JP5008184B2 - Sludge purification civil engineering method - Google Patents

Sludge purification civil engineering method Download PDF

Info

Publication number
JP5008184B2
JP5008184B2 JP2007008953A JP2007008953A JP5008184B2 JP 5008184 B2 JP5008184 B2 JP 5008184B2 JP 2007008953 A JP2007008953 A JP 2007008953A JP 2007008953 A JP2007008953 A JP 2007008953A JP 5008184 B2 JP5008184 B2 JP 5008184B2
Authority
JP
Japan
Prior art keywords
granular
civil engineering
purification material
carbide
purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007008953A
Other languages
Japanese (ja)
Other versions
JP2008110330A (en
Inventor
武彦 大木
Original Assignee
武彦 大木
吉村 潔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武彦 大木, 吉村 潔 filed Critical 武彦 大木
Priority to JP2007008953A priority Critical patent/JP5008184B2/en
Publication of JP2008110330A publication Critical patent/JP2008110330A/en
Application granted granted Critical
Publication of JP5008184B2 publication Critical patent/JP5008184B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、自然環境を保護するのに好適な浄化材用いた土木方法に関する。 The present invention relates to a civil engineering method using a purification material suitable for protecting the natural environment.

近年、土壌、河川等の汚染の浄化やヒートアイランド現象の緩和など、自然環境の保護のための土木技術が多く提案されている。例えば、本願発明者は、特許文献1において、炭化物を含む浄化材を用いて土壌や河川等の浄化を行う技術を、また、特許文献2において、炭素材料を含む融雪舗装材を用いて融雪を行う技術、或いはそれを夏季の舗装路に用いて舗装路の温度上昇を抑制するようにした技術を、それぞれ提案している。   In recent years, many civil engineering techniques for protecting the natural environment have been proposed, such as purification of soil and river pollution and mitigation of the heat island phenomenon. For example, the inventor of the present application disclosed a technique for purifying soil, rivers, and the like using a purification material containing carbide in Patent Document 1, and a method for melting snow using a snow melting pavement material containing a carbon material in Patent Document 2. The technology to perform, or the technology which uses it for the pavement in the summer and controls the temperature rise of the pavement is proposed.

特開2002− 52339号公報JP 2002-52339 A 特開2003−328503号公報JP 2003-328503 A

ところで、特許文献1、2に記載されているものは、炭化物等が含有されたブロック等であり、粒状の炭化物等の集合体ではない。そこで、炭化物等を粒状にしたとすると、浄化材等を袋詰めにすることができ、浄化材等を必要な分量だけ敷き詰めることができる。しかしながら、粒状の炭化物等は、雨水や風などにより散逸し易く、敷き詰めた後に長期間その効果を得ることが困難であった。   By the way, what is described in Patent Documents 1 and 2 is a block containing carbide or the like, and is not an aggregate of granular carbide or the like. Therefore, if the carbide or the like is made granular, the purification material or the like can be packed in a bag, and the purification material or the like can be spread in a necessary amount. However, granular carbides and the like are easily dissipated by rainwater, wind, and the like, and it has been difficult to obtain the effect for a long time after being spread.

本発明は、係る事由に鑑みてなされたものであり、その目的は、雨水や風などにより散逸し難い、粒状の炭化物を含む浄化材を提供することにあり、また、その浄化材を自然環境を保護する土木技術に適用する土木方法を提供することにある。   The present invention has been made in view of such reasons, and an object of the present invention is to provide a purification material containing granular carbides that is difficult to dissipate due to rainwater, wind, and the like. It is providing the civil engineering method applied to the civil engineering technology which protects.

上記目的を達成するために、本発明は、汚泥浄化土木方法であって、粒状炭化物と粒状高炉スラグを5:95〜50:50の重量比で混合して粒状の集合体にしてなる浄化材を、海洋、湖沼又は河川の底に溜まった汚泥の表面に所定厚さでもって敷き詰めることを特徴とする。 In order to achieve the above object, the present invention is a sludge purification civil engineering method, which is a purification material obtained by mixing granular carbide and granular blast furnace slag at a weight ratio of 5:95 to 50:50 to form a granular aggregate. Is spread over the surface of sludge accumulated at the bottom of the ocean, lakes or rivers with a predetermined thickness.

本発明の汚泥浄化土木方法によれば、浄化材に含まれる粒状炭化物によって汚泥の浄化を行うことができ、しかも、粒状炭化物は粒状高炉スラグと混合してあるので、粒状炭化物は水の流れなどにより散逸し難くなって長期間それらの効果を奏することができる。 According to sludge purification civil method of the present invention, it is possible to perform the purification of the sludge by the granular carbides contained in the purification material, moreover, since the granular carbides are mixed with granulated blast-furnace slag, the granular carbides such as flow of water Therefore, it is difficult to dissipate and the effects can be obtained for a long time.

以下、本発明を実施するための最良の形態を図面を参照しながら説明する。先ず、本発明の実施形態に係る浄化材1を説明する。図1は浄化材1の断面図である。浄化材1は、粒状炭化物11と粒状高炉スラグ12を5:95〜50:50の重量比で混合して粒状の集合体にしてなるものである。この浄化材1は、粒状炭化物11の割合が高くなるほど、後に詳述するような有害物質の吸着能力、微生物の担持能力、保水能力が高くなるのであるが、他方で雨水や風などにより散逸し易くなる。従って、浄化材1を用いる後述の土木方法A〜Dにおいては、粒状炭化物11と粒状高炉スラグ12の重量比を上記の範囲に収めることが望ましいのである。   The best mode for carrying out the present invention will be described below with reference to the drawings. First, the purification material 1 which concerns on embodiment of this invention is demonstrated. FIG. 1 is a cross-sectional view of the purification material 1. The purification material 1 is a granular aggregate obtained by mixing granular carbide 11 and granular blast furnace slag 12 at a weight ratio of 5:95 to 50:50. As the ratio of the particulate carbide 11 increases, the purification material 1 has higher ability to adsorb harmful substances, support microorganisms, and retain water, as will be described in detail later. On the other hand, the purification material 1 is dissipated by rainwater or wind. It becomes easy. Therefore, in the civil engineering methods A to D described later using the purification material 1, it is desirable to keep the weight ratio of the granular carbide 11 and the granular blast furnace slag 12 in the above range.

粒状炭化物11は、通常の炭焼き工程に準じて酸素が欠乏した状態で加熱して得た炭化物を粉砕したものであり、その形状は凹凸の変化が激しく、角張っている。粒径(サイズ)は、後述する粒状高炉スラグ12とよく混合して馴染むよう、本実施形態では、1〜20mm程度としてある。この粒状炭化物11は、例えば、木炭、竹炭、RDFの炭化物、汚泥(ヘドロ)の炭化物などであり、表面及び内部に多数の空孔を有した多孔質である。そして、この多数の空孔により、有害物質や臭気を吸着したり保水したりすることができ、また、空孔では環境の変化が少ないので微生物をよく担持することができるのである。   The granular carbide 11 is obtained by pulverizing a carbide obtained by heating in a state deficient in oxygen in accordance with a normal charcoal baking process, and the shape thereof is rugged and is angular. In this embodiment, the particle size (size) is set to about 1 to 20 mm so as to be well mixed with the granular blast furnace slag 12 described later. The granular carbide 11 is, for example, charcoal, bamboo charcoal, RDF carbide, sludge carbide, etc., and is porous with a large number of pores on the surface and inside. These numerous holes can adsorb harmful substances and odors and retain water, and the holes can carry microorganisms well because there are few environmental changes.

また、粒状炭化物には灰分が含まれる。灰分とは、物が燃え尽きても残る不燃性である無機物、つまり窒素、リン酸、カリウム、カルシウム等を言う。木炭、竹炭は、通常全体の数重量%程度の灰分を含有する。RDFの炭化物は、家庭などからの可燃ゴミを原料とした固形燃料であるRDF(Refuse Derived Fuel)を高温(通常800〜850℃)で炭化して得られたものであり、全体の30重量%以上の灰分を含有する。汚泥の炭化物は、汚染のない下水道などの底にたまった汚泥の水分を約30重量%以下にし、高温(通常800〜850℃)で炭化して得られたものであり、全体の15重量%以上の灰分を含有する。具体的に、850℃で炭化した杉材、なら材、RDFの灰分を測定したところ、各々2.3重量%、3.3重量%、35.7重量%であった。また、汚泥の炭化物の2個の試料で窒素、リン酸、カリウムの全量を測定したところ、18.8重量%と21.8重量%であった。 The granular carbide contains ash. Ash refers to an incombustible inorganic substance that remains even if the object burns out, that is, nitrogen, phosphoric acid, potassium, calcium, and the like. Charcoal and bamboo charcoal usually contain as much as several percent by weight of ash. RDF carbide is obtained by carbonizing RDF (Refuse Derived Fuel), which is a solid fuel made from combustible garbage from homes, at a high temperature (usually 800 to 850 ° C.). Contains the above ash. The sludge carbide is obtained by reducing the moisture of sludge accumulated in the bottom of uncontaminated sewers to about 30% by weight or less and carbonizing it at a high temperature (usually 800 to 850 ° C.). Contains the above ash. Specifically, the ash content of cedar, carbon, and RDF carbonized at 850 ° C. was measured to be 2.3 wt%, 3.3 wt%, and 35.7 wt%, respectively. Moreover, when the total amount of nitrogen, phosphoric acid, and potassium was measured with two samples of sludge carbides, they were 18.8 wt% and 21.8 wt%.

炭化物としては、一般的に、灰分の少ない方が高品質とされているのであるが、例えば表1に示す実験結果などにより、灰分が多いRDFの炭化物や汚泥の炭化物の方が、木炭、竹炭よりも微生物の繁殖が良いと考えられている。表1の実験結果は、0.069mの干拓地の水に、なら材の木炭10kg又はRDFの炭化物10kgを接触させ、BOD(単位:mg/l)の変化を調査したものである。 As carbides, generally, the one with less ash content is considered to be of higher quality. However, according to the experimental results shown in Table 1, for example, the RDF carbide and the sludge carbide with more ash content are more charcoal, bamboo charcoal. It is thought that the propagation of microorganisms is better than that. The experimental results in Table 1 are the results of investigating changes in BOD (unit: mg / l) by contacting 10 kg of charcoal or charcoal of RDF with water of 0.069 m 3 of the reclaimed land.

Figure 0005008184
Figure 0005008184

表1の実験結果は、RDFの炭化物は灰分が多いために木炭よりも微生物が繁殖し易く、そのため木炭よりもRDFの炭化物の方が浄化される、ことを示している。従って、微生物の担持の点からは、木炭、竹炭などよりもRDFの炭化物や汚泥の炭化物が望ましい。なお、後述のように粒状高炉スラグ12には石灰などが含有されるが、それらの成分が粒状炭化物11に担持される微生物の繁殖を助けることも期待できる。   The experimental results in Table 1 show that RDF carbides have more ash, so that microorganisms are easier to propagate than charcoal, and therefore RDF carbides are purified more than charcoal. Therefore, from the viewpoint of supporting microorganisms, RDF carbide and sludge carbide are more preferable than charcoal, bamboo charcoal, and the like. As will be described later, the granular blast furnace slag 12 contains lime and the like, but it can also be expected that these components assist the propagation of microorganisms carried on the granular carbide 11.

粒状高炉スラグ12は、溶鉱炉で銑鉄と共に生成される溶融スラグを冷却し、粒度調整を行ったものであり、その形状は凹凸の変化が激しく、角張っており、表面は粗面である。浄化材1に用いる粒状高炉スラグ12の粒径(サイズ)は、前述の粒状炭化物11の粒径に応じた大きさであり、本実施形態では1〜20mm程度としてある。また、ある程度の数の空孔を表面及び内部に有している。   The granular blast furnace slag 12 is obtained by cooling the molten slag generated together with pig iron in the blast furnace and adjusting the particle size, and the shape thereof is sharply uneven and angular, and the surface is rough. The particle size (size) of the granular blast furnace slag 12 used for the purification material 1 is a size according to the particle size of the granular carbide 11 described above, and is about 1 to 20 mm in this embodiment. Further, it has a certain number of holes on the surface and inside.

また、粒状高炉スラグ12は、その化学組成は石灰(CaO)及びシリカ(SiO2)を主成分としており、粒状炭化物11よりも比重が大きく硬い。そして、水分に接触すると石灰やシリカが微量に溶出して水和物を形成するため、粒状高炉スラグ12同士が所々で結合する。   The granular blast furnace slag 12 has a chemical composition mainly composed of lime (CaO) and silica (SiO 2), and has a specific gravity larger and harder than the granular carbide 11. And when it contacts moisture, lime and silica elute in a very small amount to form a hydrate, so that the granular blast furnace slags 12 are bonded together in some places.

粒状炭化物11と粒状高炉スラグ12を所定の重量比で混合して粒状の集合体にしてなる浄化材1が、例えば土壌の表面に敷き詰められると、粒状炭化物11は、重い粒状高炉スラグ12に押さえつけられ、粒状高炉スラグ12の凹凸に嵌り込んだり噛み合ったりして物理的に散逸し難くなる。また、雨水などにより或いは故意に水が加えられると、粒状高炉スラグ12間に挟まれた粒状炭化物11は更に散逸し難くなる。より具体的には、敷き詰めたれた浄化材1が風に曝された場合、粒状炭化物11の一部が粉塵になるのが抑制され、浄化材1に人又は物が触れた場合、それに粒状炭化物11の一部が付着するのが抑制される。また、浄化材1が雨水などの水に曝された場合、上記の物理的な力によると共に、雨水などが粒状高炉スラグ12中を通過してその流れが粒状炭化物11に集中しないことにもより、粒状炭化物11が流出するのが抑制される。また、土木作業中に浄化材1に触れても、粒状炭化物11により手などが黒く汚れることがほとんどなくなる。   For example, when the purification material 1 formed by mixing granular carbide 11 and granular blast furnace slag 12 in a predetermined weight ratio to form a granular aggregate is spread on the surface of soil, the granular carbide 11 is pressed against the heavy granular blast furnace slag 12. In other words, it is difficult to physically dissipate by being fitted or engaged with the irregularities of the granular blast furnace slag 12. Further, when water is intentionally added by rain water or the like, the granular carbide 11 sandwiched between the granular blast furnace slag 12 is more difficult to dissipate. More specifically, when the spread purification material 1 is exposed to the wind, a part of the granular carbide 11 is suppressed from becoming dust, and when a person or an object touches the purification material 1, the granular carbide It is suppressed that a part of 11 adheres. Further, when the purification material 1 is exposed to water such as rain water, it is due to the fact that rain water or the like passes through the granular blast furnace slag 12 and the flow does not concentrate on the granular carbide 11 due to the above physical force. The granular carbide 11 is suppressed from flowing out. Moreover, even if the purification material 1 is touched during civil engineering work, the hands and the like are hardly stained black by the granular carbide 11.

また、粒状炭化物11はアルカリ性を示すが、粒状高炉スラグ12と混合することで、アルカリ性が軽減され弱アルカリ性になり易くなる。そのため、微生物がより繁殖できる状態になる。   Moreover, although the granular carbide | carbonized_material 11 shows alkalinity, by mixing with the granular blast furnace slag 12, alkalinity is reduced and it becomes easy to become weak alkalinity. Therefore, it will be in the state where microorganisms can reproduce more.

この浄化材1を構成する粒状高炉スラグ12は、溶鉱炉における副産物であって多量に生産され、しかも、種々の安全基準を満たすことができるものであるが、現在のところ用途は少ない。従って、非常に廉価で入手可能であるとともに、これを使用することはごみ問題の解決及び資源の無駄の低減にも資する。また、浄化材1を構成する粒状炭化物11にRDFの炭化物や汚泥の炭化物を用いれば、これもコスト低減になり、ごみ問題の解決及び資源の無駄の低減に資することになる。   The granular blast furnace slag 12 constituting the purification material 1 is a by-product in the blast furnace and is produced in a large amount and can satisfy various safety standards, but currently has few applications. Therefore, it is available at a very low price, and its use also contributes to solving the waste problem and reducing waste of resources. Further, if RDF carbide or sludge carbide is used for the particulate carbide 11 constituting the purification material 1, this also reduces the cost, which contributes to the solution of the dust problem and the reduction of waste of resources.

次に、浄化材1を用いた土木方法の参考の実施形態である、土壌を浄化する土木方法Aを説明する。図2は土木方法Aにより得られた土木構造を示す断面図である。この土木方法Aは、まず、有害物質で汚染された土壌2に所定深さの浄化用穴21、21…を所定間隔ごとに掘設する。この実施形態の浄化用穴21は、直径30cm、深さ10mの円柱状又は角柱状であり、その間隔は5mとしている。次に、浄化材1を浄化用穴21、21…に埋め込む。そして、浄化材1を土壌2の表面に所定厚さでもって敷き詰める。この実施形態の敷き詰め厚さは、30cmにしている。 Next, a civil engineering method A for purifying soil, which is a reference embodiment of a civil engineering method using the purification material 1, will be described. FIG. 2 is a cross-sectional view showing the civil engineering structure obtained by the civil engineering method A. In the civil engineering method A, first, purification holes 21, 21... Having a predetermined depth are dug at predetermined intervals in the soil 2 contaminated with harmful substances. The purification hole 21 of this embodiment is a columnar or prismatic shape with a diameter of 30 cm and a depth of 10 m, and the interval is 5 m. Next, the purification material 1 is embedded in the purification holes 21, 21. Then, the purification material 1 is spread on the surface of the soil 2 with a predetermined thickness. The spread thickness of this embodiment is 30 cm.

この土木方法Aによる土木構造では、土壌2中の有害物質(例えば有機塩素化合物、ダイオキシン、ヒ素や鉛等の重金属)が雨水により溶解され、土壌2の表面や浄化用穴21に移動する。土壌2の表面に所定厚さでもって敷き詰められた浄化材1や浄化用穴21において、有害物質は粒状炭化物11に吸着され、一部は粒状炭化物11が担持する微生物により無害な物質に分解される。また、土壌2中の有害物質から有害ガスや臭気が発生すると、大気中に拡散する前に、土壌2の表面の浄化材1の粒状炭化物11に吸着される。吸着された有害ガスや臭気の一部は粒状炭化物11が担持する微生物により無害な又は無臭の物質に分解される。 In the civil structure by this civil engineering method A, harmful substances in the soil 2 (for example, heavy metals such as organic chlorine compounds , dioxins, arsenic and lead) are dissolved by rainwater and move to the surface of the soil 2 and the purification hole 21. In the purification material 1 and the purification hole 21 laid down on the surface of the soil 2 with a predetermined thickness, harmful substances are adsorbed by the granular carbides 11 and partly decomposed into harmless substances by microorganisms carried by the granular carbides 11. The Further, when harmful gases and odors are generated from harmful substances in the soil 2, they are adsorbed by the particulate carbide 11 of the purification material 1 on the surface of the soil 2 before being diffused into the atmosphere. Part of the adsorbed harmful gas and odor is decomposed into harmless or odorless substances by microorganisms carried by the particulate carbide 11.

このようにして、有害物質で汚染された土壌2が、土壌2の表面に所定厚さでもって敷き詰められた浄化材1と浄化用穴21に埋め込まれた浄化材1により浄化される。粒状炭化物11は、前述のように、雨水や風などにより散逸し難いので、長期間その効果を奏することができる。   In this way, the soil 2 contaminated with harmful substances is purified by the purification material 1 spread on the surface of the soil 2 with a predetermined thickness and the purification material 1 embedded in the purification hole 21. Since the granular carbide 11 is difficult to dissipate due to rain water or wind as described above, the effect can be obtained for a long time.

なお、土壌2中には、種々の微生物が生息するため、有害物質を分解するものを含むいくつかの微生物が、繁殖し易い環境である粒状炭化物11中で繁殖する。これらに加えて、特別に微生物を植付けてもよい。特に、浄化用穴21の深部(例えば地下5m以上)は酸素が欠乏し易いので、好気性微生物は生息し難いが、有害物質を分解する通性嫌気性微生物を特別に注入すると、浄化の効果が高まる。このような通性嫌気性微生物の中には、弱アルカリ性でより繁殖するものが知られており、上記のように弱アルカリ性を示し易い浄化材1に好適である。微生物が世代交代すると微生物の死骸は臭気を発生するが、臭気は粒状炭化物11に閉じ込められる。浄化材1に注入される微生物として、国際公開公報WO2006/011416A1に記載されたEmpedobacter属細菌が可能である。   In addition, since various microorganisms inhabit in soil 2, some microorganisms including what decomposes | disassembles a harmful substance propagate in the granular carbide | carbonized_material 11 which is an environment which is easy to reproduce. In addition to these, special microorganisms may be planted. In particular, the deep part of the purification hole 21 (for example, 5 m or more underground) is easily deficient in oxygen, so aerobic microorganisms are difficult to inhabit. However, if a facultative anaerobic microorganism that decomposes harmful substances is specifically injected, the purification effect Will increase. Among such facultative anaerobic microorganisms, those that are weakly alkaline and more proliferate are known, and are suitable for the purification material 1 that easily exhibits weak alkalinity as described above. When the microorganisms change generations, the dead bodies of the microorganisms generate odors, but the odors are trapped in the granular carbide 11. As microorganisms injected into the purification material 1, Empedobacter genus bacteria described in International Publication WO2006 / 011416A1 are possible.

また、植物類の生育促進剤(例えば万田発酵株式会社製)を粒状炭化物11に注入して、微生物の繁殖を促すこともできる。   In addition, a plant growth promoter (for example, manufactured by Manda Fermentation Co., Ltd.) can be injected into the granular carbide 11 to promote the growth of microorganisms.

更に、望ましくは、浄化の効果を高めるために、浄化後又は浄化中の土壌2の表面に所定厚さでもって敷き詰められた浄化材1にキノコを植える。キノコは、粒状炭化物11に菌糸を伸ばして生育すると共にそれから有害物質を吸い上げることが可能である。キノコは、有害物質を分解することも可能である。   Further, preferably, in order to enhance the purification effect, mushrooms are planted on the purification material 1 spread with a predetermined thickness on the surface of the soil 2 after or during purification. Mushrooms can grow and grow hyphae on granular carbides 11 and then suck up harmful substances. Mushrooms can also decompose harmful substances.

また、キノコのかわりに又はそれに加えて草本を植えても良い。例えば、品種改良により種子を生成しないようにしたイワダレソウ(品種登録出願番号:18591号、18592号)が好適に用いられる。イワダレソウのような草本は浄化材1に根を張るとともに浄化材1を突き抜けて土壌2の深く(例えば50cm)に根を張るので、有害物質を吸い上げ、また、浄化材1が激しい雨水や風などにより散逸するのを防止する。また、イワダレソウは酸性からアルカリ性まで土地への適応性が広く植栽可能であるので、弱アルカリ性を示し易い浄化材1にも植栽可能である。また、回収したイワダレソウからエタノールを抽出し、燃料として利用できる可能性もある。   Moreover, you may plant a herb instead of or in addition to a mushroom. For example, Iwadaresou (variety registration application numbers: 18591 and 18592), which does not produce seeds by breed improvement, is preferably used. Herbs such as Iwadareso have roots in the purification material 1 and penetrate the purification material 1 to deepen the roots deep in the soil 2 (for example, 50 cm), so that harmful substances are sucked up. To prevent dissipation. Moreover, since Iwadareso can be planted widely from acidity to alkalinity, it can also be planted on the purification material 1 that easily exhibits weak alkalinity. In addition, there is a possibility that ethanol can be extracted from the collected Iwadaresou and used as fuel.

次に、上記参考の実施形態を変形した形態である土木方法A’を説明する。この土木方法A’は、浄化材1を有害物質で汚染された土壌2の表面に所定厚さ(例えば30cm)でもって敷き詰め、その上から液状の植物油乳化物を所定間隔(例えば1.5m間隔)に注入する。なお、土木方法A(図2)の浄化用穴21、21…を設けてもよいが、必ずしも必要ではない。 Next, a civil engineering method A ′, which is a modification of the above-described reference embodiment, will be described. In this civil engineering method A ′, the purification material 1 is spread on the surface of the soil 2 contaminated with harmful substances with a predetermined thickness (for example, 30 cm), and a liquid vegetable oil emulsion is spread over the surface at a predetermined interval (for example, an interval of 1.5 m). ). In addition, although the holes 21 for purification | cleaning 21 of civil engineering method A (FIG. 2) may be provided, it is not necessarily required.

植物油乳化物は、安全性が高い植物油(例えば大豆油)を主原料(例えば60%)とし他の物質(例えば乳酸塩など)を添加した乳化物であって水で希釈されている。植物油乳化物は土壌2中を拡散し、深さ30〜40m程度まで浸透する。それにより、土壌2が嫌気的環境に変わり、土壌2中の嫌気性微生物が活性化される。植物油は嫌気性微生物により水素を生成し、その還元作用や脱塩素化作用により有害物質は無害な物質に分解される。植物油乳化物は、例えば、EOS Remediation社の植物油乳化物(米国特許6,398,960)を用いることができる。この植物油乳化物は、粒径が1μmよりも小さく、長期間乳化状態が安定している。   The vegetable oil emulsion is an emulsion obtained by adding a highly safe vegetable oil (for example, soybean oil) as a main raw material (for example, 60%) and adding other substances (for example, lactate, etc.), and is diluted with water. The vegetable oil emulsion diffuses in the soil 2 and penetrates to a depth of about 30 to 40 m. Thereby, the soil 2 changes to an anaerobic environment, and the anaerobic microorganisms in the soil 2 are activated. Vegetable oil produces hydrogen by anaerobic microorganisms, and harmful substances are decomposed into harmless substances by their reducing and dechlorinating actions. As the vegetable oil emulsion, for example, a vegetable oil emulsion (US Pat. No. 6,398,960) manufactured by EOS Remediation can be used. This vegetable oil emulsion has a particle size smaller than 1 μm and is stable in an emulsified state for a long time.

浄化材1は土木方法Aで用いたものと同様である。その粒状炭化物11は、有害物質からの有害ガスや臭気を吸着するとともに、植物油乳化物を保存し、土壌2に徐々にしみ出すことにより土壌2中の植物油乳化物の効果を長く維持することができる。また、微生物が繁殖し易い環境である粒状炭化物11に担持された嫌気性微生物(特に通性嫌気性微生物)が植物油乳化物が拡散した土壌2を深くまで拡散することで、土壌2中の嫌気性微生物の量を維持することができる。更には、浄化材1の粒状炭化物11には、予め通性嫌気性微生物(例えば上記のEmpedobacter属細菌)が植付けられているのが望ましい。そうすると、粒状炭化物11に担持された通性嫌気性微生物は植物油乳化物とともに拡散し、迅速に土壌2中の有害物質が分解される。   The purification material 1 is the same as that used in the civil engineering method A. The granular carbide 11 adsorbs harmful gases and odors from harmful substances, preserves the vegetable oil emulsion, and gradually exudes to the soil 2 to maintain the effect of the vegetable oil emulsion in the soil 2 for a long time. it can. Moreover, the anaerobic microorganisms (especially facultative anaerobic microorganisms) carried on the particulate carbide 11 that is an environment in which microorganisms are easy to propagate diffuse deeply into the soil 2 in which the vegetable oil emulsion has diffused, thereby anaerobic in the soil 2. The amount of sex microorganisms can be maintained. Furthermore, it is desirable that the particulate carbide 11 of the purification material 1 is preliminarily planted with facultative anaerobic microorganisms (for example, the above-mentioned Empedobacter genus bacteria). Then, the facultative anaerobic microorganisms carried on the particulate carbide 11 are diffused together with the vegetable oil emulsion, and the harmful substances in the soil 2 are rapidly decomposed.

このようにして、有害物質で汚染された土壌2が、土壌2の表面に所定厚さでもって敷き詰められた浄化材1とその上から注入された植物油乳化物により浄化される。この土木方法A’では、土壌2中の有害物質がその場でも分解される。土木方法A’は、土壌2の具体的状態により、土木方法Aと独立又は同時に使用される。   In this way, the soil 2 contaminated with the harmful substances is purified by the purification material 1 spread on the surface of the soil 2 with a predetermined thickness and the vegetable oil emulsion injected thereon. In the civil engineering method A ′, harmful substances in the soil 2 are decomposed even on the spot. The civil engineering method A ′ is used independently or simultaneously with the civil engineering method A depending on the specific state of the soil 2.

次に、浄化材1を用いた土木方法の本発明の実施形態である、汚泥(ヘドロ)を浄化する土木方法Bを説明する。図3は土木方法Bにより得られた土木構造を示す断面図である。この土木方法Bは、浄化材1を海洋、湖沼又は河川の底に溜まり有害物質で汚染された汚泥3の表面に所定厚さでもって敷き詰める。すなわち、汚泥3の表面を浄化材1でもって覆うものである。この場合の浄化材1の敷き詰める厚さは、汚泥3の量や質に応じて決めるが、上記参考の実施形態である土木方法Aより均一性はラフであってもよい。 Next, a civil engineering method B for purifying sludge, which is an embodiment of the civil engineering method using the purification material 1, will be described. 3 is a cross-sectional view showing a civil engineering structure obtained by the civil engineering method B. FIG. In this civil engineering method B, the purification material 1 is spread with a predetermined thickness on the surface of the sludge 3 accumulated at the bottom of the ocean, lakes or rivers and contaminated with harmful substances. That is, the surface of the sludge 3 is covered with the purification material 1. In this case, the thickness of the purifier 1 is determined according to the amount and quality of the sludge 3, but the uniformity may be rougher than the civil engineering method A which is the reference embodiment .

汚泥3中の有害物質やそれから発生する有害ガスは、海洋等の水中に拡散する前に、汚泥3の表面に所定厚さでもって敷き詰められた浄化材1の粒状炭化物11に吸着される。吸着された有害物質等の一部は粒状炭化物11が担持する微生物により分解される。こうして、有害物質で汚染された汚泥3は浄化材1により浄化される。粒状炭化物11は、前述のように、水の流れなどにより散逸し難いので、長期間その効果を奏することができる。   Hazardous substances in the sludge 3 and harmful gases generated therefrom are adsorbed by the particulate carbide 11 of the purification material 1 spread with a predetermined thickness on the surface of the sludge 3 before diffusing into water such as the ocean. Part of the adsorbed harmful substances and the like is decomposed by microorganisms carried by the particulate carbide 11. Thus, the sludge 3 contaminated with harmful substances is purified by the purification material 1. Since the granular carbide 11 is difficult to dissipate due to the flow of water as described above, the effect can be obtained for a long time.

次に、浄化材1を用いた土木方法の別の参考の実施形態である、舗装路の保水を行う土木方法Cを説明する。図4は土木方法Cにより得られた土木構造を示す断面図である。図4に示すように、浄化材1を道路基盤(図示せず)の表面に所定厚さでもって敷き詰め、その浄化材1の上部にコンクリートやアスファルトなどの舗装体4を敷設する。舗装体4は、雨水等を透過することができる透水性を有するものとする。この実施形態の浄化材1の厚さは、2〜10cmとしている。 Next, a civil engineering method C for retaining water on a paved road, which is another embodiment of the civil engineering method using the purification material 1, will be described. FIG. 4 is a cross-sectional view showing the civil structure obtained by the civil engineering method C. As shown in FIG. 4, the purification material 1 is spread on the surface of a road base (not shown) with a predetermined thickness, and a pavement 4 such as concrete or asphalt is laid on the purification material 1. The pavement 4 has water permeability that can pass rainwater and the like. The thickness of the purification material 1 of this embodiment is 2 to 10 cm.

舗装体4を透過した雨水等の水分は、道路基盤の表面に所定厚さでもって敷き詰められた浄化材1の粒状炭化物11に保水される。この保水により、夏季における舗装体4、すなわち舗装路の温度上昇を抑制してヒートアイランド現象を緩和することができる。つまり、この実施形態によれば、先の実施形態のような土壌や汚泥の浄化を行うこととは別異の効果を奏するのである。粒状炭化物11は、前述のように、水分の流れにより散逸し難いので、長期間その効果を奏することができる。   Moisture such as rainwater that has permeated through the pavement 4 is retained in the granular carbides 11 of the purifying material 1 spread on the surface of the road base with a predetermined thickness. By this water retention, the heat island phenomenon can be alleviated by suppressing the temperature rise of the pavement 4 in the summer, that is, the pavement. That is, according to this embodiment, there is an effect different from the purification of soil and sludge as in the previous embodiment. Since the granular carbide 11 is difficult to dissipate due to the flow of moisture as described above, the effect can be obtained for a long time.

次に、浄化材1を用いた土木方法の更に別の参考の実施形態である、融雪を行う土木方法Dを説明する。図5は土木方法Dにより得られた積雪5と浄化材1を示す断面図である。図5に示すように、浄化材1を道路等の上の積雪5の表面に所定量を撤布する。この場合の浄化材1の撒布する量は、積雪5の量に応じて決めるが、上記参考の実施形態である土木方法A上記別の参考の実施形態である土木方法Cより均一性はラフであってもよい。浄化材1は、高温で暖めてから敷き詰めると、より効果的である。 Next, a civil engineering method D for melting snow, which is still another reference embodiment of the civil engineering method using the purification material 1, will be described. FIG. 5 is a cross-sectional view showing the snow cover 5 and the purification material 1 obtained by the civil engineering method D. As shown in FIG. 5, a predetermined amount of the purification material 1 is removed on the surface of the snow cover 5 on a road or the like. The amount of the purifying material 1 to be distributed in this case is determined according to the amount of snow 5, but the uniformity is rougher than the civil engineering method A which is the reference embodiment and the civil engineering method C which is another reference embodiment. It may be. The purifying material 1 is more effective when spread after being warmed at a high temperature.

積雪5の表面に所定量を撤布された浄化材1は、積雪部分に比べて暖かく、浄化材1全体が有する熱及び粒状炭化物11から発せられる遠赤外線により、雪は浄化材1の近接付近から溶け出す。溶けた雪の水分の一部は粒状炭化物11に吸収されるため、溶けた雪の周囲の雪がすぐに溶けるようになる。また、積雪する前に浄化材1を予め撒布しておくと、遠赤外線により積雪や凍結が起こり難くなる。つまり、この実施形態によれば、先の実施形態のような土壌や汚泥の浄化を行うこととは別異の効果を奏するのである。粒状炭化物11は、前述のように、溶けた雪の水分の流れにより散逸し難いので、長期間その効果を奏することができる。また、道路が黒く汚れるのを抑制することができ、更には、粒状高炉スラグ12は硬く、凹凸の変化が激しいので、浄化材1は滑り止めの効果も大きい。   The purification material 1 with a predetermined amount removed on the surface of the snow cover 5 is warmer than the snow cover portion, and the snow is in the vicinity of the purification material 1 due to the heat of the entire purification material 1 and far infrared rays emitted from the granular carbides 11. Melts out. A part of the water content of the melted snow is absorbed by the granular carbide 11, so that the snow around the melted snow immediately melts. In addition, if the purifying material 1 is distributed in advance before snow is accumulated, snow and freezing hardly occur due to far infrared rays. That is, according to this embodiment, there is an effect different from the purification of soil and sludge as in the previous embodiment. As described above, the granular carbide 11 is difficult to dissipate due to the flow of melted snow moisture, so that the effect can be achieved for a long period of time. Further, the road can be prevented from being black and dirty. Further, since the granular blast furnace slag 12 is hard and the unevenness is greatly changed, the purification material 1 has a great effect of preventing slippage.

浄化材1は、既存の融雪剤の粒状発熱材料、例えば、塩化カルシウムと混合して撒布してもよい。塩化カルシウムは、車両や植物に悪影響を及ぼす場合があるので、浄化材1と一緒に使用することによりその量を減らすことができる。   The purifying material 1 may be mixed with a granular heat-generating material of an existing snow melting agent, for example, calcium chloride and distributed. Since calcium chloride may adversely affect vehicles and plants, the amount of calcium chloride can be reduced by using it together with the purification material 1.

以上、本発明の実施形態に係る浄化材1及びそれを用いた土木方法A、A’、B、C、Dについて説明した。土木方法A、A’、B、C、Dは、自然環境を保護するのに好適な土木技術であり、長期間その効果を奏することができる。 The purification material 1 according to the embodiment of the present invention and the civil engineering methods A, A ′, B, C, and D using the same have been described above. The civil engineering methods A, A ′, B, C, and D are civil engineering techniques suitable for protecting the natural environment, and can be effective for a long time.

なお、本発明は、実施形態に記載したものに限られることなく、特許請求の範囲に記載した事項の範囲内での設計変更が可能である。例えば、実施形態に記載されていない他の材料を含有することができ、また、具体的な数値を環境条件に合わせて変えることができるのは勿論である。   The present invention is not limited to the one described in the embodiment, and the design can be changed within the scope of the matters described in the claims. For example, other materials not described in the embodiment can be contained, and it is needless to say that specific numerical values can be changed according to environmental conditions.

本発明の実施形態に係る浄化材の断面図である。It is sectional drawing of the purification material which concerns on embodiment of this invention. 同上の浄化材を用いた土木方法の参考の実施形態を示す断面図である。It is sectional drawing which shows embodiment of reference of the civil engineering method using the purification material same as the above. 同上の浄化材を用いた土木方法の本発明の実施形態を示す断面図である。It is sectional drawing which shows embodiment of this invention of the civil engineering method using the purification material same as the above. 同上の浄化材を用いた土木方法の別の参考の実施形態を示す断面図である。It is sectional drawing which shows another reference embodiment of the civil engineering method using the purification material same as the above. 同上の浄化材を用いた土木方法の更に別の参考の実施形態を示す断面図である。It is sectional drawing which shows another reference embodiment of the civil engineering method using the purification material same as the above.

1 浄化材
11 粒状炭化物
12 粒状高炉スラグ
2 土壌
21 浄化用穴
3 汚泥(ヘドロ)
4 舗装体
5 積雪
DESCRIPTION OF SYMBOLS 1 Purification material 11 Granular carbide 12 Granular blast furnace slag 2 Soil 21 Hole for purification 3 Sludge (sludge)
4 Pavement 5 Snow cover

Claims (1)

粒状炭化物と粒状高炉スラグを5:95〜50:50の重量比で混合して粒状の集合体にしてなる浄化材を、海洋、湖沼又は河川の底に溜まった汚泥の表面に所定厚さでもって敷き詰めることを特徴とする汚泥浄化土木方法。 A purification material made by mixing granular carbide and granular blast furnace slag at a weight ratio of 5:95 to 50:50 into a granular aggregate is applied to the surface of sludge accumulated at the bottom of the ocean, lakes or rivers at a predetermined thickness. A sludge purification civil engineering method characterized by laying down.
JP2007008953A 2006-10-07 2007-01-18 Sludge purification civil engineering method Active JP5008184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007008953A JP5008184B2 (en) 2006-10-07 2007-01-18 Sludge purification civil engineering method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006275881 2006-10-07
JP2006275881 2006-10-07
JP2007008953A JP5008184B2 (en) 2006-10-07 2007-01-18 Sludge purification civil engineering method

Publications (2)

Publication Number Publication Date
JP2008110330A JP2008110330A (en) 2008-05-15
JP5008184B2 true JP5008184B2 (en) 2012-08-22

Family

ID=39443160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007008953A Active JP5008184B2 (en) 2006-10-07 2007-01-18 Sludge purification civil engineering method

Country Status (1)

Country Link
JP (1) JP5008184B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4856610B2 (en) * 2007-10-16 2012-01-18 株式会社アオヤマエコシステム Method for producing molded article for water purification
JP5387109B2 (en) * 2009-04-15 2014-01-15 株式会社大林組 In-situ purification method for high-concentration VOC-contaminated ground
JP2011224432A (en) * 2010-04-15 2011-11-10 Ohbayashi Corp Method for cleaning contaminated ground and cleaning material
JP6099076B2 (en) * 2012-08-20 2017-03-22 多機能フィルター株式会社 Deodorant biodegradation promoting material and deodorant biodegradation promoting method
CN108532392A (en) * 2018-04-26 2018-09-14 福州大学 A kind of hollow TGXG and the united grouting method of microbial technique
CN113827792B (en) * 2021-10-15 2023-11-17 河南中医药大学 Nasal discharge sucking and spraying integrated device for nasal cavity

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05192568A (en) * 1992-01-17 1993-08-03 Taisei Corp Adsorptive material for polluted area, method for improving ground, method for preventing ground from pollution, method for reusing cement raw material and adsorptive material for polluted area
JP3396391B2 (en) * 1997-03-24 2003-04-14 ライト工業株式会社 Pollutant trapping method and pollutant barrier
JP2001303029A (en) * 2000-04-25 2001-10-31 Kangen Yoyu Gijutsu Kenkyusho:Kk Snow melting agent containing molten slag
JP2002096084A (en) * 2000-07-06 2002-04-02 Kawasaki Steel Corp Environment-purifying material produced from refuse solid fuel and method for producing the same
JP2005006598A (en) * 2003-06-20 2005-01-13 Jfe Steel Kk Artificial sand for raising shellfish and method for producing the same

Also Published As

Publication number Publication date
JP2008110330A (en) 2008-05-15

Similar Documents

Publication Publication Date Title
Sakshi et al. Polycyclic aromatic hydrocarbons: soil pollution and remediation
JP5008184B2 (en) Sludge purification civil engineering method
Khan et al. An overview and analysis of site remediation technologies
Gomes et al. Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application
US7413383B2 (en) Chemical-biological stabilization process for repairing soils and cuttings contaminated with oils and petroleum derivatives
ES2417010T3 (en) Compositions for removing hydrocarbons and halogenated hydrocarbons from contaminated environments
Thomé et al. Bioventing in a residual clayey soil contaminated with a blend of biodiesel and diesel oil
Germaine et al. Ecopiling: a combined phytoremediation and passive biopiling system for remediating hydrocarbon impacted soils at field scale
Narayanan et al. Influences of biochar on bioremediation/phytoremediation potential of metal-contaminated soils
Kupryianchyk et al. Positioning activated carbon amendment technologies in a novel framework for sediment management
CN105414171B (en) Reaction plant walls repair system and its processing method for contaminated soil remediation
EP0801033B1 (en) Apparatus for degrading pollutant, process for purifying contaminated medium and process for degrading pollutant
EP1473093B1 (en) Method of purifying contaminated soil using microorganism
JP2013022561A (en) Soil decontamination method
TWI398310B (en) Degradable and slow-releasing material for enhancing chemical oxidation of contaminated soil and groundwater
Butnariu et al. Viability of in situ and ex situ bioremediation approaches for degradation of noxious substances in stressed environs
CN104099103A (en) BIOX long-lasting biological oxidation promoting agent
Mochizuki et al. Effects of soil improvement due to mixing with paper sludge ash
JP5682994B2 (en) Covering waste disposal site
CN201809223U (en) Ecological padding structure of man-made land sewage treatment system
JP6631945B2 (en) Purification promoting material for oil-contaminated soil and purification treatment method using the same
JP5244321B2 (en) Permeability purification wall and purification method of contaminated groundwater
TW201500123A (en) Contamination treatment for soil
Van Cauwenberghe et al. In situ bioremediation
CN110280561A (en) A kind of application of city life garbage concentrates waste pit and its burying method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120229

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5008184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250