JPH03236168A - Chemical battery - Google Patents

Chemical battery

Info

Publication number
JPH03236168A
JPH03236168A JP2029545A JP2954590A JPH03236168A JP H03236168 A JPH03236168 A JP H03236168A JP 2029545 A JP2029545 A JP 2029545A JP 2954590 A JP2954590 A JP 2954590A JP H03236168 A JPH03236168 A JP H03236168A
Authority
JP
Japan
Prior art keywords
electrolyte
organic
compound
organosilicon
organic silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2029545A
Other languages
Japanese (ja)
Inventor
Shigeo Sugihara
杉原 茂雄
Junichi Yamaki
準一 山木
Masayasu Arakawa
正泰 荒川
Isamu Yoshimatsu
吉松 勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2029545A priority Critical patent/JPH03236168A/en
Publication of JPH03236168A publication Critical patent/JPH03236168A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To obtain a battery which has little danger of firing or inflammation and high electromotive force and a high discharge capacity and can be charged by using an organic silicon compound containing the silicon element in the molecule as an organic electrolyte for an electrolyte solvent. CONSTITUTION:An alkali metal is used for a negative electrode, a solid active material is used for a positive electrode, and an electrolyte is solved in an organic solvent containing at least one kind of a group of an organic silicon ether compound, an organic silicon ketone compound, an organic silicon sulfoxide compound, an organic silicon nitrile compound, an organic silicon amide compound, and an organic silicon imide compound in the molecule for use as an organic electrolyte. Since the nonflammable silicon element is contained, the flash point is high, the thermal decomposition temperature is high, and the danger such as firing and inflammation can be avoided when a chemical battery is heated due to an abnormal charge/discharge and a short circuit.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高エネルギー密度化学電池用電解液組成物に
関する。特に本発明は有機ケイ素化合物から成る有機溶
媒と電気化学的に活性な電解質とを含む電解液組成物、
及びそれから成る化学電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an electrolyte composition for high energy density chemical cells. In particular, the present invention provides an electrolyte composition comprising an organic solvent comprising an organosilicon compound and an electrochemically active electrolyte;
and a chemical battery comprising the same.

〔従来の技術〕[Conventional technology]

最近開発された高エネルギー密度化学電池は負極活物質
としてのアルカリ金属物質と、正極活物質としての遷移
金属カルコゲン化合物と、電解液としての有機電解液と
から成っている。
A recently developed high energy density chemical battery consists of an alkali metal material as a negative electrode active material, a transition metal chalcogen compound as a positive electrode active material, and an organic electrolyte as an electrolyte.

中でもリチウム又はリチウム含有合金を負極とし、二酸
化マンガンあるいは五酸化バナジウムなどの遷移金属カ
ルコゲン化合物を正極活物質とし、炭酸プロピレンある
いはテトラヒドロフラン等の有機溶媒あるいはこれらの
混合溶媒に過塩素酸リチウムや六フッ化リン酸リチウム
等のアルカリ金属塩を電解質として溶解したものを有機
電解液として成る化学電池は、リチウム負極が全金属中
最もイオン化傾向が大きく、かつ比重が最も小さいため
単位重量当りのエネルギーが最大であるという特徴を有
する。更にこれらの電池の重要な特徴として、反復して
放電及び充電ができるということが挙げられる。この化
学電池に用いられる有機電解液としては大きな電流が取
出せるように高いイオン伝導性を示し、また低粘度でな
ければならないことは周知の事実である。従来、この条
件を満足する電解液用有機溶媒として、高い電解質溶解
性を示す高誘電率溶媒と粘度の小さい低粘度溶媒の組合
せが用いられる場合が多かった。高誘電率溶媒として用
いられる代表的なものとしては、炭酸プロピレン、炭酸
エチレン、T−ブチロラクトン、ジメチルスルホキシド
、スルホラン、アセトニ) IJル等が知られており、
低粘度溶媒として用いられる代表的なものとして、テト
ラヒドロフラン、ジメトキシエタン、ジオキソラン等が
知られている。これらの有機溶媒を用いて作られた電解
液は、高いイオン伝導性を示し、また低粘度であること
からイオンの輸率が大きく、その結果、大きな電気容量
を持ち、かつ大きな電流の取出せる化学電池を実現して
いる。
Among them, lithium or a lithium-containing alloy is used as the negative electrode, a transition metal chalcogen compound such as manganese dioxide or vanadium pentoxide is used as the positive electrode active material, and lithium perchlorate or hexafluoride is used in an organic solvent such as propylene carbonate or tetrahydrofuran, or a mixed solvent thereof. Chemical batteries that use an organic electrolyte in which an alkali metal salt such as lithium phosphate is dissolved as an electrolyte have the highest energy per unit weight because the lithium negative electrode has the greatest tendency to ionize among all metals and has the lowest specific gravity. It has the characteristic of being. A further important feature of these batteries is that they can be repeatedly discharged and charged. It is a well-known fact that the organic electrolyte used in this chemical battery must exhibit high ionic conductivity so that a large current can be extracted, and must also have low viscosity. Conventionally, as an organic solvent for an electrolytic solution that satisfies this condition, a combination of a high dielectric constant solvent that exhibits high electrolyte solubility and a low viscosity solvent that has low viscosity has often been used. Typical solvents used as high dielectric constant solvents include propylene carbonate, ethylene carbonate, T-butyrolactone, dimethyl sulfoxide, sulfolane, and acetonyl.
Tetrahydrofuran, dimethoxyethane, dioxolane, and the like are known as typical low-viscosity solvents. Electrolytes made using these organic solvents exhibit high ionic conductivity and have a low viscosity, so they have a large ion transfer number, and as a result, they have a large capacitance and can draw a large current. A chemical battery has been realized.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記の電解液用有機溶媒はすべて炭素、
水素、酸素から成る有機化合物であり、多くが消防法第
4類第1石油類又は第2石油類に属し、いずれも強い引
火性を持つ。中でもエーテル系有機溶媒は蒸気圧が高く
、引火点が特に低い。このことは電池使用環境上、問題
となり得るほか、充電中、放電中あるいは短絡などの誤
動作中に起こる電気化学反応又は化学反応によって発熱
した場合、発火若しくは引火する可能性を有している。
However, all of the above organic solvents for electrolytes are carbon,
It is an organic compound consisting of hydrogen and oxygen, and most of them belong to the Fire Service Act, Class 4, Petroleum 1 or Petroleum 2, and both are highly flammable. Among them, ether organic solvents have a high vapor pressure and a particularly low flash point. This may pose a problem in terms of the environment in which the battery is used, and if heat is generated due to electrochemical or chemical reactions that occur during charging, discharging, or malfunctions such as short circuits, there is a possibility of ignition or ignition.

このことは電池使用の安全上重要な問題となり得るもの
であり、これらは前述したように電解液用有機溶媒が、
炭素、水素、酸素から成ることに本質的に根ざしている
ものである。
This can be an important safety issue when using batteries, and as mentioned above, the organic solvent for the electrolyte is
It is essentially based on being composed of carbon, hydrogen, and oxygen.

本発明は、電池使用上問題となり得る発火、引火の危険
性の少ない電解液とそれを用いた化学電池を提供するこ
とを目的とするものである。
An object of the present invention is to provide an electrolytic solution that has less risk of ignition or ignition, which can cause problems when using a battery, and a chemical battery using the same.

〔課題を解決するための手段〕[Means to solve the problem]

本発明を概説すれば、本発明は化学電池に関する発明で
あり、アルカリ金属を負極とし、固体活物質を正極とし
、有機電解液を電解液とする電気化学電池において、該
有機電解液として、分子中にシリコン元素を含有する一
群の有機ケイ素エーテル化合物、有機ケイ素ケトン化合
物、−有機ケイ素スルホキシド化合物、有機ケイ素ニト
リル化合物、有機ケイ素アミド化合物、有機ケイ素イミ
ド化合物の少なくとも一種を含有する有機溶媒に電解質
を溶解させて成るものを用いることを特徴とする。
To summarize the present invention, the present invention relates to a chemical battery, in which an alkali metal is used as a negative electrode, a solid active material is used as a positive electrode, and an organic electrolyte is used as an electrolyte. An electrolyte is added to an organic solvent containing at least one of a group of organosilicon ether compounds, organosilicon ketone compounds, -organosilicon sulfoxide compounds, organosilicon nitrile compounds, organosilicon amide compounds, and organosilicon imide compounds containing a silicon element therein. It is characterized by using a product obtained by dissolving it.

前記の目的を達成するため、電解液として一群の鎮状有
機ケイ素化合物を含有する有機溶媒に電解質を溶解させ
たものを用いた。有機ケイ素化合物は有機金属化合物に
属する一群の化合物であり、難燃性のシリコン元素を含
むため引火点が高く、また熱分解温度も高いという特徴
を有する。それ故、これらを電解液溶媒に用いた場合、
異常な充電、放電、又は短絡により化学電池が発熱する
ことがあった場合でも、引火、発火などの危険性を回避
することができる。
In order to achieve the above object, an electrolyte solution was used in which an electrolyte was dissolved in an organic solvent containing a group of aqueous organosilicon compounds. Organosilicon compounds are a group of compounds belonging to organometallic compounds, and are characterized by having a high flash point and a high thermal decomposition temperature because they contain a flame-retardant silicon element. Therefore, when these are used as electrolyte solvents,
Even if the chemical battery generates heat due to abnormal charging, discharging, or short circuit, the risk of ignition or ignition can be avoided.

更にこれらの有機ケイ素化合物を電解液溶媒に用いた場
合の特長は、第1にこれらの電解液溶媒は従来の炭素、
水素、酸素から成る有機溶媒に比べて表面張力が小さい
ため、負極及び正極活物質へのぬれ性が良く、また微小
な粒子間隙への浸透も十分良好に行われるため、電極と
の接触抵抗が小さくなり、その結果、化学電池の重要な
特性である電圧、電流とも大きな値が得られるという特
長を有する。第2に、有機ケイ素化合物はその中に含有
するケイ素−酸素結合が炭素−酸素結合に比べて大きな
結合エネルギーを有するため、酸化還元反応を受けにく
く、その結果これらの溶媒を用いた有機電解液は、充電
又は放電中において正極及び負極との接触面において電
気化学的分解反応を起こしにくく、高電圧電池に使用し
た場合も安定に動作するという特長を有する。また第3
に有機ケイ素化合物は、従来の炭素、水素、酸素から成
る有機溶媒に比べてその粘度が温度によって変化しにく
いという特性を有する。すなわち、従来の有機溶媒は温
度が低下すると共に急激に粘度が上昇するため、低温に
おけるイオン導電率が減少し、電池特性が低下するとい
う問題点があった。これに対して本発明による有機ケイ
素化合物は、温度が低下しても急激な粘度の増加が無い
ため、このような電池特性の低下が無いという特長を有
する。
Furthermore, the advantages of using these organosilicon compounds as electrolyte solvents are as follows: First, these electrolyte solvents can be used in place of conventional carbon,
Since the surface tension is lower than that of organic solvents consisting of hydrogen and oxygen, it has good wettability to the negative and positive electrode active materials, and also penetrates into minute gaps between particles, so the contact resistance with the electrode is low. As a result, it has the advantage of being able to obtain large values for both voltage and current, which are important characteristics of chemical batteries. Second, organosilicon compounds contain silicon-oxygen bonds that have greater bond energy than carbon-oxygen bonds, so they are less susceptible to redox reactions, and as a result, organic electrolytes using these solvents are has the advantage that electrochemical decomposition reactions are unlikely to occur at the contact surface with the positive and negative electrodes during charging or discharging, and that it operates stably even when used in high-voltage batteries. Also the third
Organosilicon compounds have the characteristic that their viscosity does not change easily with temperature compared to conventional organic solvents consisting of carbon, hydrogen, and oxygen. That is, the viscosity of conventional organic solvents increases rapidly as the temperature decreases, resulting in a decrease in ionic conductivity at low temperatures and deterioration of battery characteristics. On the other hand, the organosilicon compound according to the present invention has the advantage that the viscosity does not suddenly increase even when the temperature decreases, so that there is no such deterioration in battery characteristics.

上述したように、−群の有機ケイ素化合物を電解液溶媒
に用いた場合、難燃性で引火しにくいという特長のほか
に、従来の電解液には見られない種々の特長を有する。
As mentioned above, when an organosilicon compound of the - group is used as an electrolyte solvent, in addition to being flame retardant and difficult to catch fire, it has various other features not found in conventional electrolytes.

以上の特長は一般の有機ケイ素化合物に当てはまるもの
であるが、すべての有機ケイ素化合物が本発明の電解液
溶媒として使用できるものではない。すなわち、多くの
有機ケイ素化合物は一般に無極性であり、アルカリ金属
塩から成る電解質の溶解度が小さく、またこれらの有機
ケイ素化合物は誘電率が小さいため、溶解した電解質の
イオン解離度も小さく、イオン導電率が小さいという欠
点を有する。これは結果として十分な電流が取aせない
という根本的な電池特性の低下を引起こす。
Although the above features apply to general organosilicon compounds, not all organosilicon compounds can be used as the electrolyte solvent of the present invention. In other words, many organosilicon compounds are generally nonpolar and have low solubility in electrolytes consisting of alkali metal salts.Also, since these organosilicon compounds have a small dielectric constant, the degree of ionic dissociation of the dissolved electrolyte is also small, resulting in ionic conductivity. It has the disadvantage of a low rate. As a result, this causes a fundamental deterioration in battery characteristics such that sufficient current cannot be drawn.

本発明者らはこれらの問題を解決できる溶媒を検討した
結果、有機ケイ素化合物の中から、−群の有機ケイ素ケ
トン化合物、有機ケイ素スルホキシド化合物、有機ケイ
素ニトリル化合物、有機ケイ素アミド化合物、有機ケイ
素イミド化合物がこれらの問題を解決できる特性を備え
ていることを見出した。これらの有機ケイ素化合物は比
較的大きな誘電率を持ち、アルカリ金属塩から成る電解
質の溶解性に優れ、かつそのイオン解離度も大きいので
、高いイオン導電性を示した。また有機ケイ素エーテル
化合物は単独では電解質の溶解性は十分でないが、上記
の有機ケイ素化合物と混合することにより、電解液の粘
度を小さくする効果があり、かつ従来の炭化水素系エー
テル化合物に比べ引火点が高く難燃性が増加した。
As a result of examining solvents that can solve these problems, the present inventors found that among organosilicon compounds, - group of organosilicon ketone compounds, organosilicon sulfoxide compounds, organosilicon nitrile compounds, organosilicon amide compounds, and organosilicon imides. We have discovered that a compound has properties that can solve these problems. These organosilicon compounds have a relatively large dielectric constant, excellent solubility in electrolytes made of alkali metal salts, and a high degree of ionic dissociation, so they exhibit high ionic conductivity. In addition, organosilicon ether compounds alone do not have sufficient solubility in electrolytes, but when mixed with the above organosilicon compounds, they have the effect of reducing the viscosity of the electrolyte and are more flammable than conventional hydrocarbon ether compounds. The score was high and the flame retardancy increased.

このような有機ケイ素化合物を化学構造式で示せば、 第1は、有機ケイ素エーテル化合物 RR0−R2であ
り、 1 第2は、有機ケイ素ケトン化合物 RR0−R2であり
、 第3は、有機ケイ素スルホキシド化合物1 R,−3−R2 第4は、有機ケイ素ニトリル化合物 S+−CNであり
、 2 であり、 第6は、有機ケ仁素イミド化合物 である。ただし、式中、R1、R2はアルキル基、ハロ
ゲン化アルキル基、アルキレン基、シリル基、シリル化
アルキル基、シロキシル基又はシロキシル化アルキル基
のいずれかを表し、Rは水素又はアルキル基を表し、R
3はアルキレン基を表し、Slはシリル基、シリル化ア
ルキル基、シロキシル基又はシロキシル化アルキル基を
表す。ただしR1、R2は互いに同一であっても異なっ
ていても良いが、共にアルキル基、ハロゲン化アルキル
基及びアルキレン基であってはならない。
If such organosilicon compounds are represented by chemical structural formulas, the first is an organosilicon ether compound RR0-R2, the second is an organosilicon ketone compound RR0-R2, and the third is an organosilicon sulfoxide. Compound 1 R, -3-R2 The fourth is an organosilicon nitrile compound S+-CN, and the sixth is an organosilicon nitrile compound S+-CN. However, in the formula, R1 and R2 represent either an alkyl group, a halogenated alkyl group, an alkylene group, a silyl group, a silylated alkyl group, a siloxyl group, or a siloxylated alkyl group, and R represents hydrogen or an alkyl group, R
3 represents an alkylene group, and Sl represents a silyl group, a silylated alkyl group, a siloxyl group, or a siloxylated alkyl group. However, R1 and R2 may be the same or different, but neither of them must be an alkyl group, a halogenated alkyl group, or an alkylene group.

本発明にかかるシリル基としてはトリメチルシリル基、
トリエチルシリル基、t−ブチルジメチルシリル基など
が適しており、シリル化アルキル基としてはトリメチル
シリルメチル基、トリメチルシリルエチル基、t−ブチ
ルジメチルシリルメチル基等が適しており、シロキシル
基としては1.1−ジメチル−3,3,3−)リメチル
シロキシシリル基(略称 ジシロキシル基)  1,1
−ジメチル−3,3,5,5゜5−ペンタメチルジシロ
キシシリル基(略称n−)リシロキシル基) メチル−
ビス(トリメチルシロキシ)シリル基(略称 1so−
トリシロキシル基)などが適しており、またシロキシル
化アルキル基としては1,1−ジメチル−3゜3.3−
)!Jメチルシロキシシリルメチル基等が適している。
The silyl group according to the present invention includes a trimethylsilyl group,
Triethylsilyl group, t-butyldimethylsilyl group, etc. are suitable; as the silylated alkyl group, trimethylsilylmethyl group, trimethylsilylethyl group, t-butyldimethylsilylmethyl group, etc. are suitable; as the siloxyl group, 1.1 -dimethyl-3,3,3-)limethylsiloxysilyl group (abbreviation: disiloxyl group) 1,1
-dimethyl-3,3,5,5゜5-pentamethyldisiloxysilyl group (abbreviation n-)lysiloxyl group) Methyl-
Bis(trimethylsiloxy)silyl group (abbreviation 1so-
1,1-dimethyl-3゜3.3- as the siloxylated alkyl group.
)! J methylsiloxysilylmethyl group and the like are suitable.

これらの有機ケイ素化合物の具体例として次のようなも
のを挙げることができる。
Specific examples of these organosilicon compounds include the following.

第1に、有機ケイ素エーテル化合物の具体例として、メ
チルトリメチルシリルメチルエーテル、エチレングリコ
ールビス(トリメチルシリル)エーテル、エチレングリ
コールビス(トリメチルシリルメチル)エーテル、1−
メトキシ−2−トリメチルシロキシプロパン、テトラメ
トキシシラン、テトラエトキシシラン、等を挙げること
ができる。
First, specific examples of organosilicon ether compounds include methyltrimethylsilylmethyl ether, ethylene glycol bis(trimethylsilyl) ether, ethylene glycol bis(trimethylsilylmethyl) ether, 1-
Examples include methoxy-2-trimethylsiloxypropane, tetramethoxysilane, and tetraethoxysilane.

第2に、有機ケイ素ケトン化合物の具体例として、メチ
ルトリメチルシリルメチルケトン、ジ(トリメチルシリ
ルメチル)ケトン、エチルトリメチルシリルケトン、エ
チルトリメチルシリルメチルケトン、等を挙げることが
できる。
Second, specific examples of organosilicon ketone compounds include methyltrimethylsilylmethylketone, di(trimethylsilylmethyl)ketone, ethyltrimethylsilylketone, and ethyltrimethylsilylmethylketone.

第3に、有機ケイ素スルホキシド化合物の具体例として
、メチルトリメチルシリルメチルスルホキシド、ジ(ト
リメチルシリルメチル)スルホキシド、エチルトリメチ
ルシリルスルホキシド、等を挙げることができる。
Third, specific examples of organosilicon sulfoxide compounds include methyltrimethylsilylmethylsulfoxide, di(trimethylsilylmethyl)sulfoxide, and ethyltrimethylsilylsulfoxide.

第4に、有機ケイ素二) IJル化合物の具体例として
、トリメチルシリルアセトニトリル、トリメチルシリル
プロピオニトリル、等を挙げることができる。
Fourth, specific examples of organosilicon compounds include trimethylsilylacetonitrile, trimethylsilylpropionitrile, and the like.

第5に、有機ケイ素アミド化合物の具体例として、トリ
メチルシリルアセトアミド、N−メチル−N−)!Jメ
チルシリルアセトアミド、Nメチル−N−(t−ブチル
ジメチルシリル)アセトアミド、N−メチル−N−トリ
メチルシリルトリフルオロアセトアミド、N−メチルN
−(t−ブチルジメチルシリル)トリフルオロアセトア
ミド、等を挙げることができる。
Fifth, as a specific example of the organosilicon amide compound, trimethylsilylacetamide, N-methyl-N-)! J Methylsilylacetamide, N-methyl-N-(t-butyldimethylsilyl)acetamide, N-methyl-N-trimethylsilyltrifluoroacetamide, N-methyl N
-(t-butyldimethylsilyl)trifluoroacetamide, and the like.

第6に、有機ケイ素イミド化合物の具体例として、N−
)リメチルシリルスクシノイミド、N−トリメチルシリ
ルメチルスクシノイミド、N−)リメチルシリルエチル
スクシノイミド、N−)リメチルシリルメトキシメチル
スクシノイミド、等を挙げることができる。
Sixth, as a specific example of an organosilicon imide compound, N-
)limethylsilylsuccinoimide, N-trimethylsilylmethylsuccinoimide, N-)limethylsilylethylsuccinoimide, N-)limethylsilylmethoxymethylsuccinoimide, and the like.

これらの有機ケイ素化合物を用いて電解液を作る場合、
それぞれの溶媒を単独に用いることも可能であるが、2
種以上の溶媒を混合して用いてもよい。更にまた、これ
らの有機ケイ素化合物に、他の炭素、水素、酸素から成
る一般有機溶媒を加えて用いることも差支えない。これ
らの単独又は混合溶媒にアルカリ金属塩から成る支持電
解質を溶解して有機電解液とするが、前記支持電解質と
しては一般に知られているLICI(14、LiAsF
5 、LiBF、 、LiA1[:1.、Li[’F+
CD2 、 LiNbF、   、 LiPF6 、 
LiSbF6、  LiAsF5 、LiCF3SO3
、LiAsF5SO3、LL (CF3SO2N) 2
、KSCN、 KISLiCl、LiBr等を用いるこ
とができる。
When making an electrolyte using these organosilicon compounds,
Although it is possible to use each solvent alone, 2
A mixture of two or more kinds of solvents may be used. Furthermore, other general organic solvents consisting of carbon, hydrogen, and oxygen may be added to these organosilicon compounds. A supporting electrolyte consisting of an alkali metal salt is dissolved in these solvents alone or in a mixture to obtain an organic electrolyte.
5, LiBF, , LiA1[:1. , Li['F+
CD2, LiNbF, , LiPF6,
LiSbF6, LiAsF5, LiCF3SO3
, LiAsF5SO3, LL (CF3SO2N) 2
, KSCN, KISLiCl, LiBr, etc. can be used.

〔実施例〕〔Example〕

以下、本発明を実施例によって更に詳しく説明するが、
本発明はこれら実施例に限定されない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The invention is not limited to these examples.

実施例1 メチルトリメチルシリルメチルケトン100−にあらか
じめ400℃で4時間熱処理したモレキュラーシーブズ
4Aを15gカロえて1日かくはんした後、活性アルミ
ナカラムを通して十分に水分を除去した。この電解液溶
媒50dに電解質LiAsF6の7.8gを溶解し、0
.8モル濃度の有機電解液を調製した。このようにして
調製した有機電解液を再び活性アルミナカラムを通して
水分を徹底的に除去した。これらの有機電解液を電解液
とし、リチウム箔を負極に、五酸化バナジウムを正極に
用いて化学電池を作製した。正極活物質には、95mo
le%V2O5−5mole%P20.の組成より成る
非晶質材料を用い、これを70重量%、導電剤としてア
セチレンブラックを25重量%、バインダとしてテフロ
ンを5重量%の割合で含む合剤ペレットを正極として用
い、負極として金属リチウムを、更にセパレータとして
微孔性ポリプロピレンシートを用いてコイン型リチウム
電池を作製した。電解液は正極、負極及びセパレータな
ど電池構成部材とのなじみがよく、速やかに電池内部に
浸透した。
Example 1 15 g of molecular sieves 4A, which had been heat-treated in advance at 400° C. for 4 hours, was added to methyltrimethylsilylmethylketone 100, stirred for one day, and then passed through an activated alumina column to thoroughly remove moisture. Dissolve 7.8 g of electrolyte LiAsF6 in 50 d of this electrolyte solvent, and
.. An 8 molar organic electrolyte was prepared. The organic electrolyte thus prepared was again passed through an activated alumina column to thoroughly remove moisture. A chemical cell was fabricated using these organic electrolytes as an electrolyte, lithium foil as a negative electrode, and vanadium pentoxide as a positive electrode. The positive electrode active material contains 95mo
le%V2O5-5mole%P20. A mixture pellet containing 70% by weight of this amorphous material, 25% by weight of acetylene black as a conductive agent, and 5% by weight of Teflon as a binder was used as the positive electrode, and metallic lithium was used as the negative electrode. Further, a coin-type lithium battery was fabricated using a microporous polypropylene sheet as a separator. The electrolyte was compatible with the battery components such as the positive electrode, negative electrode, and separator, and quickly penetrated into the battery.

作製した電池のインピーダンスを測定した結果を他の例
と共に後記表1に示す。またこの電池を用い、室温中、
1mAの定電流下、1.8V〜3.5Vの電圧範囲で充
放電試験を行った。第1回サイクルの放電開始電圧を再
び表1に示す。
The results of measuring the impedance of the manufactured battery are shown in Table 1 below along with other examples. Also, using this battery, at room temperature,
A charge/discharge test was conducted in a voltage range of 1.8 V to 3.5 V under a constant current of 1 mA. The discharge starting voltages for the first cycle are shown in Table 1 again.

本実験で得られた電池は正常な放電と充電の繰返しが可
能であった。
The battery obtained in this experiment was able to be repeatedly discharged and charged normally.

実施例2〜5 メチルトリメチルシリルメチルスルホキシド、トリメチ
ルシリルアセトニトリル、トリメチルシリルアセトアミ
ド、N−)リメチルシリルメチルスクシノイミドの4種
の電解液溶媒を用い、実施例1と同様な方法で電解液を
調製した。これらの電解液を用い、やはり実施例1と同
様な方法でリチウム負極、v205ペレット正極、ポリ
プロピレンセパレータから成るリチウム電池を作製した
。作製した電池のインピーダンス並びに充放電試験にお
ける放電開始電圧を表1に併せて示す。電解液によって
インピーダンス及び放電開始電圧がわずか異なっている
が、これは電解溶媒の電解質溶解性並びにイオン解離度
が異なるた約である。しかし作製した電池はいずれも正
常な放電と充電の繰返しが可能であった。
Examples 2 to 5 Electrolyte solutions were prepared in the same manner as in Example 1 using four types of electrolyte solution solvents: methyltrimethylsilylmethylsulfoxide, trimethylsilylacetonitrile, trimethylsilylacetamide, and N-)limethylsilylmethylsuccinoimide. Using these electrolytes, a lithium battery consisting of a lithium negative electrode, a V205 pellet positive electrode, and a polypropylene separator was produced in the same manner as in Example 1. Table 1 also shows the impedance of the produced battery and the discharge start voltage in the charge/discharge test. The impedance and firing voltage differ slightly depending on the electrolytic solution, but this is due to the difference in electrolytic solubility and degree of ionic dissociation of the electrolytic solvent. However, all of the batteries produced were able to be repeatedly discharged and charged normally.

実施例6 メチルトリメチルシリルメチルケトンとメチルトリメチ
ルシリルメチルスルホキシドを体積で等量混合した電解
液溶媒を作り、実施例1と同様な方法で電解液を調製し
た。この電解液を用い、やはり実施例1と同様な方法で
リチウム負極、v205ペレット正極、ポリプロピレン
セパレータから成るリチウム電池を作製した。作製した
電池のインピーダンス並びに充放電試験における放電開
始電圧を表1に併せて示す。インピーダンス及び放電開
始電圧がわずか異なっているが、これは電解溶媒の電解
質溶解性並びにイオン解離度が異なるためである。しか
し作製した電池は正常な放電と充電の繰返しが可能であ
った。
Example 6 An electrolytic solution solvent was prepared by mixing equal volumes of methyltrimethylsilylmethylketone and methyltrimethylsilylmethylsulfoxide, and the electrolytic solution was prepared in the same manner as in Example 1. Using this electrolyte, a lithium battery consisting of a lithium negative electrode, a V205 pellet positive electrode, and a polypropylene separator was produced in the same manner as in Example 1. Table 1 also shows the impedance of the produced battery and the discharge start voltage in the charge/discharge test. The impedance and firing voltage are slightly different, but this is because the electrolyte solubility of the electrolytic solvent and the degree of ionic dissociation are different. However, the fabricated battery was able to be repeatedly discharged and charged normally.

実施例7 メチルトリメチルシリルメチルエーテルとプロピレンカ
ーボネートを体積で等量混合した電解液溶媒を作り、実
施例1と同様な方法で電解液を調製した。この電解液を
用い、やはり実施例1と同様な方法でリチウム負極、V
2[15ペレツト正極、ポリプロピレンセパレータから
成るリチウム電池を作製した。作製した電池のインピー
ダンス並びに充放電試験における放電開始電圧を表1に
併せて示す。インピーダンス及び放電開始電圧がわずか
異なっているが、これは電解溶媒の電解質溶解性並びに
イオン解離度が異なるためである。しかし作製した電池
は正常な放電と充電の繰返しが可能であった。
Example 7 An electrolytic solution solvent was prepared by mixing equal volumes of methyltrimethylsilyl methyl ether and propylene carbonate, and the electrolytic solution was prepared in the same manner as in Example 1. Using this electrolyte, a lithium negative electrode, V
A lithium battery consisting of a 2[15 pellet positive electrode and a polypropylene separator was prepared. Table 1 also shows the impedance of the produced battery and the discharge start voltage in the charge/discharge test. The impedance and firing voltage are slightly different, but this is because the electrolyte solubility of the electrolytic solvent and the degree of ionic dissociation are different. However, the fabricated battery was able to be repeatedly discharged and charged normally.

表1 実施例で作製した電池のインピーダンスと放電開
始電圧a)40℃での値 b) 55℃での値 〔発明の効果〕 以上説明したように、分子中にシリコン元素を含有する
有機ケイ素化合物を電解液溶媒に用いて作製した電解液
は、高いイオン導電率を示し、本質的に難燃性である。
Table 1 Impedance and discharge start voltage of the batteries produced in Examples a) Value at 40°C b) Value at 55°C [Effects of the invention] As explained above, organosilicon compounds containing silicon element in the molecule The electrolyte prepared by using this as an electrolyte solvent exhibits high ionic conductivity and is inherently flame retardant.

更にこれらの電解液を用いて化学電池を作製すると電解
液は速やかに電池構成部材をぬらし、この電池は電気的
接触抵抗が小さいため高い起電力と大きな放電容量が得
られ、かつ充電が可能であるという利点を有する。
Furthermore, when a chemical battery is made using these electrolytes, the electrolyte quickly wets the battery components, and because the electrical contact resistance is low, this battery has a high electromotive force and a large discharge capacity, and can be charged. It has the advantage of being

Claims (1)

【特許請求の範囲】[Claims] 1、アルカリ金属を負極とし、固体活物質を正極とし、
有機電解液を電解液とする電気化学電池において、該有
機電解液として、分子中にシリコン元素を含有する一群
の有機ケイ素エーテル化合物、有機ケイ素ケトン化合物
、有機ケイ素スルホキシド化合物、有機ケイ素ニトリル
化合物、有機ケイ素アミド化合物、有機ケイ素イミド化
合物の少なくとも一種を含有する有機溶媒に電解質を溶
解させて成るものを用いることを特徴とする化学電池。
1. An alkali metal is used as a negative electrode, a solid active material is used as a positive electrode,
In an electrochemical cell using an organic electrolyte as an electrolyte, the organic electrolyte may be a group of organosilicon ether compounds, organosilicon ketone compounds, organosilicon sulfoxide compounds, organosilicon nitrile compounds, and organic 1. A chemical cell comprising an electrolyte dissolved in an organic solvent containing at least one of a silicon amide compound and an organic silicon imide compound.
JP2029545A 1990-02-13 1990-02-13 Chemical battery Pending JPH03236168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2029545A JPH03236168A (en) 1990-02-13 1990-02-13 Chemical battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2029545A JPH03236168A (en) 1990-02-13 1990-02-13 Chemical battery

Publications (1)

Publication Number Publication Date
JPH03236168A true JPH03236168A (en) 1991-10-22

Family

ID=12279100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2029545A Pending JPH03236168A (en) 1990-02-13 1990-02-13 Chemical battery

Country Status (1)

Country Link
JP (1) JPH03236168A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307772A (en) * 2000-04-21 2001-11-02 Tonen Chem Corp Nonaqueous electrolyte and nonaqueous electrolyte battery using the same
JP2007207433A (en) * 2006-01-30 2007-08-16 Adeka Corp Nonaqueous electrolyte solution and nonaqueous electrolyte solution secondary battery using the same
JP2010182570A (en) * 2009-02-06 2010-08-19 Toyota Central R&D Labs Inc Nonaqueous air secondary battery
JP2015018802A (en) * 2013-07-08 2015-01-29 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Electrolyte for lithium secondary battery, and lithium secondary battery including the same
JP2017538667A (en) * 2014-10-03 2017-12-28 シラトロニクス,インコーポレイテッド Functionalized silane and electrolyte compositions and electrochemical devices containing them
JP2018508112A (en) * 2015-03-16 2018-03-22 アルケマ フランス Electrolyte blending composition for lithium ion battery
WO2018221671A1 (en) * 2017-06-01 2018-12-06 日立化成株式会社 Electrolytic solution and electrochemical device
WO2018220997A1 (en) * 2017-06-01 2018-12-06 日立化成株式会社 Electrolytic solution and electrochemical device
JP2020098778A (en) * 2018-12-13 2020-06-25 三菱ケミカル株式会社 Nonaqueous electrolyte and nonaqueous electrolytic secondary battery
JP2020136026A (en) * 2019-02-18 2020-08-31 Tdk株式会社 Lithium ion secondary battery
CN112771022A (en) * 2018-10-04 2021-05-07 魁北克电力公司 Additive for electrolytes in Li-ion batteries
JP2022535359A (en) * 2019-11-07 2022-08-08 エルジー エナジー ソリューション リミテッド Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
US11444325B2 (en) 2017-06-01 2022-09-13 Showa Denko Materials Co., Ltd. Electrolytic solution and electrochemical device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307772A (en) * 2000-04-21 2001-11-02 Tonen Chem Corp Nonaqueous electrolyte and nonaqueous electrolyte battery using the same
JP2007207433A (en) * 2006-01-30 2007-08-16 Adeka Corp Nonaqueous electrolyte solution and nonaqueous electrolyte solution secondary battery using the same
JP2010182570A (en) * 2009-02-06 2010-08-19 Toyota Central R&D Labs Inc Nonaqueous air secondary battery
JP2015018802A (en) * 2013-07-08 2015-01-29 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Electrolyte for lithium secondary battery, and lithium secondary battery including the same
JP2019071302A (en) * 2013-07-08 2019-05-09 三星エスディアイ株式会社Samsung SDI Co., Ltd. Electrolyte for lithium secondary battery, and lithium secondary battery including the same
JP2017538667A (en) * 2014-10-03 2017-12-28 シラトロニクス,インコーポレイテッド Functionalized silane and electrolyte compositions and electrochemical devices containing them
US11444329B2 (en) 2014-10-03 2022-09-13 Silatronix, Inc. Functionalized silanes and electrolyte compositions and electrochemical devices containing them
JP2020200341A (en) * 2014-10-03 2020-12-17 シラトロニクス,インコーポレイテッド Functionalized silanes and electrolyte compositions and electrochemical devices containing them
JP2018508112A (en) * 2015-03-16 2018-03-22 アルケマ フランス Electrolyte blending composition for lithium ion battery
JPWO2018221671A1 (en) * 2017-06-01 2020-04-09 日立化成株式会社 Electrolyte and electrochemical device
CN110710047A (en) * 2017-06-01 2020-01-17 日立化成株式会社 Electrolyte solution and electrochemical device
WO2018220997A1 (en) * 2017-06-01 2018-12-06 日立化成株式会社 Electrolytic solution and electrochemical device
US11398643B2 (en) 2017-06-01 2022-07-26 Showa Denko Materials Co., Ltd. Electrolytic solution and electrochemical device
US11411250B2 (en) 2017-06-01 2022-08-09 Showa Denko Materials Co., Ltd. Electrolytic solution and electrochemical device
WO2018221671A1 (en) * 2017-06-01 2018-12-06 日立化成株式会社 Electrolytic solution and electrochemical device
US11444325B2 (en) 2017-06-01 2022-09-13 Showa Denko Materials Co., Ltd. Electrolytic solution and electrochemical device
CN112771022A (en) * 2018-10-04 2021-05-07 魁北克电力公司 Additive for electrolytes in Li-ion batteries
CN112771022B (en) * 2018-10-04 2024-03-19 魁北克电力公司 Additive for electrolytes in Li-ion batteries
JP2020098778A (en) * 2018-12-13 2020-06-25 三菱ケミカル株式会社 Nonaqueous electrolyte and nonaqueous electrolytic secondary battery
JP2020136026A (en) * 2019-02-18 2020-08-31 Tdk株式会社 Lithium ion secondary battery
JP2022535359A (en) * 2019-11-07 2022-08-08 エルジー エナジー ソリューション リミテッド Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same

Similar Documents

Publication Publication Date Title
JP4588319B2 (en) Non-aqueous electrolyte battery and electrode stabilizer for non-aqueous electrolyte battery
US5891592A (en) Additives for improving cycle life of non-aqueous rechargeable lithium batteries
CA2423842C (en) Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
Arai Nonflammable methyl nonafluorobutyl ether for electrolyte used in lithium secondary batteries
JP3055358B2 (en) Non-aqueous electrolyte battery
KR100644850B1 (en) Non-Aqueous Electrolyte Secondary Cell
JP5314885B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary power source including the same
JP3821495B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP4521525B2 (en) Non-flammable non-aqueous electrolyte and lithium ion battery using the same
JPWO2017099248A1 (en) Solid electrolyte composition, binder particles, sheet for all-solid secondary battery, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, and production method thereof
JP5001507B2 (en) Nonaqueous electrolyte additive, nonaqueous electrolyte secondary battery, and nonaqueous electrolyte electric double layer capacitor
JP4016153B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte battery using the same
KR20030051637A (en) Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
KR100775566B1 (en) Non-aqueous electrolyte secondary cell and, deterioration-preventing agent for non-aqueous electrolyte secondary cell and additive for non-aqueous electrolyte secondary cell for use therein
EP1970990A1 (en) Nonaqueous electrolyte solution for battery, nonaqueous electrolyte battery comprising same, electrolyte solution for electric double layer capacitor and electric double layer capacitor comprising same
JPH11149943A (en) Additive for elongation of charging and discharging life of rechargeable non-aqueous lithium battery
JP2008053212A (en) Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it
JPH03236169A (en) Chemical battery
JPH03236168A (en) Chemical battery
JP3055536B2 (en) Non-aqueous electrolyte battery
US6455200B1 (en) Flame-retardant additive for li-ion batteries
CN110537286B (en) Polymer electrolyte composition and polymer secondary battery
JP4671693B2 (en) Non-aqueous electrolyte additive for secondary battery and non-aqueous electrolyte secondary battery
JP5095883B2 (en) Non-aqueous electrolyte secondary battery additive and non-aqueous electrolyte secondary battery
JP2004006301A (en) Positive electrode for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery having the same