .
Hydrolyzing the composite membrane ,
A polymer having a —SO 2 F group represented by the structural formula of
A hydrophilic treatment step of converting to a polymer having a —SO 3 H group represented by the structural formula, and generating a hydrophilic electrolyte membrane;
It is characterized by including.

また、分散体生成工程は、ハロゲン元素を含む有機溶媒を用いることが好ましい。また、分散体生成工程は、ハロゲン元素としてF又はClを含む有機溶媒を用いることが好ましい。また、分散体生成工程は、パーフルオロ化合物又はベンゼン誘導体の有機溶媒を用いることが好ましい。   Moreover, it is preferable to use the organic solvent containing a halogen element for a dispersion production | generation process. Moreover, it is preferable to use the organic solvent containing F or Cl as a halogen element at a dispersion production | generation process. Moreover, it is preferable to use the organic solvent of a perfluoro compound or a benzene derivative for a dispersion production | generation process.

また、分散体生成工程は、CF2CF2と、
とを重合して得られる
の構造式を有する電解質樹脂前駆体を用いることが好ましい。
In addition, the dispersion generation step includes CF 2 CF 2 ,
Obtained by polymerizing
It is preferable to use an electrolyte resin precursor having the following structural formula.

また、分散体生成工程は、{x/(x+y)}×100の値が5以上50以下である電解質樹脂前駆体を用いることが好ましい。また、分散体生成工程は、{x/(x+y)}×100の値が10以上20以下である電解質樹脂前駆体を用いることがより好ましい。   Moreover, it is preferable to use the electrolyte resin precursor whose value of {x / (x + y)} × 100 is 5 or more and 50 or less in the dispersion generation step. Moreover, it is more preferable to use the electrolyte resin precursor whose value of {x / (x + y)} × 100 is 10 or more and 20 or less in the dispersion generation step.

また、本発明に係る燃料電池用電解質膜の製造方法において、分散体生成工程は、SO2F基を含有するパーフルオロ電解質樹脂前駆体をパーフルオロヘキサン溶媒に添加し、複合膜生成工程は、多孔質のPTFE電解質膜基体に電解質前駆体分散体を塗布することが好ましい。 Further, in the method for producing an electrolyte membrane for a fuel cell according to the present invention, the dispersion generation step includes adding a perfluoroelectrolyte resin precursor containing an SO 2 F group to a perfluorohexane solvent, and the composite membrane generation step includes: It is preferable to apply the electrolyte precursor dispersion to the porous PTFE electrolyte membrane substrate.

また、本発明に係る燃料電池用電解質膜の製造方法は、固体高分子型の燃料電池用電解質膜の製造方法であって、
の構造式で示され、SO2F基を10モル%〜20モル%含有するパーフルオロ電解質樹脂前駆体をパーフルオロヘキサン溶媒に質量比で20%以下添加し、これを粉砕処理して電解質前駆体分散体を生成する分散体生成工程と、平均細孔径が3μmのPTFE多孔質膜体に、電解質前駆体分散体を塗布乾燥し、これを繰り返し、200〜250℃で焼成して複合膜を生成する複合膜生成工程と、複合膜をアルカリ加水分解の後酸中和し、
の構造式で示される−SO 3 H基を有する重合体に変換し、親水性の電解質膜を生成する親水処理工程と、を含むことを特徴とする。
A method for producing an electrolyte membrane for a fuel cell according to the present invention is a method for producing an electrolyte membrane for a solid polymer type fuel cell,
Indicated by the structural formula, SO 2 F groups were added perfluoro electrolyte resin precursor containing 10 mol% to 20 mol% or less 20% by mass ratio perfluorohexane solvent, electrolyte precursor to this grinding process to A dispersion generation step for generating a body dispersion and a PTFE porous membrane having an average pore diameter of 3 μm are coated and dried with an electrolyte precursor dispersion, and this is repeated and fired at 200 to 250 ° C. to form a composite membrane. The composite membrane production process to be produced, and the composite membrane is acid-neutralized after alkali hydrolysis,
And a hydrophilic treatment step of generating a hydrophilic electrolyte membrane by converting into a polymer having a —SO 3 H group represented by the structural formula:

また、本発明に係る燃料電池用電解質膜は、固体高分子型の燃料電池用電解質膜であって、平均細孔径が3μmのPTFE多孔質膜体と、PTFE多孔質膜体の表面に生成され、
の構造式で示される−SO 2 F基を有する重合体を
の構造式で示される−SO 3 H基を有する重合体に変換する親水処理により親水化された電解質前駆体分散体の焼成膜と、を備えることを特徴とする。
The electrolyte membrane for a fuel cell according to the present invention is a solid polymer type electrolyte membrane for a fuel cell, and is formed on a PTFE porous membrane having an average pore diameter of 3 μm and on the surface of the PTFE porous membrane. ,
A polymer having a —SO 2 F group represented by the structural formula of
And a calcined film of the electrolyte precursor dispersion hydrophilized by a hydrophilic treatment that is converted into a polymer having a —SO 3 H group represented by the structural formula:

また、本発明に係る燃料電池用電解質膜において、PTFE多孔質膜体は、1〜20μmの厚みを有し、焼成膜は、5〜30μmの厚みを有することが好ましい。   In the fuel cell electrolyte membrane according to the present invention, the PTFE porous membrane body preferably has a thickness of 1 to 20 μm, and the fired membrane preferably has a thickness of 5 to 30 μm.

また、本発明に係る燃料電池用電解質膜において、その膜厚が50μm以下であることが好ましい。   In the fuel cell electrolyte membrane according to the present invention, the thickness is preferably 50 μm or less.

従来技術では、親水性の電解質樹脂を分散させる溶液は水またはアルコールを用い、したがって疎水性の電解質膜体と馴染みにくいが、上記構成では、多孔質の疎水性電解質膜基体に疎水性の電解質前駆体分散体を塗布乾燥しその後焼成して複合膜を生成し、その後、加水分解処理し親水性の電解質膜を生成する。すなわち、親水性の電解質樹脂にするのは後に加水分解酸中和で行うことにし、その電解質樹脂の前駆体を疎水性としこれを疎水性溶媒に分散させるので、これは疎水性電解質膜基体と相性がよい。したがって、最終的に親水性である電解質樹脂の、疎水性の多孔質膜への充填性を向上させることができる。   In the prior art, the solution in which the hydrophilic electrolyte resin is dispersed uses water or alcohol. Therefore, it is difficult to be familiar with the hydrophobic electrolyte membrane body. The body dispersion is applied and dried, then fired to form a composite film, and then hydrolyzed to form a hydrophilic electrolyte film. That is, the hydrophilic electrolyte resin is later formed by hydrolyzing acid neutralization, and the electrolyte resin precursor is made hydrophobic and dispersed in a hydrophobic solvent. Good compatibility. Therefore, it is possible to improve the filling property of the electrolyte resin, which is finally hydrophilic, into the hydrophobic porous membrane.

また、有機溶媒としてハロゲン元素を含むもの、ハロゲン元素としてF又はClを含むもの、より具体的にはパーフルオロ化合物又はベンゼン誘導体の有機溶媒を用いるので、疎水性の多孔質電解膜基体と馴染みがよい。   In addition, those containing halogen elements as organic solvents, those containing F or Cl as halogen elements, more specifically organic solvents such as perfluoro compounds or benzene derivatives are used, so that they are familiar with hydrophobic porous electrolytic membrane substrates. Good.

また、電解質樹脂前駆体は、CF2CF2と、
とを重合して得られる
の構造式を有するものを用いるので、−SO2Fを有し、これは水やアルコール系よりも、ハロゲン系の溶媒に分散させやすく、したがってその分散体は、疎水性の物質に馴染みやすい。
The electrolyte resin precursor is CF 2 CF 2 ,
Obtained by polymerizing
Thus, -SO 2 F is included, which is easier to disperse in a halogen-based solvent than water or an alcohol, and thus the dispersion is easily adapted to a hydrophobic substance.

また、−SO2Fを有する電解質樹脂前駆体において、−SO2Fを有する側鎖と、それを有しない主鎖の割合について、{x/(x+y)}×100の値が5以上50以下、より好ましく10以上20以下とするので、有機溶媒中の電解質樹脂前駆体の分散度をある範囲に保ち、多孔質の孔への電解質樹脂前駆体の浸透を安定に維持できる。 Further, the electrolyte resin precursor having a -SO 2 F, and a side chain having a -SO 2 F, the ratio of no backbone it, {x / (x + y )} value of × 100 is 5 or more and 50 or less More preferably, it is 10 or more and 20 or less, so that the dispersion degree of the electrolyte resin precursor in the organic solvent can be kept within a certain range, and the penetration of the electrolyte resin precursor into the porous pores can be stably maintained.

また、SO2F基を含有するパーフルオロ電解質樹脂前駆体をパーフルオロヘキサン溶媒に添加し、これを多孔質のPTFE電解質膜基体に塗布するので、電解質樹脂前駆体を含む溶媒と疎水性のPTFEとの馴染みがよい。 Further, since a perfluoroelectrolyte resin precursor containing SO 2 F groups is added to a perfluorohexane solvent and this is applied to a porous PTFE electrolyte membrane substrate, a solvent containing the electrolyte resin precursor and a hydrophobic PTFE are applied. The familiarity with.

また、SO2F基を10〜20モル%含有するパーフルオロ電解質樹脂前駆体をパーフルオロヘキサン溶媒に質量比で20%以下添加して粉砕処理した電解質前駆体分散体を、平均細孔径が3μmのPTFE多孔質膜体に塗布乾燥し、これを繰り返し、200〜250℃で焼成し、その後アルカリ加水分解の後酸中和し、親水性の電解質膜を生成する。したがって、塗布乾燥のときは馴染みがよく、十分に電解質前駆体をPTFE多孔質膜体に浸透させることができ、その後加水分解・酸中和により、最終的な親水性の電解質樹脂が十分充填されたPTFE多孔質膜体からなる電解質膜を得ることができる。 Further, an electrolyte precursor dispersion obtained by adding a perfluoroelectrolyte resin precursor containing 10 to 20 mol% of SO 2 F groups to a perfluorohexane solvent in a mass ratio of 20% or less and pulverizing the electrolyte precursor dispersion has an average pore diameter of 3 μm. The PTFE porous membrane body is coated and dried, and this is repeated and fired at 200 to 250 ° C., followed by alkaline hydrolysis and acid neutralization to produce a hydrophilic electrolyte membrane. Therefore, it is familiar when coating and drying, and the electrolyte precursor can be sufficiently permeated into the PTFE porous membrane body, and then the final hydrophilic electrolyte resin is sufficiently filled by hydrolysis and acid neutralization. An electrolyte membrane made of a PTFE porous membrane can be obtained.

上記のように、本発明に係る燃料電池用電解質膜の製造方法及び燃料電池用電解質膜によれば、電解質膜の基体である多孔質膜への電解質樹脂の充填性を向上させることができる。   As described above, according to the method for producing an electrolyte membrane for a fuel cell and the electrolyte membrane for a fuel cell according to the present invention, it is possible to improve the filling property of the electrolyte resin into the porous membrane that is the substrate of the electrolyte membrane.

以下、図面を用いて本発明に係る実施の形態につき、詳細に説明する。図1は、燃料電池用電解質膜の製造方法の手順を示すフローチャートで、図2は、各手順を説明する図である。図では、多孔質膜体であるPTFEについて、出発素材10、電解質前駆体塗布乾燥後の第1中間体12、電解質前駆体焼成後の第2中間体14、最終製品の電解質膜20が工程に応じて示される。   Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a flowchart showing a procedure of a method for producing an electrolyte membrane for a fuel cell, and FIG. 2 is a diagram for explaining each procedure. In the figure, for PTFE, which is a porous film body, the starting material 10, the first intermediate 12 after application and drying of the electrolyte precursor, the second intermediate 14 after firing of the electrolyte precursor, and the electrolyte film 20 of the final product are in the process. Indicated accordingly.

図1において、前駆体生成(S10)は、最終的に加水分解・酸中和によって親水性となる電解質樹脂の前段階のものである電解質樹脂前駆体を化学反応によって作り出す工程である。具体的には、図3に示すように、CF2CF2の構造式で示されるテトラフルオロエチレンと、
で示される物質とを重合して、
の構造式を有するパーフルオロ電解質樹脂前駆体を生成する。化学式(1)において、nは1または0である。
In FIG. 1, precursor generation (S10) is a process of creating an electrolyte resin precursor, which is a previous stage of an electrolyte resin that becomes hydrophilic by hydrolysis and acid neutralization, by chemical reaction. Specifically, as shown in FIG. 3, tetrafluoroethylene represented by the structural formula of CF 2 CF 2 ,
Is polymerized with the substance shown in
A perfluoroelectrolyte resin precursor having the following structural formula is generated. In the chemical formula (1), n is 1 or 0.

パーフルオロ電解質樹脂前駆体は、主鎖と−SO2F基を有する側鎖とからなる構造である。化学式(2)におけるx,yを用いて、−SO2F基(モル%){x/(x+y)}×100である。また、電解質樹脂のイオン交換当量(EW)は、EW=電解質質量(g)/−SO2F基当量(eq)=電解質質量(g)/前駆体の−SO2F基当量(eq)で示される。さらに、複合膜のEWは、EW=(電解質+PTFE多孔質膜体)質量(g)/−SO2F基当量(eq)となる。 The perfluoroelectrolyte resin precursor has a structure composed of a main chain and a side chain having a —SO 2 F group. Using the x, y in the chemical formula (2), -SO 2 F group (mol%) = {x / (x + y)} is a × 100. In addition, the ion exchange equivalent (EW) of the electrolyte resin is EW = electrolyte mass (g) / − SO 2 F group equivalent (eq) = electrolyte mass (g) / precursor —SO 2 F group equivalent (eq). Indicated. Furthermore, the EW of the composite membrane is EW = (electrolyte + PTFE porous membrane) mass (g) / − SO 2 F group equivalent (eq).

ここで、燃料電池用電解質膜の性能から実験的に、重合反応における{x/(x+y)}×100の値を定めることができる。例えば、{x/(x+y)}×100を、15となるように設定することができる。現実的には、重合反応の幅を見て、この値が10以上20以下でもよく、また、場合によっては5以上50以下であってもよい。   Here, the value of {x / (x + y)} × 100 in the polymerization reaction can be determined experimentally from the performance of the electrolyte membrane for fuel cells. For example, {x / (x + y)} × 100 can be set to be 15. In reality, this value may be 10 or more and 20 or less in view of the width of the polymerization reaction, and may be 5 or more and 50 or less depending on circumstances.

前駆体が生成されると、次に、前駆体分散体生成(S12)の工程になる。ここでは、−SO2F基を有するパーフルオロ電解質樹脂前駆体を、有機溶媒が満たされたビーズミルの中に例えば質量比で20%以下の添加割合で入れ、粉砕処理して、有機溶媒中に細かい粒子状の電解質樹脂前駆体を分散させる。この有機溶媒中に電解質樹脂前駆体を分散させたものが前駆体分散体である。模式的には図2(a)に容器に入った前駆体分散体30が示される。 Once the precursor is generated, the next step is the precursor dispersion generation (S12). Here, a perfluoroelectrolyte resin precursor having —SO 2 F groups is placed in a bead mill filled with an organic solvent at an addition ratio of, for example, 20% or less by mass ratio, and pulverized to be added to the organic solvent. A fine particulate electrolyte resin precursor is dispersed. A precursor dispersion is obtained by dispersing an electrolyte resin precursor in this organic solvent. A precursor dispersion 30 contained in a container is schematically shown in FIG.

具体的には、{x/(x+y)}×100の値が15、すなわち−SO2F基を約15モル%含有するパーフルオロ電解質樹脂前駆体を、C614の構造式で示されるパーフルオロヘキサン溶媒に、質量比で1:9の割合で添加する。例えば前駆体10gを溶媒90gに添加する。この添加は、ビーズミル粉砕機の中に溶媒、前駆体を入れることで行われる。そしてビーズミル粉砕機を駆動させ、前駆体を溶媒中で微粒子化し、溶媒中に微粒子前駆体が浮遊している分散体を生成する。質量比は、分散体が凝集分離をあまり起こさない程度に設定する。上記の質量比の例では、前駆体全質量は10gであるが、容器の底に凝集沈殿するものが半分の5g以下とすることができる。質量比が小さければ沈殿等を少なくできるが、分散体の前駆体濃度が低くなるので、目的に応じ、質量比を1:9以外の値としてもよい。 Specifically, the value of {x / (x + y)} × 100 is 15, that is, a perfluoroelectrolyte resin precursor containing about 15 mol% of —SO 2 F groups is represented by the structural formula of C 6 F 14. It is added to the perfluorohexane solvent at a mass ratio of 1: 9. For example, 10 g of the precursor is added to 90 g of the solvent. This addition is performed by putting a solvent and a precursor into a bead mill. Then, the bead mill grinder is driven to make the precursor fine particles in a solvent, and a dispersion in which the fine particle precursor is suspended in the solvent is generated. The mass ratio is set to such an extent that the dispersion does not cause much aggregation and separation. In the example of the mass ratio described above, the total mass of the precursor is 10 g. If the mass ratio is small, precipitation and the like can be reduced. However, since the precursor concentration of the dispersion is lowered, the mass ratio may be a value other than 1: 9 depending on the purpose.

ここで、パーフルオロヘキサン溶媒を選択する理由は、パーフルオロ電解質樹脂前駆体が分散溶解しやすいことと、このあとこれを塗布する対象である疎水性のPTFEと塗布の馴染みがよいことにある。したがって、この2つの特性を満たす溶媒であれば、パーフルオロヘキサン溶媒以外の有機溶媒であってもよい。この観点からは、パーフルオロ電解質樹脂前駆体は、−SO2F基を含むこと等から、ハロゲン元素、例えばFまたはClを含む有機溶媒が好ましく、パーフルオロ化合物又はベンゼン誘導体の有機溶媒を用いることができる。 Here, the reason for selecting the perfluorohexane solvent is that the perfluoroelectrolyte resin precursor is easy to disperse and dissolve, and that the hydrophobic PTFE to which this is applied thereafter and the application of the solvent are familiar. Therefore, an organic solvent other than the perfluorohexane solvent may be used as long as the solvent satisfies these two characteristics. From this point of view, the perfluoroelectrolyte resin precursor preferably contains an organic solvent containing a halogen element, such as F or Cl, because it contains a —SO 2 F group, and a perfluoro compound or an organic solvent of a benzene derivative is used. Can do.

前駆体分散体が準備できると、電解質膜基体に、前駆体分散体を塗布し乾燥する(S14)。この工程は、詳細には、電解質膜基体の準備と、前駆体分散体の塗布と、その乾燥の工程に分けることができる。塗布と乾燥は、適当な回数繰り返される。   When the precursor dispersion is prepared, the precursor dispersion is applied to the electrolyte membrane substrate and dried (S14). In detail, this step can be divided into the steps of preparing the electrolyte membrane substrate, applying the precursor dispersion, and drying it. Application and drying are repeated an appropriate number of times.

電解質基体は多孔質膜体で、その厚みは、燃料電池に要求される性能等で決定でき、1μmから20μmのものあるいはそれ以上で、最終製品である電解質膜の膜厚が50μm以下となるようなものを用いることができる。また、その平均細孔径も、入手可能な範囲から選定してもよく、例えば2μmから5μmのものを用いることもできる。具体的には厚さが10μmのPTFE多孔質膜体で、平均細孔径が3μmのものを用いる。形状は、燃料電池の電解質膜の外形に予め切断したものを用いる。もちろん、後に所定形状の複数個の電解質膜に切断されるために準備された大判のPTFE多孔質シートを用いてもよい。準備されたPTFE多孔質膜体は、出発素材10として、図2(b)に示される。   The electrolyte substrate is a porous membrane body, and the thickness thereof can be determined by the performance required for the fuel cell, etc., and the thickness of the electrolyte membrane as the final product is 50 μm or less when the thickness is 1 μm to 20 μm or more. Can be used. Further, the average pore diameter may be selected from an available range, and for example, those having a diameter of 2 to 5 μm can be used. Specifically, a PTFE porous membrane having a thickness of 10 μm and an average pore diameter of 3 μm is used. The shape is cut in advance to the outer shape of the electrolyte membrane of the fuel cell. Of course, a large-sized PTFE porous sheet prepared to be cut into a plurality of electrolyte membranes having a predetermined shape later may be used. The prepared PTFE porous membrane is shown as a starting material 10 in FIG.

塗布は、前駆体分散体溶液をスプレー塗布によって行うことができる。塗布は、出発素材の両面を含む全面に対し行われる。全面塗布のあとの乾燥は、室温に放置して行われる。塗布と乾燥を1サイクルとして、数分ごとにこれを繰り返す。スプレー塗布に代わって、浸漬、滴下等の方法を用い、あるいはこれらの方法を組み合わせてもよい。   The coating can be performed by spray coating the precursor dispersion solution. The coating is performed on the entire surface including both sides of the starting material. Drying after the entire surface coating is performed by leaving it at room temperature. This is repeated every few minutes with one cycle of application and drying. Instead of spray coating, methods such as dipping and dropping may be used, or these methods may be combined.

上記のように、前駆体分散体溶液は、PTFEと塗布の馴染みがよいので、塗布乾燥を十分に繰り返すことで、PTFEの全面はもとより、多孔質の細孔の内部にまで十分に前駆体分散体が浸透し、−SO2F基を有するパーフルオロ電解質樹脂前駆体が十分に供給される。塗布と乾燥の繰り返し回数は、乾燥後の全体の厚みを目安にして決定できる。乾燥後の全体厚みは、出発素材10の厚さを10μmとして、20μm程度とすることができる。もっとも、工程の許容誤差を考慮し、例えば15〜25μm程度としてもよい。塗布乾燥後のPTFEの様子は、図2(c)に第1中間体12として示される。 As described above, the precursor dispersion solution is familiar to PTFE and coating. By repeating coating and drying sufficiently, the precursor dispersion can be sufficiently dispersed not only on the entire surface of PTFE but also inside the porous pores. The body penetrates and the perfluoroelectrolyte resin precursor having —SO 2 F groups is sufficiently supplied. The number of repetitions of application and drying can be determined based on the overall thickness after drying. The total thickness after drying can be about 20 μm, with the thickness of the starting material 10 being 10 μm. However, in consideration of the tolerance of the process, it may be, for example, about 15 to 25 μm. The state of PTFE after coating and drying is shown as the first intermediate 12 in FIG.

次に第1中間体12を焼成して、電解質基体と前駆体焼成層とからなる複合膜を生成する(S16)。焼成は、図2(d)に示すように、適当な焼成炉32の中に第1中間体12を置いて行われる。焼成温度は230℃、焼成時間は10分、焼成雰囲気は大気中でよい。焼成炉32の代わりに、加熱トンネルとコンベヤの組み合わせ、ホットプレートを用いてもよい。また、焼成温度、焼成時間、焼成雰囲気等の焼成条件は、第1中間体12の厚み等に応じて変更することができる。   Next, the 1st intermediate body 12 is baked and the composite film which consists of an electrolyte base and a precursor baking layer is produced | generated (S16). Firing is performed by placing the first intermediate body 12 in a suitable firing furnace 32 as shown in FIG. The firing temperature may be 230 ° C., the firing time may be 10 minutes, and the firing atmosphere may be air. Instead of the firing furnace 32, a combination of a heating tunnel and a conveyor, or a hot plate may be used. In addition, firing conditions such as firing temperature, firing time, firing atmosphere, and the like can be changed according to the thickness of the first intermediate 12 and the like.

焼成により、有機溶媒成分が消散し、PTFEの両面および側面、ならびに多孔質PTFEの細孔内に、−SO2F基を有するパーフルオロ電解質樹脂前駆体がしっかりと固着し、外観上、前駆体焼成層で挟まれた電解質膜基体の複合膜が得られる。この複合膜の様子は図2(e)に第2中間体14として示される。第2中間体14の全体厚さは、第1中間体12の厚さよりもこの焼成により減少する。焼成後の膜厚は、出発素材の厚みによるが、上記のように出発素材の厚みを1から20μmとするときは、5から30μm程度となる。 By firing, the organic solvent component is dissipated, and the perfluoroelectrolyte resin precursor having —SO 2 F groups is firmly fixed in both sides and side surfaces of PTFE and in the pores of porous PTFE, and the appearance of the precursor A composite membrane of the electrolyte membrane substrate sandwiched between the fired layers is obtained. The state of the composite film is shown as the second intermediate body 14 in FIG. The overall thickness of the second intermediate body 14 is reduced by this firing than the thickness of the first intermediate body 12. The film thickness after firing depends on the thickness of the starting material, but is about 5 to 30 μm when the thickness of the starting material is 1 to 20 μm as described above.

次に、第2中間体14を加水分解し、親水性の電解質膜を生成する(S18)。すなわち、この工程の前までにおける、−SO2F基を有するパーフルオロ電解質樹脂前駆体は親水性でなく、これを加水分解し酸中和することで、目的とする燃料電池用のプロトン伝導性を有する電解質膜とすることができる。加水分解と酸中和の工程は、第2中間体14を、NaOH溶液に浸漬し、HCl水溶液で中和することで行われる。これらの工程は、パーフルオロ電解質樹脂前駆体に対する親水性化工程として知られる内容を用いることができる。 Next, the second intermediate 14 is hydrolyzed to produce a hydrophilic electrolyte membrane (S18). That is, the perfluoroelectrolyte resin precursor having a —SO 2 F group before this step is not hydrophilic, and the proton conductivity for the intended fuel cell is obtained by hydrolysis and acid neutralization. It can be set as the electrolyte membrane which has. The steps of hydrolysis and acid neutralization are performed by immersing the second intermediate 14 in an NaOH solution and neutralizing with an aqueous HCl solution. In these steps, the content known as a hydrophilic step for the perfluoroelectrolyte resin precursor can be used.

図4は、−SO2F基を有するパーフルオロ電解質樹脂前駆体が、加水分解等の親水性処理によって−SO2Fが−SO2Hに置換され、パーフルオロ電解質樹脂となる様子を示す図である。パーフルオロ電解質樹脂の構造式は式(3)で示される。
すなわち、親水性処理をパーフルオロ電解質樹脂前駆体に対し行うことで、その−SO2F基はアルカリ処理により、例えば−SO3Naに変換され、さらに酸中和により親水性の−SO3H基に変換される。なお、アルカリ処理はNaOH以外のもの、例えばKOHを用いてもよく、酸中和はHCl以外のもの、例えばHNO3またはH2SO4を用いてもよい。
Figure 4 is a perfluorinated electrolyte resin precursor having a -SO 2 F group, -SO 2 F is substituted with -SO 2 H by a hydrophilic treatment such as hydrolysis, illustration illustrating that the perfluoro electrolyte resin It is. The structural formula of the perfluoroelectrolyte resin is represented by formula (3).
That is, by performing hydrophilic treatment on the perfluoroelectrolyte resin precursor, the —SO 2 F group is converted to, for example, —SO 3 Na by alkali treatment, and further, hydrophilic —SO 3 H is obtained by acid neutralization. Converted to the base. The alkali treatment may be performed using a material other than NaOH, such as KOH, and the acid neutralization may be performed using a material other than HCl, such as HNO 3 or H 2 SO 4 .

このようにして得られた親水性を有する電解質膜は、図2(f)で最終製品の電解質膜20として示される。この電解質膜20は、その後触媒電極、ガス拡散電極等が付与され、いわゆるMEAと呼ばれる膜電極アセンブリとなって、燃料電池の構成要素として用いられる。最終製品の電解質膜20は、厚さが15μmで、10μmの厚さのPTFEの両面に、それぞれ2.5μmの厚さの親水性処理された前駆体焼成層が配置される構成を有する。そして、多孔質PTFEの細孔の中には、親水性処理された前駆体樹脂が、十分に充填されている。なお、最終製品の膜厚は、出発素材の厚みの選定等で変更でき、例えば50μm以下の範囲とすることもできる。   The hydrophilic electrolyte membrane thus obtained is shown as an electrolyte membrane 20 of the final product in FIG. The electrolyte membrane 20 is then provided with a catalyst electrode, a gas diffusion electrode, and the like to form a membrane electrode assembly called a so-called MEA, which is used as a component of a fuel cell. The electrolyte membrane 20 of the final product has a thickness of 15 μm, and a hydrophilic fired precursor firing layer having a thickness of 2.5 μm is disposed on both sides of PTFE having a thickness of 10 μm. The pores of the porous PTFE are sufficiently filled with the precursor resin that has been subjected to the hydrophilic treatment. The film thickness of the final product can be changed by selecting the thickness of the starting material, etc., and can be in the range of 50 μm or less, for example.

−SO2F基を約15モル%含有するパーフルオロ電解質樹脂前駆体10gを、C614溶媒90gに添加し、ビーズミルにて粉砕処理し、約5%の固形分を含有する電解質前駆体分散体95gを得た。これを膜厚10μm、平均細孔径3μmのPTFE多孔体に塗布・乾燥し、5回繰り返してさらに230℃で焼成した。得られた複合膜をアルカリ加水分解・酸中和することで、EW約1000、膜厚15μmの補強型電解質膜を得た。 10 g of a perfluoroelectrolyte resin precursor containing about 15 mol% of —SO 2 F groups is added to 90 g of a C 6 F 14 solvent, pulverized by a bead mill, and an electrolyte precursor containing about 5% solid content. 95 g of a dispersion was obtained. This was applied to a PTFE porous material having a film thickness of 10 μm and an average pore diameter of 3 μm, dried and repeated 5 times, and further fired at 230 ° C. The obtained composite membrane was subjected to alkaline hydrolysis and acid neutralization to obtain a reinforced electrolyte membrane having an EW of about 1000 and a thickness of 15 μm.

図5は、実施例によって得られた電解質膜におけるPTFEの細孔における電解質樹脂の充填の様子を従来の方法と比較して示すものである。これらの図は、同じ多孔質PTFEの出発素材を用いて異なる方法で形成された電解質膜の断面を高倍率の顕微鏡で観察したもので、図5(a)は従来方法による電解質膜の断面、(b)は、実施例によって得られた電解質膜の断面を示す。ここで従来方法とは、親水性処理を行ってある電解質樹脂を水に分散させたものを、多孔質PTFE出発素材に塗布し乾燥し焼成して電解質膜を形成する方法である。図5(a)の従来方法では、PTFEの細孔が十分に埋まっておらず、充填不十分な空孔が見られるのに対し、実施例による図5(b)においては、ほとんど空孔が見られず、PTFE細孔内にも十分電解質樹脂が充填されていることがわかる。   FIG. 5 shows the state of filling of the electrolyte resin in the pores of PTFE in the electrolyte membrane obtained by the example in comparison with the conventional method. In these figures, cross sections of electrolyte membranes formed by different methods using the same porous PTFE starting material were observed with a high-magnification microscope. FIG. 5 (a) shows a cross section of an electrolyte membrane by a conventional method, (B) shows the cross section of the electrolyte membrane obtained by the Example. Here, the conventional method is a method of forming an electrolyte membrane by applying a hydrophilic PTFE dispersed in water to a porous PTFE starting material, drying and firing. In the conventional method of FIG. 5 (a), the pores of PTFE are not sufficiently filled and vacancies are insufficiently filled, whereas in FIG. 5 (b) according to the embodiment, there are almost no vacancies. It can be seen that the electrolyte resin is sufficiently filled in the PTFE pores.

本発明に係る実施の形態における燃料電池用電解質膜の製造方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the manufacturing method of the electrolyte membrane for fuel cells in embodiment which concerns on this invention. 本発明に係る実施の形態における電解質膜の製造の各手順を説明する図である。It is a figure explaining each procedure of manufacture of the electrolyte membrane in an embodiment concerning the present invention. パーフルオロ電解質樹脂前駆体生成を示す図である。It is a figure which shows perfluoroelectrolyte resin precursor production | generation. パーフルオロ電解質樹脂前駆体が、加水分解等の親水性処理によってパーフルオロ電解質樹脂となる様子を示す図である。It is a figure which shows a mode that a perfluoroelectrolyte resin precursor turns into perfluoroelectrolyte resin by hydrophilic processes, such as a hydrolysis. PTFEの細孔における電解質樹脂の充填の様子を従来の方法と比較して示す顕微鏡写真である。It is a microscope picture which shows the mode of filling with electrolyte resin in the pore of PTFE compared with the conventional method.

符号の説明Explanation of symbols

10 出発素材、12 第1中間体、14 第2中間体、20 電解質膜、30 前駆体分散体、32 焼成炉。   10 starting material, 12 first intermediate, 14 second intermediate, 20 electrolyte membrane, 30 precursor dispersion, 32 firing furnace.

Claims (12)

固体高分子型の燃料電池用電解質膜の製造方法であって、
の構造式で示される−SO 2 F基を有する重合体を前駆体として、その前駆体を疎水性物質に馴染む有機溶媒に添加し、分散処理して、疎水性物質に馴染む電解質前駆体分散体を生成する分散体生成工程と、
多孔質の疎水性電解質膜基体に電解質前駆体分散体を塗布乾燥しその後焼成して、
の構造式で示される−SO 2 F基を有する重合体を多孔質の細孔に充填した疎水性電解質膜基体と前駆体焼成層との複合膜を生成する複合膜生成工程と、
複合膜を加水分解処理し
の構造式で示される−SO 2 F基を有する重合体を
の構造式で示される−SO 3 H基を有する重合体に変換し、親水性の電解質膜を生成する親水処理工程と、
を含むことを特徴とする燃料電池用電解質膜の製造方法。
A method for producing a polymer electrolyte membrane for a fuel cell, comprising:
A polymer having a -SO 2 F group as a precursor represented by the structural formula, was added to the organic solvent and fits the precursor hydrophobicity material was dispersed, a hydrophobic substance fits electrolyte precursor dispersion A dispersion generating step for generating
The electrolyte precursor dispersion is applied to a porous hydrophobic electrolyte membrane substrate, dried, and then fired.
A composite film production step for producing a composite film of a hydrophobic electrolyte membrane substrate in which porous pores are filled with a polymer having a —SO 2 F group represented by the structural formula of FIG .
Hydrolyzing the composite membrane ,
A polymer having a —SO 2 F group represented by the structural formula of
A hydrophilic treatment step of converting to a polymer having a —SO 3 H group represented by the structural formula, and generating a hydrophilic electrolyte membrane;
The manufacturing method of the electrolyte membrane for fuel cells characterized by the above-mentioned.
請求項1に記載の燃料電池用電解質膜の製造方法において、
分散体生成工程は、ハロゲン元素を含む有機溶媒を用いることを特徴とする燃料電池用電解質膜の製造方法。
In the manufacturing method of the electrolyte membrane for fuel cells of Claim 1,
The method for producing an electrolyte membrane for a fuel cell, wherein the dispersion generating step uses an organic solvent containing a halogen element.
請求項2に記載の燃料電池用電解質膜の製造方法において、
分散体生成工程は、ハロゲン元素としてF又はClを含む有機溶媒を用いることを特徴とする燃料電池用電解質膜の製造方法。
In the manufacturing method of the electrolyte membrane for fuel cells of Claim 2,
The method for producing an electrolyte membrane for a fuel cell, wherein the dispersion generation step uses an organic solvent containing F or Cl as a halogen element.
請求項3に記載の燃料電池用電解質膜の製造方法において、
分散体生成工程は、パーフルオロ化合物又はベンゼン誘導体の有機溶媒を用いることを特徴とする燃料電池用電解質膜の製造方法。
In the manufacturing method of the electrolyte membrane for fuel cells of Claim 3,
The method for producing an electrolyte membrane for a fuel cell, wherein the dispersion generating step uses an organic solvent of a perfluoro compound or a benzene derivative.
請求項1に記載の燃料電池用電解質膜の製造方法において、
分散体生成工程は、
CF2CF2と、
とを重合して得られる
の構造式を有する電解質樹脂前駆体を用いることを特徴とする燃料電池用電解質膜の製造方法。
In the manufacturing method of the electrolyte membrane for fuel cells of Claim 1,
The dispersion generation process
CF 2 CF 2 and
Obtained by polymerizing
The manufacturing method of the electrolyte membrane for fuel cells characterized by using the electrolyte resin precursor which has the following structural formula.
請求項5に記載の燃料電池用電解質膜の製造方法において、
分散体生成工程は、
{x/(x+y)}×100の値が5以上50以下である電解質樹脂前駆体を用いることを特徴とする燃料電池用電解質膜の製造方法。
In the manufacturing method of the electrolyte membrane for fuel cells of Claim 5,
The dispersion generation process
The manufacturing method of the electrolyte membrane for fuel cells characterized by using the electrolyte resin precursor whose value of {x / (x + y)} * 100 is 5-50.
請求項6に記載の燃料電池用電解質膜の製造方法において、
分散体生成工程は、
{x/(x+y)}×100の値が10以上20以下である電解質樹脂前駆体を用いることを特徴とする燃料電池用電解質膜の製造方法。
In the manufacturing method of the electrolyte membrane for fuel cells of Claim 6,
The dispersion generation process
The manufacturing method of the electrolyte membrane for fuel cells using the electrolyte resin precursor whose value of {x / (x + y)} * 100 is 10-20.
請求項1に記載の燃料電池用電解質膜の製造方法において、
分散体生成工程は、SO2F基を含有するパーフルオロ電解質樹脂前駆体をパーフルオロヘキサン溶媒に添加し、
複合膜生成工程は、多孔質のPTFE電解質膜基体に電解質前駆体分散体を塗布することを特徴とする燃料電池用電解質膜の製造方法。
In the manufacturing method of the electrolyte membrane for fuel cells of Claim 1,
In the dispersion generation step, a perfluoroelectrolyte resin precursor containing SO 2 F groups is added to a perfluorohexane solvent,
The method for producing an electrolyte membrane for a fuel cell, wherein the composite membrane generating step comprises applying an electrolyte precursor dispersion to a porous PTFE electrolyte membrane substrate.
固体高分子型の燃料電池用電解質膜の製造方法であって、
の構造式で示され、SO2F基を10モル%〜20モル%含有するパーフルオロ電解質樹脂前駆体をパーフルオロヘキサン溶媒に質量比で20%以下添加し、これを粉砕処理して電解質前駆体分散体を生成する分散体生成工程と、
平均細孔径が3μmのPTFE多孔質膜体に、電解質前駆体分散体を塗布乾燥し、これを繰り返し、200〜250℃で焼成して複合膜を生成する複合膜生成工程と、
複合膜をアルカリ加水分解の後酸中和し、
の構造式で示される−SO 3 H基を有する重合体に変換し、親水性の電解質膜を生成する親水処理工程と、
を含むことを特徴とする燃料電池用電解質膜の製造方法。
A method for producing a polymer electrolyte membrane for a fuel cell, comprising:
Indicated by the structural formula, SO 2 F groups were added perfluoro electrolyte resin precursor containing 10 mol% to 20 mol% or less 20% by mass ratio perfluorohexane solvent, electrolyte precursor to this grinding process to A dispersion generating step for generating a body dispersion;
Applying and drying the electrolyte precursor dispersion to a PTFE porous membrane having an average pore size of 3 μm, repeating this, firing at 200 to 250 ° C. to produce a composite membrane,
The composite membrane is acid-neutralized after alkaline hydrolysis,
A hydrophilic treatment step of converting to a polymer having a —SO 3 H group represented by the structural formula, and generating a hydrophilic electrolyte membrane;
The manufacturing method of the electrolyte membrane for fuel cells characterized by the above-mentioned.
固体高分子型の燃料電池用電解質膜であって、
平均細孔径が3μmのPTFE多孔質膜体と、
PTFE多孔質膜体の表面に生成され、
の構造式で示される−SO 2 F基を有する重合体を
の構造式で示される−SO 3 H基を有する重合体に変換する親水処理により親水化された電解質前駆体分散体の焼成膜と、
を備えることを特徴とする燃料電池用電解質膜。
An electrolyte membrane for a solid polymer type fuel cell,
A PTFE porous membrane having an average pore diameter of 3 μm;
Produced on the surface of the PTFE porous membrane body,
A polymer having a —SO 2 F group represented by the structural formula of
A calcined film of an electrolyte precursor dispersion hydrophilized by a hydrophilic treatment that is converted into a polymer having a —SO 3 H group represented by the structural formula :
An electrolyte membrane for a fuel cell comprising:
請求項10に記載の燃料電池用電解質膜において、
PTFE多孔質膜体は、1〜20μmの厚みを有し、
焼成膜は、5〜30μmの厚みを有することを特徴とする燃料電池用電解質膜。
The electrolyte membrane for a fuel cell according to claim 10,
The PTFE porous membrane body has a thickness of 1 to 20 μm,
The electrolyte membrane for a fuel cell, wherein the fired membrane has a thickness of 5 to 30 μm.
請求項11に記載の燃料電池用電解質膜において、
その膜厚が50μm以下であることを特徴とする燃料電池用電解質膜。
The electrolyte membrane for a fuel cell according to claim 11,
An electrolyte membrane for a fuel cell, having a thickness of 50 μm or less.
JP2005148116A 2005-05-20 2005-05-20 Manufacturing method of electrolyte membrane for fuel cell and electrolyte membrane for fuel cell Expired - Fee Related JP5011658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005148116A JP5011658B2 (en) 2005-05-20 2005-05-20 Manufacturing method of electrolyte membrane for fuel cell and electrolyte membrane for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005148116A JP5011658B2 (en) 2005-05-20 2005-05-20 Manufacturing method of electrolyte membrane for fuel cell and electrolyte membrane for fuel cell

Publications (2)

Publication Number Publication Date
JP2006324193A JP2006324193A (en) 2006-11-30
JP5011658B2 true JP5011658B2 (en) 2012-08-29

Family

ID=37543707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005148116A Expired - Fee Related JP5011658B2 (en) 2005-05-20 2005-05-20 Manufacturing method of electrolyte membrane for fuel cell and electrolyte membrane for fuel cell

Country Status (1)

Country Link
JP (1) JP5011658B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1318669B1 (en) * 2000-08-08 2003-08-27 Ausimont Spa SULPHONIC FLUORINATED IONOMERS.
JP4074109B2 (en) * 2002-03-18 2008-04-09 旭化成株式会社 Cross-linked impregnated film and method for producing the same
JP2004269715A (en) * 2003-03-10 2004-09-30 Toyota Central Res & Dev Lab Inc Solid polymer electrolyte, method for producing the same, and solid polymer-type fuel battery

Also Published As

Publication number Publication date
JP2006324193A (en) 2006-11-30

Similar Documents

Publication Publication Date Title
US9793564B2 (en) Composite having ion exchange function and preparation method and use thereof
JP5862372B2 (en) Production method of polymer, production method of electrolyte membrane for polymer electrolyte fuel cell, and production method of membrane electrode assembly
JP6468475B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell
WO2011156937A1 (en) Fluorine containing ionomer composite with ion exchange function, preparation method and use thereof
AU2021328758B2 (en) Composite electrolyte membrane
JP2005197209A (en) Polymeric nano-complex film, its manufacturing method, as well as film-electrode assembly using it, and fuel cell
JP5011658B2 (en) Manufacturing method of electrolyte membrane for fuel cell and electrolyte membrane for fuel cell
KR102212936B1 (en) composite for production of perfluorinated sulfonic acid ionomer, perfluorinated sulfonic acid ionomer using the same, complex electrolyte membrane for PEMFC containing the same and membrane electrode assembly for PEMFC containing the same
KR102212937B1 (en) composite for production of perfluorinated sulfonic acid ionomer, perfluorinated sulfonic acid ionomer using the same, complex electrolyte membrane for PEMFC containing the same and membrane electrode assembly for PEMFC containing the same
KR102212935B1 (en) composite for production of perfluorinated sulfonic acid ionomer, perfluorinated sulfonic acid ionomer using the same, complex electrolyte membrane for PEMFC containing the same and membrane electrode assembly for PEMFC containing the same
KR102212933B1 (en) composite for production of perfluorinated sulfonic acid ionomer, perfluorinated sulfonic acid ionomer using the same, complex electrolyte membrane for PEMFC containing the same and membrane electrode assembly for PEMFC containing the same
KR20090092592A (en) Method of preparing a membrane electrode assembly for fuel cell, Membrane electrode assembly prepared by the same and Fuel cell to which the method is applied
JP2002170580A (en) Diaphragm for solid polymer type fuel battery
JP5333724B2 (en) Manufacturing method of electrolyte membrane for fuel cell
JP2005327500A (en) Manufacturing method of solid polymer electrolyte, solid polymer electrolyte membrane and fuel cell
CN102019147B (en) Proton exchange membrane as well as preparation method and application thereof
JP5316413B2 (en) Solid polymer electrolyte membrane, method for producing solid polymer electrolyte membrane, and fuel cell
KR102212929B1 (en) composite for production of perfluorinated sulfonic acid ionomer, perfluorinated sulfonic acid ionomer using the same, complex electrolyte membrane for PEMFC containing the same and membrane electrode assembly for PEMFC containing the same
KR102212931B1 (en) composite for production of perfluorinated sulfonic acid ionomer, perfluorinated sulfonic acid ionomer using the same, complex electrolyte membrane for PEMFC containing the same and membrane electrode assembly for PEMFC containing the same
KR102212930B1 (en) composite for production of perfluorinated sulfonic acid ionomer, perfluorinated sulfonic acid ionomer using the same, complex electrolyte membrane for PEMFC containing the same and membrane electrode assembly for PEMFC containing the same
KR102212934B1 (en) composite for production of perfluorinated sulfonic acid ionomer, perfluorinated sulfonic acid ionomer using the same, complex electrolyte membrane for PEMFC containing the same and membrane electrode assembly for PEMFC containing the same
KR102300430B1 (en) composite for production of perfluorinated sulfonic acid ionomer, perfluorinated sulfonic acid ionomer using the same, complex electrolyte membrane for PEMFC containing the same and membrane electrode assembly for PEMFC containing the same
KR102212932B1 (en) composite for production of perfluorinated sulfonic acid ionomer, perfluorinated sulfonic acid ionomer using the same, complex electrolyte membrane for PEMFC containing the same and membrane electrode assembly for PEMFC containing the same
KR102212938B1 (en) composite for production of perfluorinated sulfonic acid ionomer, perfluorinated sulfonic acid ionomer using the same, complex electrolyte membrane for PEMFC containing the same and membrane electrode assembly for PEMFC containing the same
KR102300433B1 (en) composite for production of perfluorinated sulfonic acid ionomer, perfluorinated sulfonic acid ionomer using the same, complex electrolyte membrane for PEMFC containing the same and membrane electrode assembly for PEMFC containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees