JP5008107B2 - Method for producing perchlorate-containing composition - Google Patents
Method for producing perchlorate-containing composition Download PDFInfo
- Publication number
- JP5008107B2 JP5008107B2 JP2000326254A JP2000326254A JP5008107B2 JP 5008107 B2 JP5008107 B2 JP 5008107B2 JP 2000326254 A JP2000326254 A JP 2000326254A JP 2000326254 A JP2000326254 A JP 2000326254A JP 5008107 B2 JP5008107 B2 JP 5008107B2
- Authority
- JP
- Japan
- Prior art keywords
- perchlorate
- containing composition
- reduced pressure
- aqueous solution
- imparting agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y02E60/122—
Landscapes
- Secondary Cells (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、過塩素酸塩と、有機溶媒、有機ポリマー等の有機媒体とを主成分とする過塩素酸塩含有組成物の製造方法に関し、さらに詳しくは、爆発、燃焼等の危険性のない安全な過塩素酸塩含有組成物の製造方法に関する。
【0002】
【従来の技術】
過塩素酸リチウム(以下、「LiP」と略記)または過塩素酸テトラエチルアンモニウム(以下、「TEAP」と略記)に代表される第四級アンモニウム過塩素酸塩と、プロピレンカーボネート、γ−ブチロラクトン等の有機溶媒とを主成分とする過塩素酸塩含有組成物は、リチウムイオン電池や電気二重層コンデンサ等の電解液として用いられ、通常、1〜30ppmの水を含有している。また、アルカリ金属過塩素酸塩とポリアルキレングリコール等の有機ポリマーとを主成分とするものは、絶縁性ポリマーに混合させて導電性を発現させる導電性付与剤として用いられ、通常、100〜1000ppmの水を含有している。
【0003】
電解液や導電性付与剤に用いられる過塩素酸塩含有組成物の水分量は、上記のように厳密に制御しなくてはならず、このため、従来、過塩素酸塩含有組成物は、予め減圧乾燥等により脱水された、固体の無水過塩素酸塩を、有機溶媒や有機ポリマー等の有機媒体中に、直接添加させた後、攪拌下で加熱、溶解させて、製造されていた。また、場合によっては、製造後、さらに脱水させて、目的とする水分量としていた。
【0004】
しかしながら、過塩素酸塩は、固体であり、かつ分子構造中に他の物質を酸化する酸素を有しており、加熱、衝撃、摩擦等により、分解して酸素を放出し、周囲の可燃性物質の燃焼を著しく促進させるため、消防法危険物第一類の「酸化性固体」に指定されている。このため、過塩素酸塩は、加熱、衝撃、摩擦または分解を促進させる薬品類、有機溶媒または有機ポリマーとの接触を避ける、周囲に可燃物を置かない等、取扱いには十分な注意が必要とされる。
【0005】
過塩素酸塩を、可燃物である有機溶媒や有機ポリマー等の有機媒体中に、直接添加させた後、攪拌下で加熱、溶解させるという、上記製造方法は、危険性が極めて高く、より安全な製造方法が望まれていた。
【0006】
【発明が解決しようとする課題】
本発明の目的は、上記問題点を解決し、爆発、燃焼等の危険性のない、安全な過塩素酸塩含有組成物の製造方法を提供することである。
【0007】
【課題を解決するための手段】
本発明者らは、鋭意検討を行った結果、過塩素酸塩水溶液を用い、かつ減圧下で加熱、脱水させることにより、上記課題を達成し得ることを見出し、本発明を完成するに至った。
【0008】
すなわち、本発明は、過塩素酸塩及び有機媒体を主成分とする過塩素酸塩含有組成物の製造において、過塩素酸塩水溶液を、有機媒体中に、添加、混合、あるいは過塩素酸塩水溶液及び有機媒体を混合させた後、ついで減圧下で加熱、脱水させることを特徴とする過塩素酸塩含有組成物の製造方法であり、また、過塩素酸塩及び有機媒体を主成分とする過塩素酸塩含有組成物の製造において、過塩素酸塩水溶液を、有機媒体中に、連続的に添加、混合させながら、減圧下で加熱、脱水させることを特徴とする過塩素酸塩含有組成物の製造方法である。
【0009】
以下、本発明について、詳細に説明する。
【0010】
本発明は、(a)所定量の過塩素酸塩水溶液を、所定量の有機媒体中に、添加、混合させた後、(b)各々所定量の過塩素酸塩水溶液及び有機媒体を混合させた後、あるいは(c)所定量の過塩素酸塩水溶液を、所定量の有機溶媒中に、連続的に添加、混合させながら、ついで、圧力0.1〜20pKaの減圧下、温度60〜200℃で加熱、脱水させて、過塩素酸塩1〜20質量%を含有する、水分量1000ppm以下の過塩素酸塩含有組成物を製造させる方法である。
【0011】
本発明に用いられる過塩素酸塩水溶液は、過塩素酸塩濃度が20〜40質量%の時、作業性がよく、好ましい。過塩素酸塩濃度が20質量%未満の場合、水が多すぎて、組成物中の水分量を制御することが困難となり、40質量%超の場合、結晶が析出する恐れがあり、不都合である。
【0012】
本発明に用いられる過塩素酸塩としては、リチウムイオン電池、電気二重層コンデンサ等の電解液、帯電防止加工用の導電性付与剤等に用いられる周知のものを用いることができる。
【0013】
過塩素酸塩のカチオンとしては、過塩素酸塩含有組成物の伝導度を考慮すると、リチウム、ナトリウム、カリウム等のアルカリ金属カチオン、カルシウム、バリウム等のアルカリ土類金属カチオン、アンモニウム、テトラメチルアンモニウム、テトラエチルアンモニウム、トリエチルメチルアンモニウム等の第四級アンモニウムカチオンが好ましく、これらの少なくとも1種以上が用いられる。
【0014】
本発明に用いられる有機媒体としては、有機溶媒及び/または有機ポリマーである。
【0015】
上記有機溶媒としては、リチウムイオン電池、電気二重層コンデンサ等の電解液に用いられる、常圧下での沸点が150〜350℃の周知のものがあげられ、少なくとも1種以上が用いられる。
【0016】
有機溶媒は、水との沸点差が大で、かつ脱水時の有機溶媒の留出防止を考慮すると、常圧下での沸点が200〜300℃の有機溶媒が好ましく、さらに減圧下で加熱、脱水させる点を考慮すると、水と共沸しにくい有機溶媒である、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、N,N−ジメチルホルムアミド、スルホラン、3−メチルスルホラン、ジメチルスルフォキシド、ジエチルカーボネート等が、より好ましい。
【0017】
また、上記有機ポリマーとしては、加熱時、すなわち温度60〜200℃で液状となるものであればなんでもよく、特に限定されない。
【0018】
有機ポリマーとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレン−ポリプロピレングリコール等のポリアルキレングリコールの単独または混合物、それらの共重合体、あるいは末端をエステル化した置換体があげられ、少なくとも1種以上が用いられる。過塩素酸塩水溶液との混合性及び過塩素酸塩含有組成物の伝導性を考慮すると、好ましくはポリアルキレングリコールである。
【0019】
本発明では、従来のように固体の無水過塩素酸塩を、有機媒体に直接混合させるのではなく、過塩素酸塩の水溶液を用いるため、有機媒体との混合時、万一過塩素酸塩が分解して酸素が放出されても、存在する水により、放出された酸素による有機媒体の燃焼促進を防止することができ、過塩素酸塩含有組成物を安全に製造することができる。
【0020】
本発明において、減圧下での加熱、脱水は、圧力0.1〜20kPaの減圧下、温度60〜200℃で行なわれる。過塩素酸塩や有機媒体の熱安定性、及び作業性や脱水効率を考慮すると、圧力0.5〜10kPaの減圧下、温度70〜160℃で行なうのが好ましい。
【0021】
本発明において、減圧下での加熱、脱水の際に、過塩素酸塩水溶液及び有機媒体の混合液中に、窒素、アルゴン等の不活性ガスを送り込んでもよい。不活性ガスを送り込むことにより、過塩素酸塩の爆発、燃焼等をより一層防止することができ、より安全に製造でき、かつ脱水効率が向上でき、電解液として好適な過塩素酸塩含有組成物が得られるので、好ましい。
【0022】
また、本発明では、必要に応じて、減圧下での加熱、脱水後、モレキュラーシーブ、ゼオライト等の脱水剤を用いて、さらに脱水させてもよい。
【0023】
本発明により得られる過塩素酸塩含有組成物は、過塩素酸塩を1〜20質量%含有している。過塩素酸塩が1質量%未満の場合、イオン濃度が低く過ぎて、電解液や導電性付与剤として用いた時に伝導度が発現せず、また20質量%超の場合、過塩素酸塩濃度が高く、危険性が高いので、不都合である。
【0024】
本発明により得られる過塩素酸塩含有組成物は、電解液に用いる場合、水分量30ppm以下、導電性付与剤に用いられる場合、水分量1000ppm以下となるように、制御される。
【0025】
本発明においては、過塩素酸塩水溶液と、予め混合させた2種類以上の有機媒体の混合液とを混合させて過塩素酸塩含有組成物を製造させる、あるいは、まず過塩素酸水溶液と1種類の有機媒体とを混合させて、中間物を製造させた後、ついで他の有機媒体を添加させて、目的物を製造させる等、2種類以上の有機媒体を含有させてもよい。
【0026】
本発明は、固体の無水過塩素酸塩を、有機媒体中に、直接添加させる従来法に対して、過塩素酸塩の水溶液を用いており、存在する水により、過塩素酸塩の分解により放出された酸素による有機媒体の燃焼促進が防止ができ、爆発、燃焼の危険性がなく、安全に、過塩素酸塩含有組成物が製造できる。
【0027】
本発明により得られる過塩素酸塩含有組成物は、リチウムイオン電池、電気二重層コンデンサ等の電解液、帯電防止加工用の導電性付与剤等に好適である。
【0028】
【発明の実施の形態】
以下、発明の実施の形態を、実施例及び比較例に基き説明する。実施例中の「%」は「質量%」を、また「部」は「質量部」を表す。なお、本発明は、これらの実施例によりなんら限定されない。
【0029】
参考例1
過塩素酸塩水溶液である35%LiP水溶液212.8部と、有機溶媒であるプロピレンカーボネート925.5部とを混合させ、30分間攪拌させて均一な混合液とした後、不活性ガスであるアルゴンガス(高純度品、99.99%)を送り込みながら、圧力2.7kPaの減圧下、温度120℃で、6時間加熱、脱水させて、過塩素酸塩含有組成物であるLiP−プロピレンカーボネート溶液(LiP濃度:7%)を得た。製造条件を表1に示す。
【0030】
得られたLiP−プロピレンカーボネート溶液中の水分量を、カール・フィシャー電量滴定法水分測定装置(平沼産業(株)製AQ−7)を用いて測定したところ、19ppmであった。
【0031】
また、上記LiP−プロピレンカーボネート溶液1000部に、無水ジメトキシエタン445部を添加させて、LiP−プロピレンカーボネート/ジメトキシエタン電解液を調製した。調製した電解液中の水分量は、16ppmであり、リチウムイオン電池の電解液として十分使用可能であった。
【0032】
参考例2
参考例1において、有機溶媒であるγ−ブチロラクトンを925.5部用い、圧力4.0kPaの減圧下、温度90℃で、6時間加熱、脱水させた以外は、実施例1と同様にして、過塩素酸塩含有組成物であるLiP−γ−ブチロラクトン溶液(LiP濃度:7%)を得た。製造条件を表1に示す。得られた溶液中の水分量は、22ppmであり、リチウムイオン電池の電解液として十分使用可能であった。
【0033】
参考例3
参考例1において、過塩素酸塩水溶液である35%TEAP水溶液を212.8部、有機溶媒であるスルホランを925.5部用い、圧力1.3kPaの減圧下、温度150℃で、6時間加熱、脱水させた以外は、実施例1と同様にして、過塩素酸塩含有組成物であるTEAP−スルホラン溶液(TEAP濃度:7%)を得た。製造条件を表1に示す。得られた溶液中の水分量は、23ppmであり、電気二重層コンデンサの電解液として十分使用可能であった。
【0034】
参考例4
参考例1において、35%LiP水溶液を、流量5ml/分の割合で、プロピレンカーボネート中に、連続的に添加、混合させて行なった以外は、実施例1と同様にして、過塩素酸塩含有組成物であるLiP−プロピレンカーボネート溶液(LiP濃度:7%)を得た。製造条件を表1に示す。得られた溶液中の水分量は、21ppmであり、リチウムイオン電池の電解液として十分使用可能であった。
【0035】
参考例5
参考例1において、圧力0.7kPaの減圧下、温度80℃で、6時間加熱、脱水させた以外は、実施例1と同様にして、過塩素酸塩含有組成物であるLiP−プロピレンカーボネート溶液(LiP濃度:7%)を得た。得られた溶液中の水分量は、56ppmであった。引続き、同様の条件で、さらに6時間加熱、脱水させた後の水分量は、22ppmとなり、リチウムイオン電池の電解液として十分使用可能であった。製造条件を表1に示す。
【0036】
参考例6
参考例1において、過塩素酸塩水溶液である35%TEAP水溶液を212.8部、有機溶媒であるスルホランを925.5部用い、圧力1.3kPaの減圧下、温度160℃で6時間加熱、脱水させた以外は、実施例1と同様にして、過塩素酸塩含有組成物であるTEAP−スルホラン溶液(TEAP濃度:7%)を得た。製造条件を表1に示す。得られた溶液中の水分量は、22ppmであり、電気二重層コンデンサの電解液として十分使用可能であった。また、外観は熱分解のため若干黄色に変色していたが、実用上問題はなかった。
【0037】
参考例1
過塩素酸塩水溶液である30%LiP水溶液299部と有機ポリマーであるポリエーテルポリオール(三井ポリオール(株)製AN−002)806部とを混合させ、30分間攪拌させて均一な混合液とした後、圧力5.3kPaの減圧下、温度100℃で、6時間加熱、脱水させて、過塩素酸塩含有組成物であるLiP−ポリエーテルポリオールの粘性液体(LiP濃度:10%)を得た。製造条件を表1に示す。上記粘性液体中の水分量は、400ppmであり、導電性付与剤として十分使用可能であった。
【0038】
実施例2
実施例1において、過塩素酸塩水溶液である30%過塩素酸バリウム(以下、「BaP」と略記)水溶液を431部、有機ポリマーであるポリアルキレングリコール(商品名:プロノン102、日本油脂(株)製)を945部用いた以外は、実施例4と同様にして、過塩素酸塩含有組成物であるBaP−ポリアルキレングリコールの粘性液体(BaP濃度:12%)を得た。製造条件を表1に示す。上記粘性液体中の水分量は、500ppmであり、導電性付与剤として使用可能であった。
【0039】
【表1】
【0040】
比較例1
過塩素酸塩である無水LiP100部を、有機ポリマーであるポリアルキレングリコール(商品名:プロノン102)900部に、直接添加させたところ、高濃度のLiPを含有した粉状不溶物が生成した。この粉状不溶物の落つい感度試験(JIS−K4810準拠)を行なったところ、爆発性を有していることが確認された。
【0041】
比較例2
過塩素酸塩含有組成物であるTEAP−プロピレンカーボネート溶液を製造するために、TEAPを合成させた後、脱水、乾燥を行った。合成したTEAPの発熱量を示差走査熱量計(セイコー電子工業(株)製DSC6200)により測定したところ、592J/gであり、分解発熱量が大きく不安定であった。このため、上記TEAPを、プロピレンカーボネートに、加熱下で攪拌させながら溶解させることは、分解爆発の危険性が高く、実施不能であった。
【0042】
【発明の効果】
本発明では、過塩素酸塩水溶液を用いており、存在する水により、過塩素酸塩の分解により発生した酸素による有機媒体の燃焼促進が防止ができ、爆発、燃焼等の危険性がなく、安全に過塩素酸塩含有組成物が製造できる。
【0043】
過塩素酸塩水溶液を用い、かつ減圧下で加熱、脱水させる、本発明の製造方法によれば、所望の過塩素酸塩含有量及び水分量に制御した過塩素酸塩含有組成物を得ることができ、得られた過塩素酸塩含有組成物は、リチウムイオン電池、電気二重層コンデンサ等の電解液、帯電防止加工用の導電性付与剤等に好適である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a perchlorate-containing composition mainly comprising a perchlorate and an organic medium such as an organic solvent or an organic polymer, and more specifically, there is no risk of explosion, combustion, etc. The present invention relates to a method for producing a safe perchlorate-containing composition.
[0002]
[Prior art]
Quaternary ammonium perchlorate represented by lithium perchlorate (hereinafter abbreviated as “LiP”) or tetraethylammonium perchlorate (hereinafter abbreviated as “TEAP”), propylene carbonate, γ-butyrolactone, etc. A perchlorate-containing composition containing an organic solvent as a main component is used as an electrolytic solution for a lithium ion battery, an electric double layer capacitor, or the like, and usually contains 1 to 30 ppm of water. Moreover, what has an alkali metal perchlorate and organic polymers, such as polyalkylene glycol, as a main component is used as an electroconductivity imparting agent which mixes with an insulating polymer and expresses electroconductivity, and is usually 100-1000 ppm. Contains water.
[0003]
The amount of water in the perchlorate-containing composition used in the electrolytic solution or conductivity imparting agent must be strictly controlled as described above. A solid anhydrous perchlorate previously dehydrated by drying under reduced pressure or the like was directly added to an organic medium such as an organic solvent or an organic polymer, and then heated and dissolved under stirring. Further, in some cases, after the production, the water content was further dehydrated to obtain the target moisture content.
[0004]
However, perchlorate is solid and has oxygen that oxidizes other substances in its molecular structure, and decomposes and releases oxygen by heating, impact, friction, etc., and the surrounding flammability In order to remarkably accelerate the combustion of substances, it is designated as an “oxidizing solid” in the first class of dangerous goods of the Fire Service Act. For this reason, perchlorate must be handled with sufficient care, such as avoiding contact with chemicals that promote heating, impact, friction or decomposition, organic solvents or organic polymers, and no flammable materials. It is said.
[0005]
The above production method, in which perchlorate is directly added to an organic medium such as an organic solvent or organic polymer that is a combustible material, and then heated and dissolved under stirring, is extremely dangerous and safer. New manufacturing methods have been desired.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems and to provide a safe method for producing a perchlorate-containing composition that is free from dangers such as explosion and combustion.
[0007]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have found that the above-described problems can be achieved by using a perchlorate aqueous solution and heating and dehydrating under reduced pressure, and have completed the present invention. .
[0008]
That is, the present invention relates to the production of a perchlorate-containing composition mainly composed of a perchlorate and an organic medium, and an aqueous perchlorate solution is added to, mixed with, or perchlorate in an organic medium. A method for producing a perchlorate-containing composition characterized in that an aqueous solution and an organic medium are mixed and then heated and dehydrated under reduced pressure, and the perchlorate and the organic medium are the main components. In the production of a perchlorate-containing composition, a perchlorate-containing composition is characterized in that a perchlorate aqueous solution is heated and dehydrated under reduced pressure while being continuously added and mixed in an organic medium. It is a manufacturing method of a thing.
[0009]
Hereinafter, the present invention will be described in detail.
[0010]
In the present invention, (a) a predetermined amount of perchlorate aqueous solution is added to and mixed with a predetermined amount of organic medium, and then (b) a predetermined amount of perchlorate aqueous solution and an organic medium are mixed. Or (c) while continuously adding and mixing a predetermined amount of perchlorate aqueous solution into a predetermined amount of organic solvent, then under a reduced pressure of 0.1 to 20 pKa and a temperature of 60 to 200 It is a method for producing a perchlorate-containing composition having a water content of 1000 ppm or less, containing 1 to 20% by mass of perchlorate by heating and dehydrating at ° C.
[0011]
The perchlorate aqueous solution used in the present invention is preferable because the workability is good when the perchlorate concentration is 20 to 40% by mass. If the perchlorate concentration is less than 20% by mass, there is too much water and it becomes difficult to control the amount of water in the composition. If it exceeds 40% by mass, crystals may precipitate, which is inconvenient. is there.
[0012]
As the perchlorate used in the present invention, known ones used for electrolytes such as lithium ion batteries and electric double layer capacitors, conductivity imparting agents for antistatic processing, and the like can be used.
[0013]
In consideration of the conductivity of the perchlorate-containing composition, perchlorate cations include alkali metal cations such as lithium, sodium and potassium, alkaline earth metal cations such as calcium and barium, ammonium and tetramethylammonium. Quaternary ammonium cations such as tetraethylammonium and triethylmethylammonium are preferred, and at least one of these is used.
[0014]
The organic medium used in the present invention is an organic solvent and / or an organic polymer.
[0015]
As said organic solvent, the well-known thing with a boiling point of 150-350 degreeC under normal pressure used for electrolyte solutions, such as a lithium ion battery and an electric double layer capacitor, is mention | raise | lifted, At least 1 type or more is used.
[0016]
The organic solvent is preferably an organic solvent having a large boiling point difference from water and having a boiling point of 200 to 300 ° C. under normal pressure in consideration of prevention of distillation of the organic solvent during dehydration, and further heating and dehydration under reduced pressure. In consideration of the point to be made, it is an organic solvent that is difficult to azeotrope with water, ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, N, N-dimethylformamide, sulfolane, 3-methylsulfolane, dimethyl sulfoxide, diethyl Carbonate and the like are more preferable.
[0017]
The organic polymer is not particularly limited as long as it is liquid when heated, that is, at a temperature of 60 to 200 ° C.
[0018]
Examples of the organic polymer include polyalkylene glycols such as polyethylene glycol, polypropylene glycol, and polyethylene-polypropylene glycol, or a mixture thereof, a copolymer thereof, or a substitution product obtained by esterifying a terminal. Used. In consideration of the miscibility with the perchlorate aqueous solution and the conductivity of the perchlorate-containing composition, polyalkylene glycol is preferable.
[0019]
In the present invention, an anhydrous perchlorate is not directly mixed with an organic medium as in the prior art, but an aqueous solution of perchlorate is used. Even if oxygen decomposes and oxygen is released, the water present can prevent the organic medium from being burned by the released oxygen, and a perchlorate-containing composition can be produced safely.
[0020]
In the present invention, heating and dehydration under reduced pressure are performed at a temperature of 60 to 200 ° C. under a reduced pressure of 0.1 to 20 kPa. Considering the thermal stability, workability and dehydration efficiency of perchlorate and organic medium, it is preferable to carry out at a temperature of 70 to 160 ° C. under a reduced pressure of 0.5 to 10 kPa.
[0021]
In the present invention, an inert gas such as nitrogen or argon may be fed into a mixed solution of an aqueous perchlorate solution and an organic medium during heating and dehydration under reduced pressure. By supplying inert gas, perchlorate explosion, combustion, etc. can be further prevented, safer production, dehydration efficiency can be improved, and a perchlorate-containing composition suitable as an electrolyte Since a thing is obtained, it is preferable.
[0022]
Further, in the present invention, if necessary, after heating and dehydration, dehydrating agents such as molecular sieve and zeolite may be further dehydrated.
[0023]
The perchlorate-containing composition obtained by the present invention contains 1 to 20% by mass of perchlorate. When the perchlorate is less than 1% by mass, the ionic concentration is too low to exhibit conductivity when used as an electrolyte or a conductivity imparting agent. Is inconvenient because it is high and dangerous.
[0024]
The perchlorate-containing composition obtained by the present invention is controlled so that the water content is 30 ppm or less when used in an electrolytic solution, and the water content is 1000 ppm or less when used in a conductivity imparting agent.
[0025]
In the present invention, a perchlorate-containing composition is prepared by mixing a perchlorate aqueous solution and a mixture of two or more organic media mixed in advance, or first, a perchloric acid aqueous solution and 1 Two or more kinds of organic media may be contained, for example, by mixing an organic medium of a different type to produce an intermediate and then adding another organic medium to produce a target product.
[0026]
The present invention uses an aqueous solution of perchlorate as compared to the conventional method in which solid anhydrous perchlorate is directly added to an organic medium, and by the decomposition of perchlorate with existing water. The promotion of combustion of the organic medium by the released oxygen can be prevented, and there is no risk of explosion and combustion, and a perchlorate-containing composition can be produced safely.
[0027]
The perchlorate-containing composition obtained by the present invention is suitable for electrolytes such as lithium ion batteries and electric double layer capacitors, and conductivity imparting agents for antistatic processing.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples and comparative examples. In the examples, “%” represents “% by mass”, and “part” represents “part by mass”. In addition, this invention is not limited at all by these Examples.
[0029]
Reference example 1
It is an inert gas after mixing 212.8 parts of 35% LiP aqueous solution which is a perchlorate aqueous solution and 925.5 parts of propylene carbonate which is an organic solvent and stirring for 30 minutes to obtain a uniform mixed solution. LiP-propylene carbonate, which is a perchlorate-containing composition, is heated and dehydrated at 120 ° C. for 6 hours under a reduced pressure of 2.7 kPa while feeding argon gas (high purity product, 99.99%). A solution (LiP concentration: 7%) was obtained. The manufacturing conditions are shown in Table 1.
[0030]
The amount of water in the obtained LiP-propylene carbonate solution was 19 ppm when measured using a Karl Fischer coulometric titration water measuring device (AQ-7 manufactured by Hiranuma Sangyo Co., Ltd.).
[0031]
Further, 445 parts of anhydrous dimethoxyethane was added to 1000 parts of the LiP-propylene carbonate solution to prepare a LiP-propylene carbonate / dimethoxyethane electrolyte. The amount of water in the prepared electrolytic solution was 16 ppm, which was sufficiently usable as an electrolytic solution for a lithium ion battery.
[0032]
Reference example 2
In Reference Example 1 , as in Example 1 , except that 925.5 parts of γ-butyrolactone, which is an organic solvent, was used and heated and dehydrated at 90 ° C. for 6 hours under a reduced pressure of 4.0 kPa, A LiP-γ-butyrolactone solution (LiP concentration: 7%), which is a perchlorate-containing composition, was obtained. The manufacturing conditions are shown in Table 1. The amount of water in the obtained solution was 22 ppm, which was sufficiently usable as an electrolyte solution for a lithium ion battery.
[0033]
Reference example 3
In Reference Example 1 , using 212.8 parts of a 35% TEAP aqueous solution as a perchlorate aqueous solution and 925.5 parts of sulfolane as an organic solvent, heating at 150 ° C. for 6 hours under a reduced pressure of 1.3 kPa. Except for dehydration, a TEAP-sulfolane solution (TEAP concentration: 7%), which is a perchlorate-containing composition, was obtained in the same manner as in Example 1. The manufacturing conditions are shown in Table 1. The amount of water in the obtained solution was 23 ppm, which was sufficiently usable as an electrolytic solution for electric double layer capacitors.
[0034]
Reference example 4
In Reference Example 1 , a perchlorate-containing solution was obtained in the same manner as in Example 1 except that 35% LiP aqueous solution was added and mixed continuously in propylene carbonate at a flow rate of 5 ml / min. A LiP-propylene carbonate solution (LiP concentration: 7%) as a composition was obtained. The manufacturing conditions are shown in Table 1. The amount of water in the obtained solution was 21 ppm, which was sufficiently usable as an electrolyte solution for a lithium ion battery.
[0035]
Reference Example 5
In Reference Example 1 , a LiP-propylene carbonate solution, which is a perchlorate-containing composition, was used in the same manner as in Example 1 except that heating and dehydration were carried out at a temperature of 80 ° C. for 6 hours under reduced pressure of 0.7 kPa. (LiP concentration: 7%) was obtained. The water content in the obtained solution was 56 ppm. Subsequently, the water content after heating and dehydrating for 6 hours under the same conditions was 22 ppm, which was sufficiently usable as an electrolyte solution for a lithium ion battery. The manufacturing conditions are shown in Table 1.
[0036]
Reference Example 6
In Reference Example 1 , using 212.8 parts of 35% TEAP aqueous solution as a perchlorate aqueous solution and 925.5 parts of sulfolane as an organic solvent, heating at 160 ° C. for 6 hours under a reduced pressure of 1.3 kPa, A TEAP-sulfolane solution (TEAP concentration: 7%), which is a perchlorate-containing composition, was obtained in the same manner as Example 1 except for dehydration. The manufacturing conditions are shown in Table 1. The amount of water in the obtained solution was 22 ppm, which was sufficiently usable as an electrolytic solution for electric double layer capacitors. The appearance was slightly yellow due to thermal decomposition, but there was no practical problem.
[0037]
Reference example 1
299 parts of 30% LiP aqueous solution which is an aqueous solution of perchlorate and 806 parts of polyether polyol (AN-002 manufactured by Mitsui Polyol Co., Ltd.) which is an organic polymer are mixed and stirred for 30 minutes to obtain a uniform mixed liquid. Thereafter, the mixture was heated and dehydrated under a reduced pressure of 5.3 kPa at a temperature of 100 ° C. for 6 hours to obtain a LiP-polyether polyol viscous liquid (LiP concentration: 10%) as a perchlorate-containing composition. . The manufacturing conditions are shown in Table 1. The amount of water in the viscous liquid was 400 ppm, which was sufficiently usable as a conductivity imparting agent.
[0038]
Example 2
In Example 1 , 431 parts of a 30% aqueous solution of barium perchlorate (hereinafter abbreviated as “BaP”), which is a perchlorate aqueous solution, is a polyalkylene glycol (trade name: Pronon 102, Nippon Oil & Fats Co., Ltd.), an organic polymer. Except for using 945 parts), a viscous liquid of BaP-polyalkylene glycol (BaP concentration: 12%) as a perchlorate-containing composition was obtained in the same manner as in Example 4. The manufacturing conditions are shown in Table 1. The amount of water in the viscous liquid was 500 ppm and could be used as a conductivity imparting agent.
[0039]
[Table 1]
[0040]
Comparative Example 1
When 100 parts of anhydrous LiP as a perchlorate was directly added to 900 parts of polyalkylene glycol (trade name: Pronon 102) as an organic polymer, a powdery insoluble material containing a high concentration of LiP was produced. When this powdery insoluble matter was subjected to a drop sensitivity test (based on JIS-K4810), it was confirmed to have explosive properties.
[0041]
Comparative Example 2
In order to produce a TEAP-propylene carbonate solution that is a perchlorate-containing composition, TEAP was synthesized and then dehydrated and dried. The calorific value of the synthesized TEAP was measured with a differential scanning calorimeter (DSC6200 manufactured by Seiko Denshi Kogyo Co., Ltd.) and found to be 592 J / g, and the decomposition calorific value was large and unstable. For this reason, dissolving TEAP in propylene carbonate while stirring under heating has a high risk of decomposition and explosion, and cannot be carried out.
[0042]
【Effect of the invention】
In the present invention, a perchlorate aqueous solution is used, and the existing water can prevent the organic medium from being accelerated by oxygen generated by the decomposition of the perchlorate, and there is no risk of explosion, combustion, etc. A perchlorate-containing composition can be produced safely.
[0043]
According to the production method of the present invention using a perchlorate aqueous solution and heating and dehydrating under reduced pressure, a perchlorate-containing composition controlled to have a desired perchlorate content and moisture content is obtained. The perchlorate-containing composition thus obtained is suitable for electrolytes such as lithium ion batteries and electric double layer capacitors, and conductivity imparting agents for antistatic processing.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000326254A JP5008107B2 (en) | 2000-10-26 | 2000-10-26 | Method for producing perchlorate-containing composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000326254A JP5008107B2 (en) | 2000-10-26 | 2000-10-26 | Method for producing perchlorate-containing composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002129148A JP2002129148A (en) | 2002-05-09 |
JP5008107B2 true JP5008107B2 (en) | 2012-08-22 |
Family
ID=18803475
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000326254A Expired - Lifetime JP5008107B2 (en) | 2000-10-26 | 2000-10-26 | Method for producing perchlorate-containing composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5008107B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2761892A1 (en) * | 2009-05-15 | 2010-11-18 | Akishima Chemical Industries Co., Ltd. | A perchlorate solution improved in safety, and a method for heat-stabilizing chlorine-containing resin compositions |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02253157A (en) * | 1989-03-27 | 1990-10-11 | Shimadzu Corp | Analysis of material having 1, 2-or 1, 3-glycol structure |
JP2782454B2 (en) * | 1989-04-27 | 1998-07-30 | 日本カーリット株式会社 | Stabilized paste-like conductive composition |
JPH03227308A (en) * | 1990-01-31 | 1991-10-08 | Nec Home Electron Ltd | Hygroscopic polymer copolymer and production thereof |
JP3230610B2 (en) * | 1991-07-25 | 2001-11-19 | 日本電信電話株式会社 | Polymer solid electrolyte and method for producing the same |
JP3244017B2 (en) * | 1997-03-25 | 2002-01-07 | 宇部興産株式会社 | Method for producing electrolyte solution for lithium secondary battery |
JPH10338653A (en) * | 1997-06-06 | 1998-12-22 | Jiyunsei Kagaku Kk | Dehydration of liquid |
-
2000
- 2000-10-26 JP JP2000326254A patent/JP5008107B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002129148A (en) | 2002-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Song et al. | Organosulfide‐based deep eutectic electrolyte for lithium batteries | |
EP0096629B1 (en) | Bis-perhalogenacyl or sulfonyl imides of alkali metals, their solid solutions with plastic material and their use in the production of conducting elements for electrochemical generators | |
Wetjen et al. | Composite poly (ethylene oxide) electrolytes plasticized by N‐alkyl‐N‐butylpyrrolidinium Bis (trifluoromethanesulfonyl) imide for lithium batteries | |
JP5001506B2 (en) | Nonaqueous electrolyte additive, nonaqueous electrolyte secondary battery, and nonaqueous electrolyte electric double layer capacitor | |
JP5725510B2 (en) | Solvent for electrolytic solution, electrolytic solution, and gel electrolyte | |
JPH08273679A (en) | Electrochemical battery | |
EP0163576A2 (en) | Ion-conducting macromolecular material for making electrolytes or electrodes | |
Jiang et al. | Electrophilically Trapping Water for Preventing Polymerization of Cyclic Ether Towards Low‐Temperature Li Metal Battery | |
CN111244540A (en) | Aqueous high-voltage window anti-freezing electrolyte and application thereof | |
Tanaka et al. | Design of metal salt/amide-based deep eutectic monomers toward sustainable production of ion-conductive polymers by radical polymerization | |
US8871390B2 (en) | PAN-PEO gels with improved conductance and solvent retention | |
JP5008107B2 (en) | Method for producing perchlorate-containing composition | |
CN115000509A (en) | Sodium ion battery flame-retardant electrolyte and battery | |
Wu et al. | Incombustible solid polymer electrolytes: A critical review and perspective | |
US4321314A (en) | Non-aqueous cell safety | |
Kumar | Electrical characterization of PVdF based proton conducting polymer gel electrolytes | |
CN113206299B (en) | Electrolyte of lithium ion battery and preparation method thereof | |
JP5999370B2 (en) | Gel electrolyte | |
JPS61204266A (en) | Electrically conductive polymer solution | |
WO2020203871A1 (en) | Electrolyte composition for electrochemical devices, and electrochemical device | |
JPH0335761B2 (en) | ||
EP3564290A1 (en) | Method for producing polyisothianaphthene electroconductive polymer | |
JP2559822B2 (en) | Polymer solid electrolyte | |
Vasil’ev et al. | Ionomers Based on Sulfonated Polyphenylquinoxalines: Synthesis and Properties in Solution and Block | |
Johansson et al. | Polyester‐Polycarbonate Polymer Electrolytes Beyond LiFePO4: Influence of Lithium Salt and Applied Potential Range |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071011 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110125 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110325 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110810 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110927 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120525 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120525 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5008107 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150608 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |