JP5008274B2 - Torque detection device and rotation angle detection device - Google Patents

Torque detection device and rotation angle detection device Download PDF

Info

Publication number
JP5008274B2
JP5008274B2 JP2005145405A JP2005145405A JP5008274B2 JP 5008274 B2 JP5008274 B2 JP 5008274B2 JP 2005145405 A JP2005145405 A JP 2005145405A JP 2005145405 A JP2005145405 A JP 2005145405A JP 5008274 B2 JP5008274 B2 JP 5008274B2
Authority
JP
Japan
Prior art keywords
torque
magnetic field
shaft
row
circumferential direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005145405A
Other languages
Japanese (ja)
Other versions
JP2006322784A (en
Inventor
克博 橋本
武司 村上
弘之 脇若
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Koyo Electronics Industries Co Ltd
Original Assignee
Shinshu University NUC
Koyo Electronics Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC, Koyo Electronics Industries Co Ltd filed Critical Shinshu University NUC
Priority to JP2005145405A priority Critical patent/JP5008274B2/en
Publication of JP2006322784A publication Critical patent/JP2006322784A/en
Application granted granted Critical
Publication of JP5008274B2 publication Critical patent/JP5008274B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Power Steering Mechanism (AREA)

Description

本発明はシャフトに加えられるトルクやシャフトの回転角度を非接触で検出する磁気弾性を利用したトルク検出装置及び回転角度検出装置に関するものである。 The present invention relates to a torque detection instrumentation 置及 beauty rotation angle detecting apparatus utilizing a magnetoelastic for non-contact detection of the rotational angle of the torque and the shaft applied to the shaft.

従来の磁気弾性トルクセンサは、部材の軸方向に延びる軸線周りに印加されたトルクを示す信号を出力する磁気弾性トルクセンサであって、分離した磁気作用領域と磁気的に実質的に非作用の領域とを備え、全体にほぼ均質な化学構成を有する単体の部材と、上記部材内で単一の円周方向にリング状に成極されるとともに、上記部材に対してトルクを印加した後にトルクが零になったときに磁化を上記単一の円周方向に戻すような充分な磁気異方性を有しており、それにより上記トルクに応じて変動する磁界を生成する第一磁気弾性作用領域と、上記磁気弾性作用領域に近接しかつこれに対向する位置に取り付けられ、上記磁界の大きさを検出してこの大きさに応じた出力信号を出力する磁界センサ手段とを備えてなるものである(例えば、特許文献1参照。)。
特開2000−516346号公報(第1頁、FIG.1(a))
A conventional magnetoelastic torque sensor is a magnetoelastic torque sensor that outputs a signal indicating a torque applied around an axis extending in the axial direction of a member, and is magnetically substantially inactive with a separated magnetic action region. And a single member having a substantially uniform chemical structure as a whole, and a ring formed in a ring shape in a single circumferential direction within the member, and after applying torque to the member, the torque A first magnetoelastic action that has a sufficient magnetic anisotropy to return the magnetization in the single circumferential direction when becomes zero, thereby generating a magnetic field that varies with the torque And a magnetic field sensor means for detecting the magnitude of the magnetic field and outputting an output signal in accordance with the magnitude of the magnetic field. (For example, Patent Document 1 reference.).
JP 2000-516346 A (first page, FIG. 1 (a))

従来の磁気弾性トルクセンサは、単体の部材であるシャフトの円周方向にリング状になるように着磁して磁気弾性作用領域を形成し、これにトルクを加えるとビラリ効果(逆磁歪効果)によって磁化の向きが変化するため、磁化が回転し、その結果、軸方向の漏れ磁界がシャフト周辺に現れ、この漏れ磁界はトルクに比例することから、磁気弾性作用領域に近接し、かつこれに対向する位置に取り付けられた磁界センサ手段が漏れ磁界の大きさを検出してこの大きさに応じた出力信号に基づいてシャフトに加えられたトルクを検出するようにしたものであるが、磁化は円周方向に閉じた磁路を形成しているからトルクを初めとする外部からのエネルギー変化に対して影響されにくいため、トルクに起因する漏れ磁界が小さく、外乱によるS/N比の判別がしにくいという問題があった。   A conventional magnetoelastic torque sensor is magnetized so as to form a ring shape in the circumferential direction of a shaft, which is a single member, to form a magnetoelastic action region, and when torque is applied to this, a billiary effect (inverse magnetostriction effect) As the magnetization direction changes due to the rotation of the magnetization, an axial leakage magnetic field appears around the shaft, and since this leakage magnetic field is proportional to the torque, it is close to and close to the magnetoelastic action region. The magnetic field sensor means attached to the opposite position detects the magnitude of the leakage magnetic field and detects the torque applied to the shaft based on the output signal corresponding to this magnitude. Since the magnetic path closed in the circumferential direction is formed, it is difficult to be influenced by external energy changes such as torque. There has been a problem that it is difficult to be discriminated of the ratio.

かかる問題を解決するため、高感度な磁界センサが必要になり、その反面として外部磁界の影響を受けやすいので、しっかりとしたシールドが必要であるため、コスト高となると共に装置が大型化するという問題があった。
また、単体の部材であるシャフトの円周方向にリング状になるように着磁して磁気弾性作用領域を形成するための手段として、回転するシャフトに対して磁極を接触させる方法や、シャフトに通電し、発生する磁界によって着磁する方法がとられているが、トルク印加による漏れ磁界の変化を直接トルク値へ変換する方式であるため、着磁の際の磁化不均一などによるトルク感度の不均一が検出精度に直接影響を及ぼすこととなる。従って、回転角によって出力が変化してしまう可能性が高く、この補正が必要になるという問題もあった。
In order to solve such a problem, a highly sensitive magnetic field sensor is required. On the other hand, since it is easily affected by an external magnetic field, a solid shield is required, which increases costs and increases the size of the apparatus. There was a problem.
In addition, as a means for forming a magnetoelastic action region by magnetizing it in a ring shape in the circumferential direction of the shaft, which is a single member, a method of bringing a magnetic pole into contact with a rotating shaft, Although a method is adopted in which the current is magnetized and magnetized by the generated magnetic field, the change in leakage magnetic field due to the application of torque is directly converted to a torque value, so torque sensitivity due to non-uniform magnetization during magnetization, etc. Nonuniformity directly affects detection accuracy. Therefore, there is a high possibility that the output is changed depending on the rotation angle, and this correction is necessary.

本発明に係るトルク検出装置は、円周方向に設けられ、円周方向に極性を持つ少なくとも2個の着磁部が設けられた列を2列有する複合磁性材料で形成されたシャフトと、該シャフトの着磁部付近の上方近傍に電気角45°の位相を持たせて、前記着磁部の列毎に2個配置され、該シャフトの軸方向の発生磁界を検出する磁界センサと、該磁界センサの検出信号からシャフトに印加されるトルクを演算する演算部と、を備え、各列の前記着磁部は、円周方向に電気角180°の幅を有し、円周方向に電気角180°の間隔で設けられ、一列目の前記着磁部の極性と二列目の前記着磁部の極性とが逆向きであり、前記演算部は、前記シャフトの回転角度の電気角の2倍をθとして得られ、一列目の前記2個の磁界センサのうち一方の前記トルク印加時と前記トルク無印加時との差であるsinθの検出信号と、二列目の前記2個の磁界センサのうち一方の前記トルク印加時と前記トルク無印加時との差であるsinθの検出信号とを減算処理し、一列目の前記2個の磁界センサのうち他方の前記トルク印加時と前記トルク無印加時との差であるcosθの検出信号と、二列目の前記2個の磁界センサのうち他方の前記トルク印加時と前記トルク無印加時との差であるcosθの検出信号とを減算処理し、減算処理して得た各相の信号を2乗処理し、2乗処理した各相の信号を加算して、トルクに応じて変化するトルク信号を演算する。 A torque detector according to the present invention includes a shaft formed of a composite magnetic material having two rows provided in a circumferential direction and provided with at least two magnetized portions having polarities in the circumferential direction; A magnetic field sensor for detecting a magnetic field generated in the axial direction of the shaft, two arranged for each row of the magnetized portions with a phase of an electrical angle of 45 ° in the upper vicinity of the magnetized portion of the shaft; A calculation unit that calculates a torque applied to the shaft from the detection signal of the magnetic field sensor, and the magnetized units in each row have a width of an electrical angle of 180 ° in the circumferential direction and are electrically connected in the circumferential direction. The polarities of the magnetized portions in the first row and the polarities of the magnetized portions in the second row are opposite to each other at an angle of 180 ° , and the arithmetic unit has an electrical angle of the rotation angle of the shaft. obtained twice as theta, the torque sign of one of the previous SL two magnetic field sensor of the first row A detection signal sin theta, which is the difference between the time of the torque non-application and at times, the sinθ difference when one of the torque applied among the two magnetic field sensors of the second row and at the time of the torque non-application a detection signal subtraction processing, a detection signal Sadea Ru c os theta with at the other of said torque application of the magnetic field sensor before Symbol of two single row and at the torque is not applied the second row Of the two magnetic field sensors, the detection signal of cosθ, which is the difference between the other when the torque is applied and the time when the torque is not applied, is subtracted, and the signal of each phase obtained by the subtraction process is squared Then, the signals of the respective phases subjected to the square process are added, and a torque signal that changes according to the torque is calculated.

本発明は以上説明したとおり、円周方向に略等間隔に設けられ、円周方向に極性を持つ少なくとも2個の着磁部を有する複合磁性材料で形成されたシャフトと、該シャフトの着磁部付近の上方近傍に電気角略45°の位相を持たせて配置され、該シャフトの軸方向の発生磁界を検出する2個の磁界センサと、該磁界センサの検出信号からシャフトに印加されるトルクを演算する演算部とを備えて構成されているから、シャフトに着磁部を形成するのに、従来の円周方向に閉じた磁路を形成する場合に比べて容易であり、形成された着磁部の磁化も強いものであるため、シャフトにトルクが印加されて着磁部に発生する斜め方向の磁化ベクトルも大きいことにより、その磁化ベクトルにより発生する漏れ磁界を磁界センサが感度良く検出することができるため、高感度の磁界センサを用いたり、シールドの必要も少ないために検出装置の製作コストが嵩むことはなく、検出装置が大型化することもない。   As described above, the present invention provides a shaft formed of a composite magnetic material having at least two magnetized portions that are provided at substantially equal intervals in the circumferential direction and have polarity in the circumferential direction, and magnetization of the shaft. Two magnetic field sensors that detect the generated magnetic field in the axial direction of the shaft, and are applied to the shaft from the detection signal of the magnetic field sensor. Since it is configured to include a calculation unit that calculates torque, it is easier to form a magnetized part on the shaft than when a conventional magnetic path closed in the circumferential direction is formed. Since the magnetization of the magnetized part is also strong, the magnetic field sensor has high sensitivity to the leakage magnetic field generated by the magnetized vector by applying a large torque vector to the magnetized part when torque is applied to the shaft. To detect Since it is, or using a magnetic field sensor of high sensitivity, never increase is manufacturing costs of the detection apparatus to less need for shielding, detection device nor large.

また、シャフトの着磁部付近の上方近傍に電気角略45°の位相を持たせて2個の磁界センサが配置され、磁界センサの検出信号から演算部がシャフトに印加されるトルクを演算するようにしているから、2個の磁界センサはシャフトに印加されたトルクに応じたsinθとcosθの検出信号を出力し、演算部が磁界センサのsinθとcosθの検出信号に基づいて、トルクを演算により簡単に求めることができる。   In addition, two magnetic field sensors are arranged near the upper part of the magnetized portion of the shaft with a phase of about 45 ° in electrical angle, and the calculation unit calculates the torque applied to the shaft from the detection signal of the magnetic field sensor. Therefore, the two magnetic field sensors output sin θ and cos θ detection signals corresponding to the torque applied to the shaft, and the calculation unit calculates the torque based on the sin θ and cos θ detection signals of the magnetic field sensors. Can be easily obtained.

実施の形態1.
図1は本発明の実施の形態1のトルク検出装置の構成を示す説明図で、(a)は2個の着磁部を有するシャフトの近傍に磁界センサが2個配置された状態を示す側面図、(b)は2個の着磁部を有するシャフトと磁界センサが2個配置された状態の斜視図、(c)はシャフトの展開図、図2はトルク検出装置の構成を示す説明図で、(a)は4個の着磁部を有するシャフトの近傍に磁界センサが2個配置された状態を示す側面図、(b)は2個の着磁部を有するシャフトの近傍に磁界センサが2個配置された状態を示す斜視図、図3の(a)、(b)はトルク検出装置のシャフトへのトルク無印加時と正トルク印加時における着磁部の磁界の変化を示す説明図、(c)は磁界センサが検出する磁界の大きさの変化を示すグラフ、図4の(a)はトルク検出装置の2個の着磁部を有するシャフトの近傍に2個配置された磁界センサがそれぞれ検出する磁界の大きさの変化を示す説明図、(b)はトルク検出装置の4個の着磁部を有するシャフトの近傍に2個配置された磁界センサがそれぞれ検出する磁界の大きさの変化を示す説明図、図5はトルク検出装置のトルク検出のための信号処理の過程を示す波形図である。
Embodiment 1 FIG.
FIG. 1 is an explanatory diagram showing a configuration of a torque detection device according to a first embodiment of the present invention, and (a) is a side view showing a state in which two magnetic field sensors are arranged in the vicinity of a shaft having two magnetized portions. FIG. 2B is a perspective view of a state in which two shafts having two magnetized portions and two magnetic field sensors are arranged, FIG. 2C is a development view of the shaft, and FIG. 2 is an explanatory diagram showing the configuration of the torque detection device. (A) is a side view showing a state in which two magnetic field sensors are arranged in the vicinity of a shaft having four magnetized portions, and (b) is a magnetic field sensor in the vicinity of a shaft having two magnetized portions. FIG. 3A and FIG. 3B are diagrams illustrating changes in the magnetic field of the magnetized portion when no torque is applied to the shaft of the torque detector and when a positive torque is applied. FIG. 4C is a graph showing a change in the magnitude of the magnetic field detected by the magnetic field sensor, and FIG. Explanatory drawing which shows the change of the magnitude | size of the magnetic field which two magnetic field sensors arrange | positioned in the vicinity of the shaft which has two magnetizing parts of a torque detection apparatus respectively, (b) is four magnetization of a torque detection apparatus. FIG. 5 is a waveform diagram showing the process of signal processing for torque detection of the torque detection device, and FIG. 5 is a diagram illustrating changes in the magnitude of the magnetic field detected by two magnetic field sensors arranged in the vicinity of the shaft having the magnetic part. It is.

図1において、本発明の実施の形態1のトルク検出装置は4個の着磁部2を有するシャフト1と、そのシャフト1の着磁部2付近の近傍に配置された4個の感度に方向性を持った磁界センサ3とを備えて概略構成されている。
このシャフト1は例えば、Fe−18Cr−8.5Ni系又はFe−17.5Cr−0.5C系の複合磁性材料から形成されている。
この複合磁性材料から形成されたシャフト1に着磁部2を設けるのは次の手順で行われる。
まず、複合磁性材料から形成されたシャフト1の着磁部2を設けようとする部分的位置に熱処理または機械加工によりマルテンサイト変態を起こさせ部分的な強磁性部を形成する。
In FIG. 1, the torque detection device according to the first embodiment of the present invention is directed to a shaft 1 having four magnetized portions 2 and four sensitivities arranged in the vicinity of the magnetized portion 2 of the shaft 1. And a magnetic field sensor 3 having a characteristic.
The shaft 1 is made of, for example, a Fe-18Cr-8.5Ni series or Fe-17.5Cr-0.5C series composite magnetic material.
The magnetized portion 2 is provided on the shaft 1 made of this composite magnetic material in the following procedure.
First, martensitic transformation is caused by heat treatment or machining to form a partial ferromagnetic portion at a partial position where the magnetized portion 2 of the shaft 1 made of a composite magnetic material is to be provided.

そうすると、シャフト1は強磁性部と非磁性部を合わせもつこととなり、例えば強磁性部の最大透磁率はμm≧100、非磁性部の透磁率はμ≦1.01となる。
次に、シャフト1に形成された部分的な強磁性部に永久磁石又は電磁石を所定時間近接させた後に遠ざけることにより、その強磁性部がNとSの極性を持つ着磁部2となる。
この実施の形態1では、シャフト1の一列目の円周方向に機械角180°の間隔を置いて円周方向にNとSの極性を持つ2個の着磁部2が設けられ、一列目の円周方向とは離れた位置にある2列目の円周方向にも一列目と同様に機械角180°の間隔を置いて円周方向に一列目とは逆向きの極性を持つ2個の着磁部2が設けられている。
Then, the shaft 1 has both the ferromagnetic part and the nonmagnetic part. For example, the maximum magnetic permeability of the ferromagnetic part is μm ≧ 100, and the magnetic permeability of the nonmagnetic part is μ ≦ 1.01.
Next, a permanent magnet or an electromagnet is brought close to the partial ferromagnetic portion formed on the shaft 1 for a predetermined time and then moved away from it, so that the ferromagnetic portion becomes a magnetized portion 2 having N and S polarities.
In the first embodiment, two magnetized portions 2 having N and S polarities are provided in the circumferential direction at intervals of a mechanical angle of 180 ° in the circumferential direction of the first row of the shaft 1. In the circumferential direction of the second row, which is located away from the circumferential direction of the two, two pieces having a polarity opposite to that of the first row in the circumferential direction are spaced apart by a mechanical angle of 180 ° as in the first row. The magnetized portion 2 is provided.

そのシャフト1の一列目の円周方向の着磁部2付近の上方近傍に2個の磁界センサ3を機械角22.5°(電気角45°)の間隔を置いて配置すると共に2列目の円周方向の着磁部2付近の上方近傍にも2個の磁界センサ3を機械角22.5°(電気角45°)の間隔を置いて配置することにより、シャフト1にトルクが印加された場合に、各磁界センサ3がsinθの検出信号を出力するようにしている。
トルクを検出するためには、原理的にシャフト1に一列目の円周方向に2個の着磁部2を設けることで足りるが、二列目の円周方向に一列目とは逆向きの極性を持つ2個の着磁部2を設けるようにしているのは、図1の(c)に示すように、着磁の向きを逆にして地磁気を含む外来の磁気をキャンセルするためである。
Two magnetic field sensors 3 are arranged in the vicinity of the upper part of the circumferential direction of the magnetized portion 2 in the circumferential direction of the first row of the shaft 1 with a mechanical angle of 22.5 ° (electrical angle of 45 °) and the second row. Torque is applied to the shaft 1 by arranging two magnetic field sensors 3 at an interval of a mechanical angle of 22.5 ° (electrical angle of 45 °) in the vicinity of the upper part of the magnetized portion 2 in the circumferential direction of In this case, each magnetic field sensor 3 outputs a detection signal of sin θ.
In order to detect the torque, it is sufficient to provide two magnetized portions 2 in the circumferential direction of the first row in principle in the shaft 1, but the direction opposite to the first row in the circumferential direction of the second row is sufficient. The reason why the two magnetized portions 2 having polarity are provided is to cancel the extraneous magnetism including geomagnetism by reversing the direction of magnetization, as shown in FIG. .

なお、図2はシャフト1の一列目の円周方向に機械角90°の間隔を置いて円周方向にNとSの極性を持つ4個の着磁部2が設けられ、一列目の円周方向とは離れた位置にある2列目の円周方向に一列目と同様に機械角90°の間隔を置いて円周方向に一列目とは逆向きの極性を持つ4個の着磁部2が設けられ、そのシャフト1の一列目の円周方向の着磁部2付近の上方近傍に2個の磁界センサ3が機械角11.25°(電気角45°)の間隔を置いて配置されていると共に2列目の円周方向の着磁部2付近の上方近傍にも2個の磁界センサ3が機械角11.25°(電気角45°)配置されている例を示している。
このようにシャフト1の一列目の円周方向に機械角90°の間隔を置いて4個の着磁部2が設けられている場合には、そのシャフト1の近傍に設けられる2個の磁界センサ3を機械角11.25°(電気角45°)の間隔を置いて配置することにより、図1と同様にシャフト1にトルクが印加された場合に、各磁界センサ3がsinθの検出信号を出力できるようにしたものである。
In FIG. 2, four magnetized portions 2 having N and S polarities are provided in the circumferential direction at intervals of a mechanical angle of 90 ° in the circumferential direction of the first row of shafts 1. Four magnetizations having polarities opposite to those in the first row in the circumferential direction at intervals of a mechanical angle of 90 ° in the circumferential direction in the second row in the circumferential direction away from the circumferential direction. Portion 2 is provided, and two magnetic field sensors 3 are spaced apart by a mechanical angle of 11.25 ° (electrical angle of 45 °) in the vicinity of the upper part of the vicinity of the circumferentially magnetized portion 2 in the first row of the shaft 1. An example is shown in which two magnetic field sensors 3 are arranged at a mechanical angle of 11.25 ° (electrical angle of 45 °) in the vicinity of the upper portion of the second row in the vicinity of the magnetized portion 2 in the circumferential direction. Yes.
As described above, when the four magnetized portions 2 are provided in the circumferential direction of the first row of the shaft 1 with a mechanical angle of 90 °, the two magnetic fields provided in the vicinity of the shaft 1 are provided. By arranging the sensors 3 with a mechanical angle of 11.25 ° (electrical angle of 45 °), when the torque is applied to the shaft 1 as in FIG. Can be output.

次に、円周方向に間隔を置いて設けた2個の着磁部2を有するシャフト1にトルクが印加された場合に、そのトルクをシャフト1の近傍に設けた2個の磁界センサ3の検出信号から検出することができる原理について図3〜図5に基づいて説明する。
まず、図3の(a)に示すように、シャフト1の近傍に設けられる磁界センサ3を、その感度方向が着磁部2のN極とS極を結ぶ線に対して直交する方向となるように配置する。
そうすると、着磁部2の磁界方向と磁界センサ3の感度方向が直交しており、シャフト1にトルクが加えられていない場合には、着磁部2の磁化方向が変化しないため、磁界センサ3は磁界を検出しないため、磁界センサ3の出力は零である。
次に、シャフト1にトルクを印加すると、図3の(b)の正トルク印加時に示すように、着磁部2に斜め45度方向に磁化容易軸が発生して磁化方向が変化するため、斜め方向の磁化ベクトルが発生する。
Next, when torque is applied to the shaft 1 having two magnetized portions 2 provided at intervals in the circumferential direction, the torque of the two magnetic field sensors 3 provided in the vicinity of the shaft 1 is applied. The principle that can be detected from the detection signal will be described with reference to FIGS.
First, as shown in FIG. 3A, the sensitivity direction of the magnetic field sensor 3 provided in the vicinity of the shaft 1 is perpendicular to the line connecting the N pole and the S pole of the magnetized portion 2. Arrange as follows.
Then, the magnetic field direction of the magnetized portion 2 and the sensitivity direction of the magnetic field sensor 3 are orthogonal to each other, and when no torque is applied to the shaft 1, the magnetization direction of the magnetized portion 2 does not change. Does not detect the magnetic field, the output of the magnetic field sensor 3 is zero.
Next, when a torque is applied to the shaft 1, as shown in FIG. 3B when a positive torque is applied, an easy axis of magnetization is generated in the magnetized portion 2 in an oblique 45 ° direction, and the magnetization direction changes. An oblique magnetization vector is generated.

そして、トルクの印加に伴いシャフト1が回転した場合、図3の(c)に示すように、磁界センサ3はsinθの検出信号を出力する。
シャフト1の一列目の円周方向に機械角180°の間隔を置いて2個の着磁部2が設けられ、2つの磁界センサ3は図1及び図4に示すように、シャフト1の円周方向の着磁部2付近の上方近傍に機械角22.5°(電気角45°)の間隔を置いて配置されているため、正トルクと逆トルクが印加された場合、2つの磁界センサ3の出力は、図4に示すような波形となる。
また、シャフト1には前述のように、一列目の円周方向の着磁部2と二列目の円周方向の着磁部2の近傍にそれぞれ2つの磁界センサ1が設けられ、合計4個の磁界センサ3が設けられているが、一列目の円周方向の着磁部2の近傍の2個の磁界センサ3の出力とその出力の反転信号を用いる場合は、一列目の円周方向の着磁部2の近傍の2個の磁界センサ3だけでよい。
When the shaft 1 rotates with the application of torque, the magnetic field sensor 3 outputs a detection signal of sin θ as shown in FIG.
Two magnetized portions 2 are provided at intervals of a mechanical angle of 180 ° in the circumferential direction of the first row of the shaft 1, and the two magnetic field sensors 3 are arranged on the circle of the shaft 1 as shown in FIGS. Since a mechanical angle of 22.5 ° (electrical angle of 45 °) is disposed in the vicinity of the upper part of the vicinity of the magnetized portion 2 in the circumferential direction, two magnetic field sensors are applied when a positive torque and a reverse torque are applied. The output of No. 3 has a waveform as shown in FIG.
As described above, the shaft 1 is provided with two magnetic field sensors 1 in the vicinity of the circumferentially magnetized portion 2 in the first row and the circumferentially magnetized portion 2 in the second row. In the case where the outputs of the two magnetic field sensors 3 in the vicinity of the magnetized portion 2 in the circumferential direction of the first row and the inverted signal of the output are used, Only two magnetic field sensors 3 in the vicinity of the magnetized portion 2 in the direction are required.

磁界センサ3の検出信号からトルクを検出する場合、4個の磁界センサの検出信号を演算することで、1つの磁界センサ3が検出した磁界出力の2乗×4倍の出力を得ることができるが、以下にその理由について説明する。
シャフト1の一列目の円周方向の着磁部2の近傍にそれぞれ配置した2つの磁界センサ3が検出した出力波形は、図5の(a)に示すように、トルクの大きさに比例した振幅±1の90°位相差2相の信号となる。また、二列目の円周方向の着磁部2の近傍にそれぞれ2つの磁界センサ3が検出した出力波形は、図5の(b)に示すように、各相信号の反転信号となる。そして、これら4つの信号を演算すると、図5の(c)に示すように、Eの信号となり、トルク値を算出することができる。
When detecting the torque from the detection signal of the magnetic field sensor 3, the output of the square of the magnetic field output detected by one magnetic field sensor 3 × 4 times can be obtained by calculating the detection signals of the four magnetic field sensors. However, the reason will be described below.
The output waveforms detected by the two magnetic field sensors 3 disposed in the vicinity of the magnetized portion 2 in the circumferential direction of the first row of the shaft 1 are proportional to the magnitude of the torque, as shown in FIG. It becomes a 90 ° phase difference 2-phase signal with an amplitude of ± 1. In addition, the output waveforms detected by the two magnetic field sensors 3 in the vicinity of the magnetized portion 2 in the circumferential direction of the second row are inverted signals of the respective phase signals as shown in FIG. Then, when these four signals are calculated, as shown in FIG. 5C, a signal E is obtained, and the torque value can be calculated.

これら4つの信号は次のように演算される。
シャフト1の一列目の円周方向の着磁部2の近傍にそれぞれ配置した2つの磁界センサが検出した出力をEa、Ebとし、二列目の円周方向の着磁部2の近傍にそれぞれ配置した2つの磁界センサが検出した出力をEc、Edとすると、Ea〜Ecを次式で表することができる。
Ea=B0+Acosθ
Eb=B0+Asinθ
Ec=B0−Acosθ
Ed=B0−Asinθ
ここで、B0はノイズとなる外部磁界成分であり、Aはトルクに依存する磁界成分である。
These four signals are calculated as follows.
The outputs detected by the two magnetic field sensors respectively arranged in the vicinity of the circumferentially magnetized portion 2 in the first row of the shaft 1 are denoted by Ea and Eb, respectively, and in the vicinity of the magnetized portion 2 in the circumferential direction in the second row. If the outputs detected by the two arranged magnetic field sensors are Ec and Ed, Ea to Ec can be expressed by the following equations.
Ea = B0 + Acos θ
Eb = B0 + Asinθ
Ec = B0−Acos θ
Ed = B0−Asinθ
Here, B0 is an external magnetic field component that becomes noise, and A is a magnetic field component that depends on torque.

次に、減算処理により各相信号の2倍の振幅を得る。
これを式で表すと、
Eac=2Acosθ
Ebd=2Asinθ
となる。
さらに、2乗処理により各相信号の符号を揃えると共に、各相信号を加算して、角度に依存しない4倍の振幅の電圧信号、即ちトルク信号を得ることができる。これを式で表すと、
E=Eac2 +Ebd2 =4A2
となる。
そして、演算部(図示省略)が磁界センサ3の検出信号から上述した演算を行うことにより、シャフトに印加されるトルクを求めることができる。
なお、感度の方向性を有する磁界センサとして、ホールIC素子を用いることができる。その理由は磁界の強さと方向が分かるため、正逆のトルクを検出することができるからである。
Next, a double amplitude of each phase signal is obtained by subtraction processing.
This can be expressed as an expression:
Eac = 2A cos θ
Ebd = 2 Asin θ
It becomes.
Further, the signs of the respective phase signals are aligned by the square process, and the respective phase signals are added to obtain a voltage signal having a quadruple amplitude independent of the angle, that is, a torque signal. This can be expressed as an expression:
E = Eac 2 + Ebd 2 = 4A 2
It becomes.
And the calculating part (illustration omitted) can obtain | require the torque applied to a shaft by performing the calculation mentioned above from the detection signal of the magnetic field sensor 3. FIG.
A Hall IC element can be used as a magnetic field sensor having sensitivity directionality. The reason is that since the strength and direction of the magnetic field can be understood, forward and reverse torque can be detected.

この実施の形態1のトルク検出装置は、円周方向に略等間隔に設けられ、円周方向に極性を持つ少なくとも2個の着磁部2を有する複合磁性材料で形成されたシャフト1と、シャフト1の着磁部2付近の上方近傍に電気角略45°の位相を持たせて配置され、該シャフトの軸方向の発生磁界を検出する2個の磁界センサ3と、該磁界センサの検出信号からシャフトに印加されるトルクを演算する演算部とを備えて構成されているから、シャフト1に着磁部2を形成するのが円周方向に閉じた磁路を形成する場合に比べて容易であり、形成された着磁部2の磁化も強いものであるため、シャフト1にトルクが印加されて着磁部2に発生する斜め方向の磁化ベクトルも大きいことにより、その磁化ベクトルにより発生する漏れ磁界を磁界センサ3が感度良く検出することができるため、高感度の磁界センサを用いたり、シールドの必要も少ないために検出装置の製作コストが嵩むことはなく、検出装置が大型化することもない。
また、シャフト1の着磁部2付近の上方近傍に電気角略45°の位相を持たせて2個の磁界センサ3が配置され、磁界センサ3の検出信号から演算部がシャフト1に印加されるトルクを演算するようにしているから、2個の磁界センサ3はシャフト1に印加されたトルクに応じたsinθとcosθの検出信号を出力し、演算部が磁界センサのsinθとcosθの検出信号に基づいて、トルクを演算により簡単に求めることができる。
The torque detection device according to the first embodiment includes a shaft 1 formed of a composite magnetic material having at least two magnetized portions 2 provided at substantially equal intervals in the circumferential direction and having polarity in the circumferential direction; Two magnetic field sensors 3 for detecting a magnetic field generated in the axial direction of the shaft, arranged near the upper portion of the shaft 1 near the magnetized portion 2 and having an electrical angle of approximately 45 °, and detection of the magnetic field sensors And a calculation unit that calculates the torque applied to the shaft from the signal, so that the magnetized portion 2 is formed on the shaft 1 as compared with the case where a magnetic path closed in the circumferential direction is formed. It is easy and the magnetization of the formed magnetized portion 2 is strong. Therefore, a large magnetization vector is generated in the magnetized portion 2 when torque is applied to the shaft 1 and is generated by the magnetization vector. Magnetic field sensor 3 It is possible to sensitively detect, or using a magnetic field sensor of high sensitivity, never increase is manufacturing costs of the detection apparatus to less need for shielding, detection device nor large.
In addition, two magnetic field sensors 3 are arranged in the vicinity of the upper portion of the shaft 1 near the magnetized portion 2 with a phase of about 45 ° in electrical angle, and a calculation unit is applied to the shaft 1 from the detection signal of the magnetic field sensor 3. The two magnetic field sensors 3 output sin θ and cos θ detection signals corresponding to the torque applied to the shaft 1, and the calculation unit detects sin θ and cos θ detection signals of the magnetic field sensors. Based on the above, the torque can be easily obtained by calculation.

次に、本発明の実施の形態1のトルク検出装置が設置された工業用ミキサについて図6及び図7に基づいて説明する。
図6はトルク検出装置が設置された工業用ミキサの構成を示す説明図、図7はトルク検出装置の回路構成を示すブロック図である。
図6に示すように、工業用ミキサはモータ11と、モータ11の回転を減速する減速機12と、減速機12に接続された2本のシャフト13と、各シャフト13の先端側に取り付けられた撹拌機14とで構成されている。15はパン生地16が入れられた容器である。
また、トルク検出装置10は、磁界センサ3とコントローラ20とで構成され、その磁界センサ3は、工業用ミキサの一方のシャフト13の近傍に配置されている。
Next, an industrial mixer in which the torque detection device according to the first embodiment of the present invention is installed will be described with reference to FIGS.
FIG. 6 is an explanatory diagram showing the configuration of an industrial mixer provided with a torque detector, and FIG. 7 is a block diagram showing the circuit configuration of the torque detector.
As shown in FIG. 6, the industrial mixer is attached to the motor 11, the speed reducer 12 that decelerates the rotation of the motor 11, the two shafts 13 connected to the speed reducer 12, and the tip side of each shaft 13. And a stirrer 14. Reference numeral 15 denotes a container in which the bread dough 16 is put.
The torque detection device 10 includes a magnetic field sensor 3 and a controller 20, and the magnetic field sensor 3 is disposed in the vicinity of one shaft 13 of the industrial mixer.

トルク検出装置10の磁界センサ3の出力はコントローラ20に出力され、コントローラ20の出力はモータ11に出力される。
コントローラ20はトルク検出装置10の磁界センサ3の出力信号をA/D変換するA/D変換器21と、A/D変換器21によりA/D変換された磁界センサ3の出力信号に基づいて上述した演算式によりトルクを算出し、該トルクに応じたモータ電流を演算するする演算部22と、演算部22が出力したモータ電流信号をD/A変換してモータ11に出力するD/A変換器23とで構成されている。
The output of the magnetic field sensor 3 of the torque detection device 10 is output to the controller 20, and the output of the controller 20 is output to the motor 11.
The controller 20 is based on an A / D converter 21 that performs A / D conversion on the output signal of the magnetic field sensor 3 of the torque detector 10, and an output signal of the magnetic field sensor 3 that is A / D converted by the A / D converter 21. A torque is calculated by the above-described calculation formula, a calculation unit 22 that calculates a motor current according to the torque, and a D / A conversion of the motor current signal output by the calculation unit 22 and output to the motor 11 It is comprised with the converter 23. FIG.

このようにトルク検出装置10が設置された工業用ミキサでは、トルク検出装置10の磁界センサ3が容器15内のパン生地16を撹拌する攪拌機14を有するシャフト13に生じたトルクを検出し、磁界センサ3の検出信号を受けたコントローラ20では磁界センサ3の検出信号に基づいてトルクを算出し、算出したトルクからパン生地16の粘度を演算し、所定の粘度となるようにトルク変化量、変化速度等のパラメータを考慮したモータ電流を演算し、演算したモータ電流によりモータ11の回転速度、回転停止等を制御するようにしている。   In the industrial mixer in which the torque detection device 10 is installed in this way, the magnetic field sensor 3 of the torque detection device 10 detects the torque generated in the shaft 13 having the stirrer 14 that stirs the bread dough 16 in the container 15, and the magnetic field sensor In response to the detection signal 3, the controller 20 calculates torque based on the detection signal of the magnetic field sensor 3, calculates the viscosity of the bread dough 16 from the calculated torque, and the torque change amount, change speed, etc. The motor current is calculated in consideration of these parameters, and the rotation speed, rotation stop, etc. of the motor 11 are controlled by the calculated motor current.

実施の形態2.
図8の(a)は本発明の実施の形態2、3の回転速度検出装置と回転角度検出装置の磁界センサの配置を示す説明図、(b)は本発明の実施の形態1のトルク検出装置の磁界センサの配置を示す説明図、図9の(a)は本発明の実施の形態2の回転速度検出装置の2個の着磁部を有するシャフトの近傍に2個配置された磁界センサが検出する磁界の大きさの変化を示す説明図、(b)は回転速度検出装置の4個の着磁部を有するシャフトの近傍に2個配置された磁界センサが検出する磁界の大きさの変化を示す説明図である。
本発明の実施の形態2の回転速度検出装置は、実施の形態1のトルク検出装置と構成は実質的に同じであるが、相違するところはシャフト1の近傍に配置される磁界センサ3の感度方向が異なる点である。
Embodiment 2. FIG.
FIG. 8A is an explanatory diagram showing the arrangement of the rotational speed detection devices and the magnetic field sensors of the rotation angle detection devices according to the second and third embodiments of the present invention, and FIG. 8B is the torque detection according to the first embodiment of the present invention. FIG. 9A is an explanatory view showing the arrangement of the magnetic field sensors of the apparatus, and FIG. 9A shows two magnetic field sensors arranged in the vicinity of the shaft having the two magnetized portions of the rotational speed detection apparatus according to the second embodiment of the present invention. FIG. 6B is an explanatory diagram showing a change in the magnitude of the magnetic field detected by, and FIG. 5B shows the magnitude of the magnetic field detected by the two magnetic field sensors arranged in the vicinity of the shaft having the four magnetized portions of the rotational speed detection device. It is explanatory drawing which shows a change.
The rotational speed detection device according to the second embodiment of the present invention has substantially the same configuration as the torque detection device according to the first embodiment, but differs in the sensitivity of the magnetic field sensor 3 disposed in the vicinity of the shaft 1. The direction is different.

回転速度検出及び後述する回転角度検出の場合は、トルクに関係なく、常時磁界の変化を検出する必要があるため、図8の(a)に示すように、シャフト1の近傍に設けられる磁界センサ3を、その感度方向が着磁部2のN極とS極を結ぶ線に対して同方向となるように配置する。
なお、トルク検出の場合は、シャフト1にトルクが印加されると、着磁部2に斜め45度方向に磁化容易軸が発生して磁化方向が変化し、斜め方向の磁化ベクトルが発生するため、図8の(b)に示すように、シャフト1の近傍に設けられる磁界センサ3を、その感度方向が着磁部2のN極とS極を結ぶ線に対して直交する方向となるように配置する。
In the case of rotation speed detection and rotation angle detection described later, since it is necessary to always detect a change in the magnetic field regardless of the torque, a magnetic field sensor provided in the vicinity of the shaft 1 as shown in FIG. 3 is arranged such that the sensitivity direction is the same as the line connecting the N pole and the S pole of the magnetized portion 2.
In the case of torque detection, when torque is applied to the shaft 1, an easy axis of magnetization is generated in the magnetized portion 2 in a 45 ° oblique direction, the magnetization direction changes, and an oblique magnetization vector is generated. As shown in FIG. 8B, the magnetic field sensor 3 provided in the vicinity of the shaft 1 has a sensitivity direction perpendicular to a line connecting the N pole and the S pole of the magnetized portion 2. To place.

この実施の形態2の回転速度検出装置では、2個の着磁部2を有するシャフト1が回転すると、シャフト1の円周方向で磁界が変化する。そこで、この磁界の変化を2つの磁界センサ3で検出しようとするものであり、これらの磁界センサ3の出力は図9の(a)に示すようなsinθとcosθの検出信号となる。
これら磁界センサ3の検出信号であるsinθとcosθはそれぞれシャフト1の1回転当たり2サイクルであることが分かるから、シャフト1の1回転当たり2サイクルのsinθとcosθを得るのに要する時間を測定し、この時間の逆数を求めることにより、回転速度を検出することができる。
この実施の形態2の回転速度検出装置を電動パワーステアリング装置、または工業用ミキサに設置すれば、磁界センサ3の出力をコントローラ20の演算部22で上述の如く、演算することにより、回転速度を求めることができる。
In the rotational speed detection device of the second embodiment, when the shaft 1 having the two magnetized portions 2 rotates, the magnetic field changes in the circumferential direction of the shaft 1. Therefore, the change of the magnetic field is to be detected by the two magnetic field sensors 3, and the outputs of these magnetic field sensors 3 become sin θ and cos θ detection signals as shown in FIG.
Since the detection signals sinθ and cosθ of these magnetic field sensors 3 are 2 cycles per rotation of the shaft 1, the time required to obtain the sinθ and cosθ of 2 cycles per rotation of the shaft 1 is measured. The rotational speed can be detected by obtaining the reciprocal of this time.
If the rotational speed detection device of the second embodiment is installed in an electric power steering device or an industrial mixer, the rotational speed is calculated by calculating the output of the magnetic field sensor 3 by the calculation unit 22 of the controller 20 as described above. Can be sought.

以上の説明は、シャフト1の近傍に2個の磁界センサ3を配置してsinθとcosθを得て回転速度を検出するようにしたものであるが、シャフト1の近傍に1個の磁界センサ3を配置してsinθ又はcosθの検出信号を得て回転速度を検出することも原理的に可能であることはいうまでもない。
また、4個の着磁部2を有するシャフト1の近傍に2つの磁界センサ3を配置した場合の磁界センサ3の出力は図9の(b)に示すように、磁界センサ3の検出信号であるsinθとcosθはそれぞれシャフト1の1回転当たり4サイクルとなる。この場合も、シャフト1の1回転当たり4サイクルのsinθとcosθを得るのに要する時間を測定し、この時間の逆数を求めることにより、回転速度を簡単に求めることができる。
In the above description, two magnetic field sensors 3 are arranged in the vicinity of the shaft 1 to obtain sin θ and cos θ and the rotational speed is detected. However, one magnetic field sensor 3 in the vicinity of the shaft 1 is detected. Needless to say, it is also possible in principle to detect the rotational speed by arranging the signals to obtain the detection signal of sinθ or cosθ.
Further, when two magnetic field sensors 3 are arranged in the vicinity of the shaft 1 having the four magnetized portions 2, the output of the magnetic field sensor 3 is a detection signal of the magnetic field sensor 3 as shown in FIG. Each sin θ and cos θ is 4 cycles per rotation of the shaft 1. Also in this case, the rotational speed can be easily obtained by measuring the time required to obtain four cycles of sin θ and cos θ per rotation of the shaft 1 and obtaining the reciprocal of this time.

実施の形態3.
図10は本発明の実施の形態3の回転角度検出装置の回転角度検出のための信号処理の過程を示す波形図、図11は回転角度検出装置の回転角度検出のためのsinωtとsin(θ+ωt)の値から角度を算出するためのテーブルである。
本発明の実施の形態3の回転角度検出装置は、実施の形態1のトルク検出装置と構成は実質的に同じであるが、相違するところは磁界センサ3の出力について角度検出のための信号処理及び演算の仕方が異なる点である。
また、回転角度を検出する場合、2個の磁界センサの出力信号を信号処理及び演算することで、回転角度位置を検出することができる。
Embodiment 3 FIG.
FIG. 10 is a waveform diagram showing a process of signal processing for rotation angle detection of the rotation angle detection device according to the third embodiment of the present invention, and FIG. 11 is sinωt and sin (θ + ωt) for rotation angle detection of the rotation angle detection device. This is a table for calculating an angle from the value of).
The rotation angle detection device according to the third embodiment of the present invention has substantially the same configuration as the torque detection device according to the first embodiment, except that the signal processing for angle detection is performed on the output of the magnetic field sensor 3. And the way of calculation is different.
Also, when detecting the rotation angle, the rotation angle position can be detected by signal processing and calculating the output signals of the two magnetic field sensors.

回転角度検出の場合は、回転速度検出の場合と同様に、図8の(a)に示すように、シャフト1の近傍に設けられる磁界センサ3を、その感度方向が着磁部2のN極とS極を結ぶ線に対して同じ方向となるように配置する。
また、シャフト1の円周方向に機械角180°の間隔を置いて2個の着磁部2が設けられ、2つの磁界センサ3はシャフト1の円周方向の近傍に機械角22.5°(電気角45°)の間隔を置いて配置されていることとする。
In the case of rotation angle detection, similarly to the case of rotation speed detection, as shown in FIG. 8A, the magnetic field sensor 3 provided in the vicinity of the shaft 1 has a sensitivity direction of N pole of the magnetized portion 2. Are arranged in the same direction with respect to the line connecting the S pole and the S pole.
Further, two magnetized portions 2 are provided in the circumferential direction of the shaft 1 with a mechanical angle of 180 °, and the two magnetic field sensors 3 have a mechanical angle of 22.5 ° in the vicinity of the circumferential direction of the shaft 1. It is assumed that they are arranged with an interval of (electrical angle 45 °).

次に、円周方向に間隔を置いて設けた着磁部2を有するシャフト1にトルクが印加されて回転した場合に、そのシャフト1の回転角度をシャフト1の近傍に設けた2つの磁界センサ3の検出信号から検出することができるレゾルバ方式の原理について図10及び図11に基づいて説明する。
まず、シャフト1にトルクが印加されると、それに伴いシャフト1も回転するため、図10の(a)に示すように、一方の磁界センサ3の検出信号はsinθとなり、他方の磁界センサ3の検出信号はcosθとなる。
次に、一方の磁界センサ3の検出信号であるsinθにcosωtを乗算し、他方の磁界センサ3の検出信号であるcosθにはsinωtを乗算し、図10の(b)に示すように、それぞれsinθ×cosωt、cosθ×sinωtを生成する。
そして、これらを加算することにより、図10の(c)に示すように、sin(θ+ωt)を生成する。
Next, when a torque is applied to the shaft 1 having the magnetized portion 2 provided at intervals in the circumferential direction and the shaft 1 is rotated, two magnetic field sensors provided with the rotation angle of the shaft 1 in the vicinity of the shaft 1 The principle of the resolver method that can be detected from the detection signal 3 will be described with reference to FIGS.
First, when a torque is applied to the shaft 1, the shaft 1 also rotates accordingly, so that the detection signal of one of the magnetic field sensors 3 becomes sin θ as shown in FIG. The detection signal is cos θ.
Next, sin θ which is the detection signal of one magnetic field sensor 3 is multiplied by cos ωt, and cos θ which is the detection signal of the other magnetic field sensor 3 is multiplied by sin ωt, respectively, as shown in FIG. sinθ × cosωt and cosθ × sinωt are generated.
Then, by adding these, sin (θ + ωt) is generated as shown in FIG.

この生成された信号であるsin(θ+ωt)は、sinωtに対して位相が遷移する。この位相差を計測することで、シャフト1の回転角度の電気角の2倍であるθを検出することが可能となる。
このようにしてシャフト1の回転角度の電気角の2倍であるθを検出することができるが、実際は磁界センサ3の出力であるsinθとcosθを想定し、cosωtとsinωtはsinθとcosθとから導出できる値であるから、演算によりsinθ×cosωtとcosθ×sinωtとsin(θ+ωt)を求めることができ、ωとθとの関係も一義的に決めることができるから、これらの関係を図11に示すようなテーブルを作成しておけば、磁界センサ3の検出信号であるsinθとcosθに基づくsin ωtの値とsin(θ+ωt)の値からこれらに対応するシャフト1の回転角度の電気角の2倍であるθを簡単に求めることができる。
この実施の形態3の回転角度検出装置を電動パワーステアリングに設置すれば、磁界センサ3の出力をコントローラ20の演算部22で上述の如く演算することにより、ステアリングハンドルの回転角度を簡単に求めることができる。
The generated signal sin (θ + ωt) has a phase transition with respect to sinωt. By measuring this phase difference, it is possible to detect θ which is twice the electrical angle of the rotation angle of the shaft 1.
In this way, θ that is twice the electrical angle of the rotation angle of the shaft 1 can be detected, but in reality, sinθ and cosθ, which are the outputs of the magnetic field sensor 3, are assumed, and cosωt and sinωt are obtained from sinθ and cosθ. Since the values can be derived , sin θ × cos ωt, cos θ × sin ωt, and sin (θ + ωt) can be obtained by calculation, and the relationship between ω and θ can be uniquely determined. If a table as shown is created, the value of sin ωt and the value of sin (θ + ωt) based on sin θ and cos θ, which are detection signals of the magnetic field sensor 3, 2 of the electrical angle of the rotation angle of the shaft 1 corresponding thereto. It is possible to easily obtain θ which is twice.
If the rotation angle detection device according to the third embodiment is installed in the electric power steering, the rotation angle of the steering wheel can be easily obtained by calculating the output of the magnetic field sensor 3 by the calculation unit 22 of the controller 20 as described above. Can do.

この実施の形態1のトルク検出装置について、工業用ミキサに適用する例を示したが、それ以外にドリリング、ネジ締め機、製材装置等にも適用できることはいうまでもない。
また、実施の形態2の回転速度検出装置及び実施の形態3の回転角度検出装置については、実施の形態1のトルク検出装置と共に例えば、自動車の電動パワーステアリングに適用することができる。
Although the example which applies to an industrial mixer was shown about the torque detection apparatus of this Embodiment 1, it cannot be overemphasized that it can apply also to a drilling, a screwing machine, a lumber apparatus, etc. besides that.
Further, the rotation speed detection device of the second embodiment and the rotation angle detection device of the third embodiment can be applied to, for example, an electric power steering of an automobile together with the torque detection device of the first embodiment.

本発明の実施の形態1のトルク検出装置の構成を示す説明図で、(a)は2個の着磁部を有するシャフトの近傍に磁界センサが2個配置された状態を示す側面図、(b)は2個の着磁部を有するシャフトと磁界センサが2個配置された状態の斜視図、(c)はシャフトの展開図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing which shows the structure of the torque detection apparatus of Embodiment 1 of this invention, (a) is a side view which shows the state by which two magnetic field sensors are arrange | positioned in the vicinity of the shaft which has two magnetizing parts, (b) is a perspective view of a state in which a shaft having two magnetized portions and two magnetic field sensors are arranged, and (c) is a developed view of the shaft. トルク検出装置の構成を示す説明図で、(a)は4個の着磁部を有するシャフトの近傍に磁界センサが2個配置された状態を示す側面図、(b)は2個の着磁部を有するシャフトの近傍に磁界センサが2個配置された状態を示す斜視図である。It is explanatory drawing which shows the structure of a torque detector, (a) is a side view which shows the state by which two magnetic field sensors are arrange | positioned in the vicinity of the shaft which has four magnetized parts, (b) is two magnetized. It is a perspective view which shows the state by which two magnetic field sensors are arrange | positioned in the vicinity of the shaft which has a part. (a)、(b)はトルク検出装置のシャフトへのトルク無印加時と正トルク印加時における着磁部の磁界の変化を示す説明図、(c)は磁界センサが検出する磁界の大きさの変化を示すグラフである。(A), (b) is explanatory drawing which shows the change of the magnetic field of a magnetized part at the time of no torque application to the shaft of a torque detection apparatus, and a positive torque application, (c) is the magnitude | size of the magnetic field which a magnetic field sensor detects It is a graph which shows the change of. (a)は2個の着磁部を有するシャフトの近傍に2個配置された磁界センサがそれぞれ検出する磁界の大きさの変化を示す説明図、(b)は4個の着磁部を有するシャフトの近傍に2個配置された磁界センサがそれぞれ検出する磁界の大きさの変化を示す説明図である。(A) is explanatory drawing which shows the change of the magnitude | size of the magnetic field which two magnetic field sensors arrange | positioned in the vicinity of the shaft which has two magnetized parts, respectively, (b) has four magnetized parts. It is explanatory drawing which shows the change of the magnitude | size of the magnetic field which two magnetic field sensors arrange | positioned in the vicinity of the shaft each detect. トルク検出装置のトルク検出のための信号処理の過程を示す波形図である。It is a wave form diagram which shows the process of the signal processing for the torque detection of a torque detection apparatus. トルク検出装置が設置された工業用ミキサの構成を示す説明図である。It is explanatory drawing which shows the structure of the industrial mixer in which the torque detection apparatus was installed. トルク検出装置の回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of a torque detection apparatus. (a)は本発明の実施の形態2、3の回転速度検出装置と回転角度検出装置の磁界センサの配置を示す説明図、(b)本発明の実施の形態1のトルク検出装置の磁界センサの配置を示す説明図である。(A) is explanatory drawing which shows arrangement | positioning of the magnetic field sensor of the rotational speed detection apparatus and rotation angle detection apparatus of Embodiment 2, 3 of this invention, (b) The magnetic field sensor of the torque detection apparatus of Embodiment 1 of this invention. It is explanatory drawing which shows arrangement | positioning. (a)は本発明の実施の形態2の回転速度検出装置の2個の着磁部を有するシャフトの近傍に2個配置された磁界センサが検出する磁界の大きさの変化を示す説明図、(b)は回転速度検出装置の4個の着磁部を有するシャフトの近傍に2個配置された磁界センサが検出する磁界の大きさの変化を示す説明図である。(A) is explanatory drawing which shows the change of the magnitude | size of the magnetic field which two magnetic field sensors arrange | positioned in the vicinity of the shaft which has two magnetized parts of the rotational speed detection apparatus of Embodiment 2 of this invention, (B) is explanatory drawing which shows the change of the magnitude | size of the magnetic field which two magnetic field sensors arrange | positioned in the vicinity of the shaft which has four magnetized parts of a rotational speed detection apparatus. 本発明の実施の形態3の回転角度検出装置の回転角度検出のための信号処理の過程を示す波形図である。It is a wave form diagram which shows the process of the signal processing for the rotation angle detection of the rotation angle detection apparatus of Embodiment 3 of this invention. 回転角度検出装置の回転角度検出のためのsinωtとsin(θ+ωt)の値から角度を算出するためのテーブルである。It is a table | surface for calculating an angle from the value of sin (omega) t and sin ((theta) + (omega) t) for the rotation angle detection of a rotation angle detection apparatus.

符号の説明Explanation of symbols

1 シャフト、2 着磁部、3 磁界センサ、22 演算部。
1 shaft, 2 magnetized part, 3 magnetic field sensor, 22 calculating part.

Claims (2)

円周方向に設けられ、円周方向に極性を持つ少なくとも2個の着磁部が設けられた列を2列有する複合磁性材料で形成されたシャフトと、
該シャフトの着磁部付近の上方近傍に電気角45°の位相を持たせて、前記着磁部の列毎に2個配置され、該シャフトの軸方向の発生磁界を検出する磁界センサと、
該磁界センサの検出信号からシャフトに印加されるトルクを演算する演算部と、
を備え、
各列の前記着磁部は、円周方向に電気角180°の幅を有し、円周方向に電気角180°の間隔で設けられ、一列目の前記着磁部の極性と二列目の前記着磁部の極性とが逆向きであり、
前記演算部は、前記シャフトの回転角度の電気角の2倍をθとして得られ、
一列目の前記2個の磁界センサのうち一方の前記トルク印加時と前記トルク無印加時との差であるsinθの検出信号と、二列目の前記2個の磁界センサのうち一方の前記トルク印加時と前記トルク無印加時との差であるsinθの検出信号とを減算処理し、
一列目の前記2個の磁界センサのうち他方の前記トルク印加時と前記トルク無印加時との差であるcosθの検出信号と、二列目の前記2個の磁界センサのうち他方の前記トルク印加時と前記トルク無印加時との差であるcosθの検出信号とを減算処理し、
減算処理して得た各相の信号を2乗処理し、2乗処理した各相の信号を加算して、トルクに応じて変化するトルク信号を演算することを特徴とするトルク検出装置。
A shaft formed of a composite magnetic material having two rows provided in a circumferential direction and having at least two magnetized portions having polarities in the circumferential direction;
A magnetic field sensor for detecting a generated magnetic field in the axial direction of the shaft, two arranged for each row of the magnetized portions, with a phase of an electrical angle of 45 ° near the magnetized portion of the shaft;
A calculation unit for calculating the torque applied to the shaft from the detection signal of the magnetic field sensor;
With
The magnetized portions in each row have a width of an electrical angle of 180 ° in the circumferential direction and are provided at intervals of an electrical angle of 180 ° in the circumferential direction, and the polarity of the magnetized portion in the first row and the second row And the polarity of the magnetized portion is opposite.
The calculation unit is obtained by setting twice the electrical angle of the rotation angle of the shaft as θ,
A detection signal of the difference a is sin theta and when one of the torque applied among the magnetic field sensors before two SL one row at the time of the torque is not applied one of the two magnetic field sensors of the second row Subtracting the detection signal of sin θ, which is the difference between when the torque is applied and when no torque is applied,
And Sadea Ru c detection signal os theta with at the other of said torque application of the magnetic field sensor before Symbol of two single row and at the torque is not applied in the second row the two magnetic field sensors Subtracting the detection signal of cos θ which is the difference between the other torque application time and the torque non-application time ,
A torque detection device characterized by squaring a signal of each phase obtained by subtraction processing, adding the signals of each phase subjected to square processing, and calculating a torque signal that changes in accordance with torque.
円周方向に設けられ、円周方向に極性を持つ少なくとも2個の着磁部が設けられた列を少なくとも2列有する複合磁性材料で形成されたシャフトと、
該シャフトの着磁部付近の上方近傍に電気角45°の位相を持たせて、前記着磁部の列毎に2個配置され、該シャフトの軸方向の発生磁界を検出する磁界センサと、
該磁界センサの検出信号からシャフトにトルクが印加されて回転するシャフトの回転角度を演算する演算部と、
を備え、
各列の前記着磁部は、円周方向に電気角180°の幅を有し、円周方向に電気角180°の間隔で設けられ、
前記演算部は、前記シャフトの回転角度の電気角の2倍をθとして得られ、
前記トルク印加時と前記トルク無印加時との差である、前記磁界センサの一方のsinθの検出信号に、前記トルク印加時と前記トルク無印加時との差である前記磁界センサの他方のcosθの検出信号と前記sinθとから求めたcosnθ(nは2以上の整数)に相当するcosωtを乗算し、
記cosθの検出信号に、前記cosθと前記sinθとから求めたsinnθ(nは2以上の整数)に相当するsinωtを乗算し、
それぞれ乗算した値を加算してsin(θ+ωt)を生成し、そのsin(θ+ωt)とsinωtとの位相差を求めてシャフトの回転角度を演算することを特徴とする回転角度検出装置。
A shaft formed of a composite magnetic material having at least two rows provided in the circumferential direction and provided with at least two magnetized portions having polarity in the circumferential direction;
A magnetic field sensor for detecting a generated magnetic field in the axial direction of the shaft, two arranged for each row of the magnetized portions, with a phase of an electrical angle of 45 ° near the magnetized portion of the shaft;
A calculation unit that calculates a rotation angle of the shaft that rotates by applying torque to the shaft from the detection signal of the magnetic field sensor;
With
The magnetized portions of each row have a width of an electrical angle of 180 ° in the circumferential direction, and are provided at intervals of an electrical angle of 180 ° in the circumferential direction.
The arithmetic unit is obtained twice the electrical angle of the rotation angle of the previous SL shaft as theta,
The detection signal of one sin θ of the magnetic field sensor, which is the difference between when the torque is applied and when no torque is applied, is added to the other cos θ of the magnetic field sensor, which is the difference between when the torque is applied and when no torque is applied. Multiplies cosωt corresponding to cosnθ (n is an integer equal to or greater than 2) obtained from the detected signal and sinθ ,
The detection signal before Symbol c osθ, sinnθ obtained from said said cos [theta] sin [theta (n is an integer of 2 or more) multiplied by sinωt equivalent to,
A rotation angle detection device characterized in that by adding each multiplied value to generate sin (θ + ωt), a phase difference between sin (θ + ωt) and sinωt is obtained to calculate a rotation angle of the shaft.
JP2005145405A 2005-05-18 2005-05-18 Torque detection device and rotation angle detection device Active JP5008274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005145405A JP5008274B2 (en) 2005-05-18 2005-05-18 Torque detection device and rotation angle detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005145405A JP5008274B2 (en) 2005-05-18 2005-05-18 Torque detection device and rotation angle detection device

Publications (2)

Publication Number Publication Date
JP2006322784A JP2006322784A (en) 2006-11-30
JP5008274B2 true JP5008274B2 (en) 2012-08-22

Family

ID=37542581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005145405A Active JP5008274B2 (en) 2005-05-18 2005-05-18 Torque detection device and rotation angle detection device

Country Status (1)

Country Link
JP (1) JP5008274B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103499407B (en) * 2013-09-29 2015-05-20 山河智能装备股份有限公司 Torque and revolving speed detection device
JP2020020760A (en) * 2018-08-03 2020-02-06 株式会社愛工舎製作所 Food product mixer having rotation control function by torque detection and control system thereof
CN115610569A (en) * 2022-11-02 2023-01-17 杭州辰控智能控制技术有限公司 Torque sensor, power-assisted bicycle, torque detection method and processor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2821944B2 (en) * 1990-08-23 1998-11-05 マツダ株式会社 Torque detector
JP3381736B2 (en) * 1993-04-14 2003-03-04 株式会社安川電機 Optical encoder
JPH1047994A (en) * 1996-08-07 1998-02-20 Matsushita Electric Ind Co Ltd Rotational position detector
JP2002090234A (en) * 2000-09-14 2002-03-27 Koyo Electronics Ind Co Ltd Torque detecting device
JP2003050166A (en) * 2001-08-07 2003-02-21 Koyo Seiko Co Ltd Torque detector and steering system
JP2003315180A (en) * 2002-04-23 2003-11-06 Hitachi Cable Ltd Torque detector
JP4003526B2 (en) * 2002-04-24 2007-11-07 株式会社ジェイテクト Rotation angle sensor and torque sensor
JP2004045286A (en) * 2002-07-12 2004-02-12 Denso Corp Method of correcting resolver
JP4166653B2 (en) * 2003-09-10 2008-10-15 株式会社日本自動車部品総合研究所 Rotation angle detector

Also Published As

Publication number Publication date
JP2006322784A (en) 2006-11-30

Similar Documents

Publication Publication Date Title
JP5245114B2 (en) Position detection device
JP3848670B1 (en) Rotation angle detector
EP1920221B1 (en) Sensor device, sensor arrangement, and method of measuring a property of an object
US8664943B2 (en) Position detecting apparatus
CA2213657C (en) Circularly magnetized non-contact torque and power sensor and method for measuring torque and power using same
EP3051265B1 (en) Force measurement device
CN102725612B (en) Field rotates two-way magnetic position sensor
US20090301223A1 (en) Direct shaft power measurements for rotating machinery
CN101939623A (en) Rotation angle detection device, rotary machine, and rotation angle detection method
JP5434850B2 (en) Rotation angle / torque sensor
TWI596321B (en) Rotary position sensor device and apparatus having rotary position sensor device
Zhang et al. Design and research of a novel non-contact vertical inductive torque sensor
JP5008274B2 (en) Torque detection device and rotation angle detection device
JP2012042353A (en) Rotation angle and torque sensor
JP2004061149A (en) Torque sensor and electric power steering apparatus using the same
US7024946B2 (en) Assembly for measuring movement of and a torque applied to a shaft
JP6724884B2 (en) Arithmetic processing device, angle sensor and steering device
JP2006250580A (en) Magnetic detection device
KR102071753B1 (en) Magnetism-sensor device
US9816888B2 (en) Sensor and method for detecting a position of an effective surface of the sensor
Mateev et al. Magnetic elastomer sensor for dynamic torque measurements in magnetic gears
JPH11118517A (en) Sensor for body of rotation
JP2015049046A (en) Angle detector
Mateev et al. Magnetic Elastomer Sensor for Dynamic Torque
JP2020537152A (en) Electromagnetic measurement system for measuring distances and angles using the magnetic impedance effect

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120529

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5008274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250