JP5009138B2 - Magnetic levitation mechanism - Google Patents

Magnetic levitation mechanism Download PDF

Info

Publication number
JP5009138B2
JP5009138B2 JP2007313171A JP2007313171A JP5009138B2 JP 5009138 B2 JP5009138 B2 JP 5009138B2 JP 2007313171 A JP2007313171 A JP 2007313171A JP 2007313171 A JP2007313171 A JP 2007313171A JP 5009138 B2 JP5009138 B2 JP 5009138B2
Authority
JP
Japan
Prior art keywords
levitation
magnetic
traveling body
coil
track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007313171A
Other languages
Japanese (ja)
Other versions
JP2008253126A (en
Inventor
卓 笹川
正男 浦部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2007313171A priority Critical patent/JP5009138B2/en
Publication of JP2008253126A publication Critical patent/JP2008253126A/en
Application granted granted Critical
Publication of JP5009138B2 publication Critical patent/JP5009138B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)

Description

本発明は浮上走行体(車体)の浮上力の向上を図ることが可能な誘導反発式の磁気浮上機構に関する。     The present invention relates to an induction repulsion type magnetic levitation mechanism capable of improving the levitation force of a levitating vehicle (vehicle body).

従来、この種の誘導反発式の磁気浮上機構として、下記の特許文献1に示される技術が知られている。この公報に示される磁気浮上機構は、両側に側壁を有しこれら側壁間にU字溝を形成する軌道と、この軌道のU字溝に沿って走行される浮上走行体と、この浮上走行体の両側部に設けられた超電導磁石と、軌道の側壁内側に浮上走行体の超電導磁石と対向しかつ該浮上走行体の走行方向に沿うように配置された複数の浮上案内兼用電気コイルと、を有するものであって、これら浮上案内兼用電気コイル間に生じる誘導電流によって浮上走行体に浮上力を発生させる。また、それぞれの浮上案内兼用電気コイルは、軌道の両側壁にそれぞれ2つづつ上下に取付け、かつその巻線の端部が電気的に接続されているものであって、浮上走行体が走行する際に、浮上走行体上の磁石によって作られた磁束、及び浮上案内兼用電気コイルを貫通することによって発生する電圧の互いの相殺により、側壁面に取付けた浮上案内兼用電気コイルのみで浮上走行体の浮上ならびに走行案内を可能とする。
特公平7−55003号公報
Conventionally, as this type of induction repulsion type magnetic levitation mechanism, a technique disclosed in Patent Document 1 below is known. The magnetic levitation mechanism disclosed in this publication includes a track having side walls on both sides and forming a U-shaped groove between the side walls, a levitating vehicle that travels along the U-shaped groove of the track, and the levitated vehicle Superconducting magnets provided on both sides of the levitation body, and a plurality of levitation guide and electric coils arranged to face the superconducting magnet of the levitation traveling body inside the side wall of the track and to be along the traveling direction of the levitation traveling body, The levitation force is generated in the levitation traveling body by the induced current generated between the levitation guide / electric coil. Further, each levitation guide and electric coil is mounted on the both side walls of the track two above and below, and the ends of the windings are electrically connected, and the levitation traveling body travels. In this case, the levitation traveling body is formed only by the levitation guide / electric coil attached to the side wall surface by the mutual cancellation of the magnetic flux generated by the magnet on the levitation traveling body and the voltage generated by passing through the levitation guide / electric coil. Levitation and travel guidance.
Japanese Patent Publication No. 7-55003

ところで、上記公報に示される磁気浮上機構では、浮上案内兼用電気コイルによって軌道内の浮上走行体に対して浮上力が付与されるものであるが、その際、浮上走行体は、浮上案内兼用電気コイルから得た浮上力によって全ての浮上がなされるものであるので、浮上案内兼用電気コイルに負担がかかり、該コイルの耐久性を低下させるという問題があった。また、浮上案内兼用電気コイルに電流が流れることにより、該コイルが必要以上に加熱して温度上昇が生じ、浮上走行体の走行に対して余計な抵抗が生じるという問題があった。
更に、前述の浮上案内兼用電気コイルに負担がかかり、該コイルの耐久性を低下させるという問題、コイルが必要以上に加熱して温度上昇が生じ、浮上走行体の走行に対して余計な抵抗が生じるという問題を解決する際、できるだけ低コストで実現できること、更なる走行抵抗の低減を実現できることが好ましい。
更にまた、この種の磁気浮上走行体において、複線区間を想定した場合、対向車線側の磁界が、隣接する他の車線側の浮上走行体に影響を及ぼすことが懸念されている。
By the way, in the magnetic levitation mechanism shown in the above publication, the levitation force is applied to the levitation traveling body in the track by the levitation guide electric coil. Since all the levitation is performed by the levitation force obtained from the coil, there is a problem that the levitation guide / electric coil is burdened and the durability of the coil is lowered. In addition, when a current flows through the levitation guide / electric coil, the coil is heated more than necessary, resulting in a temperature rise, and there is a problem that extra resistance is generated with respect to the levitation traveling body.
In addition, the above-described electric coil serving as a levitation guide is burdened, reducing the durability of the coil, and the coil is heated more than necessary, resulting in an increase in temperature, and extra resistance to traveling of the levitation body. When solving the problem of occurrence, it is preferable that it can be realized at as low a cost as possible, and further reduction in running resistance can be realized.
Furthermore, in this type of magnetic levitation vehicle, when a multi-track section is assumed, there is a concern that the magnetic field on the opposite lane side may affect the levitation vehicle on the other adjacent lane side.

本発明は、従来の有していた問題を解決しようとするものであって、軌道の側壁に設けた磁性体により浮上力を付加的に付与し、走行体を浮上させるための浮上コイルの負荷を低減させることができる磁気浮上機構の提供を目的とする。
また、本発明は、走行体を浮上させるための浮上コイルの負荷を低減させることをできる限り低コストで実現し、浮上力補助の実現を図るとともに、複線区間における対向車線側の磁界の影響を排除することができる軸浮上機構の提供を目的とする。
The present invention is intended to solve the conventional problems, and the load of the levitating coil for levitating the traveling body is additionally provided by additionally providing a levitating force by a magnetic body provided on the side wall of the track. It is an object of the present invention to provide a magnetic levitation mechanism that can reduce the above.
In addition, the present invention realizes reduction of the load of the levitating coil for levitating the traveling body at as low a cost as possible, achieves levitation force assistance, and reduces the influence of the magnetic field on the opposite lane side in the double-track section. An object of the present invention is to provide a shaft levitation mechanism that can be eliminated.

そして、上記目的を達成するために本発明の課題解決手段では、両側に側壁を有しこれら側壁間にU字溝を形成する軌道と、この軌道のU字溝に沿って走行する浮上走行体と、この浮上走行体の両側部に設けられた超電導磁石と、軌道の側壁内側にて浮上走行体の超電導磁石と対向しかつ該浮上走行体の走行方向に沿うように配置された浮上コイル及び推進コイルと、を有する磁気浮上機構であって、前記軌道の側壁の上部でかつ前記浮上コイルと推進コイルの上方位置には、前記浮上走行体の超電導磁石との間に吸引力を発生させて前記浮上走行体に浮上力を作用させる磁性体が前記浮上走行体の走行方向に沿うように側壁全長に連続配置され、前記磁性体は、複数の鉄線の周囲を絶縁体で被覆してなる鉄線束により形成されていることを特徴とする。 And in order to achieve the said objective, in the problem-solving means of this invention, the track which has a side wall on both sides and forms a U-shaped groove between these side walls, and the floating traveling body which travels along the U-shaped groove of this track A superconducting magnet provided on both sides of the levitation traveling body, a levitation coil disposed to face the superconducting magnet of the levitation traveling body inside the side wall of the track and to be along the traveling direction of the levitation traveling body, and a magnetic levitation mechanism having a propulsion coils, and the upper position of the upper and and propulsion coil and the floating coil of a side wall of the track, by generating a suction force between the superconducting magnet of the floating traveling body A magnetic body for applying a levitation force to the levitating traveling body is continuously disposed along the entire length of the side wall along the traveling direction of the levitating traveling body, and the magnetic body is an iron wire in which a plurality of iron wires are covered with an insulator. that is formed by flux And butterflies.

本発明の課題解決手段では、前記鉄線束が、前記浮上コイルの直上に配置されたことを特徴とする。

The problem solving means of the present invention is characterized in that the iron wire bundle is disposed immediately above the floating coil .

本発明の磁気浮上機構では、軌道の側壁の上部でかつ前記浮上コイルの上方位置に、浮上走行体の走行方向に沿うように超電導磁石との間に吸引力を発生させる磁性体を配置したので、この磁性体により生じる吸引力によって、浮上走行体に対する浮上力を付加的に増加させることができる。これによって走行体を浮上させるための浮上コイルの負荷を低減させ、浮上コイルの耐久性が低下すること、浮上コイルが必要以上に加熱して抵抗が生じることを防止できる効果がある。   In the magnetic levitation mechanism of the present invention, a magnetic body that generates an attractive force between the superconducting magnet and the superconducting magnet is disposed above the levitation coil and above the levitation coil so as to follow the traveling direction of the levitation traveling body. The levitation force on the levitation body can be additionally increased by the attractive force generated by the magnetic body. This has the effect of reducing the load of the levitation coil for levitating the traveling body, reducing the durability of the levitation coil, and preventing the levitation coil from being heated more than necessary and causing resistance.

また、本発明の磁気浮上機構では、複数の鉄線の周囲を絶縁体で被覆してなる鉄線束により磁性体を構成したので、鉄線束内の磁束により生じる渦電流が個々の鉄線内に限定され、複数の鉄線間を跨って流れる渦電流が抑止されるため、過大な磁気抗力を生じさせることなく、これによって磁性体と超電導磁石との間にて、吸収力を効率よく発生させることができる。また、絶縁体により鉄線を個々に被覆しているので、鉄線に対する防錆効果も得られる。   Further, in the magnetic levitation mechanism of the present invention, the magnetic body is constituted by the iron wire bundle formed by covering the periphery of the plurality of iron wires with the insulator, so that the eddy current generated by the magnetic flux in the iron wire bundle is limited to each iron wire. Since the eddy current flowing between the plurality of iron wires is suppressed, it is possible to efficiently generate the absorbing power between the magnetic body and the superconducting magnet without causing an excessive magnetic drag. . Moreover, since the iron wires are individually covered with the insulator, an antirust effect on the iron wires can also be obtained.

また、本発明の磁気浮上機構では、複数の鉄線が撚り合わされかつ軌道の側壁の鉄筋を形成するプレストレス鋼線を、磁性体として用いることも可とする。すなわち、軌道の側壁の鉄筋を形成するプレストレス鋼線を、浮上走行体に対して補助的な浮上力を与える磁性体に兼用して構成を共通化することで、全体の構造を簡素化することが可能となる。   In the magnetic levitation mechanism of the present invention, a prestressed steel wire in which a plurality of iron wires are twisted and forms a reinforcing bar on the side wall of the track can be used as a magnetic body. That is, the prestressed steel wire that forms the reinforcing bars on the side walls of the track is also used as a magnetic body that gives auxiliary levitation force to the levitation body, thereby simplifying the overall structure. It becomes possible.

本発明の磁気浮上機構では、磁性体基板を複数、非磁性体層を介して積層してなる積層鉄心により磁性体を形成したので、複数の鉄線の周囲を絶縁体で被覆してなる鉄線束により磁性体を構成する場合に比較し低コストで目的を実現できる効果を奏する。即ち、1本1本の鉄線を個々に絶縁して撚り合わせて製造するよりも、磁性体基板と非磁性体層を交互積層する方が製造が容易にでき、安価に提供できる。
また、積層鉄心により磁性体を構成する場合、磁性体基板と非磁性体層の面方向を浮上走行体の進行方向に沿わせ、前記側壁の厚さ方向に積層方向を向けて前記側壁に配置することにより、磁性体基板を用いていても、渦電流損失を抑制しつつ必要な吸引力を効率良く発生させ、目的を達成できる。即ち、浮上走行体の超電導磁石からの磁界が積層鉄心に作用した場合であっても、積層面に入る磁界成分をできるだけ小さくできるので、渦電流損失を小さくしながら目的を達成できる。
In the magnetic levitation mechanism of the present invention, the magnetic body is formed by the laminated iron core formed by laminating a plurality of magnetic substrates via the non-magnetic layer, so that the iron wire bundle formed by covering the periphery of the plurality of iron wires with an insulator. As a result, the object can be achieved at a lower cost than when a magnetic material is formed. That is, it is easier to manufacture by laminating a magnetic substrate and a nonmagnetic material layer, and it can be provided at a lower cost than manufacturing by individually insulating and twisting each iron wire.
Also, when a magnetic body is constituted by a laminated iron core, the surface direction of the magnetic substrate and the nonmagnetic layer is aligned with the traveling direction of the levitating traveling body, and the laminated body is disposed on the side wall with the lamination direction facing the thickness direction of the side wall. By doing so, even if a magnetic substrate is used, the necessary attraction force can be efficiently generated while the eddy current loss is suppressed, and the object can be achieved. That is, even when the magnetic field from the superconducting magnet of the levitating traveling body acts on the laminated core, the magnetic field component entering the laminated surface can be made as small as possible, so that the object can be achieved while reducing the eddy current loss.

また、浮上走行体の側部に、垂直軸を中心として回転自在で前記軌道の側壁内面に接触するガイドローラを設け、前記走行浮上体が揺動した際に、このガイドローラに、側壁内面に沿って設けたガイドレールを接触させるものにおいて、本発明では、ガイドレールを磁性体で構成した。つまり、本発明では、磁性体をガイドレールと兼用させており、これにより、上記と同様に全体の構造を簡素化することが可能となる。   In addition, a guide roller that is rotatable about a vertical axis and that contacts the inner surface of the side wall of the track is provided on a side portion of the levitating traveling body. In the present invention, the guide rail is made of a magnetic material. In other words, in the present invention, the magnetic body is also used as the guide rail, which makes it possible to simplify the overall structure as described above.

以下に本発明の実施の形態を図1〜図3に基づいて説明する。
図1は本発明に係わる磁気浮上機構の正面概略図であって、この図において符号1は軌道である。この軌道1は、両側に側壁2を有しこれら側壁2間にU字溝3を形成するものであって、この軌道1のU字溝3に沿って浮上走行体4が走行する(図1では紙面と直交する方向に走行する)。この浮上走行体4は、台車5と、この台車5の上方に空気バネ6を介して連結された車体7とを具備するものであって、台車5の下部には、U字溝3上の車輪走行路3Aを走行する車輪(図示略)、補助車輪(図示略)が設けられている。
Embodiments of the present invention will be described below with reference to FIGS.
FIG. 1 is a schematic front view of a magnetic levitation mechanism according to the present invention. In this figure, reference numeral 1 denotes a track. The track 1 has side walls 2 on both sides, and U-shaped grooves 3 are formed between the side walls 2, and the levitating traveling body 4 travels along the U-shaped grooves 3 of the track 1 (FIG. 1). Then run in the direction perpendicular to the paper surface). The levitation traveling body 4 includes a carriage 5 and a vehicle body 7 connected to the carriage 5 via an air spring 6 above the carriage 5. Wheels (not shown) and auxiliary wheels (not shown) that travel on the wheel travel path 3A are provided.

この浮上走行体4の両側には超電導磁石8が設けられている。また、浮上走行体4には超電導磁石8にヘリウムを供給するヘリウムタンクが設けられているが、図面上では省略されている。一方、軌道1の側壁2内側には、浮上走行体4の超電導磁石8と対向しかつ該浮上走行体4の走行方向に沿うように浮上コイル10及び推進コイル11が設けられている。浮上コイル10は側壁2に上下に配置されているものであって、超電導磁石8との間に吸引力を発生させ、この吸引力から、軌道1のU字溝3内にて浮上走行体4を浮上させる浮上力を発生させる。また、推進コイル11は、U字溝3内にて浮上した浮上走行体4を軌道1に沿って走行させる推進力を与えるものである。なお、これら浮上コイル10及び推進コイル11については、「背景技術」に示した特公平7−55003号公報の他、特開平8−205315号公報、特開2006−14420号公報等に詳細に示される。また、本実施形態では、浮上コイル10及び推進コイル11を別体にしたが、背景技術の特許文献1に示されるような一体型のものを使用しても良い。   Superconducting magnets 8 are provided on both sides of the floating traveling body 4. The levitation traveling body 4 is provided with a helium tank for supplying helium to the superconducting magnet 8, which is omitted in the drawing. On the other hand, a levitation coil 10 and a propulsion coil 11 are provided inside the side wall 2 of the track 1 so as to face the superconducting magnet 8 of the levitation traveling body 4 and to follow the traveling direction of the levitation traveling body 4. The levitation coil 10 is arranged vertically on the side wall 2, and generates an attractive force with the superconducting magnet 8, and the levitation traveling body 4 in the U-shaped groove 3 of the track 1 is generated from this attractive force. Generate a levitating force to levitate. Further, the propulsion coil 11 provides a propulsive force that causes the levitation traveling body 4 that has levitated in the U-shaped groove 3 to travel along the track 1. The levitation coil 10 and the propulsion coil 11 are described in detail in JP-B-8-205315, JP-A-2006-14420, and the like in addition to Japanese Patent Publication No. 7-55003 shown in “Background Art”. It is. Further, in this embodiment, the levitation coil 10 and the propulsion coil 11 are separated, but an integral type as shown in Patent Document 1 of the background art may be used.

一方、軌道1の側壁2の上部でかつ浮上コイル10の直上位置には、浮上走行体4の走行方向に沿うように超電導磁石8との間に吸引力を発生させる磁性体(磁性線状体)12が配置されている。この磁性線状体12は、例えば、図2に示されるように、複数の鉄線13の周囲を絶縁体14で被覆してなる鉄線束により形成されているものであって、各鉄線束内には、矢印Aで示すような磁束が形成され、この磁束によって、超電導磁石8との間に浮上走行体4を浮上させるための浮上力となる吸引力(図1に符号Bで示す)が発生する。また、このような磁性線状体12では、複数の鉄線13の周囲を被覆した絶縁体14が設けられているので、図2に符号Cで示すような渦電流が発生したとしても、これら鉄線束内の磁束により生じる渦電流が個々の鉄線13内に限定され、複数の鉄線13間を跨って流れる渦電流が抑止されるため、過大な磁気抗力を生じさせることなく、これによって磁性線状体と超電導磁石との間にて、吸収力を効率良く発生させることができる。   On the other hand, a magnetic body (magnetic linear body) that generates an attractive force with the superconducting magnet 8 along the traveling direction of the levitating traveling body 4 at the position above the side wall 2 of the track 1 and directly above the levitating coil 10. ) 12 is arranged. For example, as shown in FIG. 2, the magnetic linear body 12 is formed by an iron wire bundle formed by covering a plurality of iron wires 13 with an insulator 14. Forms a magnetic flux as indicated by an arrow A, and this magnetic flux generates an attractive force (indicated by reference numeral B in FIG. 1) as a levitation force for levitation of the levitating body 4 with the superconducting magnet 8. To do. Moreover, in such a magnetic linear body 12, since the insulator 14 which coat | covered the circumference | surroundings of the some iron wire 13 is provided, even if an eddy current as shown by the code | symbol C in FIG. 2 generate | occur | produces, these iron wires Since the eddy current generated by the magnetic flux in the bundle is limited to the individual iron wires 13 and the eddy current flowing between the plurality of iron wires 13 is suppressed, it does not cause an excessive magnetic drag, thereby generating a magnetic linear shape. Absorption power can be efficiently generated between the body and the superconducting magnet.

以上詳細に説明した本実施形態に示される磁気浮上機構では、軌道1の側壁2の上部でかつ浮上コイル10の直上位置に、浮上走行体4の走行方向に沿うように超電導磁石8との間に吸引力を発生させる磁性線状体12を配置したので、この磁性線状体12により生じる吸引力によって、浮上走行体4に対する浮上力を付加的に増加させることができる。
これによって、走行体4を浮上させるための浮上コイル10の負荷を低減させ、浮上コイル10の使用過多により耐久性が低下すること、浮上コイル10が必要以上に加熱して走行抵抗が生じることを防止できる効果がある。
また、上記の磁気浮上機構では、複数の鉄線13の周囲を絶縁体14で被覆してなる鉄線束により磁性線状体12を構成したので、鉄線束内の磁束により生じる渦電流が個々の鉄線13内に限定され、複数の鉄線13間を跨って流れる渦電流が抑止されるため、過大な磁気抗力を生じさせることなく、これによって磁性線状体と超電導磁石との間にて、吸収力を効率よく発生させることができる。
In the magnetic levitation mechanism shown in the present embodiment described in detail above, between the superconducting magnet 8 so as to be along the traveling direction of the levitation traveling body 4 at the position above the side wall 2 of the track 1 and directly above the levitation coil 10. Since the magnetic linear body 12 that generates the attraction force is disposed, the attraction force generated by the magnetic linear body 12 can additionally increase the levitation force with respect to the levitation traveling body 4.
As a result, the load of the levitation coil 10 for levitating the traveling body 4 is reduced, the durability is reduced due to excessive use of the levitation coil 10, and the levitation coil 10 is heated more than necessary to generate running resistance. There is an effect that can be prevented.
In the above magnetic levitation mechanism, the magnetic linear body 12 is constituted by the iron wire bundle formed by covering the periphery of the plurality of iron wires 13 with the insulator 14, so that the eddy current generated by the magnetic flux in the iron wire bundle is caused by the individual iron wires. Since the eddy current flowing across the plurality of iron wires 13 is suppressed, the absorption power is reduced between the magnetic linear body and the superconducting magnet without causing an excessive magnetic drag. Can be generated efficiently.

なお、浮上コイル10の上方に配置した磁性線状体12は、付加浮上力を可能な限り大きくするため、浮上コイル10の上方位置でかつ該浮上コイル10に近接した位置(すなわち直上位置)に設置し、かつ超電導磁石8に近接した位置に設置することが好ましい。   The magnetic linear body 12 disposed above the levitation coil 10 has a position above the levitation coil 10 and a position close to the levitation coil 10 (ie, a position immediately above) in order to increase the additional levitation force as much as possible. It is preferable to install it at a position close to the superconducting magnet 8.

また、上記磁性線状体12として上述した複数の鉄線13の周囲を絶縁体14で被覆してなる鉄線束を使用せず、軌道1の側壁2を形成するコンクリート内の鉄筋に磁性を帯びさせたものを、上述した磁性線状体12として使用し、このような磁性線状体12によって浮上走行体4に対して付加的な浮上力を付与しても良い。また、このような軌道1の側壁2を形成する鉄筋を使用した場合に、この鉄筋として、複数の鉄線が撚り合わされて側壁2に対してプレストレス(圧縮力)を与えるプレストレス鋼線を使用しても良い。すなわち、軌道1の側壁2内にある鉄筋を、浮上走行体4に対して補助的な浮上力を与える磁性線状体12に兼用することで構成を共通化しかつ全体の構造を簡素化することができる。   Further, the magnetic wire 12 is not made of an iron wire bundle in which the periphery of the plurality of iron wires 13 described above is covered with an insulator 14, and the reinforcing bars in the concrete forming the side walls 2 of the track 1 are magnetized. The magnetic linear body 12 may be used as the above-described magnetic linear body 12, and an additional levitation force may be applied to the levitation traveling body 4 by such a magnetic linear body 12. Further, when a reinforcing bar forming the side wall 2 of the track 1 is used, a prestressed steel wire that prestresses (compresses) the side wall 2 by twisting a plurality of iron wires is used as the reinforcing bar. You may do it. That is, the rebar in the side wall 2 of the track 1 is also used as the magnetic linear body 12 that gives an auxiliary levitation force to the levitation traveling body 4, thereby making the configuration common and simplifying the entire structure. Can do.

また、上述した磁性線状体として、複数の鉄線13の周囲を絶縁体14で被覆してなる鉄線束、又は軌道1の側壁2の鉄筋を使用することに限定されず、軌道1の側壁2の内面に浮上走行体4の走行方向に沿うように設けられた図3に示す構成のガイドレール20を使用しても良い。
このガイドレール20は、図3に示されるように、浮上走行体4の側部にある垂直軸21を中心として回転自在なガイドローラ22に接触されるものであって、その接触は、ガイドローラ22が、例えば進行方向と直交する方向に浮上走行体4が揺動した場合になされる。そして、このようなガイドレール20を磁性体で構成する、すなわち、軌道1の側壁2の内面に、浮上走行体4のガイドローラ22に接触する線状磁性体からなるガイドレール20を設けることにより、付加的に浮上力を与えるための手段を、ガイドローラ22のレールと兼用して構成を共通化することができ、上記と同様に全体の構造を簡素化することが可能となる。
Further, the magnetic linear body described above is not limited to the use of an iron wire bundle in which the periphery of the plurality of iron wires 13 is covered with the insulator 14 or the reinforcing bar of the side wall 2 of the track 1. A guide rail 20 having the structure shown in FIG. 3 provided on the inner surface of the levitation body 4 along the traveling direction of the floating traveling body 4 may be used.
As shown in FIG. 3, the guide rail 20 is in contact with a guide roller 22 that is rotatable about a vertical shaft 21 on the side of the floating traveling body 4. For example, 22 is performed when the floating traveling body 4 swings in a direction orthogonal to the traveling direction. And such a guide rail 20 is comprised with a magnetic body, ie, by providing the guide rail 20 which consists of a linear magnetic body which contacts the guide roller 22 of the levitating traveling body 4 on the inner surface of the side wall 2 of the track 1. In addition, it is possible to share the structure of the means for additionally providing the levitation force with the rail of the guide roller 22, and it is possible to simplify the overall structure as described above.

また、側壁2に沿って配置される磁性線状体12は、側壁2の継ぎ目部分において切れ目が生じ、この部分において補助的な浮上力が弱まり走行浮上体4に振動が生じることになるが、これを防止するために、このような継ぎ目部分に追加的に磁力を付与する磁力発生装置を設け、浮上力を連続して維持することが好ましい。   Further, the magnetic linear body 12 arranged along the side wall 2 has a break at the joint portion of the side wall 2, and the auxiliary levitation force is weakened at this portion, and the traveling levitation body 4 is vibrated. In order to prevent this, it is preferable to provide a magnetic force generator for additionally applying a magnetic force to such a joint portion, and continuously maintain the levitation force.

図4は、先の図1に示す実施の形態における磁気浮上機構において、磁性線状体(磁性体)12に代えて積層鉄心からなる磁性体30を設けた例について示す正面概略図であり、図4に磁性体30を部分的に拡大してその斜視状態を示す。図4に示す形態の磁気浮上機構において、図1に示す磁気浮上機構と同等の構成部分には同一符号を付してそれら構成部分の説明は略する。
図4に示す形態においては、磁性線状体12が設けられていた部分に積層鉄心30として、磁性体基板31をフラックスバリアとなるべき樹脂などの非磁性体層32を介して複数積層してなる積層構造の鉄心を用いた点に特徴を有する。
前記積層鉄心30の磁性体基板31は、鉄板、珪素鋼板、あるいはFe系の強磁性体合金材料からなる磁性体基板から、あるいは強磁性体合金粉末を絶縁層で被覆してなる強磁性体粉末複合体を焼結した焼結材料製の磁性体基板などから形成されている。磁性体基板31を構成する材料として、その他、一般的には飽和磁束密度が大きく、かつ、ヒステリシス損失が小さく、電気伝導率の小さい磁性材料などを適用することが好ましい。
前記フラックスバリアとなるべき非磁性体層32は樹脂などの絶縁性の非磁性体基板などからなる磁気的絶縁層であることが好ましい。そのためには、FRP(ガラス繊維強化樹脂)などのように強度的に高く絶縁性に優れた樹脂が好ましく、この他には、鉄系の合金材料のうち、非磁性体からなる材料など、前述の磁性体と線膨張係数の近い材料からなることが好ましい。
FIG. 4 is a schematic front view showing an example in which a magnetic body 30 made of a laminated core is provided in place of the magnetic linear body (magnetic body) 12 in the magnetic levitation mechanism in the embodiment shown in FIG. FIG. 4 shows a perspective view of the magnetic body 30 partially enlarged. In the magnetic levitation mechanism of the form shown in FIG. 4, the same components as those of the magnetic levitation mechanism shown in FIG.
In the embodiment shown in FIG. 4, a plurality of magnetic substrates 31 are laminated via a non-magnetic layer 32 such as a resin to serve as a flux barrier as a laminated iron core 30 in a portion where the magnetic linear body 12 is provided. It has a feature in that an iron core having a laminated structure is used.
The magnetic substrate 31 of the laminated core 30 is made of a ferromagnetic substrate powder made of an iron plate, a silicon steel plate, or a magnetic substrate made of an Fe-based ferromagnetic alloy material, or a ferromagnetic alloy powder coated with an insulating layer. It is formed from a magnetic substrate made of a sintered material obtained by sintering a composite. In addition, it is preferable to apply a magnetic material having a high saturation magnetic flux density, a low hysteresis loss, and a low electrical conductivity, as a material constituting the magnetic substrate 31.
The nonmagnetic layer 32 to be the flux barrier is preferably a magnetic insulating layer made of an insulating nonmagnetic substrate such as a resin. For this purpose, a resin having high strength and excellent insulating properties, such as FRP (glass fiber reinforced resin), is preferable. In addition to this, among iron-based alloy materials, a material made of a non-magnetic material, etc. It is preferable to be made of a material having a linear expansion coefficient close to that of the magnetic material.

この形態に示す積層鉄心30を先の形態の磁性線状体12の代わりに設けることで先の形態と同様に超電導磁石8との間に浮上走行体4を浮上させるための浮上力となる吸引力(図4に符号Bで示す)を発生させることができ、先の形態と同等の効果を得ることができる。
また、この形態では積層構造の磁性体基板31と非磁性体層32をそれらの面を縦方向(垂直方向)にしてそれらの面方向を台車5の走行方向に向け、側壁2の厚さ方向(枕木方向)に磁性体基板31と非磁性体層32の積層方向を向けることが好ましい。(図4の矢印で示す積層鉄心30の拡大図とその方向参照)
これは、図4の積層鉄心30に対して超電導磁石8からの磁界が矢印Eに示す如く作用することを考慮すると、この磁界Eに沿って磁性体基板31の面方向が揃っている方が渦電流損失が生じ難いためである。これに対して図4に対する積層方向と直交方向に積層方向が向いていると、換言すると、上下方向に積層方向が向いていると、磁界Eの向きに沿って磁性体基板31と非磁性体層32とが交互に存在する領域が大きくなるので、換言すると、積層面に垂直に入る磁界成分が大きくなるので、渦電流損失が大きくなるおそれがある。
また、強磁性体合金粉末を絶縁層で被覆してなる強磁性体粉末複合体を焼結した焼結材料製の磁性体基板であるならば、強磁性体合金粉末自体が個々に絶縁層により被覆されていて、渦電流損失を低減できるので、渦電流損失の低減の面において好ましい。
By providing the laminated iron core 30 shown in this form instead of the magnetic linear body 12 of the previous form, the attraction that becomes the levitation force for levitating the levitation traveling body 4 between the superconducting magnet 8 is provided as in the previous form. A force (indicated by symbol B in FIG. 4) can be generated, and an effect equivalent to that of the previous embodiment can be obtained.
Further, in this embodiment, the magnetic substrate 31 and the nonmagnetic layer 32 having a laminated structure have their surfaces set in the vertical direction (vertical direction) and their surface directions are directed in the traveling direction of the carriage 5, and the thickness direction of the side wall 2 is increased. It is preferable to orient the lamination direction of the magnetic substrate 31 and the nonmagnetic layer 32 in the direction of sleepers. (Refer to the enlarged view and direction of the laminated core 30 indicated by the arrows in FIG.
In consideration of the fact that the magnetic field from the superconducting magnet 8 acts on the laminated core 30 of FIG. 4 as indicated by the arrow E, the surface direction of the magnetic substrate 31 is aligned along the magnetic field E. This is because eddy current loss hardly occurs. On the other hand, when the stacking direction is perpendicular to the stacking direction with respect to FIG. 4, in other words, when the stacking direction is upward and downward, the magnetic substrate 31 and the nonmagnetic material are aligned along the direction of the magnetic field E. Since the area where the layers 32 are alternately present becomes large, in other words, the magnetic field component perpendicular to the laminated surface becomes large, which may increase eddy current loss.
Further, if the magnetic substrate is made of a sintered material obtained by sintering a ferromagnetic powder composite formed by coating a ferromagnetic alloy powder with an insulating layer, the ferromagnetic alloy powder itself is individually separated by an insulating layer. Since it is covered and eddy current loss can be reduced, it is preferable in terms of reduction of eddy current loss.

更に、前記の各実施形態において採用した磁性体12、30を図1、図4に示す如く配置する磁気浮上機構を採用した場合、複線区間を想定すると、隣接する隣の区間に自車両の超電導磁石8の磁界が作用しようとした場合、磁性体12、30が磁気シールドの効果を奏するので、複線区間においては隣接する区間の対向車両に対して不要な磁界を作用させるおそれを低減できる特徴を有する。   Furthermore, when the magnetic levitation mechanism in which the magnetic bodies 12 and 30 employed in each of the above-described embodiments are arranged as shown in FIGS. 1 and 4, assuming a double-track section, the superconductivity of the host vehicle is adjacent to the adjacent section. When the magnetic field of the magnet 8 is about to act, the magnetic bodies 12 and 30 have the effect of a magnetic shield. Therefore, in the double track section, it is possible to reduce the possibility of applying an unnecessary magnetic field to the oncoming vehicle in the adjacent section. Have.

図5に示す如く、Xを車両進行方向、Yを軌道の幅方向、Zを上下方向として、上下幅500mmの直立配置した超電導磁石8に対し、超電導磁石8からY方向に160mm離間し、超電導磁石8の中心高さから530mm高い位置にアスペクト比2の磁性体(図5の高さ125mm、幅250mm、奥行き無限大に設定した磁性体)を配置した場合の対向車窓側磁界をシミュレーションした。磁性体の構造は、ここでは電気伝導率が0の塊状鉄心とした。
対向車窓側磁界とは、図5に示す超電導磁石8を備えた浮上走行体4に対し、図7、図8に示す如くY方向に5.8m離れた位置に他の斜線区間の浮上走行体4の中央部が位置した場合を想定し、Y方向4.3m、Z方向0.5m〜2.5mの位置における磁界強度を計算した結果を図6に示す。なお、浮上走行車両4においては車両の外殻4aはAl合金製、その客室を囲むようにFe製のシールド部材4bが配置されている構造を図8に略記し、相手側浮上走行体の超電導磁石8の相対位置も示した。
図6に示す如く、自車両の側壁(ガイドウエイ)に2箇所ずつ、対向車両用側壁に2箇所ずつ、合計4箇所に磁性体を設けた場合の結果である。
図6に示す如く磁性体を設けた場合の対向車窓側磁界の強度は磁性体を設けない場合の磁界強度に対して1/2程度となった。
このことから、側壁に本発明に係る磁性体を設置することで、2車線区間において隣接する他の車線区間に存在する車両に対しての磁界の影響を1/2程度に削減できることが判明した。
As shown in FIG. 5, with respect to the superconducting magnet 8 arranged upright with a vertical width of 500 mm, where X is the vehicle traveling direction, Y is the width direction of the track, and Z is the vertical direction, the superconducting magnet 8 is separated from the superconducting magnet 8 by 160 mm in the Y direction. An oncoming vehicle window side magnetic field was simulated when a magnetic body having an aspect ratio of 2 (a magnetic body set to have a height of 125 mm, a width of 250 mm, and an infinite depth in FIG. 5) was placed 530 mm higher than the center height of the magnet 8. Here, the structure of the magnetic body is a massive iron core having zero electrical conductivity.
The oncoming vehicle window side magnetic field refers to the levitating vehicle 4 in the other shaded section at a position 5.8 m away from the levitating vehicle 4 having the superconducting magnet 8 shown in FIG. 5 as shown in FIGS. FIG. 6 shows the result of calculating the magnetic field strength at a position of 4.3 m in the Y direction and 0.5 m to 2.5 m in the Z direction, assuming that the center of 4 is located. In the levitation vehicle 4, the outer shell 4a of the vehicle is made of an Al alloy, and the structure in which the shield member 4b made of Fe is arranged so as to surround the passenger cabin is schematically shown in FIG. The relative position of the magnet 8 is also shown.
As shown in FIG. 6, the results are obtained when magnetic bodies are provided at a total of four locations, two on the side wall (guideway) of the host vehicle and two on the opposite vehicle side wall.
As shown in FIG. 6, the strength of the oncoming vehicle window side magnetic field when the magnetic material is provided is about ½ of the magnetic field strength when the magnetic material is not provided.
From this, it was found that by installing the magnetic body according to the present invention on the side wall, the influence of the magnetic field on the vehicle existing in the other lane section adjacent in the two lane section can be reduced to about ½. .

次に、図4に示す如く電気伝導率が0の塊状鉄心について、磁性体内の案内方向中心位置における磁束分布状態を磁束密度方向に表示した結果を図9に示す。
図9に示す結果から、進行方向磁界(Bx成分)に次いで上下方向磁束密度(Bz成分)が大きい。従って、図9においては渦電流損失を低減する観点からは、積層構造の磁性体を適用する場合は図4に示す配置「積層面に対する垂線が枕木方向に一致する」ことが望ましいと考えられる。
Next, FIG. 9 shows the result of displaying the magnetic flux distribution state at the center position in the guide direction in the magnetic body in the magnetic flux density direction for the bulk iron core having zero electrical conductivity as shown in FIG.
From the results shown in FIG. 9, the magnetic flux density in the vertical direction (Bz component) is large next to the traveling direction magnetic field (Bx component). Therefore, in FIG. 9, from the viewpoint of reducing the eddy current loss, it is desirable that the arrangement “the perpendicular to the laminated surface matches the sleeper direction” shown in FIG.

本発明に係わる磁気浮上機構の概略を示す正面図。The front view which shows the outline of the magnetic levitation mechanism concerning this invention. 磁性線状体12の具体的構成を示す図。The figure which shows the specific structure of the magnetic linear body 12. FIG. 磁気浮上機構の磁性線状体の他形態を示す概略正面図。The schematic front view which shows the other form of the magnetic linear body of a magnetic levitation mechanism. 本発明に係わる磁気浮上機構の第2の例を示す正面図。The front view which shows the 2nd example of the magnetic levitation mechanism concerning this invention. 実施例において行った磁界測定の試験条件を示す説明図。Explanatory drawing which shows the test conditions of the magnetic field measurement performed in the Example. 図5に示す条件において計算された磁気シールド効果の計算結果を示す図。The figure which shows the calculation result of the magnetic shielding effect calculated on the conditions shown in FIG. 実施例において測定した条件において車線区間を説明するための平面図。The top view for demonstrating a lane area on the conditions measured in the Example. 同測定条件を説明するためにX方向、Y方向、Z方向に沿って対向車両位置と磁性体の配置関係を示す説明図。Explanatory drawing which shows the arrangement | positioning relationship between an oncoming vehicle position and a magnetic body along X direction, Y direction, and Z direction in order to demonstrate the measurement conditions. 磁性体内部の3方向に沿う磁性体内部の磁束密度分布の計算結果を示す図。The figure which shows the calculation result of the magnetic flux density distribution inside the magnetic body in alignment with 3 directions inside a magnetic body.

符号の説明Explanation of symbols

1…軌道、2…側壁、3…U字溝、4…浮上走行体、8…超電導磁石、10…浮上コイル、11…推進コイル、12…磁性線状体(磁性体)、13…鉄線、14…絶縁体、20…ガイドレール(磁性線状体)、22…ガイドローラ、30…磁性体、31…磁性体基板、32…非磁性体基板。 DESCRIPTION OF SYMBOLS 1 ... Track, 2 ... Side wall, 3 ... U-shaped groove, 4 ... Levitation running body, 8 ... Superconducting magnet, 10 ... Levitation coil, 11 ... Propulsion coil, 12 ... Magnetic linear body (magnetic body), 13 ... Iron wire, DESCRIPTION OF SYMBOLS 14 ... Insulator, 20 ... Guide rail (magnetic linear body), 22 ... Guide roller, 30 ... Magnetic body, 31 ... Magnetic substrate, 32 ... Non-magnetic substrate

Claims (2)

両側に側壁を有しこれら側壁間にU字溝を形成する軌道と、この軌道のU字溝に沿って走行する浮上走行体と、この浮上走行体の両側部に設けられた超電導磁石と、軌道の側壁内側にて浮上走行体の超電導磁石と対向しかつ該浮上走行体の走行方向に沿うように配置された浮上コイル及び推進コイルと、を有する磁気浮上機構であって、
前記軌道の側壁の上部でかつ前記浮上コイルの上方位置には、前記浮上走行体の走行方向に沿うように、前記浮上走行体の超電導磁石との間に吸引力を発生させて前記浮上走行体に浮上力を作用させる磁性体が前記浮上走行体の走行方向に沿う側壁全長に連続配置され、前記磁性体が、複数の鉄線の周囲を絶縁体で被覆してなる鉄線束により形成されていることを特徴とする磁気浮上機構。
A track having side walls on both sides and forming a U-shaped groove between the side walls, a floating traveling body that travels along the U-shaped groove of the track, a superconducting magnet provided on both sides of the floating traveling body, A magnetic levitation mechanism having a levitation coil and a propulsion coil arranged to face the superconducting magnet of the levitation traveling body inside the side wall of the track and to be along the traveling direction of the levitation traveling body,
At the upper part of the side wall of the track and above the levitation coil, an attraction force is generated between the levitation traveling body and the superconducting magnet so as to follow the traveling direction of the levitation traveling body, thereby the levitation traveling body. A magnetic body that causes levitation force to act on is continuously disposed over the entire length of the side wall along the traveling direction of the levitation traveling body, and the magnetic body is formed by an iron wire bundle in which a plurality of iron wires are covered with an insulator. A magnetic levitation mechanism characterized by that.
前記鉄線束が、前記浮上コイルの直上に配置されたことを特徴とする請求項1に記載の磁気浮上機構。 The magnetic levitation mechanism according to claim 1, wherein the iron wire bundle is disposed immediately above the levitation coil .
JP2007313171A 2007-03-07 2007-12-04 Magnetic levitation mechanism Expired - Fee Related JP5009138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007313171A JP5009138B2 (en) 2007-03-07 2007-12-04 Magnetic levitation mechanism

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007057044 2007-03-07
JP2007057044 2007-03-07
JP2007313171A JP5009138B2 (en) 2007-03-07 2007-12-04 Magnetic levitation mechanism

Publications (2)

Publication Number Publication Date
JP2008253126A JP2008253126A (en) 2008-10-16
JP5009138B2 true JP5009138B2 (en) 2012-08-22

Family

ID=39977416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007313171A Expired - Fee Related JP5009138B2 (en) 2007-03-07 2007-12-04 Magnetic levitation mechanism

Country Status (1)

Country Link
JP (1) JP5009138B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5165614B2 (en) * 2009-02-18 2013-03-21 公益財団法人鉄道総合技術研究所 Simulated measurement method and apparatus for eddy current loss of ground coil conductor in superconducting magnetic levitation railway
JP4735772B1 (en) * 2010-05-18 2011-07-27 有限会社クラ技術研究所 Magnet excitation rotating electrical machine system
CN108973767B (en) * 2018-08-06 2020-10-02 江西理工大学 Suspension control method for suspension type magnetic suspension train

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60172802U (en) * 1984-04-26 1985-11-15 株式会社 富士電機総合研究所 Magnetic rail of attraction type magnetic levitation railway
JP2978415B2 (en) * 1995-03-07 1999-11-15 財団法人鉄道総合技術研究所 Superconducting magnetic levitation type magnetic body mixed concrete for railway

Also Published As

Publication number Publication date
JP2008253126A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
US6523650B1 (en) Permanent magnet eddy brake with flux-steering poles
US20030112105A1 (en) Laminated track design for inductrack maglev systems
EP1268233B1 (en) Eddy current braking apparatus
CN111373097B (en) Permanent magnetic suspension train adopting passive low-frequency electromagnetic stabilization
US10604898B2 (en) Rail-bound maglev train
KR101137968B1 (en) Magnetically levitated system and magnetically levitated vehicle system using superconductor
JP7438562B2 (en) Control equipment for magnetically suspended vehicles, vehicles and transportation infrastructure
CN111201384A (en) Enhanced permanent magnet system
KR101069334B1 (en) Linear motor haviang segment structure magnetic levitation system
Abel et al. Contactless power transfer--An exercise in topology
JP5009138B2 (en) Magnetic levitation mechanism
JP4838271B2 (en) Magnetic levitation mechanism
JP2013050018A (en) Track coil and track coil set for magnetic levitation type railway
JP4824000B2 (en) Magnetically levitated railway on-board power supply system using harmonic magnetic field of propulsion coil
US11391002B2 (en) Metamaterial null flux magnetic bearing system
US5222437A (en) Levitation system of a magnetically levitated train
WO2005008867A1 (en) Moving magnet type linear actuator
CN115276473A (en) Electric suspension device
EP0224617A1 (en) Rail for use in magnetic propulsive levitation apparatus
JP3147985B2 (en) Propulsion coil and method of mounting propulsion coil
JPS60229664A (en) Magnetic levitating propulsion apparatus of attraction type magnetic levitation type railway
CN118056703A (en) Magnetic suspension electromagnetic propulsion integrated device
KR102605147B1 (en) Support structure for guideway
JP3151512B2 (en) Superconducting magnet for maglev train
JPH04289704A (en) Levitation guide coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees