JP5010504B2 - Water distribution pressure optimum control device - Google Patents

Water distribution pressure optimum control device Download PDF

Info

Publication number
JP5010504B2
JP5010504B2 JP2008050571A JP2008050571A JP5010504B2 JP 5010504 B2 JP5010504 B2 JP 5010504B2 JP 2008050571 A JP2008050571 A JP 2008050571A JP 2008050571 A JP2008050571 A JP 2008050571A JP 5010504 B2 JP5010504 B2 JP 5010504B2
Authority
JP
Japan
Prior art keywords
pressure
water distribution
control
measuring means
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008050571A
Other languages
Japanese (ja)
Other versions
JP2009209523A (en
Inventor
勝也 横川
太 黒川
義弘 本蔵
達也 猪谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008050571A priority Critical patent/JP5010504B2/en
Publication of JP2009209523A publication Critical patent/JP2009209523A/en
Application granted granted Critical
Publication of JP5010504B2 publication Critical patent/JP5010504B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、配水池から管路を介して配置された上水道の配水管路網から末端の需要家へ浄水をポンプにより送水する場合、あるいは自然流下で圧力を調整して送水する配水圧力最適制御装置に関する。具体的には、本発明は、日々の需要変動や配水管路網プロセスが経年変化した場合においても、ロバストな末端圧力一定制御を行うことで、より漏水量を抑制可能でかつ圧力変動の少なくしえる配水圧力最適制御装置に関する。   The present invention is a distribution pressure optimal control in which purified water is pumped from a distribution pipe network of a water supply system via a pipeline from a distribution reservoir to a consumer at the end or by adjusting the pressure under natural flow. Relates to the device. Specifically, the present invention is capable of reducing the amount of water leakage and reducing pressure fluctuations by performing robust end pressure constant control even when daily demand fluctuations and distribution pipe network processes change over time. The present invention relates to a water distribution pressure optimum control device.

特許文献1は、自然流下水とポンプ圧送水を合流させる配水システムにおいて、基本配水量未満で配水ポンプを停止させずに、配水圧力の急激な変動を抑えることで、ポンプと配管の寿命を保持できる制御装置、制御方法、制御システムを提供している。また、特許文献1では、配水量の変動に応じて流量一定制御もしくは圧力一定制御のどちらかに切り替える制御判断部を有し、ポンプが圧力一定制御中に、吐出流量の下降が既定継続時間を継続した場合、流量一定制御に切り替え、このときの吐出圧を記憶するとともに、流量一定制御中に、流量一定制御に切替わった時の圧力よりもポンプ吐出圧が既定継続時間を継続した場合に、圧力制御に切り替える。   Patent Document 1 maintains the service life of pumps and pipes in a distribution system that joins natural sewage and pumped pump water by suppressing sudden fluctuations in the distribution pressure without stopping the distribution pump below the basic distribution amount. A control device, a control method, and a control system are provided. Further, Patent Document 1 has a control determination unit that switches to either constant flow control or constant pressure control according to fluctuations in the water distribution amount, and when the pump is in constant pressure control, the decrease in the discharge flow rate has a predetermined duration. If it continues, switch to constant flow control, store the discharge pressure at this time, and when the pump discharge pressure continues for a predetermined duration than the pressure at the time of switching to constant flow control during constant flow control Switch to pressure control.

特許文献2は、上水道の配水管網において、末端の圧力(水圧)を最適にかつ自動的に決定するための配水管網の末端圧力制御装置に関する。特許文献2は、データや制御パラメータの更新、調整を不要にして、配水管路の更新や需要量変化に対応可能な末端圧力制御装置を実現するものである。
特開2006−330900号公報 特開2001−92940号公報
Patent document 2 relates to a terminal pressure control device for a distribution pipe network for optimally and automatically determining a terminal pressure (water pressure) in a water distribution pipe network. Patent Document 2 realizes a terminal pressure control device that can update data distribution pipes and respond to changes in demand without requiring updating and adjustment of data and control parameters.
JP 2006-330900 A JP 2001-92940 A

従来の末端圧一定制御は、人間の生活パターンによって生じる需要変動が外乱となるため、末端の圧力値を目標値としたPID制御を行うのが一般的であるが、管路工事や管路の老朽によってそのプロセスが変化し、PID制御性能が劣化する課題がある。   Conventional terminal pressure constant control is generally performed by PID control with the pressure value at the end as the target value because fluctuations in demand caused by human life patterns become disturbances. There is a problem that the process changes due to aging and the PID control performance deteriorates.

特許文献1は、流量制御と圧力制御を切り替えることによってポンプや配管の寿命を保持することを目的としているため、本願とは解決しようとする課題が異なる。
特許文献2では、需要変化に対して予めスケジュールを設定しておき、そのスケジュールに基づいて吐出圧設定値を変化させるが、この場合、需要予測の精度によっては、スケジュールを適宜調整しなおす必要がある。
Since patent document 1 aims at maintaining the lifetime of a pump and piping by switching flow control and pressure control, the problem which it is going to solve differs from this application.
In Patent Document 2, a schedule is set in advance for a change in demand, and the discharge pressure setting value is changed based on the schedule. In this case, it is necessary to adjust the schedule appropriately depending on the accuracy of demand prediction. is there.

本発明はこうした事情を考慮してなされたもので、制御対象となる配水ブロック(又は閉じられた管網)において、その流入流量と吐出圧、末端圧、需要量の実プロセスデータ、ポンプ特性やバルブ特性を表すQ−Hカーブに基づいて、需要変動や管路網プロセスの経年変化によって生じる制御性能劣化を抑制可能な配水圧力最適制御装置を提供することを目的とする。   The present invention has been made in consideration of such circumstances, and in the distribution block (or closed pipe network) to be controlled, the inflow flow rate and discharge pressure, the terminal pressure, the actual process data of the demand amount, the pump characteristics, It is an object of the present invention to provide a water distribution pressure optimum control device capable of suppressing deterioration in control performance caused by demand fluctuations and secular changes in pipeline network processes based on a QH curve representing valve characteristics.

本発明(第1の発明)に係る配水圧力最適制御装置は、配水池から管路を介して配置された上水道の配水管路網から末端の需要家へ浄水をポンプで送水するための配水圧力最適制御装置であり、配水管路網の入口に設置された吐出圧力計測手段と、配水管路網の入口に設置された流量計測手段と、配水管路網の末端に設置された末端圧力計測手段と、吐出圧目標値に基づいてポンプ回転数を制御する吐出圧制御手段と、末端圧力設定値に基づいて吐出圧力を制御する末端圧力一定制御手段と、吐出圧目標値に基づいてポンプ運転台数を演算するポンプ台数制御手段と、需要予測値に基づいて、末端圧力を一定にするために必要となる吐出圧力をポンプQ−Hカーブおよび管路抵抗曲線により計算し、末端圧力制御のフィードフォワード信号を出力する最適吐出圧計画手段と、吐出圧力計測手段と流量計測手段と末端圧力計測手段から夫々得られる吐出圧、流量および末端圧のデータを蓄積する監視データベースと、この監視データベースから得られる過去の吐出圧、流量および末端圧のデータに基づいて、現状の配水プロセスに合った管路抵抗曲線を生成する管路抵抗推定手段と、を備えることを特徴とする。 The distribution pressure optimum control device according to the present invention (the first invention) is a distribution pressure for pumping purified water from a distribution pond to a terminal consumer from a distribution network of a water supply system arranged via a pipeline. Optimum control device, discharge pressure measuring means installed at the inlet of the distribution pipeline network, flow rate measuring means installed at the inlet of the distribution pipeline network, and end pressure measurement installed at the end of the distribution pipeline network Means, discharge pressure control means for controlling the pump speed based on the discharge pressure target value, terminal pressure constant control means for controlling the discharge pressure based on the terminal pressure set value, and pump operation based on the discharge pressure target value Based on the pump number control means for calculating the number of units and the demand forecast value, the discharge pressure required to make the end pressure constant is calculated by the pump QH curve and the pipe resistance curve, and the end pressure control feed Forward signal The optimum discharge pressure planning means for force, discharge pressure measuring means and flow measuring means and the distal pressure measuring means, respectively from the resulting discharge pressure, a monitoring database for storing the data of the flow rate and the end pressure, past resulting from the monitoring database And a pipe resistance estimating means for generating a pipe resistance curve suitable for the current water distribution process based on the data of the discharge pressure, the flow rate and the terminal pressure .

また、本発明(第2の発明)に係る配水圧力最適制御装置は、配水池から管路を介して配置された上水道の配水管路網から末端の需要家へ浄水を自然流下でバルブによって圧力を調節して送水するための配水圧力最適制御装置であり、配水管路網の入口に設置されたバルブの2次圧を計測する2次圧力計測手段と、配水管路網の入口に設置された流量計測手段と、配水管路網の末端に設置された末端圧力計測手段と、減圧量に基づいてバルブ開度を制御する減圧制御手段と、末端圧目標値に基づいて減圧量を演算する末端圧力制御手段と、需要予測値、既知である吐出圧力値および末端圧目標値に基づいて、末端圧力を一定にするために必要となる減圧量を計算し、減圧制御のフィードフォワード信号を出力する最適減圧量計画手段と、2次圧力計測手段と流量計測手段と末端圧力計測手段から夫々得られるバルブの2次圧、流量、末端圧データを蓄積する監視データベースと、この監視データベースから得られる過去のバルブ開度、圧力損失、流量および末端圧のデータに基づいて、現状の配水プロセスに合った管路抵抗曲線を生成する管路抵抗推定手段と、を備えることを特徴とする。 Further, the water distribution pressure optimum control device according to the present invention (second invention) is the pressure of the purified water from the distribution pond via the pipe from the distribution pond to the end consumer by the valve under natural flow. Is a distribution pressure optimal control device for adjusting the water supply, and is installed at the inlet of the distribution pipe network and the secondary pressure measuring means for measuring the secondary pressure of the valve installed at the inlet of the distribution pipe network The flow rate measuring means, the terminal pressure measuring means installed at the end of the water distribution network, the pressure reducing control means for controlling the valve opening based on the pressure reducing amount, and calculating the pressure reducing amount based on the terminal pressure target value Based on the terminal pressure control means, the demand forecast value, the known discharge pressure value and the terminal pressure target value, the amount of pressure reduction required to keep the terminal pressure constant is calculated, and the feedforward signal for pressure reduction control is output. Optimal decompression amount planning means to perform, secondary A monitoring database that accumulates secondary pressure, flow, and terminal pressure data obtained from the pressure measuring means, flow rate measuring means, and terminal pressure measuring means, and past valve opening, pressure loss, and flow rate obtained from this monitoring database. And a pipe resistance estimating means for generating a pipe resistance curve suitable for the current water distribution process based on the terminal pressure data .

更に、本発明(第3の発明)に係る配水圧力最適制御装置は、配水池から管路を介して配置された上水道の配水管路網から末端の需要家へ浄水を固定速ポンプで圧送し、圧力の微調整は調整バルブによって減圧して送水するための配水圧力最適制御装置であり、配水管路網の入口に設置されたバルブの2次圧を計測する2次圧力計測手段と、配水管路網の入口に設置された流量計測手段と、配水管路網の末端に設置された末端圧力計測手段と、減圧量に基づいてバルブ開度を制御する減圧制御手段と、末端圧目標値に基づいて減圧量を演算する末端圧力制御手段と、需要予測値に基づいて、末端圧力を一定にするために必要となる減圧量を管路抵抗曲線により計算し、減圧制御のフィードフォワード信号を出力する最適減圧量計画手段と、2次圧力計測手段と流量計測手段と末端圧力計測手段から夫々得られるバルブの2次圧、流量および末端圧のデータを蓄積する監視データベースと、この監視データベースから得られる過去のバルブ開度、圧力損失、流量および末端圧のデータに基づいて、現状の配水プロセスに合った管路抵抗曲線を生成する管路抵抗推定手段と、を備えることを特徴とする。 Furthermore, the water distribution pressure optimum control apparatus according to the present invention (third invention) pumps purified water from a distribution water reservoir via a pipeline from a distribution reservoir to a consumer at the end with a fixed speed pump. The fine adjustment of the pressure is a distribution pressure optimum control device for reducing the pressure by the adjustment valve and supplying the water. The secondary pressure measuring means for measuring the secondary pressure of the valve installed at the inlet of the distribution pipe network, Flow rate measuring means installed at the inlet of the water pipeline network, terminal pressure measuring means installed at the end of the water distribution network, pressure reducing control means for controlling the valve opening based on the amount of pressure reduction, and terminal pressure target value Based on the terminal pressure control means for calculating the pressure reduction amount based on the demand prediction value, the pressure reduction amount necessary for making the terminal pressure constant is calculated from the pipeline resistance curve, and the feedforward signal of the pressure reduction control is calculated. An optimum decompression amount planning means to output; 2 Monitoring database for storing secondary pressure, flow rate and terminal pressure data obtained from the secondary pressure measuring means, flow rate measuring means and terminal pressure measuring means, respectively, and past valve opening and pressure loss obtained from this monitoring database And a pipe resistance estimating means for generating a pipe resistance curve suitable for the current water distribution process based on the flow rate and terminal pressure data .

本発明によれば、需要変動や管路網プロセスの経年変化によって生じる制御性能劣化を抑制することができる。   According to the present invention, it is possible to suppress control performance deterioration caused by demand fluctuations or secular changes in the pipeline network process.

以下、本発明の配水圧力最適制御装置について更に詳しく説明する。
(1) 第1の発明の配水圧力最適制御装置は、上記で述べたとおりである。
(2) 上記(1)の発明において、吐出圧力計測手段と流量計測手段と末端圧力計測手段から夫々得られる吐出圧、流量、末端圧データを蓄積する監視データベースと、この監視データベースから得られる過去の吐出圧、流量、末端圧データに基づいて、現状の配水プロセスに合った管路抵抗曲線を生成する管路抵抗推定手段とを更に備え、前記管路抵抗曲線は管路抵抗推定手段で得られる場合が好ましい。
この場合、監視データベースから得られる過去の吐出圧、流量、末端圧データに基づいて、現状の配水プロセスに合った管路抵抗曲線を生成する管路抵抗推定手段を備えているので、需要変動や管路網プロセスの経年変化によって生じる制御性能劣化をいっそう抑制することができる。
Hereinafter, the water distribution pressure optimum control device of the present invention will be described in more detail.
(1) The water distribution pressure optimum control device of the first invention is as described above.
(2) In the invention of (1) above, a monitoring database for accumulating discharge pressure, flow rate and terminal pressure data obtained from the discharge pressure measuring means, flow rate measuring means and terminal pressure measuring means, respectively, and a past obtained from this monitoring database Pipe resistance estimating means for generating a pipe resistance curve suitable for the current water distribution process based on the discharge pressure, flow rate, and terminal pressure data of the pipe, and the pipe resistance curve is obtained by the pipe resistance estimating means. Are preferred.
In this case, since there is a pipe resistance estimation means for generating a pipe resistance curve suitable for the current water distribution process based on the past discharge pressure, flow rate, and terminal pressure data obtained from the monitoring database, the fluctuation in demand and It is possible to further suppress the control performance deterioration caused by the aging of the pipeline network process.

(3) 上記(1),(2)の発明において、最適吐出圧計画手段は、流量計測手段で得られる過去の流量実績値と天候・気温といった気象情報に基づいて、需要予測手段で演算される時系列での1日分の需要パターンに基づいて末端圧力制御のフィードフォワード信号を演算する手段であることが好ましい。この場合、日々異なる需要パターンを過去の実績から予測できるために、より末端圧力制御の性能を改善することができる。   (3) In the inventions of (1) and (2) above, the optimum discharge pressure planning means is calculated by the demand prediction means based on the past flow actual value obtained by the flow measuring means and weather information such as weather and temperature. Preferably, it is a means for calculating a feedforward signal for terminal pressure control based on a demand pattern for one day in a time series. In this case, since different demand patterns can be predicted from the past results, the performance of the terminal pressure control can be further improved.

(4) 上記(1)〜(3)の発明において、吐出圧目標値(図1中のPOSV)を予めオペレータが設定し、設定されたパターンをフィードフォワード信号とすることもできる。これにより、オペレータの意図にあったポンプ台数の制御をより簡略的に行うことができる。 (4) In the above inventions (1) to (3), the discharge pressure target value (PO SV in FIG. 1) can be set in advance by the operator, and the set pattern can be used as a feedforward signal. Thereby, control of the number of pumps suitable for an operator can be performed more simply.

(5) 上記(1)〜(4)の発明において、管路抵抗推定手段で得られる管路抵抗曲線とポンプQ−Hカーブに基づいて得られる回転数操作に対する吐出圧変化のゲインを演算し、初期の制御パラメータ調整時のゲインとある閾値以上偏差がある場合には、演算されたゲインを吐出圧力制御のパラメータとして再調整するPID制御パラメータ調整手段を更に備えることが好ましい。これにより、配水管路網の末端圧力の制御をより精度良く行うことができる。   (5) In the above inventions (1) to (4), the gain of the discharge pressure change with respect to the rotational speed operation obtained based on the pipe resistance curve obtained by the pipe resistance estimating means and the pump QH curve is calculated. It is preferable to further include a PID control parameter adjusting means for readjusting the calculated gain as a discharge pressure control parameter when there is a deviation of a certain threshold value or more from the initial control parameter adjustment gain. Thereby, control of the terminal pressure of a water distribution pipe network can be performed more accurately.

(6) 上記(1)〜(5)の発明において、ポンプ運転台数によって変化するポンプ回転数と吐出圧のゲインを、管路抵抗推定手段で得られる管路抵抗曲線とポンプQ−Hカーブに基づいて演算し、現在の運転台数に応じて適切な吐出圧力制御のPID制御パラメータを再調整するPID制御パラメータ調整手段を更に備えることが好ましい。これにより、配水管路網の末端圧力の制御をより精度良く行うことができる。   (6) In the inventions of the above (1) to (5), the pump rotational speed and the discharge pressure gain that change depending on the number of pumps operated are converted into a pipe resistance curve and a pump QH curve obtained by the pipe resistance estimating means. It is preferable to further include a PID control parameter adjusting unit that calculates based on the current number of operating units and re-adjusts the PID control parameter for appropriate discharge pressure control. Thereby, control of the terminal pressure of a water distribution pipe network can be performed more accurately.

次に、本発明の実施形態を、図面を参照して説明する。なお、本実施形態は下記に述べることに限定されない。
(実施例1)
図1を参照する。本実施例1に係る配水圧力最適制御装置は、配水池から管路を介して配置された上水道の配水管路網から末端の需要家へ浄水をポンプで送水するためのものである。
前記配水圧力最適制御装置は、図1に示すように、吐出圧力計測手段としての第1の圧力計1と、流量計測手段としての流量計2と、末端圧力計測手段としての第2の圧力計3と、吐出圧力制御手段4と、ポンプ台数制御手段5と、末端圧力制御手段6と、需要予測手段7と、最適吐出圧計画手段8と、監視データベース(DB)9と、管路抵抗推定手段10と、PID制御パラメータ調整手段11を備えている。なお、図中の符番12は配水管路網、符番13は配水池14と配水管路網12間の管路に設けられた配水ポンプ、符番15は回転数制御手段を示す。また、図1中の符号P1SVは末端圧力設定値、符号P0SVは吐出圧力目標値、符号P0mpcは最適吐出圧力値、符号NSVは回転数設定値、符号Npvはポンプ回転数、符号P0pvは配水管路網の入口圧力値、符号Qoutは配水管路網の入口流量値、P1pvは配水管路網の末端圧力値を夫々示す。
Next, embodiments of the present invention will be described with reference to the drawings. Note that the present embodiment is not limited to the following description.
Example 1
Please refer to FIG. The water distribution pressure optimum control device according to the first embodiment is for pumping purified water from a distribution water reservoir via a pipeline to a consumer at the end from a distribution network via a pipeline.
As shown in FIG. 1, the water distribution pressure optimum control apparatus includes a first pressure gauge 1 as discharge pressure measuring means, a flow meter 2 as flow rate measuring means, and a second pressure gauge as terminal pressure measuring means. 3, discharge pressure control means 4, pump number control means 5, terminal pressure control means 6, demand prediction means 7, optimum discharge pressure planning means 8, monitoring database (DB) 9, and pipe resistance estimation Means 10 and PID control parameter adjustment means 11 are provided. In the figure, reference numeral 12 denotes a water distribution pipe network, reference numeral 13 denotes a water distribution pump provided in the pipe between the distribution reservoir 14 and the water distribution pipe network 12, and reference numeral 15 denotes a rotational speed control means. In FIG. 1, reference sign P1 SV is a terminal pressure setting value, reference sign P0 SV is a discharge pressure target value, reference sign P0 mpc is an optimum discharge pressure value, reference sign N SV is a rotation speed setting value, reference sign N pv is a pump rotation speed, Symbol P0 pv indicates the inlet pressure value of the distribution pipeline network, symbol Q out indicates the inlet flow value of the distribution pipeline network, and P1 pv indicates the terminal pressure value of the distribution pipeline network.

第1の圧力計1は、配水管路網12の入口に設置されてこの入口の圧力を測定する。流量計2は、配水管路網12の入口に設置されてこの入口の流入流量を測定する。第2の圧力計3は、配水管路網12の末端に設置されて末端の圧力を測定する。吐出圧力制御手段4は、吐出圧目標値に基づいてポンプ回転数をPID制御する。ポンプ台数制御手段5は、吐出圧力目標値に基づいてポンプ運転台数を演算する。末端圧力制御手段6は、末端圧目標値に基づいて適切な吐出圧をPID制御する。監視DB9は、これらの計測値および演算値をDBに蓄積・保存する。   The first pressure gauge 1 is installed at the inlet of the water distribution network 12 and measures the pressure at the inlet. The flow meter 2 is installed at the inlet of the water distribution pipe network 12 and measures the inflow flow rate at the inlet. The second pressure gauge 3 is installed at the end of the water distribution pipe network 12 and measures the pressure at the end. The discharge pressure control means 4 performs PID control on the pump rotation speed based on the discharge pressure target value. The number-of-pumps control means 5 calculates the number of operating pumps based on the discharge pressure target value. The terminal pressure control means 6 performs PID control of an appropriate discharge pressure based on the terminal pressure target value. The monitoring DB 9 accumulates and stores these measured values and calculated values in the DB.

管路抵抗推定手段10では、監視DB9に蓄積されている吐出圧、末端圧、流入流量に基づいて、実プロセスの管路抵抗曲線を演算する。つまり、吐出圧と末端圧の推定モデルを、対象とする配水管路網を等価的に一つの管路として捉え、次式で表す。
P1=P0−RQα+h (1)
ここで、P1は末端圧[m]、P0は吐出圧[m]、Qは流量[m/h]、Rは管路抵抗定数、αは流量乗数、hは吐出圧測定点と末端圧測定点との標高差[m]であり、h=吐出圧測定点の標高−末端圧測定点の標高を表す。
The pipe resistance estimation means 10 calculates the pipe resistance curve of the actual process based on the discharge pressure, the terminal pressure, and the inflow rate accumulated in the monitoring DB 9. In other words, the estimated model of the discharge pressure and the terminal pressure is represented by the following equation, with the target distribution pipeline network equivalently regarded as one pipeline.
P1 = P0−RQ α + h (1)
Here, P1 is a terminal pressure [m], P0 is a discharge pressure [m], Q is a flow rate [m 3 / h], R is a pipe resistance constant, α is a flow rate multiplier, and h is a discharge pressure measurement point and a terminal pressure. Elevation difference [m] from the measurement point, and h = elevation at the discharge pressure measurement point−elevation at the end pressure measurement point.

hはプロセスの構造により既知である。R,αは制御対象となる配水管路網によって異なるパラメータであるため、P1,P0,Qの計測データから最小二乗法を用いて値を求める。つまり、管路抵抗推定手段10では,末端圧,吐出圧,流量のデータに基づいて、吐出圧測定点から末端圧測定点までの管路抵抗の推定を行うことができる。   h is known by the structure of the process. Since R and α are different parameters depending on the distribution pipe network to be controlled, values are obtained from the measurement data of P1, P0, and Q using the least square method. That is, the pipe resistance estimation means 10 can estimate the pipe resistance from the discharge pressure measurement point to the end pressure measurement point based on the terminal pressure, discharge pressure, and flow rate data.

需要予測手段7は、監視DB9に蓄積されている過去の流量実績値と操作員からの入力である天候・気温といった気象情報に基づいて、時系列での1日分の需要量を予測する。また、最適吐出圧計画手段8では、需要予測手段で得られる需要予測値と、ポンプQ−H曲線および管路抵抗推定手段によって得られる管路抵抗曲線とに基づいて、1日の吐出圧目標値を演算し、末端圧力制御手段6のフィードフォワード信号(図1中のP0mpc)として出力する。具体的には、管路抵抗曲線(例えば図2中の(1))において、需要予測値が約600m/hであった場合に、その交点となるポンプQ−H曲線の圧力値を演算する。この場合、必要な吐出圧力は約40mとなる。また、需要予測値の流量値が約400m/hであった場合に必要な吐出圧力は約35mとなる。 The demand prediction means 7 predicts the demand amount for one day in time series based on the past actual flow rate value accumulated in the monitoring DB 9 and weather information such as weather / temperature input from the operator. In the optimum discharge pressure planning means 8, the daily discharge pressure target is obtained based on the demand prediction value obtained by the demand prediction means and the pipe resistance curve obtained by the pump QH curve and the pipe resistance estimation means. The value is calculated and output as a feedforward signal (P0 mpc in FIG. 1) of the terminal pressure control means 6. Specifically, in the pipe resistance curve (for example, (1) in FIG. 2), when the demand predicted value is about 600 m 3 / h, the pressure value of the pump QH curve that is the intersection is calculated. To do. In this case, the required discharge pressure is about 40 m. Further, when the flow rate value of the demand forecast value is about 400 m 3 / h, the required discharge pressure is about 35 m.

なお、需要予測手段7では、過去の(配水)流量実績データと運転当日の天気や気温を入力として、当日1日分の需要量を時単位または分単位で予測する。ところで、需要予測演算手法として、ファジィ推論やニューラルネットワーク等を用いるのが一般的であるが、その具体的な方法については特に限定されない。   In addition, the demand prediction means 7 predicts the demand amount for one day on the current day by the hour or the minute by using the past (distribution) flow history data and the weather and temperature on the operation day. By the way, as a demand prediction calculation method, fuzzy reasoning, a neural network, or the like is generally used, but the specific method is not particularly limited.

PID制御パラメータ調整手段11では、現在のポンプ回転数に応じて変化する管路抵抗曲線の接線の傾きに基づいて、PID制御パラメータを調整する。また、管路抵抗曲線の経年変化によっても変化する同接線の傾きに基づいても調整を行う。具体的には、図2で説明する。但し、図2において、符号a,bは夫々ポンプが1台の場合の90%,100%稼動の場合の流量と圧力との関係を示す曲線である。符号c,dは夫々ポンプが2台の場合の90%,100%稼動の場合の流量と圧力との関係を示す曲線である。符番(1),(2)は夫々管路抵抗曲線を示す。   The PID control parameter adjusting means 11 adjusts the PID control parameter based on the slope of the tangent to the pipe resistance curve that changes according to the current pump speed. The adjustment is also made based on the inclination of the tangent line that also changes with the passage of time in the pipe resistance curve. Specifically, this will be described with reference to FIG. However, in FIG. 2, the symbols a and b are curves showing the relationship between the flow rate and the pressure in the case of 90% and 100% operation when there is one pump, respectively. Symbols c and d are curves showing the relationship between the flow rate and pressure when the pumps are 90% and 100%, respectively. Reference numerals (1) and (2) indicate pipeline resistance curves, respectively.

現状の管路抵抗曲線(1)が経年変化によって管路抵抗曲線(2)に推移した場合、図中のA及びBに示すように、回転数変化に対する吐出圧力変化のゲインが変化していることがわかる。つまり、導入当時に設定したPID制御パラメータでは制御性能が劣化することを示している。そこで、そのゲイン変化に応じて吐出圧力制御のPID制御パラメータを調整するものである。   When the current pipe resistance curve (1) transitions to the pipe resistance curve (2) due to secular change, the gain of the discharge pressure change with respect to the rotation speed changes as shown by A and B in the figure. I understand that. That is, the PID control parameters set at the time of introduction indicate that the control performance is deteriorated. Therefore, the PID control parameter of the discharge pressure control is adjusted according to the gain change.

また、管路抵抗曲線は(1)のままであるが、ポンプ運転台数によっても回転数変化に対する吐出圧変化のゲインが変化していることが分かる(図2中、C)。つまり、PID制御パラメータ調整手段11では、管路抵抗曲線の経年変化や制御中のポンプ運転台数の現在値に基づいて、吐出圧力制御のPID制御パラメータ(特に比例ゲイン)を調整することを特徴とする。   Moreover, although the pipe line resistance curve remains (1), it can be seen that the gain of the change in the discharge pressure with respect to the change in the rotational speed also changes depending on the number of pumps operated (C in FIG. 2). That is, the PID control parameter adjusting means 11 adjusts the PID control parameter (particularly the proportional gain) of the discharge pressure control based on the secular change of the pipe resistance curve and the current value of the number of pumps being controlled. To do.

上記実施例1に係る配水圧力最適制御装置は、図1に示すように、吐出圧力計測手段としての第1の圧力計1と、流量計測手段としての流量計2と、末端圧力計測手段としての第2の圧力計3と、吐出圧力制御手段4と、ポンプ台数制御手段5と、末端圧力制御手段6と、需要予測手段7と、最適吐出圧計画手段8と、監視DB9と、管路抵抗推定手段10と、PID制御パラメータ調整手段11を備えている。   As shown in FIG. 1, the water distribution pressure optimum control apparatus according to the first embodiment includes a first pressure gauge 1 as a discharge pressure measuring means, a flow meter 2 as a flow measuring means, and a terminal pressure measuring means. Second pressure gauge 3, discharge pressure control means 4, pump number control means 5, terminal pressure control means 6, demand prediction means 7, optimum discharge pressure planning means 8, monitoring DB 9, pipe resistance An estimation unit 10 and a PID control parameter adjustment unit 11 are provided.

即ち、上記実施例1では、制御対象となる配水管路網12において、その流入流量と吐出圧、末端圧、需要量の実プロセスデータ、ポンプ特性やバルブ特性を表すQ−H曲線に基づいて、需要変動や管路網プロセスの経年変化によって生じる制御性能劣化を抑制可能な末端圧力を制御することができる。   That is, in the first embodiment, in the distribution pipeline network 12 to be controlled, based on the inflow flow rate and discharge pressure, the terminal pressure, the actual process data of the demand amount, the QH curve representing the pump characteristics and the valve characteristics. In addition, it is possible to control the end pressure that can suppress the deterioration of the control performance caused by the demand fluctuation and the secular change of the pipeline network process.

(実施例2)
本実施例2に係る配水圧力最適制御装置は、配水池から管路を介して配置された上水道の配水管路網から末端の需要家へ浄水を自然流下でバルブ(例えば調節弁)によって圧力を調節して送水するためのものである。
自然流下の場合は、吐出圧は一定であり、流入流量や調整弁に応じて末端圧力が変化する。そのため、その変化を監視DBに蓄積されている過去の実績データに基づいて、バルブ開度と圧力損失の関係を読み取り、管路抵抗曲線を変化させる。具体的には、(1)式に示す管路抵抗曲線式に次の項を右辺に追加する。
(Example 2)
The distribution water pressure optimum control device according to the second embodiment is configured to supply purified water from a distribution pipe network of a water supply system via a pipeline from a distribution reservoir to a consumer at the end under a natural flow of the pressure by a valve (for example, a control valve). It is for adjusting and sending water.
In the case of natural flow, the discharge pressure is constant, and the terminal pressure changes according to the inflow flow rate and the regulating valve. Therefore, the relationship between the valve opening and the pressure loss is read based on the past performance data accumulated in the monitoring DB, and the line resistance curve is changed. Specifically, the following term is added to the right side of the pipeline resistance curve equation shown in equation (1).

P1=P0−RQα+h−fv(u) (2)
ここで、fv(u)はバルブによる圧力損失を表し、開度uの関数であって、
fv(u)=K×(1/u−1)で表される。
但し、K,nは監視DBに蓄積されている過去の実績データに基づいて同定されるパラメータである。
また、自然流下の場合P0は一定であり、hも既知であることから、(2)式から直接ある需要予測値の流量Qが与えられた時の末端圧力設定値となるよう開度uをコントロールする。
P1 = P0−RQ α + h−fv (u) (2)
Where fv (u) represents the pressure loss due to the valve and is a function of the opening u,
fv (u) = K × (1 / u−1) n .
However, K and n are parameters identified based on past performance data accumulated in the monitoring DB.
In addition, since P0 is constant in the case of natural flow and h is also known, the opening degree u is set so as to be the terminal pressure set value when the flow rate Q of a certain demand predicted value is directly given from the equation (2). To control.

実施例2によれば、実施例1で述べたのと同様な機能により、需要変動や管路網プロセスの経年変化によって生じる制御性能劣化を抑制可能な末端圧力を制御することができる。   According to the second embodiment, it is possible to control the terminal pressure capable of suppressing the deterioration of the control performance caused by the demand fluctuation and the secular change of the pipeline network process by the same function as described in the first embodiment.

なお、自然流下の代わりに固定速ポンプを用いることができる。この場合は、上述した(2)式により求まる管路抵抗曲線を元に、需要予測値の流量が与えられた時に必要な吐出圧力を計算する。なお、この場合固定速ポンプ出口に流調弁(流量を調節する弁)が設定されていることを前提としている。実施例1では回転数による制御も可能であったが、この場合、運転台数ごとに異なるQ−H曲線を元に、弁開度によって管路抵抗曲線を変化させることによって、必要な流量を吐出する(流調弁出口の吐出圧力値は需要予測値と管路抵抗曲線の接点である)。   A fixed speed pump can be used instead of natural flow. In this case, the discharge pressure required when the flow rate of the demand prediction value is given is calculated based on the pipe resistance curve obtained by the above-described equation (2). In this case, it is assumed that a flow control valve (a valve for adjusting the flow rate) is set at the fixed speed pump outlet. In Example 1, it was possible to control by the number of revolutions, but in this case, the required flow rate was discharged by changing the pipe resistance curve according to the valve opening based on the QH curve that is different for each operating unit. (The discharge pressure value at the outlet of the flow control valve is the contact point between the demand forecast value and the pipeline resistance curve).

本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。
以下に、本願出願の当初の特許請求の範囲に記載された発明を付記する。
[1]配水池から管路を介して配置された上水道の配水管路網から末端の需要家へ浄水をポンプで送水するための配水圧力最適制御装置であり、配水管路網の入口に設置された吐出圧力計測手段と、配水管路網の入口に設置された流量計測手段と、配水管路網の末端に設置された末端圧力計測手段と、吐出圧目標値に基づいてポンプ回転数を制御する吐出圧制御手段と、末端圧力設定値に基づいて吐出圧力を制御する末端圧力一定制御手段と、吐出圧目標値に基づいてポンプ運転台数を演算するポンプ台数制御手段と、需要予測値に基づいて、末端圧力を一定にするために必要となる吐出圧力をポンプQ−Hカーブおよび管路抵抗曲線により計算し、末端圧力制御のフィードフォワード信号を出力する最適吐出圧計画手段と、を備えることを特徴とする配水圧力最適制御装置。
[2]吐出圧力計測手段と流量計測手段と末端圧力計測手段から夫々得られる吐出圧、流量、末端圧データを蓄積する監視データベースと、この監視データベースから得られる過去の吐出圧、流量、末端圧データに基づいて、現状の配水プロセスに合った管路抵抗曲線を生成する管路抵抗推定手段と、を更に備え、前記管路抵抗曲線は管路抵抗推定手段で得られることを特徴とする[1]記載の配水圧力最適制御装置。
[3]流量計測手段で得られる過去の流量実績値と天候・気温といった気象情報に基づいて、時系列での1日分の需要量を予測する需要予測手段を備え、前記最適吐出圧計画手段における需要予測値は、需要予測手段で予測された需要予測値パターンに基づいて末端圧力制御のフィードフォワード信号を出力することを特徴とする[1]もしくは[2]記載の配水圧力最適制御装置。
[4]吐出圧目標値を予めオペレータが設定し、設定されたパターンをフィードフォワード信号とすることを特徴とする[1]もしくは[2]記載の配水圧力最適制御装置。
[5]管路抵抗推定手段で得られる管路抵抗曲線とポンプQ−Hカーブに基づいて得られる回転数操作に対する吐出圧変化のゲインを演算し、演算されたゲインを吐出圧力制御のパラメータとして再調整するPID制御パラメータ調整手段を備えることを特徴とする[1]乃至[4]いずれか一記載の配水圧力最適制御装置。
[6]ポンプ運転台数によって変化するポンプ回転数と吐出圧のゲインを、管路抵抗推定手段で得られる管路抵抗曲線とポンプQ−Hカーブに基づいて演算し、現在の運転台数に応じて適切な吐出圧力制御のPID制御パラメータを再調整するPID制御パラメータ調整手段を備えることを特徴とする[1]乃至[4]いずれか一記載の配水圧力最適制御装置。
[7]配水池から管路を介して配置された上水道の配水管路網から末端の需要家へ浄水を自然流下でバルブによって圧力を調節して送水するための配水圧力最適制御装置であり、配水管路網の入口に設置されたバルブの2次圧を計測する2次圧力計測手段と、配水管路網の入口に設置された流量計測手段と、配水管路網の末端に設置された末端圧力計測手段と、減圧量に基づいてバルブ開度を制御する減圧制御手段と、末端圧目標値に基づいて減圧量を演算する末端圧力制御手段と、需要予測値、既知である吐出圧力値および末端圧目標値に基づいて、末端圧力を一定にするために必要となる減圧量を計算し、減圧制御のフィードフォワード信号を出力する最適減圧量計画手段と、を備えることを特徴とする配水圧力最適制御装置。
[8]2次圧力計測手段と流量計測手段と末端圧力計測手段から夫々得られるバルブの2次圧、流量、末端圧データを蓄積する監視データベースと、この監視データベースから得られる過去のバルブ開度、圧力損失、流量、末端圧データに基づいて、現状の配水プロセスに合った管路抵抗曲線を生成する管路抵抗推定手段と、管路抵抗推定手段で得られる管路抵抗曲線に基づいて得られるバルブ開度操作に対する減圧量変化のゲインを演算し、演算されたゲインを減圧量制御のパラメータとして再調整するPID制御パラメータ調整手段を備えることを特徴とする[7]に記載の配水圧力最適制御装置。
[9]配水池から管路を介して配置された上水道の配水管路網から末端の需要家へ浄水を固定速ポンプで圧送し、圧力の微調整は調整バルブによって減圧して送水するための配水圧力最適制御装置であり、配水管路網の入口に設置されたバルブの2次圧を計測する2次圧力計測手段と、配水管路網の入口に設置された流量計測手段と、配水管路網の末端に設置された末端圧力計測手段と、減圧量に基づいてバルブ開度を制御する減圧制御手段と、
末端圧目標値に基づいて減圧量を演算する末端圧力制御手段と、需要予測値に基づいて、末端圧力を一定にするために必要となる減圧量を管路抵抗曲線により計算し、減圧制御のフィードフォワード信号を出力する最適減圧量計画手段と、を備えることを特徴とする配水圧力最適制御装置。
[10]2次圧力計測手段と流量計測手段と末端圧力計測手段から夫々得られるバルブの2次圧、流量、末端圧データを蓄積する監視データベースと、この監視データベースから得られる過去のバルブ開度、圧力損失、流量、末端圧データに基づいて、現状の配水プロセスに合った管路抵抗曲線を生成する管路抵抗推定手段と、管路抵抗推定手段で得られる管路抵抗曲線と固定速ポンプ運転台数に応じたポンプQ−Hカーブに基づいて得られるバルブ開度操作に対する減圧量変化のゲインを演算し、演算されたゲインを減圧量制御のパラメータとして再調整するPID制御パラメータ調整手段を備えることを特徴とする[9]記載の配水圧力最適制御装置。
The present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.
Hereinafter, the invention described in the scope of claims of the present application will be appended.
[1] A distribution pressure optimum control device for pumping purified water from the distribution water network via the pipelines to the consumers at the end, installed at the entrance of the distribution pipeline network Discharge pressure measuring means, flow rate measuring means installed at the inlet of the distribution pipeline network, terminal pressure measurement means installed at the end of the distribution pipeline network, and the pump rotation speed based on the discharge pressure target value A discharge pressure control means for controlling, a terminal pressure constant control means for controlling the discharge pressure based on the terminal pressure set value, a pump number control means for calculating the number of pumps operated based on the discharge pressure target value, and a demand predicted value And an optimum discharge pressure planning means for calculating a discharge pressure necessary for making the end pressure constant based on a pump QH curve and a pipe resistance curve and outputting a feedforward signal of the end pressure control. That Distribution pressure optimal control apparatus according to symptoms.
[2] A monitoring database for storing discharge pressure, flow rate, and terminal pressure data obtained from the discharge pressure measuring means, flow rate measuring means, and terminal pressure measuring means, respectively, and a past discharge pressure, flow rate, and terminal pressure obtained from this monitoring database And a pipe resistance estimating means for generating a pipe resistance curve suitable for the current water distribution process based on the data, wherein the pipe resistance curve is obtained by the pipe resistance estimating means [ 1] The distribution pressure optimum control device according to [1].
[3] Optimized discharge pressure planning means comprising demand prediction means for predicting a demand amount for one day in time series based on past flow actual values obtained by the flow measurement means and weather information such as weather and temperature. The water supply pressure optimum control device according to [1] or [2], wherein the demand forecast value in the output of a feedforward signal of terminal pressure control is based on the demand forecast value pattern predicted by the demand forecasting means.
[4] The distribution pressure optimum control device according to [1] or [2], wherein an operator sets a discharge pressure target value in advance and uses the set pattern as a feedforward signal.
[5] The gain of the discharge pressure change with respect to the rotational speed operation obtained based on the pipe resistance curve obtained by the pipe resistance estimation means and the pump QH curve is calculated, and the calculated gain is used as a parameter for the discharge pressure control. The distribution pressure optimum control device according to any one of [1] to [4], further comprising PID control parameter adjustment means for readjustment.
[6] The pump rotation speed and the discharge pressure gain, which vary depending on the number of pumps operated, are calculated based on the pipe resistance curve obtained by the pipe resistance estimating means and the pump QH curve, and according to the current number of operating pumps. The water distribution pressure optimum control device according to any one of [1] to [4], further comprising PID control parameter adjustment means for readjusting PID control parameters for appropriate discharge pressure control.
[7] A water distribution pressure optimal control device for adjusting the pressure of a purified water by a valve under natural flow from a distribution water network of a water supply system arranged via a pipeline from a distribution reservoir to a consumer at a terminal end. Secondary pressure measuring means for measuring the secondary pressure of the valve installed at the inlet of the water distribution network, flow rate measuring means installed at the inlet of the water distribution network, and installed at the end of the water distribution network Terminal pressure measurement means, pressure reduction control means for controlling the valve opening based on the pressure reduction amount, terminal pressure control means for calculating the pressure reduction amount based on the terminal pressure target value, demand predicted value, known discharge pressure value And an optimum decompression amount planning means for calculating a decompression amount necessary for making the end pressure constant based on the end pressure target value and outputting a feedforward signal for decompression control. Pressure optimum control device.
[8] A monitoring database for storing secondary pressure, flow rate, and terminal pressure data obtained from the secondary pressure measuring means, flow rate measuring means, and terminal pressure measuring means, and past valve opening obtained from the monitoring database. Based on the pressure loss, flow rate, and terminal pressure data, the pipe resistance estimation means for generating a pipe resistance curve suitable for the current water distribution process and the pipe resistance curve obtained by the pipe resistance estimation means are obtained. A PID control parameter adjustment means for calculating a gain of a pressure reduction amount change with respect to a valve opening operation to be performed and re-adjusting the calculated gain as a parameter for pressure reduction amount control is provided. Control device.
[9] The purified water is pumped by a fixed-speed pump from the distribution water network of the water supply system arranged through the pipeline from the distribution reservoir to the end customer, and the fine adjustment of the pressure is performed by reducing the pressure by the adjusting valve. A distribution pressure optimum control device, a secondary pressure measuring means for measuring the secondary pressure of a valve installed at the inlet of the distribution pipe network, a flow measuring means installed at the inlet of the distribution pipe network, and the distribution pipe Terminal pressure measuring means installed at the end of the road network, pressure reducing control means for controlling the valve opening based on the amount of pressure reduction,
The terminal pressure control means for calculating the pressure reduction amount based on the terminal pressure target value, and the pressure reduction amount required to make the terminal pressure constant based on the demand prediction value are calculated from the pipe resistance curve. An optimum distribution pressure control device, comprising: an optimum decompression amount planning means for outputting a feedforward signal.
[10] A monitoring database for storing secondary pressure, flow rate, and terminal pressure data obtained from the secondary pressure measuring means, flow rate measuring means, and terminal pressure measuring means, and past valve opening obtained from the monitoring database. Based on the pressure loss, flow rate, and terminal pressure data, a pipe resistance estimation means for generating a pipe resistance curve suitable for the current water distribution process, a pipe resistance curve obtained by the pipe resistance estimation means, and a fixed speed pump PID control parameter adjusting means is provided for calculating a gain of change in pressure reduction with respect to the valve opening operation obtained based on the pump QH curve corresponding to the number of operating units, and readjusting the calculated gain as a parameter for pressure reduction control. [9] The water distribution pressure optimum control device according to [9].

本発明の実施例1に係る配水圧力最適制御装置の概略的な説明図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic explanatory drawing of the distribution pressure optimal control apparatus which concerns on Example 1 of this invention. ポンプQ−H曲線と管路抵抗曲線を示す特性図。The characteristic view which shows a pump QH curve and a pipe line resistance curve.

符号の説明Explanation of symbols

1…第1の圧力計(吐出圧力計測手段)、2…流量計(流量計測手段)、3…第2の圧力計(末端圧力計測手段)、4…吐出圧力制御手段、5…ポンプ台数制御手段、6…末端圧力制御手段、7…需要予測手段、8…最適吐出圧計画手段、9…監視データベース、10…管路抵抗推定手段、11…PID制御パラメータ調整手段、12…配水管路網、13…配水ポンプ、15…回転数制御手段。   DESCRIPTION OF SYMBOLS 1 ... 1st pressure gauge (discharge pressure measuring means), 2 ... Flow meter (flow rate measuring means), 3 ... 2nd pressure gauge (terminal pressure measuring means), 4 ... Discharge pressure control means, 5 ... Number control of pumps Means 6: Terminal pressure control means 7 ... Demand prediction means 8 ... Optimal discharge pressure planning means 9 ... Monitoring database 10 ... Pipe resistance estimation means 11 ... PID control parameter adjusting means 12 ... Water distribution pipeline network , 13 ... water distribution pump, 15 ... rotational speed control means.

Claims (9)

配水池から管路を介して配置された上水道の配水管路網から末端の需要家へ浄水をポンプで送水するための配水圧力最適制御装置であり、
配水管路網の入口に設置された吐出圧力計測手段と、
配水管路網の入口に設置された流量計測手段と、
配水管路網の末端に設置された末端圧力計測手段と、
吐出圧目標値に基づいてポンプ回転数を制御する吐出圧制御手段と、
末端圧力設定値に基づいて吐出圧力を制御する末端圧力一定制御手段と、
吐出圧目標値に基づいてポンプ運転台数を演算するポンプ台数制御手段と、
需要予測値に基づいて、末端圧力を一定にするために必要となる吐出圧力をポンプQ−Hカーブおよび管路抵抗曲線により計算し、末端圧力制御のフィードフォワード信号を出力する最適吐出圧計画手段と、
吐出圧力計測手段と流量計測手段と末端圧力計測手段から夫々得られる吐出圧、流量および末端圧のデータを蓄積する監視データベースと、
この監視データベースから得られる過去の吐出圧、流量および末端圧のデータに基づいて、現状の配水プロセスに合った管路抵抗曲線を生成する管路抵抗推定手段と、
を備えることを特徴とする配水圧力最適制御装置。
It is a water distribution pressure optimal control device for pumping purified water from the distribution water network of the water supply system that is arranged through the pipeline from the distribution reservoir to the end customer.
A discharge pressure measuring means installed at the entrance of the water distribution network;
Flow rate measuring means installed at the entrance of the water distribution network;
End pressure measuring means installed at the end of the water distribution network;
A discharge pressure control means for controlling the pump rotation speed based on the discharge pressure target value;
A terminal pressure constant control means for controlling the discharge pressure based on the terminal pressure setting value;
A pump number control means for calculating the number of pumps operated based on the discharge pressure target value;
Optimal discharge pressure planning means for calculating the discharge pressure required to make the terminal pressure constant based on the demand predicted value by the pump QH curve and the pipe resistance curve and outputting a feedforward signal for terminal pressure control When,
A monitoring database for storing discharge pressure, flow rate and terminal pressure data obtained from the discharge pressure measuring means, flow rate measuring means and terminal pressure measuring means, respectively;
A pipe resistance estimating means for generating a pipe resistance curve suitable for the current water distribution process based on the data of the past discharge pressure, flow rate and terminal pressure obtained from this monitoring database;
A water distribution pressure optimum control device comprising:
流量計測手段で得られる過去の流量実績値と天候・気温といった気象情報に基づいて、時系列での1日分の需要量を予測する需要予測手段を備え、前記最適吐出圧計画手段は、需要予測手段で予測された需要予測値パターンに基づいて末端圧力制御のフィードフォワード信号を出力することを特徴とする請求項1記載の配水圧力最適制御装置。 Based on the past actual flow rate value obtained by the flow rate measuring means and weather information such as weather and temperature, it comprises a demand prediction means for predicting the daily demand amount in time series, and the optimum discharge pressure planning means 2. The water distribution pressure optimum control device according to claim 1, wherein a feedforward signal for terminal pressure control is output based on the demand predicted value pattern predicted by the prediction means . 吐出圧目標値を予めオペレータが設定し、設定されたパターンをフィードフォワード信号とすることを特徴とする請求項1または2記載の配水圧力最適制御装置。 The water distribution pressure optimum control device according to claim 1 or 2 , wherein an operator sets a discharge pressure target value in advance and uses the set pattern as a feedforward signal. 管路抵抗推定手段で得られる管路抵抗曲線とポンプQ−Hカーブに基づいて得られる回転数操作に対する吐出圧変化のゲインを演算し、演算されたゲインを吐出圧力制御のパラメータとして再調整するPID制御パラメータ調整手段を備えることを特徴とする請求項1乃至3のいずれか1項記載の配水圧力最適制御装置。 The gain of the discharge pressure change with respect to the rotation speed operation obtained based on the pipe resistance curve obtained by the pipe resistance estimation means and the pump QH curve is calculated, and the calculated gain is readjusted as a parameter for the discharge pressure control. The distribution pressure optimum control device according to any one of claims 1 to 3, further comprising PID control parameter adjusting means. ポンプ運転台数によって変化するポンプ回転数と吐出圧のゲインを、管路抵抗推定手段で得られる管路抵抗曲線とポンプQ−Hカーブに基づいて演算し、現在の運転台数に応じて適切な吐出圧力制御のPID制御パラメータを再調整するPID制御パラメータ調整手段を備えることを特徴とする請求項1乃至3のいずれか1項記載の配水圧力最適制御装置。 The gain of pump speed and discharge pressure, which varies depending on the number of pumps operating, is calculated based on the pipe resistance curve obtained by the pipe resistance estimation means and the pump QH curve, and appropriate discharge according to the current number of operating pumps. The water distribution pressure optimum control device according to any one of claims 1 to 3, further comprising PID control parameter adjustment means for readjusting a PID control parameter for pressure control. 配水池から管路を介して配置された上水道の配水管路網から末端の需要家へ浄水を自然流下でバルブによって圧力を調節して送水するための配水圧力最適制御装置であり、
配水管路網の入口に設置されたバルブの2次圧を計測する2次圧力計測手段と、
配水管路網の入口に設置された流量計測手段と、
配水管路網の末端に設置された末端圧力計測手段と、
減圧量に基づいてバルブ開度を制御する減圧制御手段と、
末端圧目標値に基づいて減圧量を演算する末端圧力制御手段と、
需要予測値、既知である吐出圧力値および末端圧目標値に基づいて、末端圧力を一定にするために必要となる減圧量を計算し、減圧制御のフィードフォワード信号を出力する最適減圧量計画手段と、
2次圧力計測手段と流量計測手段と末端圧力計測手段から夫々得られるバルブの2次圧、流量および末端圧のデータを蓄積する監視データベースと、
この監視データベースから得られる過去のバルブ開度、圧力損失、流量および末端圧のデータに基づいて、現状の配水プロセスに合った管路抵抗曲線を生成する管路抵抗推定手段と、
を備えることを特徴とする配水圧力最適制御装置。
It is a distribution pressure optimal control device for adjusting the pressure by a valve under natural flow from the distribution pipe network of the water supply system arranged via the pipeline from the distribution reservoir to the consumer at the end.
A secondary pressure measuring means for measuring a secondary pressure of a valve installed at the inlet of the water distribution network;
Flow rate measuring means installed at the entrance of the water distribution network;
End pressure measuring means installed at the end of the water distribution network;
Decompression control means for controlling the valve opening based on the decompression amount;
Terminal pressure control means for calculating the amount of pressure reduction based on the terminal pressure target value;
Based on the demand forecast value, the known discharge pressure value, and the terminal pressure target value, the optimum pressure reducing amount planning means for calculating the amount of pressure reduction required to keep the terminal pressure constant and outputting a feedforward signal for pressure reduction control. When,
A monitoring database for accumulating secondary pressure, flow rate and terminal pressure data of the valves obtained from the secondary pressure measuring means, the flow rate measuring means and the end pressure measuring means, respectively;
Based on the past valve opening, pressure loss, flow rate and end pressure data obtained from this monitoring database, pipe resistance estimation means for generating a pipe resistance curve suitable for the current water distribution process,
A water distribution pressure optimum control device comprising:
前記管路抵抗推定手段で得られる管路抵抗曲線に基づいて得られるバルブ開度操作に対する減圧量変化のゲインを演算し、演算されたゲインを減圧量制御のパラメータとして再調整するPID制御パラメータ調整手段を更に備えることを特徴とする請求項6に記載の配水圧力最適制御装置。 Calculates the gain of the pressure reduction amount variation with respect to valve opening operation obtained based on the pipe resistance curve obtained in the conduit resistance estimating means, PID control parameter adjustment to readjust the computed gain as a parameter of the pressure reduction amount control The water distribution pressure optimum control device according to claim 6, further comprising means. 配水池から管路を介して配置された上水道の配水管路網から末端の需要家へ浄水を固定速ポンプで圧送し、圧力の微調整は調整バルブによって減圧して送水するための配水圧力最適制御装置であり、
配水管路網の入口に設置されたバルブの2次圧を計測する2次圧力計測手段と、
配水管路網の入口に設置された流量計測手段と、
配水管路網の末端に設置された末端圧力計測手段と、
減圧量に基づいてバルブ開度を制御する減圧制御手段と、
末端圧目標値に基づいて減圧量を演算する末端圧力制御手段と、
需要予測値に基づいて、末端圧力を一定にするために必要となる減圧量を管路抵抗曲線により計算し、減圧制御のフィードフォワード信号を出力する最適減圧量計画手段と、
2次圧力計測手段と流量計測手段と末端圧力計測手段から夫々得られるバルブの2次圧、流量および末端圧のデータを蓄積する監視データベースと、
この監視データベースから得られる過去のバルブ開度、圧力損失、流量および末端圧のデータに基づいて、現状の配水プロセスに合った管路抵抗曲線を生成する管路抵抗推定手段と、
を備えることを特徴とする配水圧力最適制御装置。
Optimum distribution pressure for pumping clean water from the distribution water network of the water supply system via the pipeline to the end customer with a fixed speed pump, and finely adjusting the pressure using a regulating valve. Control device,
A secondary pressure measuring means for measuring a secondary pressure of a valve installed at the inlet of the water distribution network;
Flow rate measuring means installed at the entrance of the water distribution network;
End pressure measuring means installed at the end of the water distribution network;
Decompression control means for controlling the valve opening based on the decompression amount;
Terminal pressure control means for calculating the amount of pressure reduction based on the terminal pressure target value;
Based on the demand forecast value, the amount of decompression required to make the terminal pressure constant is calculated by the pipe resistance curve, and the optimum amount of decompression planning means for outputting a feedforward signal for decompression control,
A monitoring database for accumulating secondary pressure, flow rate and terminal pressure data of the valves obtained from the secondary pressure measuring means, the flow rate measuring means and the end pressure measuring means, respectively;
Based on the past valve opening, pressure loss, flow rate and end pressure data obtained from this monitoring database, pipe resistance estimation means for generating a pipe resistance curve suitable for the current water distribution process,
A water distribution pressure optimum control device comprising:
前記管路抵抗推定手段で得られる管路抵抗曲線と固定速ポンプ運転台数に応じたポンプQ−Hカーブに基づいて得られるバルブ開度操作に対する減圧量変化のゲインを演算し、演算されたゲインを減圧量制御のパラメータとして再調整するPID制御パラメータ調整手段を更に備えることを特徴とする請求項8記載の配水圧力最適制御装置。 It calculates the gain of the pressure reduction amount variation with respect to valve opening operation obtained based on the pump Q-H curve corresponding to the fixed-speed pump operation number and pipeline resistance curve obtained in the conduit resistance estimating means, the calculated gain 9. The water distribution pressure optimum control device according to claim 8, further comprising a PID control parameter adjusting means for re-adjusting the pressure as a parameter for pressure reduction amount control.
JP2008050571A 2008-02-29 2008-02-29 Water distribution pressure optimum control device Active JP5010504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008050571A JP5010504B2 (en) 2008-02-29 2008-02-29 Water distribution pressure optimum control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008050571A JP5010504B2 (en) 2008-02-29 2008-02-29 Water distribution pressure optimum control device

Publications (2)

Publication Number Publication Date
JP2009209523A JP2009209523A (en) 2009-09-17
JP5010504B2 true JP5010504B2 (en) 2012-08-29

Family

ID=41182949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008050571A Active JP5010504B2 (en) 2008-02-29 2008-02-29 Water distribution pressure optimum control device

Country Status (1)

Country Link
JP (1) JP5010504B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5723642B2 (en) * 2011-03-18 2015-05-27 株式会社日立製作所 Distribution pressure control system
CN102305351B (en) * 2011-08-29 2012-10-24 陶建科 Pipe network pressure control system
CN102677737B (en) * 2012-05-25 2014-04-02 天津大学建筑设计研究院 Method for selecting and determining air pressure water feeding pump and air pressure water tank in constant-pressure water supply system
EP2778296B1 (en) 2013-03-11 2018-04-25 Grundfos Holding A/S Pump system
CN103423592A (en) * 2013-09-09 2013-12-04 济钢集团有限公司 Industrial waste heat steam pipe network pressure stabilizing device and method
WO2016067558A1 (en) 2014-10-29 2016-05-06 日本電気株式会社 Tap water management system, tap water management device, tap water management method, and tap water management program recording medium
CN104500977B (en) * 2014-12-24 2017-06-13 中国海洋石油总公司 A kind of pipeline ties up damage repair technology pilot system
CN106200703A (en) * 2016-07-12 2016-12-07 安徽恒远自动化仪表有限公司 A kind of hydraulic pressure constant voltage control method controlled based on PLC
JP6979207B2 (en) * 2018-02-19 2021-12-08 国立研究開発法人農業・食品産業技術総合研究機構 Water distribution control system
IT201900015674A1 (en) * 2019-09-05 2021-03-05 Calpeda A Spa Method of protection and management of actuation of a pressurization system
CN110965610B (en) * 2019-11-25 2021-10-22 熊猫智慧水务有限公司 Double-circuit peak regulation equipment based on MPC control
CN114637269B (en) * 2022-04-15 2023-04-07 安徽中科大国祯信息科技有限责任公司 Online control and scheduling system and method for water resources of smart park
CN115355447B (en) 2022-10-20 2023-01-06 成都秦川物联网科技股份有限公司 Intelligent gas valve station pressure regulating optimization method and system based on Internet of things

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04358795A (en) * 1991-06-04 1992-12-11 Nissin Electric Co Ltd Control method for pump operation
JP3673066B2 (en) * 1997-09-11 2005-07-20 株式会社東芝 Water distribution pressure control device
JP2001280597A (en) * 2000-03-28 2001-10-10 Ffc:Kk Terminal pressure control device for water distribution network
JP4517937B2 (en) * 2005-05-24 2010-08-04 株式会社安川電機 Water distribution control method
JP4669756B2 (en) * 2005-08-01 2011-04-13 株式会社日立製作所 Water distribution planning apparatus and water distribution control method

Also Published As

Publication number Publication date
JP2009209523A (en) 2009-09-17

Similar Documents

Publication Publication Date Title
JP5010504B2 (en) Water distribution pressure optimum control device
US10287756B2 (en) Tap water management system, tap water management device, tap water management method, and tap water management program recording medium
CN103299082B (en) Pressure controlled system and method in network
CN103237984B (en) Over-rating control in wind turbines and power plants
KR100296715B1 (en) Water distributing installation controllers
JP2009103028A (en) Control device and control method of rain water pump
CN108104208B (en) Method for controlling a reservoir water supply pump device and reservoir water supply pump device
CN110632962B (en) Control system and method for controlling water supply from at least two separate input lines to a water supply network sector
CN113464415B (en) Method, apparatus and computer storage medium for controlling air compressor of air compression station
RU2561782C1 (en) Method of energy efficiency increasing of pump station
CN108138761B (en) Pneumatic system operation control device and control method
JP2001280597A (en) Terminal pressure control device for water distribution network
JP5851259B2 (en) Water distribution operation control device
JP2006004097A (en) Pump controller
Halkijevic et al. Frequency pressure regulation in water supply systems
JP2012160170A (en) Water supply control method of water purification facility
JP6986979B2 (en) Real-time controls and methods for pneumatic systems
JP2008052508A (en) Control system of water treatment plant
JP2017054272A (en) Blower control device
JP4592221B2 (en) Pump unit control device
JP2017129108A (en) Pump operation pattern control method and pump unit
JP4420691B2 (en) Well device control method and well device
JP4423607B2 (en) Rainfall prediction system and drainage pump operation support system using it
JP5837537B2 (en) Control system for artificial snow production plant
CN115397575A (en) Operating a cooling device at a minimum operating pressure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120601

R151 Written notification of patent or utility model registration

Ref document number: 5010504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3