JP5011010B2 - Ground improvement method - Google Patents

Ground improvement method Download PDF

Info

Publication number
JP5011010B2
JP5011010B2 JP2007181337A JP2007181337A JP5011010B2 JP 5011010 B2 JP5011010 B2 JP 5011010B2 JP 2007181337 A JP2007181337 A JP 2007181337A JP 2007181337 A JP2007181337 A JP 2007181337A JP 5011010 B2 JP5011010 B2 JP 5011010B2
Authority
JP
Japan
Prior art keywords
excavation
blade
ground
ground improvement
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007181337A
Other languages
Japanese (ja)
Other versions
JP2009019375A (en
Inventor
政男 荒井
庫雄 鈴木
俊実 藤谷
明英 竹内
堅一 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2007181337A priority Critical patent/JP5011010B2/en
Publication of JP2009019375A publication Critical patent/JP2009019375A/en
Application granted granted Critical
Publication of JP5011010B2 publication Critical patent/JP5011010B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

本発明は、原位置において原地盤と固化材とを撹拌混合することにより地盤改良を行う地盤改良方法に関する。   The present invention relates to a ground improvement method for performing ground improvement by stirring and mixing an original ground and a solidified material at an original position.

先端部に形成された掘削刃部と、掘削刃部の上方に形成された撹拌翼とを備えた掘削軸を、自転させながら下降させることにより地盤の掘削を行うとともに、固化材と掘削土砂との撹拌混合を原位置にて行う地盤改良方法がある。   The excavation shaft provided with the excavation blade portion formed at the tip portion and the stirring blade formed above the excavation blade portion is excavated by rotating the excavation shaft while rotating, and the solidified material and the excavation earth and sand There is a ground improvement method in which stirring and mixing are performed in situ.

このような従来の地盤改良方法は、図5(a)および(b)に示すように、掘削軸110を回転させつつ固化材Cを注入しながら下降させることにより掘削刃部120による地盤Gの掘削を行うとともに、移動翼121や撹拌翼122により掘削土砂と固化材Cとの撹拌を行い、一次改良土砂Dc’を生成する。次に、所定の深度まで掘削した後、図5(c)および(d)に示すように、掘削軸2を回転させつつ固化材Cを注入しながら引揚げることで固化材Cと一次改良土砂Dc’との撹拌をさらに行うことで、改良体Dcを構築している(例えば、特許文献1参照)。ここで、図5は、従来の地盤改良方法を示す模式図であって、(a)は掘削工程の施工状況を示す断面図、(b)は掘削工程における土中状態を示す断面図、(c)は改良工程の施工状況を示す断面図、(d)は改良工程における土中状態を示す断面図である。
なお、掘削時に注入される固化材Cの量は、改良体Dcの形成に必要な固化材の全体量の50%とし、掘削軸2の引揚げ時に残りの50%を注入するのが一般的である。
特開2004−204674号公報([0048]〜[0049])
As shown in FIGS. 5 (a) and 5 (b), such a conventional ground improvement method is such that the ground G by the excavation blade 120 is lowered by injecting the solidified material C while rotating the excavation shaft 110. While excavating, the excavated sediment and the solidified material C are agitated by the moving blade 121 and the agitating blade 122 to generate the primary improved sediment Dc ′. Next, after excavating to a predetermined depth, as shown in FIGS. 5 (c) and 5 (d), the solidified material C and the primary improved earth and sand are lifted by injecting the solidified material C while rotating the excavating shaft 2. The improved body Dc is constructed by further stirring with Dc ′ (see, for example, Patent Document 1). Here, FIG. 5 is a schematic diagram showing a conventional ground improvement method, in which (a) is a cross-sectional view showing the construction status of the excavation process, (b) is a cross-sectional view showing a soil state in the excavation process, (c) is sectional drawing which shows the construction condition of an improvement process, (d) is sectional drawing which shows the soil state in an improvement process.
The amount of the solidified material C injected during excavation is generally 50% of the total amount of the solidified material necessary for forming the improved body Dc, and the remaining 50% is generally injected when the excavation shaft 2 is lifted. It is.
JP 2004-204673 A ([0048] to [0049])

ところが、前記従来の地盤改良方法では、掘削時に注入された固化材Cの凝結が進行するので、掘削軸110の引揚げ時における抵抗が増加し、作業性に影響をきたす場合があった。また、固化材Cの凝結が進行した一次改良土砂Dc’を、掘削軸2の引揚げ時に再度撹拌してしまうため、計画された強度の改良体Dcが形成されない場合があった。
そのため、固化材Cの凝結開始を遅らせることを目的として遅延剤を注入する場合があるが、遅延剤の材料費等により費用が嵩むとともに、遅延剤の投入による手間がかかるという問題点を有していた。
However, in the conventional ground improvement method, since the solidified material C injected during excavation progresses, the resistance when the excavating shaft 110 is lifted increases, which may affect workability. Moreover, since the primary improved earth and sand Dc ′ in which the solidification material C has been condensed is agitated again when the excavation shaft 2 is lifted, the improved body Dc having the planned strength may not be formed.
Therefore, there is a case where a retarder is injected for the purpose of delaying the start of the setting of the solidifying material C. However, the cost increases due to the material cost of the retarder, and there is a problem that it takes time and effort to introduce the retarder. It was.

また、掘削時においても、固化材Cが凝結することで、掘削時の抵抗が高くなる場合があり、掘削トルクの大きな装置を必要とする場合があった。また、固化材Cの凝結が進行することで、掘削時の掘削溝(掘削孔)内の粘性が上昇するため、注入ポンプの能力を大きくする必要があり、注入装置が大掛かりになるという問題点を有していた。
そのため、固化材Cの粘性を低下させることを目的として水、セメント比を増加させる場合があるが、固化材Cの量が増加することで排泥量が増加して、残土処分等の費用が嵩むという問題点を有していた。
Further, even during excavation, the solidified material C may condense, which may increase the resistance during excavation, and may require a device with a large excavation torque. Moreover, since the viscosity of the excavation groove (excavation hole) at the time of excavation increases due to the condensation of the solidified material C, it is necessary to increase the capacity of the injection pump, and the injection apparatus becomes large. Had.
Therefore, water / cement ratio may be increased for the purpose of reducing the viscosity of the solidified material C, but the amount of sludge increases due to an increase in the amount of the solidified material C, and the cost of disposal of residual soil, etc. It had the problem of being bulky.

本発明は、前記の問題点を解決するためになされたものであり、作業性および経済性を向上させることが可能であるとともに、高品質な地盤改良体の製作を可能とした地盤改良方法を提案することを課題とする。   The present invention has been made to solve the above-mentioned problems, and provides a ground improvement method capable of improving workability and economy, and enabling production of a high-quality ground improvement body. The challenge is to propose.

このような課題を解決するために、本発明の地盤改良方法は、先端に掘削刃部を備えるとともに前記掘削刃部の直上に移動翼を備えた掘削軸を、回転させながら下降させることで地盤を掘削し、該掘削軸を利用して掘削土砂と固化材とを撹拌混合することにより地盤改良を行う地盤改良方法であって、掘削材のみを吐出しつつ地盤の掘削を行う掘削工程と、前記掘削軸を回転させるとともに引揚げつつ固化材を注入することで、前記掘削刃部および前記移動翼により前記固化材を前記掘削土砂とともに上方に押し上げた後、重力により落下させて、前記掘削土砂と前記固化材との撹拌混合を行う改良工程と、を備えることを特徴としている。 In order to solve such a problem, the ground improvement method of the present invention includes a ground excavation shaft provided with a excavation blade portion at a tip and a moving blade directly above the excavation blade portion while being lowered while rotating. A ground improvement method for ground improvement by stirring and mixing the excavated sediment and solidified material using the excavation shaft, and excavating the ground while discharging only the excavated material; The solidification material is injected while rotating the excavation shaft and lifted up, and then the solidification material is pushed upward together with the excavation sediment by the excavation blade portion and the moving blade, and then dropped by gravity, the excavation sediment And an improvement step of stirring and mixing the solidified material.

かかる地盤改良方法によれば、掘削終了後の引揚げ時に固化材を注入するため、固化材の凝結が進行することによる施工性への悪影響が生じることがなく、作業性に優れているとともに、装置の小型化が可能となり、経済性に優れている。また、土質状況に応じた固化材の配合や注入量を設定できるため、高品質な改良体を形成することが可能となる。また、遅延剤の投入が不要なため、経済性、作業性に優れている。   According to such a ground improvement method, since the solidification material is injected at the time of lifting after completion of excavation, there is no adverse effect on workability due to the progress of the solidification of the solidification material, and the workability is excellent. The apparatus can be miniaturized and is excellent in economic efficiency. Moreover, since the mixing | blending and injection amount of the solidification material according to a soil condition can be set, it becomes possible to form a high quality improved body. Further, since it is not necessary to introduce a retarder, it is excellent in economy and workability.

また、前記地盤改良方法において、前記掘削軸が撹翼を備えていれば、掘削土砂と固化材との撹拌をより効果的に行うことが可能となる。 Further, in the ground improvement method, the drilling axis if it has a wings, it is possible to perform the stirring and drilling soil and the solidifying material more effectively.

本発明の地盤改良方法によれば、作業性に優れた方法により、高品質に地盤改良を行うことが可能となった。
さらに、作業時間に制限がある場合に、従来技術のように、掘削材と固化材とを同時注入すると、掘削途中で固化材が固化してしまい、掘削作業を中断することができないため、残作業時間内で全作業を完了しない場合は日を改めなければならなくなるが、本発明の方法でれば、掘削途中でも作業を止めることが可能となり、作業時間を有効に活用することができる。
According to the ground improvement method of the present invention, the ground improvement can be performed with high quality by a method having excellent workability.
Furthermore, when the working time is limited, if the excavated material and the solidified material are injected simultaneously as in the prior art, the solidified material solidifies during the excavation, and the excavation work cannot be interrupted. If the entire work is not completed within the work time, the day must be changed. However, according to the method of the present invention, the work can be stopped even during excavation, and the work time can be effectively utilized.

本発明の好適な実施の形態について、図面を参照して詳細に説明する。
ここで、図1は、本発明の好適な実施形態に係る地盤改良装置の使用状況を示す側面図である。また、図2は、図1に示す地盤改良装置の一部を示す拡大正面図である。なお、以下の説明において、同一要素には同一の符号を用い、重複する説明は省略する。
DESCRIPTION OF EMBODIMENTS Preferred embodiments of the present invention will be described in detail with reference to the drawings.
Here, FIG. 1 is a side view showing a usage situation of the ground improvement device according to a preferred embodiment of the present invention. FIG. 2 is an enlarged front view showing a part of the ground improvement device shown in FIG. In the following description, the same reference numerals are used for the same elements, and duplicate descriptions are omitted.

本実施形態に係る掘削方法は、先端に掘削刃部を備えた掘削軸を、予め計画された改良深度まで回転させながら下降させることで地盤を掘削し、該掘削軸を利用して原位置にて掘削土砂と固化材とを撹拌混合することにより地盤改良を行うものである。   In the excavation method according to the present embodiment, the ground is excavated by lowering the excavation shaft having the excavation blade portion at the tip while rotating to a planned improvement depth, and the excavation shaft is used to return to the original position. The ground is improved by stirring and mixing the excavated soil and solidified material.

本実施形態では、図1および図2に示すように、ベースマシン1と、ベースマシン1に昇降可能に支持されている3基の掘削軸2,2,2と、を備えてなる地盤改良装置Aを使用する。なお、本実施形態では、掘削軸2を3基備えた3軸式の地盤改良装置Aを利用するものとしたが、掘削軸2の本数はこれに限定されるものではなく、例えば単軸や2本または4本以上の掘削軸を備えた他の多軸式の地盤改良装置であってもよい。   In this embodiment, as shown in FIG. 1 and FIG. 2, a ground improvement device comprising a base machine 1 and three excavation shafts 2, 2, 2 supported by the base machine 1 so as to be movable up and down. Use A. In this embodiment, the three-axis ground improvement device A having three excavation shafts 2 is used. However, the number of excavation shafts 2 is not limited to this, and for example, a single shaft or Other multi-axis type ground improvement devices provided with two or four or more excavation shafts may be used.

ベースマシン1は、図1に示すように、掘削軸2,2,2を、支持部材11を介して昇降自在に支持しており、掘削軸2に回転力を付与する駆動モータ10を備えている。   As shown in FIG. 1, the base machine 1 supports the excavation shafts 2, 2, 2 through a support member 11, and includes a drive motor 10 that applies a rotational force to the excavation shaft 2. Yes.

図1および図2に示すように、掘削軸2,2,2は、ベースマシン1に対して並設された状態で自転可能に支持されている。掘削軸2,2,2は、円柱状の掘削軸本体20の上部と下部の2箇所において、連結部材40,40を介して連結されている。   As shown in FIGS. 1 and 2, the excavation shafts 2, 2, and 2 are supported so as to be able to rotate in a state where they are arranged in parallel with the base machine 1. The excavation shafts 2, 2, 2 are connected via connection members 40, 40 at two places, an upper portion and a lower portion of the columnar excavation shaft main body 20.

図2に示すように、各掘削軸本体20には、先端(下端)に地盤Gの掘削を行う掘削刃部30が形成されているとともに、掘削刃部30の上方に、掘削刃部30により切削された掘削土砂の攪拌を行う移動翼21および撹拌翼22、または、撹拌翼23が形成されている。   As shown in FIG. 2, each excavation shaft main body 20 is formed with an excavation blade portion 30 for excavating the ground G at the tip (lower end), and above the excavation blade portion 30 by the excavation blade portion 30. A moving blade 21 and a stirring blade 22 or a stirring blade 23 for stirring the cut excavated earth and sand are formed.

本実施形態では、円形断面の鋼管により掘削軸本体20を形成するものとするが、掘削軸本体20を構成する材料は限定されるものではなく、適宜公知の材料から選定して使用すればよい。また、掘削軸本体20の断面形状も、円形断面に限定されるものではなく、適宜設定することが可能である。   In the present embodiment, the excavation shaft main body 20 is formed of a steel pipe having a circular cross section. However, the material constituting the excavation shaft main body 20 is not limited, and may be appropriately selected from known materials. . Moreover, the cross-sectional shape of the excavation shaft main body 20 is not limited to a circular cross section, and can be set as appropriate.

掘削刃部30は、掘削翼31と、この掘削翼31の下端に並設された複数のカッタビット32,32,…と、を備えて構成されている。   The excavation blade portion 30 includes an excavation blade 31 and a plurality of cutter bits 32, 32,... Arranged in parallel at the lower end of the excavation blade 31.

掘削翼31は、地盤Gの掘削に伴い発生する掘削土砂を上方に押し上げるために螺旋状に形成されている。
また、カッタビット32,32,…は、掘削翼31の下端に、着脱可能に並設されており、磨耗等により地盤Gの切削の機能が低下した場合は、適宜交換する。カッタビット32の個数や配置や間隔等は限定されるものではなく、掘削翼31の形状や、掘削の対象となる地盤Gの土質や強度等に応じて適宜設定すればよい。
The excavation blade 31 is formed in a spiral shape in order to push up excavation earth and sand generated when excavating the ground G.
Further, the cutter bits 32, 32,... Are detachably arranged in parallel at the lower end of the excavating blade 31, and are appropriately replaced when the cutting function of the ground G is deteriorated due to wear or the like. The number, arrangement, interval, and the like of the cutter bits 32 are not limited, and may be set as appropriate according to the shape of the excavating blade 31 and the soil quality and strength of the ground G to be excavated.

本実施形態では、掘削刃部30として、アタッチメントを掘削軸2の下端に固定することにより構成している。このアタッチメントは、略円柱状に形成された刃部本体33の外周囲に、螺旋状に加工された鋼板である掘削翼31を一体に固定することにより形成されている。
なお、掘削刃部30をアタッチメントせずに、掘削軸2の下端部に直接形成してもよい。また、掘削翼31の形状寸法は限定されるものではなく、計画された掘削溝Mの形状等に応じて適宜設定するものとする。
In the present embodiment, the excavating blade portion 30 is configured by fixing an attachment to the lower end of the excavating shaft 2. This attachment is formed by integrally fixing an excavating blade 31 which is a steel plate processed into a spiral shape around the outer periphery of the blade body 33 formed in a substantially cylindrical shape.
In addition, you may form directly in the lower end part of the excavation axis | shaft 2, without attaching the excavation blade part 30. FIG. Moreover, the shape dimension of the excavation blade 31 is not limited, and is appropriately set according to the planned shape of the excavation groove M and the like.

両端(左右)に配置された掘削軸2a,2cの掘削刃部30,30の下端中心部には、掘削液(掘削材)Sを地盤Gに吐出するための注入口34が形成されている。   An injection port 34 for discharging the drilling fluid (digging material) S to the ground G is formed at the center of the lower end of the drilling blades 30 and 30 of the drilling shafts 2a and 2c arranged at both ends (left and right). .

注入口34は、地上部に配置されたポンプ等を備える輸送装置(図示省略)と、掘削軸2の内部を挿通する輸送管路を介して連通されている。そして、輸送装置から圧送(輸送)された掘削材Sを地盤Gに向けて吐出(噴射)する。なお、掘削材Sの吐出時の圧力は、地盤G内への注入(噴射)が可能な程度の圧力に、土質状態等に応じて適宜設定する。   The injection port 34 is in communication with a transportation device (not shown) including a pump or the like disposed on the ground part via a transportation pipeline that passes through the inside of the excavation shaft 2. And the excavation material S pumped (transported) from the transport device is discharged (injected) toward the ground G. In addition, the pressure at the time of discharge of the excavation material S is appropriately set to a pressure that can be injected (injected) into the ground G according to the soil condition and the like.

左右(両端)に配置された掘削軸2a,2cには、図2に示すように、掘削刃部30の直上に配置されて、掘削刃部30により切削された掘削土砂を上方に押し上げる移動翼21と、この移動翼21の上方に配置されて、上方に押し上げられた掘削土砂の撹拌を行う撹拌翼22とが形成されている。また、撹拌翼22の上方には、さらに移動翼21が配置されており、掘削溝M内において、掘削土砂の撹拌が効率的に行われるように構成されている。   As shown in FIG. 2, the excavating shafts 2a and 2c arranged on the left and right sides (both ends) are arranged directly above the excavating blade part 30 and move up the excavated earth and sand cut by the excavating blade part 30 upward. 21 and a stirring blade 22 that is disposed above the moving blade 21 and stirs the excavated earth and sand pushed upward. In addition, a moving blade 21 is further disposed above the stirring blade 22 so that the excavated soil is efficiently stirred in the excavation groove M.

移動翼21は、掘削翼31と同様に、掘削軸2の周囲に螺旋状に巻きつけられた板部材である。本実施形態に係る移動翼21は、掘削軸2に溶接等により一体に固定されているが、移動翼21の固定方法は限定されるものではなく、適宜公知の方法により行えばよい。移動翼21は、その外径(幅)寸法が、掘削翼31の外径(幅)寸法と同等以下に形成されており、掘削刃部30により切削された掘削土砂全体を撹拌することが可能に構成されている。
移動翼21により、切削された掘削溝M内の掘削土砂は、上方に押し上げられた後、重力で落下することで、上下方向で撹拌される。
The moving wing 21 is a plate member that is spirally wound around the digging shaft 2, similarly to the digging wing 31. Although the moving blade 21 according to the present embodiment is integrally fixed to the excavation shaft 2 by welding or the like, the fixing method of the moving blade 21 is not limited and may be appropriately performed by a known method. The moving blade 21 has an outer diameter (width) dimension equal to or less than the outer diameter (width) dimension of the excavating blade 31, and can agitate the entire excavated earth and sand cut by the excavating blade portion 30. It is configured.
The excavated earth and sand in the excavated trench M is pushed upward by the moving blade 21 and then agitated in the vertical direction by dropping by gravity.

撹拌翼22は、掘削軸2の外周囲に外方向に突設された一対の板材であって、掘削軸2を挟んで対向するように配置されている。撹拌翼22は、各板材が、掘削軸2の回転方向に対して傾斜するように配置されている。
各撹拌翼22は、掘削翼30により切削された掘削溝M内の掘削土砂全体を撹拌することが可能となるように、隣接する他の掘削軸2と接触しない程度で、一対の板の全幅が掘削翼11の外径(幅)寸法の同程度となるように構成されている。また、本実施形態では、掘削軸2a,2cに、撹拌翼22をそれぞれ2段ずつ形成している。なお、撹拌翼22の形状寸法や配置数は限定されるものではない。
The stirring blades 22 are a pair of plate members that project outwardly around the outer periphery of the excavation shaft 2 and are disposed so as to face each other with the excavation shaft 2 interposed therebetween. The stirring blade 22 is disposed so that each plate material is inclined with respect to the rotation direction of the excavation shaft 2.
Each agitating blade 22 has a full width of a pair of plates to the extent that it does not come into contact with other adjacent excavating shafts 2 so as to agitate the entire excavated sediment in the excavation groove M cut by the excavating blade 30. Is configured to have approximately the same outer diameter (width) dimension of the excavating blade 11. In the present embodiment, the excavating shafts 2a and 2c are each provided with two stages of the stirring blades 22 respectively. In addition, the shape dimension and arrangement number of the stirring blade 22 are not limited.

中央に配置された掘削軸2bには、両端の掘削軸2a,2cの撹拌翼22,22に対応する箇所に撹拌翼23,23,…が形成されている。   On the excavation shaft 2b disposed at the center, stirring blades 23, 23,... Are formed at locations corresponding to the stirring blades 22, 22 of the excavation shafts 2a, 2c at both ends.

撹拌翼23は、両端の掘削軸2a,2cに形成された撹拌翼22と同様に、掘削軸2bの外周囲に外方向に突設された一対の板材であって、掘削軸2bを挟んで対向するように配置されている。撹拌翼23は、各板材が、掘削軸2bの回転方向に対して傾斜するように、配置されている。
各撹拌翼23は、掘削翼30により切削された掘削溝M内の全体を撹拌することが可能となるように、隣接する他の掘削軸2a,2cと接触しない程度で、一対の板材の全幅が掘削翼11の外径(幅)寸法の同程度となるように構成されている。また、本実施形態では、撹拌翼23を、3段形成している。なお、撹拌翼23の形状寸法や配置数等は限定されるものではない。
The agitating blades 23 are a pair of plate members projecting outwardly around the outer periphery of the excavating shaft 2b, like the agitating blades 22 formed on the excavating shafts 2a and 2c at both ends, and sandwiching the excavating shaft 2b. It arrange | positions so that it may oppose. The stirring blades 23 are arranged so that each plate material is inclined with respect to the rotation direction of the excavation shaft 2b.
Each agitating blade 23 is not in contact with the other adjacent excavation shafts 2a and 2c so that the entire inside of the excavation groove M cut by the excavation blade 30 can be agitated. Is configured to have approximately the same outer diameter (width) dimension of the excavating blade 11. In the present embodiment, the stirring blades 23 are formed in three stages. In addition, the shape dimension, arrangement number, etc. of the stirring blade 23 are not limited.

また、中央の掘削軸2bに形成された撹拌翼23と左右(両端)の掘削軸2a,2cに形成された撹拌翼22,22とは、接触することがないように、高さ方向で互いにずらした位置に形成されている。
この撹拌翼22,23が回転することにより、移動翼21により上下動している掘削土砂を水平方向で撹拌する。
In addition, the stirring blades 23 formed on the central excavation shaft 2b and the stirring blades 22 and 22 formed on the left and right (both ends) excavation shafts 2a and 2c are mutually in the height direction so as not to contact each other. It is formed at a shifted position.
As the stirring blades 22 and 23 rotate, the excavated earth and sand moving up and down by the moving blade 21 are stirred in the horizontal direction.

次に、本実施形態に係る地盤改良方法について、図面を介して説明する。
ここで、図3は、本実施形態に係る地盤改良方法を示す模式図であって、(a)は掘削工程の施工状況を示す断面図、(b)は(a)の施工時における土中状態を示す断面図、(c)は掘削工程終了時の状況を示す断面図、(d)は(c)における土中状態を示す断面図である。また、図4は、本実施形態に係る地盤改良方法を示す模式図であって、(a)は改良工程の施工状況を示す断面図、(b)は(a)の施工時における土中状態を示す断面図、(c)は改良工程終了時の状況を示す断面図、(d)は(c)における土中状態を示す断面図である。
Next, the ground improvement method according to the present embodiment will be described with reference to the drawings.
Here, FIG. 3 is a schematic diagram showing the ground improvement method according to the present embodiment, where (a) is a cross-sectional view showing the construction status of the excavation process, and (b) is in the soil during construction of (a). Sectional drawing which shows a state, (c) is sectional drawing which shows the condition at the time of completion | finish of an excavation process, (d) is sectional drawing which shows the soil state in (c). Moreover, FIG. 4 is a schematic diagram showing the ground improvement method according to the present embodiment, where (a) is a cross-sectional view showing the construction status of the improvement process, and (b) is the soil state at the time of construction of (a). (C) is sectional drawing which shows the condition at the time of completion | finish of an improvement process, (d) is sectional drawing which shows the soil state in (c).

本実施形態に係る地盤改良方法は、所定の改良深度まで掘削材Sのみを吐出しつつ地盤の掘削を行う掘削工程と、掘削軸2を回転させながら引揚げつつ固化材Cを注入することで掘削土砂と固化材Cとの撹拌混合を行う改良工程とからなる。   The ground improvement method according to the present embodiment includes a drilling step of excavating the ground while discharging only the drilling material S to a predetermined improvement depth, and injecting the solidified material C while being lifted while rotating the drilling shaft 2. It consists of an improved process of stirring and mixing the excavated earth and sand and the solidified material C.

掘削工程は、図3(a)および(c)に示すように、掘削軸2a,2cの先端から掘削材Sを地盤に吐出しつつ、掘削軸2a,2b,2cを回転させながら下降させることで、地盤Gに所定の深度の掘削溝Mを形成する工程である。
ここで、掘削材Sとして使用される材料は限定されるものではないが、本実施形態ではベントナイト液を使用するものとする。
In the excavation process, as shown in FIGS. 3A and 3C, the excavation material 2 is discharged from the tips of the excavation shafts 2a and 2c to the ground, and the excavation shafts 2a, 2b and 2c are lowered while rotating. In this step, the excavation groove M having a predetermined depth is formed in the ground G.
Here, the material used as the excavation material S is not limited, but in this embodiment, bentonite liquid is used.

地盤Gの掘削は、掘削材Sが吐出されることで軟化された地盤Gを、回転しながら下降する掘削軸2,2,2のカッタビット32,32,…により切り崩すことにより行われる。掘削溝M内では、地山Gが切り崩されることにより乱された状態となるが、図3(b)および(d)に示すように、掘削材Sが混合された掘削土砂である掘削材混合土砂Dsの圧力により、掘削溝Mの溝壁面が保持されている。   The excavation of the ground G is performed by cutting the ground G softened by the excavation material S by the cutter bits 32, 32,... In the excavation groove M, the natural ground G is disrupted by being cut, but as shown in FIGS. 3B and 3D, the excavation material is excavation soil mixed with the excavation material S. The groove wall surface of the excavation groove M is held by the pressure of the mixed earth and sand Ds.

地盤Gの掘削が完了すると、図3(d)に示すように、掘削溝M内の全体が掘削材混合土砂Dにより充填される。 When drilling of the ground G is completed, as shown in FIG. 3 (d), the entire drilling groove M is filled by excavated material mixed soil D S.

改良工程は、図4(a)乃至(d)に示すように、掘削工程により所定の深度までの掘削溝Mの掘削が終了した後に行う工程であって、掘削軸2a,2b,2cの引揚げに伴い、掘削軸2a,2cの先端に形成された注入口34,34から固化材Cを掘削材混合土砂Dsに注入しながら、掘削翼31、移動翼21および撹拌翼22,23により掘削材混合土砂Dsと固化材Cとを撹拌混合することで、改良体Dcを形成する工程である。   As shown in FIGS. 4A to 4D, the improvement process is a process performed after excavation of the excavation groove M to a predetermined depth is completed by the excavation process, and the pulling of the excavation shafts 2a, 2b, 2c is performed. Excavated by the excavating blade 31, the moving vane 21, and the stirring vanes 22, 23 while injecting the solidified material C into the excavating material mixed soil Ds from the inlets 34, 34 formed at the tips of the excavating shafts 2 a, 2 c along with the frying. This is a step of forming the improved body Dc by stirring and mixing the material mixing soil Ds and the solidifying material C.

掘削軸2a,2cの先端から注入された固化材Cは、掘削材混合土砂Dsとともに掘削翼31および移動翼21により上方に押し上げられた後、撹拌翼22により掘削材混合土砂Dsと撹拌されて、重力により下方に落下することを繰り返すことにより、掘削材混合土砂Ds内に均等に混合される。   The solidified material C injected from the tips of the excavating shafts 2a and 2c is pushed upward together with the excavating material mixed earth and sand Ds by the excavating blade 31 and the moving blade 21, and then stirred with the excavated material mixed earth and sand Ds by the agitating blade 22. By repeatedly falling downward due to gravity, the excavated material mixed earth and sand Ds is evenly mixed.

なお、改良工程では、必要に応じて、掘削軸2,2,2を繰り返し上下動させることで固化材Cと掘削材混合土砂Dsとの撹拌混合をより効果的に行ってもよい。   In the improvement step, the solidification material C and the excavation material mixed earth and sand Ds may be more effectively stirred and mixed by repeatedly moving the excavation shafts 2, 2 and 2 as needed.

ここで、固化材Cとして使用される材料は限定されるものではなく、改良の対象となる地盤Gの状況や必要とされる改良体Dcの強度等に応じて適宜公知の材料の中から適宜選定して使用すればよいが、本実施形態では、セメント系固化材を使用するものとする。   Here, the material used as the solidifying material C is not limited, and is appropriately selected from known materials according to the condition of the ground G to be improved, the required strength of the improved body Dc, and the like. In this embodiment, a cement-based solidifying material is used.

また、固化材Cの注入量や配合は、掘削工程において掘削とともに把握された地山状況に応じて、土質毎に設定することで、所望の強度からなる改良体Dcが形成される。   Moreover, the improvement body Dc which consists of desired intensity | strength is formed by setting the injection amount and mixing | blending of the solidification material C for every soil according to the natural ground condition grasped | ascertained with the excavation process.

改良工程により掘削軸2,2,2の引揚げが完了すると、図4(d)に示すように、掘削溝の内部において掘削材混合土砂Ds(掘削土砂)と固化材Cとが均等に混ざり合い、高品質の改良体Dcが形成される。   When the lifting of the excavating shafts 2, 2 and 2 is completed by the improvement process, as shown in FIG. 4 (d), the excavated material mixed soil Ds (excavated sediment) and the solidified material C are evenly mixed inside the excavated groove. As a result, a high-quality improved body Dc is formed.

以上、本実施形態の地盤改良方法によれば、掘削終了後の掘削軸2,2,2の引揚げ時に固化材Cを注入するため、土質状況に応じた固化材Cの配合や注入量を設定することが可能なため、改良体Dcの深さ方向に対して地層の変化による強度の差が生じることがなく、高品質な改良体の形成が可能となる。   As described above, according to the ground improvement method of the present embodiment, the solidification material C is injected when the excavation shafts 2, 2, and 2 are lifted after excavation. Since it can be set, there is no difference in strength due to changes in the formation in the depth direction of the improved body Dc, and a high-quality improved body can be formed.

また、改良範囲が大深度のために掘削に時間がかかる場合や、掘削途中に何らかの原因により掘削が中断した場合であっても、固化材Cの凝結が進行することがなく、作業性に悪影響をきたすことがない。また、遅延剤を使用する必要がないため、経済的である。   Further, even when the excavation takes a long time because the improved range is deep or when the excavation is interrupted for some reason during excavation, the solidification material C does not proceed with condensation, which adversely affects workability. I will not bring you. Moreover, since it is not necessary to use a retarder, it is economical.

また、掘削材Sと固化材Cとを別々に注入することで、これらの注入材料の粘性を低く抑えることが可能なため、作業性に優れているとともに、注入装置(ポンプ等)の小型化が可能となることで経済性にも優れている。
また、固化材Cの粘性を低下させることを目的として、従来の地盤改良方法のように水セメント比を増加させる必要がないため、残土処分量を最小限に抑えることが可能となる。
In addition, since the excavation material S and the solidification material C are separately injected, the viscosity of these injection materials can be kept low, so that the workability is excellent and the injection device (pump, etc.) is downsized. This makes it possible to improve economy.
In addition, for the purpose of reducing the viscosity of the solidified material C, it is not necessary to increase the water-cement ratio as in the conventional ground improvement method, so that the amount of residual soil disposal can be minimized.

以上、本発明について、好適な実施形態について説明したが、本発明は前記実施形態に限られず、本発明の趣旨を逸脱しない範囲で適宜設計変更が可能である。
例えば、前記実施形態では、掘削材と固化材とを、同じ注入口を利用した地盤内に注入する構成としたが、掘削材と固化材をそれぞれ異なる位置に設けられた注入口から注入する構成としてもよい。
As mentioned above, although preferred embodiment was described about this invention, this invention is not limited to the said embodiment, A design change is possible suitably in the range which does not deviate from the meaning of this invention.
For example, in the embodiment, the excavation material and the solidification material are injected into the ground using the same injection port, but the excavation material and the solidification material are injected from injection ports provided at different positions. It is good.

また、前記実施形態では、固化材を掘削軸の先端(下端)から注入する場合について説明したが、固化材の注入を行う注入口の位置は、掘削軸の下端に限定されるものではなく、例えば、撹拌翼の直上に配置されていてもよい。
また、前記実施形態では、両端の掘削軸から掘削材または固化材を注入する構成としたが、全ての掘削軸から掘削材または固化材を注入してもよいことはいうまでもなく、注入孔が形成される掘削軸は限定されるものではない。
In the above embodiment, the case where the solidification material is injected from the tip (lower end) of the excavation shaft has been described, but the position of the injection port for injecting the solidification material is not limited to the lower end of the excavation shaft, For example, you may arrange | position just above a stirring blade.
In the embodiment, the drilling material or the solidified material is injected from the drilling shafts at both ends. Needless to say, the drilling material or the solidified material may be injected from all the drilling shafts. The excavation axis on which is formed is not limited.

また、前記実施形態では、掘削軸の自転にともない、水平方向に回転する掘削刃部を備えた、3軸式の掘削装置により円が3つ連結された平面形状の掘削溝を形成する場合について説明したが、掘削溝の形状はこれに限定されないことはいうまでもない。例えば、単軸式の地盤改良装置を利用すれば円形断面の掘削孔が形成される。   Moreover, in the said embodiment, about the case where the three-axis type excavation apparatus provided with the excavation blade part rotated in the horizontal direction with the rotation of the excavation shaft forms a planar excavation groove in which three circles are connected. Although explained, it goes without saying that the shape of the excavation groove is not limited to this. For example, if a single-axis ground improvement device is used, a drilling hole having a circular cross section is formed.

また、前記実施形態では、掘削軸が移動翼と撹拌翼とを備える構成としたが、移動翼はたは撹拌翼のいずれか一方のみが配設されていてもよい。   In the embodiment, the excavation shaft includes the moving blade and the stirring blade. However, only one of the moving blade or the stirring blade may be provided.

本発明の最良の実施形態に係る地盤改良装置の使用状況を示す側面図である。It is a side view which shows the use condition of the ground improvement apparatus which concerns on the best embodiment of this invention. 図1に示す地盤改良装置の一部を示す拡大正面図である。It is an enlarged front view which shows a part of ground improvement apparatus shown in FIG. 本発明の最良の実施形態に係る地盤改良方法を示す模式図であって、(a)は掘削工程の施工状況を示す断面図、(b)は(a)の施工時における土中状態を示す断面図、(c)は掘削工程終了時の状況を示す断面図、(d)は(c)における土中状態を示す断面図である。It is a schematic diagram which shows the ground improvement method which concerns on the best embodiment of this invention, Comprising: (a) is sectional drawing which shows the construction condition of an excavation process, (b) shows the soil state at the time of construction of (a). Sectional drawing, (c) is a sectional view showing the situation at the end of the excavation process, (d) is a sectional view showing the soil state in (c). 本発明の最良の実施形態に係る地盤改良方法を示す模式図であって、(a)は改良工程の施工状況を示す断面図、(b)は(a)の施工時における土中状態を示す断面図、(c)は改良工程終了時の状況を示す断面図、(d)は(c)における土中状態を示す断面図である。It is a schematic diagram which shows the ground improvement method which concerns on the best embodiment of this invention, Comprising: (a) is sectional drawing which shows the construction condition of an improvement process, (b) shows the soil state at the time of construction of (a). Sectional drawing, (c) is a sectional view showing the situation at the end of the improvement process, (d) is a sectional view showing the soil state in (c). 従来の地盤改良方法を示す模式図であって、(a)は掘削工程の施工状況を示す断面図、(b)は掘削工程における土中状態を示す断面図、(c)は改良工程の施工状況を示す断面図、(d)は改良工程における土中状態を示す断面図である。It is a schematic diagram which shows the conventional ground improvement method, (a) is sectional drawing which shows the construction condition of an excavation process, (b) is sectional drawing which shows the soil state in an excavation process, (c) is construction of an improvement process Sectional drawing which shows a condition, (d) is sectional drawing which shows the state in the soil in an improvement process.

符号の説明Explanation of symbols

1 ベースマシン
2 掘削軸
30 掘削刃部
A 地盤改良装置
G 地盤
M 掘削溝
DESCRIPTION OF SYMBOLS 1 Base machine 2 Excavation axis 30 Excavation blade part A Ground improvement device G Ground M Excavation groove

Claims (2)

先端に掘削刃部を備えるとともに前記掘削刃部の直上に移動翼を備えた掘削軸を、回転させながら下降させることで地盤を掘削し、該掘削軸を利用して掘削土砂と固化材とを撹拌混合することにより地盤改良を行う地盤改良方法であって、
掘削材のみを注入しつつ地盤の掘削を行う掘削工程と、
前記掘削軸を回転させるとともに引揚げつつ固化材を注入することで、前記掘削刃部および前記移動翼により前記固化材を前記掘削土砂とともに上方に押し上げた後、重力により落下させて、前記掘削土砂と前記固化材との撹拌混合を行う改良工程と、を備えることを特徴とする地盤改良方法。
The excavation shaft provided with the excavation blade portion at the tip and provided with the moving blade directly above the excavation blade portion is excavated by rotating the excavation shaft while rotating, and the excavation soil and the solidified material are collected using the excavation shaft. A ground improvement method for ground improvement by stirring and mixing,
A drilling process for excavating the ground while injecting only the drilling material;
The solidification material is injected while rotating the excavation shaft and lifted up, and then the solidification material is pushed upward together with the excavation sediment by the excavation blade portion and the moving blade, and then dropped by gravity, the excavation sediment A ground improvement method comprising: an improvement step of stirring and mixing the solidified material and the solidified material.
前記掘削軸に攪拌翼を備えることを特徴とする請求項1記載の地盤改良方法。 The ground improvement method according to claim 1 , wherein the excavation shaft includes a stirring blade.
JP2007181337A 2007-07-10 2007-07-10 Ground improvement method Expired - Fee Related JP5011010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007181337A JP5011010B2 (en) 2007-07-10 2007-07-10 Ground improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007181337A JP5011010B2 (en) 2007-07-10 2007-07-10 Ground improvement method

Publications (2)

Publication Number Publication Date
JP2009019375A JP2009019375A (en) 2009-01-29
JP5011010B2 true JP5011010B2 (en) 2012-08-29

Family

ID=40359251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007181337A Expired - Fee Related JP5011010B2 (en) 2007-07-10 2007-07-10 Ground improvement method

Country Status (1)

Country Link
JP (1) JP5011010B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101666141B1 (en) * 2016-05-23 2016-10-24 주식회사 윤앤플락 Drill Stirrer For Protecting Auger

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52124703A (en) * 1976-04-12 1977-10-20 Seiko Kogyo Kk Excavating machine
JPS639335U (en) * 1986-07-04 1988-01-21

Also Published As

Publication number Publication date
JP2009019375A (en) 2009-01-29

Similar Documents

Publication Publication Date Title
CN104532830B (en) Soil-cement pile forming machine
JP2016020621A (en) Ground improvement method, excavation rod used for ground improvement method and ground improvement device
JP2012117334A (en) Excavation bucket with agitation device
JP4708489B2 (en) Soil, soil and ground improvement machines with bucket mixer
JP5011010B2 (en) Ground improvement method
JP5015558B2 (en) Fiber reinforced cement ground improvement method
JP5512752B2 (en) Drilling auger head
JP4796197B2 (en) Ground improvement body construction apparatus and ground improvement body construction method
JP3158053U (en) Ground improvement body construction equipment
JP4566770B2 (en) Ground improvement device and ground improvement method
JP5113441B2 (en) Ground improvement device and ground improvement method
JP2006028987A (en) Method of forming soil cement composite pile and hollow pile inner excavation device used therefor
JP2013083069A (en) Ground improvement device
JP7231273B1 (en) ground improvement method
JP7231271B1 (en) Ground improvement method and ground improvement device
CN204418163U (en) Soil-cement pile forming machine
JP2015096676A (en) Excavation method of pile hole having expanded head part
JP3665028B2 (en) Excavation stirrer for ground improvement
CN216865161U (en) Construction device for ensuring foundation quality of concrete cast-in-place pile
JP2009270326A (en) Construction device and construction method of soil cement column
JP5918885B1 (en) Drilling stirring rod, drilling stirrer, and columnar improvement method
JP2000104245A (en) Execution method of diaphragm wall and device thereof
JP6380790B2 (en) Construction method of hydraulic solidifying liquid replacement column
JP2024083026A (en) Ground improvement method, excavation rod device used in ground improvement method, and ground improvement device
CN105625356A (en) Trapezoidal splicing equipment for T-shaped piles and rectangular piles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees