JP5006129B2 - Scanning laser ophthalmoscope - Google Patents

Scanning laser ophthalmoscope Download PDF

Info

Publication number
JP5006129B2
JP5006129B2 JP2007188289A JP2007188289A JP5006129B2 JP 5006129 B2 JP5006129 B2 JP 5006129B2 JP 2007188289 A JP2007188289 A JP 2007188289A JP 2007188289 A JP2007188289 A JP 2007188289A JP 5006129 B2 JP5006129 B2 JP 5006129B2
Authority
JP
Japan
Prior art keywords
transparent member
scanning
laser
fundus
polygon mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007188289A
Other languages
Japanese (ja)
Other versions
JP2009022499A (en
Inventor
勝保 水野
直幸 近藤
勇介 中屋敷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidek Co Ltd
Original Assignee
Nidek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidek Co Ltd filed Critical Nidek Co Ltd
Priority to JP2007188289A priority Critical patent/JP5006129B2/en
Publication of JP2009022499A publication Critical patent/JP2009022499A/en
Application granted granted Critical
Publication of JP5006129B2 publication Critical patent/JP5006129B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions

Description

本発明は、被検眼に眼底上でレーザ光を二次元的に走査して眼底像を撮影する走査型レーザ検眼鏡に関する。   The present invention relates to a scanning laser ophthalmoscope for capturing a fundus image by two-dimensionally scanning a laser beam on the fundus of an eye to be examined.

従来、眼底に対して2次元的にレーザ光を走査し、その反射を受光することにより眼底像を得る走査型レーザ検眼鏡(スキャニング・レーザ・オフサルモスコープ、略してSLO)が知られている。上記検眼鏡においては、回転多面鏡(ポリゴンミラー)を用いてレーザ光の主走査を行う構成が一般的である(特許文献1参照)。
特開2006−239196号公報
2. Description of the Related Art Conventionally, a scanning laser ophthalmoscope (scanning laser ophthalmoscope, abbreviated as SLO) is known in which a fundus image is obtained by scanning a laser beam two-dimensionally with respect to the fundus and receiving the reflection. . The ophthalmoscope is generally configured to perform main scanning of laser light using a rotating polygon mirror (see Patent Document 1).
JP 2006-239196 A

しかしながら、レーザ光を走査するために回転多面鏡を用いる場合、走査速度の向上に伴い、風切り音が増加したり、回転多面鏡で生じる風によって舞い上がった装置内部の埃が光学部材(例えば、ミラー面)に付着して、取得する眼底画像のノイズ成分となる。このような問題を解決するために、収納ケース内に回転多面鏡を収納した状態で、収納ケースの一部にガラスや樹脂からなる透明部材を保護窓とした開口部を設け、回転多面鏡を外部から隔離する方法が考えられる。このように収納ケース内に回転多面鏡を置くことにより、騒音や埃等の問題を抑制することが可能であるが、回転多面鏡で反射され透明部材をそのまま透過して受光素子へ向かう眼底反射光成分と、回転多面鏡で反射され透明部材の表面と裏面とで1回ずつ反射して受光素子へ向かう眼底反射光成分との干渉が起こりやすく、これが取得される眼底画像の新たなノイズ成分となりやすい。   However, when a rotating polygon mirror is used to scan a laser beam, the wind noise increases with an increase in scanning speed, or dust inside the apparatus that has been swollen by the wind generated by the rotating polygon mirror becomes an optical member (for example, a mirror). The noise component of the fundus image to be acquired. In order to solve such a problem, in a state where the rotating polygon mirror is stored in the storage case, an opening with a transparent member made of glass or resin as a protective window is provided in a part of the storage case. A method of isolation from the outside can be considered. By placing the rotating polygon mirror in the storage case in this manner, it is possible to suppress problems such as noise and dust, but the fundus reflection that is reflected by the rotating polygon mirror and passes through the transparent member as it is toward the light receiving element. Interference between the light component and the fundus reflection light component reflected by the rotating polygon mirror and reflected once by the front and back surfaces of the transparent member toward the light receiving element is likely to occur, and this is a new noise component of the fundus image acquired It is easy to become.

本発明は、上記問題点を鑑み、回転多面鏡による騒音を抑えることができると共に、ノイズの少ない眼底画像を得ることのできる走査型レーザ検眼鏡を提供することを技術課題とする。   In view of the above problems, an object of the present invention is to provide a scanning laser ophthalmoscope capable of suppressing noise caused by a rotary polygon mirror and obtaining a fundus image with little noise.

上記課題を解決するために、本発明は以下のような構成を備えることを特徴とする。   In order to solve the above problems, the present invention is characterized by having the following configuration.

(1) レーザ光源から発せられたレーザ光を被検眼眼底に照射する照射光学系であって,前記レーザ光源から発せられたレーザ光を眼底上で二次元的に走査するためにポリゴンミラーとガルバノミラーからなる走査手段を持つ照射光学系と、被検眼眼底に照射されたレーザ光を受光素子にて受光する受光光学系と、を有し、被検眼の眼底画像を撮影する走査型レーザ検眼鏡において、前記ポリゴンミラーを内部に収納する収納ケースであって,前記ポリゴンミラーに対してレーザ光を入出させるための開口部を有する収納ケースと、前記開口部を塞ぐとともにレーザ光を透過させる透明部材であって、該透明部材の表面と裏面の延長面が所定角度で交わるように形成された透明部材と、を備えることを特徴とする。
(2) (1)の走査型レーザ検眼鏡において、
前記透明部材は、前記受光光学系の受光光軸に対して傾斜するように設けられていることを特徴とする。
(3) (2)の走査型レーザ検眼鏡において、
前記透明部材は、前記回転多面鏡の回転軸に対して傾斜するように設けられていることを特徴とする。
(1) An irradiation optical system for irradiating a fundus of a subject's eye with a laser beam emitted from a laser light source, and a polygon mirror and a galvanometer for two-dimensionally scanning the laser beam emitted from the laser light source on the fundus A scanning laser ophthalmoscope that has an irradiation optical system having a scanning unit composed of a mirror and a light receiving optical system that receives laser light emitted to the fundus of the subject's eye with a light receiving element, and captures a fundus image of the eye to be examined A storage case for storing the polygon mirror therein, a storage case having an opening for allowing laser light to enter and exit the polygon mirror, and a transparent member for closing the opening and transmitting the laser light And the transparent member formed so that the extended surface of the front surface and back surface of this transparent member may cross at a predetermined angle is provided.
(2) In the scanning laser ophthalmoscope of (1),
The transparent member is provided so as to be inclined with respect to a light receiving optical axis of the light receiving optical system.
(3) In the scanning laser ophthalmoscope of (2),
The transparent member is provided so as to be inclined with respect to a rotation axis of the rotary polygon mirror.

本発明によれば、回転多面鏡による騒音を抑えることができると共に、ノイズの少ない眼底画像を得ることができる。   According to the present invention, it is possible to suppress noise caused by the rotating polygonal mirror and obtain a fundus image with less noise.

本発明の実施の形態を図面を用いて説明する。図1は本実施形態に係る走査型レーザ検眼鏡の光学系を示した図である。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a view showing an optical system of a scanning laser ophthalmoscope according to this embodiment.

1は赤外域の波長又は可視域の波長のレーザ光を発する光源であり、本実施形態では、半導体レーザやSLD(スーパー・ルミネッセンス・ダイオード)等が用いられる。2は中央に開口部を有する穴開きミラー、3はレンズである。4及び5はミラーであり、図1に示す矢印方向に移動可能とされ、光路長を変化させることによりフォーカス合せ(視度補正)を行うことができる。6、8及び10は凹面ミラーである。7はレーザ光を被検眼眼底にて水平方向に偏向させ走査する(主走査)ための偏向手段となるポリゴンミラー(回転多面鏡)、9はポリゴンミラー7による走査方向に対して直角方向にレーザ光を偏向させ走査する(副走査)ための偏向手段となるガルバノミラーである。   Reference numeral 1 denotes a light source that emits laser light having an infrared wavelength or visible wavelength. In this embodiment, a semiconductor laser, an SLD (super luminescence diode), or the like is used. 2 is a perforated mirror having an opening in the center, and 3 is a lens. Reference numerals 4 and 5 denote mirrors which are movable in the direction of the arrow shown in FIG. 1 and can perform focusing (diopter correction) by changing the optical path length. 6, 8 and 10 are concave mirrors. 7 is a polygon mirror (rotating polygonal mirror) that serves as a deflecting means for deflecting and scanning the laser light in the horizontal direction on the fundus of the eye to be examined (main scanning), and 9 is a laser perpendicular to the scanning direction by the polygon mirror 7. This is a galvanometer mirror serving as a deflecting means for deflecting and scanning light (sub-scanning).

光源1から出射したレーザ光は、穴開きミラー2の開口部を通り、レンズ3を介した後、ミラー4、ミラー5、凹面ミラー6にて反射し、ポリゴンミラー7に向かう。ポリゴンミラー7にて反射された光束は、凹面ミラー8、ガルバノミラー9、凹面ミラー10にて反射した後、被検眼眼底にて集光し、眼底を2次元的に(図示するXY軸方向に)走査する。これらの光学部材によって被検眼眼底にレーザ光を照射する照射光学系を形成する。なお、本実施形態において、X軸方向は左右方向(水平方向)であり、Y軸方向は上下方向である。   The laser light emitted from the light source 1 passes through the opening of the perforated mirror 2, passes through the lens 3, is reflected by the mirror 4, the mirror 5, and the concave mirror 6, and travels toward the polygon mirror 7. The light beam reflected by the polygon mirror 7 is reflected by the concave mirror 8, the galvano mirror 9, and the concave mirror 10, and then condensed on the fundus of the eye to be examined, and the fundus is two-dimensionally (in the XY axis direction shown in the drawing). ) Scan. An irradiation optical system for irradiating the fundus of the eye to be examined with laser light is formed by these optical members. In the present embodiment, the X-axis direction is the left-right direction (horizontal direction), and the Y-axis direction is the up-down direction.

11はレンズであり、12は光軸上にピンホールを有したピンホール板である。なお、本実施形態ではピンホール板12に形成する細孔の径を固定としているが、これに限るものではなく、眼底像のコントラストと輝度を可変できるように細孔の径を可変とするようにしてもよい。レンズ11は被検眼眼底の観察点とピンホール板とを共役な位置に置く。13は集光レンズ、14は可視域及び赤外域に感度を持つ受光素子である。なお、本実施形態の受光素子14には、APD(アバランシェフォトダイオード)を用いている。   Reference numeral 11 denotes a lens, and reference numeral 12 denotes a pinhole plate having a pinhole on the optical axis. In the present embodiment, the diameter of the pores formed in the pinhole plate 12 is fixed. However, the present invention is not limited to this, and the diameter of the pores may be varied so that the contrast and brightness of the fundus image can be varied. It may be. The lens 11 places the observation point of the fundus of the eye to be examined and the pinhole plate at a conjugate position. Reference numeral 13 denotes a condensing lens, and reference numeral 14 denotes a light receiving element having sensitivity in the visible region and the infrared region. Note that an APD (avalanche photodiode) is used for the light receiving element 14 of the present embodiment.

被検眼眼底に照射されたレーザ光の反射光は、前述した照射光学系の光路を逆に辿り、穴開きミラー2にて反射し、下方に折り曲げられる。なお、被検眼の瞳位置と穴開きミラー2の開口部とは、レンズ3により共役となっている。穴開きミラー2にて反射した反射光は、レンズ11を経て、ピンホール板12のピンホールに焦点を結ぶ。ピンホールにて焦点を結んだ反射光は、レンズ13を経て受光素子14に受光される。これらの光学部材により撮影光学系(受光光学系)を形成する。そして、上記照射光学系及び撮影光学系が備える光学部材によって共焦点光学系50が形成されている。   The reflected light of the laser light applied to the fundus of the eye to be examined follows the optical path of the irradiation optical system in the reverse direction, is reflected by the perforated mirror 2, and is bent downward. The pupil position of the eye to be examined and the opening of the perforated mirror 2 are conjugated by the lens 3. The reflected light reflected by the perforated mirror 2 passes through the lens 11 and is focused on the pinhole of the pinhole plate 12. The reflected light focused by the pinhole is received by the light receiving element 14 through the lens 13. A photographing optical system (light receiving optical system) is formed by these optical members. A confocal optical system 50 is formed by optical members included in the irradiation optical system and the photographing optical system.

図2は、本実施形態に係るポリゴンミラー7周辺を斜め上方から見たときの概略外観図である。20はポリゴンミラー7を回転可能に内部に収納する収納ケースであり、21はポリゴンミラー7に対してレーザ光を入出させるために収納ケース20に形成された開口部である。また、22は開口部21を塞ぐとともにレーザ光を透過させる透明部材(例えば、ガラス板やアクリル等の樹脂)であり、開口部21を覆い保護窓の役目を果たす。なお、透明部材22の表面及び裏面には、レーザ光の透過率を高めるための反射防止膜が施されている。R1はポリゴンミラー7の回転軸である。本実施形態では、透明部材22として、ポリゴンミラー7の回転方向(回転軸R1に対して垂直方向)に関して延びる長方形のガラス板を用いている。なお、ポリゴンミラー7は、図示なき台上に設置された状態で収納ケース20内に収められており、外部からほぼ密閉された状態になっている。   FIG. 2 is a schematic external view when the periphery of the polygon mirror 7 according to the present embodiment is viewed obliquely from above. Reference numeral 20 denotes a storage case for storing the polygon mirror 7 in a rotatable manner. Reference numeral 21 denotes an opening formed in the storage case 20 for allowing laser light to enter and exit the polygon mirror 7. Reference numeral 22 denotes a transparent member (for example, a resin such as a glass plate or acrylic) that closes the opening 21 and transmits laser light, and covers the opening 21 and serves as a protective window. Note that an antireflection film for increasing the transmittance of the laser light is provided on the front surface and the back surface of the transparent member 22. R1 is the rotation axis of the polygon mirror 7. In the present embodiment, a rectangular glass plate extending in the rotation direction of the polygon mirror 7 (perpendicular to the rotation axis R1) is used as the transparent member 22. The polygon mirror 7 is housed in the housing case 20 in a state where it is placed on a table not shown, and is almost sealed from the outside.

図3は、本実施形態に係る透明部材22の長手方向における断面図である。図3に示すように、透明部材22の長手方向における断面形状は、透明部材22の厚さが長手方向に徐々に変化するような形状となっている。すなわち、透明部材22は、その表面と裏面との延長面が所定角度(例えば、30分)で交わるように形成されている。この場合、透明部材22の表面に対する裏面の傾斜α(楔角)としては、ポリゴンミラー7で反射され透明部材22をそのまま透過して受光素子14へ向かう眼底反射光成分と、ポリゴンミラー7で反射され透明部材22の表面と裏面とで1回ずつ反射して受光素子14へ向かう眼底反射光成分との干渉によって発生する干渉縞が眼底画像に影響をしない程度であればよく、必要以上に傾斜角度を大きくする必要はない。これは、傾斜角度を大きくすると、レーザ光の屈折が問題になり得るからである。   FIG. 3 is a cross-sectional view in the longitudinal direction of the transparent member 22 according to the present embodiment. As shown in FIG. 3, the cross-sectional shape in the longitudinal direction of the transparent member 22 is such that the thickness of the transparent member 22 gradually changes in the longitudinal direction. That is, the transparent member 22 is formed such that the extended surface between the front surface and the back surface intersects at a predetermined angle (for example, 30 minutes). In this case, as the inclination α (wedge angle) of the back surface with respect to the front surface of the transparent member 22, the fundus reflection light component that is reflected by the polygon mirror 7 and passes through the transparent member 22 as it is toward the light receiving element 14 is reflected by the polygon mirror 7. The interference fringes generated by the interference with the fundus reflected light component that is reflected once on the front surface and the back surface of the transparent member 22 and that travels toward the light receiving element 14 need not affect the fundus image, and are inclined more than necessary. There is no need to increase the angle. This is because the refraction of laser light can become a problem when the tilt angle is increased.

図4は、本実施形態に係る透明部材22とポリゴンミラー7との位置関係について示す図である。図4に示すように、透明部材22は、その表面及び裏面が回転軸R1に対して傾斜する(平行とならない)ように設けられている。この場合、回転軸R1に対する透明部材22の傾斜角度βとしては、装置内部の光学系に設けられた光学部材(例えば、ミラー4、ミラー5、凹面ミラー6等)へのレーザ光の照射によって生じた散乱光が透明部材22の表面及び裏面で反射されて受光素子14に受光されない程度であればよく、必要以上に傾斜角度を大きくする必要はない。これは、傾斜角度を大きくすると、透明部材22の配置スペースの増大に繋がるからである。したがって、傾斜角度の上限としては、その表面及び裏面が回転軸R1に対して45度程度傾斜しているような状態が挙げられる。   FIG. 4 is a diagram showing the positional relationship between the transparent member 22 and the polygon mirror 7 according to this embodiment. As shown in FIG. 4, the transparent member 22 is provided so that the front surface and the back surface thereof are inclined (not parallel) with respect to the rotation axis R1. In this case, the inclination angle β of the transparent member 22 with respect to the rotation axis R1 is caused by laser light irradiation to optical members (for example, the mirror 4, the mirror 5, the concave mirror 6 and the like) provided in the optical system inside the apparatus. As long as the scattered light is reflected by the front and back surfaces of the transparent member 22 and is not received by the light receiving element 14, it is not necessary to increase the tilt angle more than necessary. This is because increasing the inclination angle leads to an increase in the arrangement space of the transparent member 22. Therefore, the upper limit of the tilt angle includes a state in which the front and back surfaces are tilted by about 45 degrees with respect to the rotation axis R1.

なお、透明部材22が取り付けられる収納ケース20の窓枠部分には、ポリゴンミラー7方向へと延びる左右一対の傾斜部20aが形成されている。傾斜部20aは、透明部材22が回転軸R1に対して傾斜角度βの状態で配置されるように傾斜角が設計されており、傾斜部20aの端部と透明部材22が接着剤等を介して接合される。これにより、収納ケース20内部の密封状態を保つことができると共に、収納ケース20に対して透明部材22をコンパクトに取り付けることができる。   A pair of left and right inclined portions 20a extending in the direction of the polygon mirror 7 is formed in the window frame portion of the storage case 20 to which the transparent member 22 is attached. The inclined portion 20a is designed so that the transparent member 22 is arranged at an inclination angle β with respect to the rotation axis R1, and the end portion of the inclined portion 20a and the transparent member 22 are interposed with an adhesive or the like. Are joined. Thereby, while being able to maintain the sealing state inside the storage case 20, the transparent member 22 can be attached to the storage case 20 compactly.

図5は本実施形態に係る走査型レーザ検眼鏡の制御系を示したブロック図である。30は装置全体の制御を行う制御部である。制御部30にはレーザ光源1、受光素子14、ミラー7,9を駆動させるための駆動手段31、ミラー4,5を光軸方向に移動させるための駆動手段36、視度補正のために用いられる視度補正ノブ等を有するコントロール部32、受光素子14にて受光した信号を基に被検眼眼底の画像を形成するための画像処理部33等が接続される。34はモニタであり、画像処理部33にて形成した眼底画像が表示される。35は種々の情報を記憶しておくための記憶部(メモリ)である。   FIG. 5 is a block diagram showing a control system of the scanning laser ophthalmoscope according to the present embodiment. Reference numeral 30 denotes a control unit that controls the entire apparatus. The control unit 30 includes a laser light source 1, a light receiving element 14, a driving unit 31 for driving the mirrors 7 and 9, a driving unit 36 for moving the mirrors 4 and 5 in the optical axis direction, and used for diopter correction. A control unit 32 having a diopter correction knob and the like, and an image processing unit 33 for forming an image of the fundus of the eye to be examined based on a signal received by the light receiving element 14 are connected. Reference numeral 34 denotes a monitor on which a fundus image formed by the image processing unit 33 is displayed. Reference numeral 35 denotes a storage unit (memory) for storing various information.

以上のような構成を備える装置において、その被検眼の眼底を撮影する場合について説明する。ここで、検者は、図示なきジョイスティック等を用いて装置を移動させ、被検眼の眼底にレーザ光が照射されて、所望する画像がモニタ34に表示されるように、アライメントを行う。また、モニタ34上に被検眼の眼底像が現われたら、コントロール部32を用いて眼底像のフォーカス調整を行う。   A case where the fundus of the eye to be examined is photographed in the apparatus having the above configuration will be described. Here, the examiner moves the apparatus using a joystick (not shown) and performs alignment so that the fundus of the eye to be examined is irradiated with laser light and a desired image is displayed on the monitor 34. When the fundus image of the eye to be examined appears on the monitor 34, the focus adjustment of the fundus image is performed using the control unit 32.

ここで、制御部30は、駆動手段31を駆動制御してポリゴンミラー7及びガルバノミラー9を動作させることにより、被検眼の眼底上でレーザ光を二次元的に走査させる。これにより、受光素子14には、被検眼眼底上におけるレーザ光の走査位置に対応する眼底反射光が逐次受光される。ここで、画像処理部33は、受光素子14から逐次出力されるの受光信号に基づいて一枚の眼底画像(1フレーム分の画像)を構築し、モニタ34に表示する。そして、以上のような動作を繰り返すことにより、モニタ34の画面上において、被検眼眼底を動画にてリアルタイムで観察可能となる。また、制御部30は、コントロール部32からの操作信号に基づいて、駆動手段36を駆動させ、ミラー4,5を光軸方向に移動させる。なお、検者により図示無き撮影スイッチが押されると、上記のようにして撮影される眼底画像が記憶部35に記憶される。   Here, the control unit 30 drives the driving means 31 to operate the polygon mirror 7 and the galvanometer mirror 9 to scan the laser light two-dimensionally on the fundus of the eye to be examined. Thereby, the fundus reflection light corresponding to the scanning position of the laser beam on the eye fundus is sequentially received by the light receiving element 14. Here, the image processing unit 33 constructs one fundus image (an image for one frame) based on the light reception signal sequentially output from the light receiving element 14 and displays the fundus image on the monitor 34. Then, by repeating the above operation, the fundus of the eye to be examined can be observed in real time as a moving image on the screen of the monitor 34. Further, the control unit 30 drives the driving unit 36 based on the operation signal from the control unit 32 to move the mirrors 4 and 5 in the optical axis direction. Note that when an imaging switch (not shown) is pressed by the examiner, the fundus image captured as described above is stored in the storage unit 35.

以上のような構成とすれば、ポリゴンミラー7のよる騒音や埃の問題を回避できると共に、眼底画像に映り込む干渉縞を取り除くことができ、ノイズ光の少ない眼底画像を得ることができる。また、装置内部の光学系に設けられた光学部材へのレーザ光の照射によって生じた散乱光が透明部材22の表面及び裏面で反射されることによって生じるノイズ光の映り込みを取り除くことができる。   With the above configuration, the problem of noise and dust caused by the polygon mirror 7 can be avoided, interference fringes reflected in the fundus image can be removed, and a fundus image with less noise light can be obtained. Further, it is possible to remove the reflection of noise light caused by the scattered light generated by the irradiation of the laser beam to the optical member provided in the optical system inside the apparatus being reflected by the front and back surfaces of the transparent member 22.

また、以上の説明においては、透明部材22が回転軸R1に対して傾斜するような構成とすることによって、透明部材22の配置スペースを大きく取ることなく、散乱光の映り込みを除去することができる。ただ、これに限るものではなく、受光光学系の受光光軸L1に対して傾斜するように設けられるものであってもよい(例えば、左右方向に関して透明部材22を傾斜させる)。なお、本実施形態における受光(撮影)光軸L1とは、ポリゴンミラー7で反射されるレーザ光によって形成される光軸であり、ポリゴンミラー7によって走査範囲の中央に対応するレーザ光の光軸をいう。   Further, in the above description, the configuration in which the transparent member 22 is inclined with respect to the rotation axis R1 can remove the reflection of scattered light without taking a large arrangement space of the transparent member 22. it can. However, the present invention is not limited to this, and may be provided so as to be inclined with respect to the light receiving optical axis L1 of the light receiving optical system (for example, the transparent member 22 is inclined with respect to the left-right direction). The light receiving (imaging) optical axis L1 in the present embodiment is an optical axis formed by the laser light reflected by the polygon mirror 7, and the optical axis of the laser light corresponding to the center of the scanning range by the polygon mirror 7. Say.

本実施形態に係る走査型レーザ検眼鏡の光学系を示した図である。It is the figure which showed the optical system of the scanning laser ophthalmoscope which concerns on this embodiment. 本実施形態に係るポリゴンミラー周辺を斜め上方から見たときの概略外観図である。It is a schematic external view when the polygon mirror periphery which concerns on this embodiment is seen from diagonally upward. 本実施形態に係る透明部材の長手方向における断面図である。It is sectional drawing in the longitudinal direction of the transparent member which concerns on this embodiment. 本実施形態に係る透明部材とポリゴンミラーとの位置関係について示す図である。It is a figure shown about the positional relationship of the transparent member and polygon mirror which concern on this embodiment. 本実施形態に係る走査型レーザ検眼鏡の制御系を示したブロック図である。It is the block diagram which showed the control system of the scanning laser ophthalmoscope which concerns on this embodiment.

符号の説明Explanation of symbols

1 光源
7 ポリゴンミラー
9 ガルバノミラー
14 受光素子
20 収納ケース
21 開口部
22 透明部材
50 共焦点光学系
DESCRIPTION OF SYMBOLS 1 Light source 7 Polygon mirror 9 Galvano mirror 14 Light receiving element 20 Storage case 21 Opening part 22 Transparent member 50 Confocal optical system

Claims (3)

レーザ光源から発せられたレーザ光を被検眼眼底に照射する照射光学系であって,前記レーザ光源から発せられたレーザ光を眼底上で二次元的に走査するためにポリゴンミラーとガルバノミラーからなる走査手段を持つ照射光学系と、被検眼眼底に照射されたレーザ光を受光素子にて受光する受光光学系と、を有し、被検眼の眼底画像を撮影する走査型レーザ検眼鏡において、
前記ポリゴンミラーを内部に収納する収納ケースであって,前記ポリゴンミラーに対してレーザ光を入出させるための開口部を有する収納ケースと、
前記開口部を塞ぐとともにレーザ光を透過させる透明部材であって、該透明部材の表面と裏面の延長面が所定角度で交わるように形成された透明部材と、を備えることを特徴とする走査型レーザ検眼鏡。
An irradiation optical system for irradiating the eye fundus with a laser beam emitted from a laser light source, comprising a polygon mirror and a galvanometer mirror for two-dimensionally scanning the laser beam emitted from the laser light source on the fundus In a scanning laser ophthalmoscope for photographing a fundus image of an eye to be examined, including an irradiation optical system having a scanning means, and a light receiving optical system for receiving laser light emitted to the fundus of the eye to be examined by a light receiving element.
A storage case for storing the polygon mirror therein, and a storage case having an opening for allowing laser light to enter and exit the polygon mirror;
A scanning member comprising a transparent member that closes the opening and transmits a laser beam, the transparent member being formed such that an extended surface of the front surface and the back surface of the transparent member intersect at a predetermined angle. Laser ophthalmoscope.
請求項1の走査型レーザ検眼鏡において、
前記透明部材は、前記受光光学系の受光光軸に対して傾斜するように設けられていることを特徴とする走査型レーザ検眼鏡。
The scanning laser ophthalmoscope according to claim 1,
The scanning laser opthalmoscope, wherein the transparent member is provided so as to be inclined with respect to a light receiving optical axis of the light receiving optical system.
請求項2の走査型レーザ検眼鏡において、
前記透明部材は、前記回転多面鏡の回転軸に対して傾斜するように設けられていることを特徴とする走査型レーザ検眼鏡。
The scanning laser ophthalmoscope according to claim 2,
The scanning laser ophthalmoscope according to claim 1, wherein the transparent member is provided so as to be inclined with respect to a rotation axis of the rotary polygon mirror.
JP2007188289A 2007-07-19 2007-07-19 Scanning laser ophthalmoscope Expired - Fee Related JP5006129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007188289A JP5006129B2 (en) 2007-07-19 2007-07-19 Scanning laser ophthalmoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007188289A JP5006129B2 (en) 2007-07-19 2007-07-19 Scanning laser ophthalmoscope

Publications (2)

Publication Number Publication Date
JP2009022499A JP2009022499A (en) 2009-02-05
JP5006129B2 true JP5006129B2 (en) 2012-08-22

Family

ID=40394908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007188289A Expired - Fee Related JP5006129B2 (en) 2007-07-19 2007-07-19 Scanning laser ophthalmoscope

Country Status (1)

Country Link
JP (1) JP5006129B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0907557D0 (en) * 2009-05-01 2009-06-10 Optos Plc Improvements in or relating to scanning ophthalmoscopes

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079252U (en) * 1983-11-05 1985-06-01 日立工機株式会社 Rotating polygon mirror motor
JPS62201715U (en) * 1986-06-13 1987-12-23
JPH0269311U (en) * 1988-11-11 1990-05-25
JP2513337Y2 (en) * 1990-06-11 1996-10-02 株式会社リコー Laser scanning device
JPH04245215A (en) * 1991-01-30 1992-09-01 Canon Inc Photo-scanning unit
JPH08146332A (en) * 1994-11-17 1996-06-07 Hitachi Ltd Polygonal mirror motor
JPH09185002A (en) * 1995-12-28 1997-07-15 Kyocera Corp Polygon motor
JPH10307268A (en) * 1997-05-06 1998-11-17 Ricoh Co Ltd Multibeam scanner
JP4646028B2 (en) * 2005-03-04 2011-03-09 株式会社ニデック Fundus photographing device

Also Published As

Publication number Publication date
JP2009022499A (en) 2009-02-05

Similar Documents

Publication Publication Date Title
JP5179102B2 (en) Scanning laser ophthalmoscope and wide-angle lens attachment for scanning laser ophthalmoscope
JP2016510628A (en) Portable retinal imaging device
JP4646028B2 (en) Fundus photographing device
JP5517571B2 (en) Imaging apparatus and imaging method
JP4774261B2 (en) Fundus photographing device
JP2018061621A (en) Ocular fundus imaging apparatus, ocular fundus imaging method, and ocular fundus imaging program
JP5255514B2 (en) Ophthalmic imaging equipment
JP5209552B2 (en) Ophthalmic imaging equipment
JP5006129B2 (en) Scanning laser ophthalmoscope
JP6578429B2 (en) Ophthalmic equipment
JP7351542B2 (en) fundus imaging device
JP7124318B2 (en) ophthalmic imaging equipment
JP4446778B2 (en) Fundus photographing device
JP6102369B2 (en) Fundus photographing device
JP4446777B2 (en) Fundus photographing device
JP2017144232A (en) Ophthalmologic apparatus, method of controlling ophthalmologic apparatus, and program
JP6600931B2 (en) Ophthalmic imaging equipment
JP2023015417A (en) Scan type fundus imaging apparatus
JP6043120B2 (en) Objective refraction wavefront aberration measuring device
JP6912230B2 (en) Ophthalmic equipment
JP4987409B2 (en) Fundus photographing device
JP6460650B2 (en) Ophthalmic equipment
JP2006068036A (en) Ophthalmologic photographing apparatus
JP6937536B1 (en) Fundus photography device
JP2010035950A (en) Fundus photographing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120425

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5006129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees