JP5005180B2 - 遠心分離膜装置 - Google Patents

遠心分離膜装置 Download PDF

Info

Publication number
JP5005180B2
JP5005180B2 JP2005100094A JP2005100094A JP5005180B2 JP 5005180 B2 JP5005180 B2 JP 5005180B2 JP 2005100094 A JP2005100094 A JP 2005100094A JP 2005100094 A JP2005100094 A JP 2005100094A JP 5005180 B2 JP5005180 B2 JP 5005180B2
Authority
JP
Japan
Prior art keywords
separation membrane
liquid
container
rotating
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005100094A
Other languages
English (en)
Other versions
JP2006272299A (ja
Inventor
一樹 大森
保寿 田中
光治 永根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP2005100094A priority Critical patent/JP5005180B2/ja
Publication of JP2006272299A publication Critical patent/JP2006272299A/ja
Application granted granted Critical
Publication of JP5005180B2 publication Critical patent/JP5005180B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Centrifugal Separators (AREA)

Description

本発明は、分離膜を介して被処理液中の懸濁物質を分離する遠心分離膜装置に関するものであり、更に詳しくは、懸濁物質を含有する被処理液として、無機系の懸濁物質、例えばカーボンフラーレン、カーボンナノチューブ、グラファイト、炭化珪素、コロイダルシリカや砥粒等の微粒子を含むもの、あるいは有機系懸濁物質、例えば汚泥、油脂、微生物や酵素等を含むもの、殊に、半導体産業におけるファウリングを生じ易いCMP
(Chemical Mechanical Polishing)排水等の研磨排水中に含まれるコロイダルシリカや砥粒等の無機系粒子の分離に好適な遠心分離膜装置に関するものである。
この種の分離膜装置としては、例えば特許文献1、特許文献2及び特許文献3それぞれに記載の技術が知られている。特許文献1には固定分離膜濾過機が記載され、特許文献2には回転型膜分離装置が記載され、特許文献3には研磨材の回収装置が記載されている。
特許文献1の固定平膜濾過機は、互いに間隔を隔てて積み重なって配設された環状の固定分離膜と、固定分離膜の環を貫通して延在する回転軸と、互いに間隔を隔てて積み重なって回転軸に固定された攪拌板と、固定分離膜と回転軸と攪拌板とを収容するケーシングとを備えている。この構成により、ケーシングのホールドアップ量が小さく、ケーシング内での原液の滞留時間が短く、更に固定平膜の透過流束が大きくなる。また、特許文献1には回転平膜濾過機についても記載されている。この回転平膜濾過機は、基本的には固定分離膜と攪拌板との位置関係が逆になったもので、攪拌板が固定され、回転平膜が回転軸に固定されているものである。これらいずれの濾過機も平膜と攪拌板が交互に配置され、平膜と攪拌板とが相対回転して平膜間の被処理液を攪拌板によって攪拌し、平膜への早期の堆積を緩やかにし、平膜の透過性を比較的長く維持するようにしている。
特許文献2の回転型膜分離装置は、被処理液の供給入口を有する容器を貫通するように回転軸を配し、容器内にあって透過された液体を移送することの可能な構造を有する膜体を回転軸に装着し、膜体の両側に膜体との間に隙間を設けてバッフルを配して構成され、基本的に特許文献1の回転平膜濾過機が改良されたものである。そして、この回転型分離膜装置の場合には、膜体の直径が300〜1000mmであり、50〜1000rpmの範囲で膜体を回転させて運転することによって、膜分離性能を効果的に発揮し得る。
特許文献3の研磨材の回収装置は、膜分離装置を遠心分離機の後段に配置し、研磨工程排水を遠心分離機に導入して遠心分離し、界面活性剤の一部を除去し、得られた濃縮液を膜分離装置に導入する。これにより、粗大固形物を除去するための膜分離装置の通液量を格段に少なくすることができ、膜分離装置の目詰まりを防止して、膜の交換頻度を低減することにより、ランニングコストを低減し、長期に亘り安定して不純物の少ない研磨材粒子を効率的に回収することができる。
特開平06−277465号公報 特開2003−245527号公報 特開2001−225070号公報
しかしながら、特許文献1及び特許文献2に記載の従来の技術は、被処理液内で平膜と攪拌板とが相対回転して被処理液を分離する構造で、被処理液中の分離すべき粒子が常に攪拌されて被処理液全体に再拡散し、粒子の分離効率が悪く、粒子が微粒子化するほど顕著になるという課題があった。また、特許文献3に記載の技術の場合には粗大粒子を遠心分離機で分離し、分離した粗大粒子を純水に分散させて、再度膜分離装置で除去する技術であるが、この技術では遠心分離機と膜分離装置が個別に設置されるため、設備費や設置面積等が嵩む問題がある。
本発明は、上記課題を解決するためになされたもので、ファウリングを生じ易い微粒子等の懸濁物質であっても効率良く分離することができ、しかも懸濁物質の分離機能を長時間に渡って維持することができる遠心分離膜装置を提供することを目的としている。
本発明の請求項1に記載の遠心分離膜装置は、懸濁物質を含有する被処理液が供給される回転容器と、この回転容器に回転力を付与する回転軸と、この回転軸に上記回転容器内に位置させて装着された分離膜モジュールと、を備え、上記回転軸を介して上記回転容器及び上記分離膜モジュールを回転させて上記被処理液に遠心力を付与し、この遠心力及び上記分離膜モジュールの透過分離作用で上記被処理液中の懸濁物質を分離する装置であって、上記回転容器を回転させる上記回転軸に上記被処理液の供給通路及び上記分離膜モジュールの透過液の排出通路それぞれ設けると共に、上記回転軸を、上記回転容器内に位置する大径管と小径管とからなる二重管構造の第1中空回転軸部と上記回転容器外に位置する第2中空回転軸部とに隔壁により区画し、且つ、上記第1中空回転軸部を二重管構造の中空回転軸として形成し、上記二重管構造の中空回転軸の外側中空部を上記被処理液の供給通路として形成すると共にその内側中空部を上記透過液の排出通路として形成し、また、上記回転容器は、その半径方向の最大径部に、上記分離膜モジュールによって分離された懸濁物質を排出するバルブを有することを特徴とするものである。
また、本発明の請求項2に記載の遠心分離膜装置は、懸濁物質を含有する被処理液が供給される容器と、この容器内に配置され且つ上記容器内の被処理液が循環する孔が形成された回転容器と、この回転容器に上記被処理液中で回転力を付与する回転軸と、この回転軸に上記回転容器内に位置させて装着された分離膜モジュールと、を備え、上記被処理液中で上記回転軸を介して上記回転容器及び上記分離膜モジュールを回転させて上記回転容器の上記被処理液に遠心力を付与し、この遠心力及び上記分離膜モジュールの透過分離作用で上記回転容器内において上記被処理液中の懸濁物質を分離する装置であって、上記回転軸を二重管構造の中空回転軸として形成すると共に上記中空回転軸の外側または内側の中空部を上記分離膜モジュールの透過液側と連通する透過液の排出手段として形成したことを特徴とするものである。
また、本発明の請求項3に記載の水平濾板式濾過機は、請求項3に記載の発明において、上記中空回転軸の上記排出手段とは別の中空部を、上記分離膜モジュールによって分離された懸濁物質の排出手段として形成したことを特徴とするものである。
また、本発明の請求項4に記載の遠心分離膜装置は、請求項3に記載の発明において、上記回転容器は、その半径方向の最大径部に、上記分離膜モジュールによって分離された懸濁物質の排出手段を有することを特徴とするものである。
また、本発明の請求項5に記載の遠心分離膜装置は、請求項1〜請求項4のいずれか1項に記載の発明において、上記分離膜モジュールは、複数の円板状分離膜体または複数の傘状分離膜体が上記回転軸の軸芯に沿って複数段に渡って取り付けられていることを特徴とするものである。
また、本発明の請求項6に記載の遠心分離膜装置は、請求項1〜請求項5のいずれか1項に発明において、上記被処理液の供給通路に加圧手段及び/または上記透過液の排出通路に吸引排出手段を設けたことを特徴とする記載のものである。
また、本発明の請求項7に記載の遠心分離膜装置は、懸濁物質を含有する被処理液が供給される回転容器と、この回転容器に回転力を付与する回転軸と、上記回転容器内を被処理液室と透過液室の二室に区画して装着される分離膜モジュールと、を備え、上記回転軸を介して上記回転容器及び上記分離膜モジュールを回転させて上記被処理液に遠心力を付与し、この遠心力及び上記分離膜モジュールの透過分離作用で上記被処理液中の懸濁物質を分離する装置であって、上記回転軸を上記被処理液室側と連通して上記被処理液の供給通路となる中空回転軸及び上記透過液室側と連通して透過液の排出通路となる中空回転軸として形成したことを特徴とするものである。
また、本発明の請求項8に記載の遠心分離膜装置は、請求項7に記載の発明において、上記被処理液室内の半径方向の最大径部に連通する非透過液の排出手段を設けたことを特徴とするものである。
本発明によれば、ファウリングを生じ易い微粒子等の懸濁物質であっても攪拌されることなく効率良く分離することができ、しかも懸濁物質の分離機能を長時間に渡って維持することができ、また、被処理液の供給手段並びに懸濁物質液の除去された透過液及び懸濁物質の排出手段を簡素化することができる遠心分離膜装置を提供することができる。
以下、図1〜図4に示す実施形態に基づいて本発明を説明する。尚、図1は本発明の遠心分離膜装置の一実施形態の全体を模式的に示す断面図、図2は図1に示す遠心分離膜装置の回転軸及び円板状分離膜体の水平方向の断面を示す要部断面図、図3は本発明の遠心分離膜装置の他の実施形態の全体を模式的に示す断面図、図3は本発明の遠心分離膜装置の更に他の実施形態を示す概念図である。
第1の実施形態
本実施形態の遠心分離膜装置10は、例えば図1に示すように、被処理液(以下、「原料液」と称す。)に遠心力を付与し、分離膜を介して原料液と透過液との間に差圧を生じさせて原料液中の不純物を分離するように構成されている。原料液としては、例えば半導体製造工程で発生したCMP(化学的機械的研磨処理)の研磨屑や研磨砥粒等の無機系の微粒子等の懸濁物質を含む排水、油水混合排水や有機性排水の処理工程から排出される各種の汚泥等の有機系の懸濁物質を含む排水等がある。本実施形態の遠心分離膜装置10は、例えば、半導体製造工程で発生したCMP排水等のミクロンレベルからナノレベルの微粒子を含有するファウリングを生じ易い排水から微粒子を分離する場合に好ましく用いることができる。
即ち、本実施形態の遠心分離膜装置10は、図1に示すように、断面が略六角形の樽状に形成された回転容器11と、この回転容器11の下面中心を貫通し上面近傍に達するように下面に連結された回転軸12と、この回転軸12に装着され且つ回転容器11内で原料液中の微粒子を分離する分離膜モジュール13と、回転軸12を回転駆動させるモータ14と、回転容器11を回転自在に収納するケーシング15と、を備え、ケーシング15内で回転容器11及び分離膜モジュール13が回転軸12を介して一体的に回転し、回転容器11内に供給された原料液中の微粒子(以下、単に「微粒子」と称す。)を分離して、微粒子が集積されて固形分を主成分とするスラッジ、微粒子濃度の高い濃縮液及び分離膜モジュール13を透過した透過液の三種類の処理水に分けて排出するように構成されている。回転容器11は、モータ14を駆動源として、例えば100〜1000rpm、好ましくは200〜300rpmの回転速度で回転するようになっている。
図1に示すように回転容器11の下面には回転容器11と軸芯を共有する軸部11Aが垂直下方に延設されている。回転容器11は軸部11Aにおいて回転軸12に連結されている。また、この軸部11Aは基台16に取り付けられた軸受け(図示せず)によって軸支され、回転容器11は軸部11A及び軸受けを介して基台16上で回転するようになっている。また、断面が略六角形状を呈する回転容器11は、その側面の上下方向中ほどが最大径部として形成されている。この最大径部には固形分をスラッジとして排出する排出口11Bが形成され、この排出口11Bにはその開閉手段として間欠的に作動するパイロットバルブ17が装着されている。パイロットバルブ17は、排出口11Bを間欠的に開閉して回転容器11の最大径部に集積されたスラッジ(固形分)を外部へ排出するようにしてある。
上記回転軸12は、図1に示すように、回転容器11内で分離膜モジュール13を支持する第1中空回転軸部121と、この第1中空回転軸部121の下端に連設され且つ回転容器11の軸部11A内を貫通する第2中空回転軸部122とから構成され、原料液の供給手段と処理液の排出手段を有している。即ち、第1、第2中空回転軸部121、122は一体化しており、これら両者の中空部は互いに隔壁123を介して区画されている。
上記分離膜モジュール13は、図1に示すように、複数の円板状分離膜体13Aを有し、これらの円板状分離膜体13Aは第1中空回転軸部121に対して上下方向に所定間隔を空けて取り付けられている。円板状分離膜体13Aは、例えば、従来公知の多孔質セラミック、多孔質の焼結金属等の多孔質物質によって内部に中空部(図示せず)が形成された円板形状の多孔質担体と、この多孔質担体の外表面に被覆された従来公知の織布、不織布や有機高分子膜等からなる膜体とを有し、有機高分子膜及び多孔質担体を介して原料液中の微粒子を分離し、微粒子が分離された透過液が中空部内に流入するようにしてある。
而して、第1中空回転軸部121は、図1、図2に示すように、小径管121Aとこれより大径に形成された大径管121Bからなる二重管構造の中空回転軸として形成されている。小径管121Aと大径管121Bの隙間が原料液の供給手段として形成され、小径管121Aの内側が分離膜モジュール13の透過液の排出手段として形成されている。即ち、小径管121Aの上端は大径管121Bの上端より下方へ引っ込んで位置しており、小径管121Aの上端は大径管121Bの内壁に連結され、小径管121Aと大径管121Bの隙間を小径管121Aの上端で閉じて原料液供給通路124として形成されている。第1中空回転軸部121と第2中空回転軸部122の隔壁123には第1中空回転軸部121の原料液供給通路124と第2中空回転軸部122の中空部とを連絡する連絡通路123Aが放射状に形成され、第2中空回転軸部122の中空部に供給された原料液が複数の連絡通路123Aを介して原料液供給通路124に流入し、大径管121Bに軸方向に沿って形成された複数の孔から回転容器11内に供給するようになっている。複数の孔は、大径管121Bの周方向の複数個所に形成され、分離膜モジュール13の複数の円板状分離膜体13Aの間に配置されている。つまり、第2中空回転軸部122の中空部、連絡通路123A及び原料液供給通路124が原料液の供給手段として構成されている。そして、原料液の供給手段には加圧ポンプ等の加圧手段が設けられ、原料液を回転容器11内に供給するようにしてある。
また、上記分離膜モジュール13を構成する円板状分離膜体13Aは、図1、図2に示すように、第1中空回転軸部121が密着状態で貫通する貫通孔を中心部に有している。図2で部分的に示すように大径管121Bの周壁には円板状分離膜体13Aの貫通孔に配置した孔が周方向に所定間隔を隔てて複数形成され、また、小径管121Aには大径管121Bの孔に対応する孔が形成されている。そして、小径管121Aの孔と大径管121Bの孔とは連絡管121Cによって連結され、円板状分離膜体13Aの中空部と小径管121Aの中空部からなる透過液排出通路125とが連絡管121Cを介して連通している。尚、図2において、破線部分は大径管121Bに軸方向に沿って上下の円板状分離膜体13Aの間に形成された複数の孔から回転容器11内に原料液が供給する状態を示している。また、大径管121B上端の封止プレートの内面間近には図1に示すように透過液排出管18の拡径部18Aが配置され、この拡径部18Aには分離膜モジュール13の透過液を透過液排出管18内に導く導入口(図示せず)が複数個所に形成されている。従って、円板状分離膜体13Aの透過液は、第1中空回転軸部121の連絡管121C及び透過液排出通路125を経由して透過液排出管18から回転容器11の外部へ排出されるようになっている。そして、透過液排出側には真空ポンプ等の吸引手段が必要に応じて設けられ、吸引手段によって透過液を排出するようにしてある。
また、図1に示すように、上記回転容器11の上部には透過液排出管18を囲む濃縮液排出管19が装着され、この濃縮液排出管19の下端は回転軸12の大径管121Bの上端近傍に達している。この濃縮液排出管19には吸引手段を設け、吸引手段によって濃縮液を吸引して排出するようにしても良い。濃縮液排出管19と透過液排出管18とは軸芯を共有する二重管として形成され、これら両者18、19の隙間が濃縮液の排出通路となっている。濃縮液排出管19の下端は第1中空回転軸部121の上端との間に隙間を隔てて中空円板状に拡径し、この拡径部19Aの外周面全周に渡って濃縮液の流入口が形成されている。従って、透過液排出管18と濃縮液排出管19からなる二重管構造の回転軸12は、回転容器11の上部を貫通し、回転容器11は、二重管構造の回転軸12に軸支された状態で回転するようになっている。
また、第2中空回転軸部121の上端には外周縁部が下方に屈曲して形成されたバッフルプレート126が取り付けられ、このバッフルプレート126と回転容器11の上面との間に濃縮液の通路を形成すると共に回転容器11内の原料液が濃縮液に混入しないようにしている。
次に、動作について説明する。本実施形態ではコロイダルシリカや砥粒等の微粒子を含むCMP排水を原料液として処理する場合について説明する。原料液供給源からCMP排水を原料液(例えば、研磨排水)として遠心分離膜装置10へ供給すると、原料液は、原料液供給通路124、即ち第2中空回転軸部122の中空部、隔壁123の連絡通路123A及び第1中空回転軸部121の原料液供給通路124を経由して回転容器11内に流入する。この時、モータ14が既に駆動しているため、回転容器11は、回転軸12を介して所定の回転速度(例えば、200〜300rpm)で回転すると共に第1中空回転軸部121に装着された分離膜モジュール13も回転容器11と一緒に回転し、回転容器11内の原料液に遠心力を付与する。原料液は回転容器11内で遠心力を受けて内壁面に押し付けられると共に、原料液中の微粒子は水との比重差によって徐々に回転容器11の最大径部に集まり、回転容器11の中心部では微粒子濃度が低く、内壁面に向かうほど微粒子濃度の高い濃縮液になる。
円板状分離膜体13Aは第2中空回転軸部121内の透過液排出通路125の径方向外側に配置されているため、回転容器11内の原料液に遠心力を付与すると、円板状分離膜体13Aの外表面側と内部の排出通路側との間に遠心力による圧力差が生じ、この圧力差で原料液の微粒子が分離されて、図1、図2それぞれに矢印で示すように透過液が円板状分離膜体13Aの中空部から第1中空回転軸部121の連絡管121Cを経由して透過液排出通路125に達する。そして、第1中空回転軸部121内に挿入された透過液排出管18の拡径部18Aから透過液排出管18を経由して外部へ排出される。
一方、分離膜モジュール13による微粒子の分離が進むと、各円板状分離膜体13Aの表面に微粒子が堆積し、微粒子同士が円板状分離膜体13A内外の差圧によって凝集してより大きな粒子として成長して粗大化する。微粒子が粗大化して大きくなると、この成長粒子は円板状分離膜体13Aの表面で遠心力を受けて表面から剥離する、いわゆる自浄作用(セルフクリーニング)によって回転容器11の内壁面の最大径部、つまり排出口11B近傍へ集積する。この成長粒子は円板状分離膜体13A内外の差圧によって緻密な粒子構造になっており、しかも分離膜モジュール13は回転容器11と一緒に回転していて上下の円板状分離膜体13A、13A間の原料液は攪拌されることがないため、円板状分離膜体13Aから剥離しても元の微粒子に戻って拡散することもなく、遠心力の作用で成長粒子のまま排出口11Bにスラッジ(固形分)として集まる。
回転容器11内の濃縮液は、回転容器11の上面とバッフルプレート126との隙間を通路として回転容器11上部の濃縮液排出管19の拡径部19Aに達し、拡径部19Aからその内部に流入し、濃縮液排出管19から外部へ排出される。また、成長粒子等の回転容器11内の最大径部に集積されたスラッジは、パイロットバルブ17が間欠的に作動して、回転容器11の外側へ排出される。
以上説明したように本実施形態によれば、原料液が供給される回転容器11と、この回転容器11に回転力を付与する回転軸12と、この回転軸12に回転容器11内に位置させて装着された分離膜モジュール13とを備え、回転軸12を介して回転容器11を回転させて原料液に遠心力を付与し、この遠心力及び分離膜モジュール13の作用で原料液中の微粒子を分離するため、原料液中では微粒子が水との比重差によって回転容器11の最大径部に移動し、分離膜モジュール13で分離された微粒子は各円板状分離膜体13Aの表面で成長して粗大化し、粗大化した粒子が遠心力を受けて各円板状分離膜体13Aから剥離するため、各円板状分離膜体13Aはそれぞれ常にセルフクリーニング作用を受けて長時間に渡って分離機能を維持することができる。
また、本実施形態によれば、回転軸12は、回転容器11の下部を貫通する第2中空回転軸部122と、第2中空回転軸部122に連設され且つ第2中空回転軸部122と軸芯を共有する第1中空回転軸部121とからなり、第1中空回転軸部121の軸芯に位置する中空部と分離膜モジュール13の透過液側とが連絡管121Cを介して連通し、この軸芯中空部が透過液排出通路125として形成されているため、第1中空回転軸部121を介して透過液を回転容器11の外側へ排出することができる。
また、本実施形態によれば、回転軸12の第1中空回転軸部121を二重管構造にしてその内部に原料液側に開口する原料液供給通路124と透過液排出通路125とを区画し、また、第1中空回転軸部121の原料液供給通路124と第2中空回転軸部122の中空部とを連絡通路123Aを介して連通し、更に、分離膜モジュール13の透過液側と第1中空回転軸部121の透過液排出通路125とが連絡管121Cを介して連通しているため、回転軸12内に原料液供給通路124と透過液の透過液排出通路125を形成することができ、分離膜モジュール13 を回転軸12を介して回転容器11と一緒に回転させることができ、原料液中の微粒子の分離効率を高めることができる。
第2の実施形態
本実施形態の遠心分離膜装置20は、図3に示すように、原料液を処理し、濃縮液と透過液の二種類に分けて回転容器外へ排出するようにしている。第1の実施形態では原料液を処理し、濃縮液、透過液及びスラッジの三種類に分けて回転容器の外部へ排出しているが、本実施形態では微粒子を固形分として集積することなく濃縮液として排出する点で上記実施形態と相違している。
即ち、本実施形態の遠心分離膜装置20は、図3に示すように、回転容器21、回転軸22、分離膜モジュール23、モータ24及び容器25を備え、回転容器21が容器25内に供給された原料液中で回転軸22を介して回転し、原料液に遠心力を付与して原料液中の微粒子を分離するように構成されている。そして、第1の実施形態と同様に、原料液の供給手段には加圧手段が設けられ、透過液の排出手段には吸引手段が設けられている。尚、原料液は容器25内に充満していても良い。
而して、上記回転容器21は、図3に示すように断面が釣鐘形状に形成され、下部の濾過液排出口に最大径部が形成され、容器25内の原料液中に浸漬されている。回転容器21は、その軸芯を貫通する回転軸22に装着され、その上端において回転軸22に固定されている。回転容器21の下面中央には原料液が進入する孔21Aが形成され、その上面には回転軸を囲むように複数の孔21Bが形成されている。そして、原料液は、回転容器21の下面の孔21Aからその内部に流入し、その上面の複数の孔21Bから流出し、容器25内を循環するようになっている。
上記回転軸22は、図3に示すように、小径管22Aと大径管22Bからなる二重管構造の中空回転軸として一体化し、小径管22Aを介してモータ24に連結されている。小径管22Aは、分離膜モジュール23による濃縮液の排出通路22Cを形成し、その下端部には濃縮液の中空排出口(インペラー)26が連結されていると共にその上端部には濃縮液排出管27が装着されている。小径管22Aは、濃縮液排出管27の一端部の中空円板部27Aに対して回転自在に構成され、その周壁に形成された複数の孔から濃縮液を濃縮液排出管27に排出する。小径管22Aと中空円板部27Aとの間には摺動部材(図示せず)が介在して液漏れを防止している。また、大径管22Bは、その上端が原料液の液面やや上方に突出し、上端において小径管22Aに連結されている。そして、大径管22Bと小径管22A間の隙間が分離膜モジュール23の透過液排出通路22Dとして形成されている。大径管22Bは、濃縮液排出管28の一端部に連結された中空円板部28Aに対して回転自在に構成され、その周方向に形成された複数の孔から透過液排出管28に導く。大径管22Bと中空円板部28Aとの間には摺動部材(図示せず)が介在して液漏れを防止している。
上記分離膜モジュール23は、複数の傘状分離膜体23Aを有し、回転軸22を介して回転容器21と一体的に回転するように構成されている。傘状分離膜体23Aは、上記実施形態の円板状分離膜体と同様に、多孔質担体と、この多孔質担体を被覆する有機高分子膜によって中空状に形成され、その中空部が回転軸22の大径管22Bに周方向に形成された複数の孔を介して透過液排出通路22Dと連通している。回転容器21は、分離膜モジュール23を囲み、その内周壁面に沿って分離膜モジュール23の下方に配置されたインペラー26内へ濃縮液を導くように形成されている。
上記容器25の上面には原料液供給ノズル25Aがその中心から外側に偏倚させて設けられ、この原料液供給管25Aから原料液を容器25内に供給するようにしてある。容器25の上面の中心にはモータ24を支持する支持ノズル25Bが形成され、モータ24はフランジを介して支持ノズル25B上に固定されている。そして、支持ノズル25Bを濃縮液排出管27が水平方向に貫通し、外部の濃縮液排出配管(図示せず)に接続されている。また、容器25の上面を透過液排出管28が垂直方向に貫通し、外部の透過液排出配管(図示せず)に接続されている。
次に、動作について説明する。原料液ノズル25Aから原料液を容器25内に供給し、所定の液面に達した時点でモータ24が回転し、回転容器21及び分離膜モジュール23が共に回転軸22を介して原料液内で回転させて原料液に遠心力を付与すると、微粒子はその比重差により中心部から周辺部に向かって粒度が大きくなる粒度分布を生じると共に、分離膜モジュール23の内外に差圧を生じ、その差圧により原料液中の液分が傘状分離膜体23Aを透過し、原料液中の微粒子等の固形分または濃縮された懸濁物質が分離される。分離された微粒子は傘状分離膜体23の表面に堆積されると共に成長し、成長した微粒子が遠心力で剥離され、回転容器21の最大径部に集まり、回転容器21の中心部では微粒子濃度が低く、内壁面に向かうほど微粒子濃度の高い濃縮液になる。濃縮液は、回転容器21の内壁面に沿って下方へ導かれて最大径部に配置されたインペラー26内へ流入する。この濃縮液は、回転軸22の小径管22A内側の濃縮液排出通路22Cを経由して濃縮液排出管27から随時に外部へ排出される。
また、分離膜モジュール23では、傘状分離膜体23Aにおいて微粒子が分離されて透過液が傘状分離膜体23A内部の中空部から回転軸22の大径管22Bと小径管22Aに形成された透過液排出通路22Dを経由して透過液排出管28から外部へ排出される。従って、本実施形態では、原料液を濃縮液と透過液として回転容器21の外部へ排出する以外は、上記実施形態と同様に作用効果を期することができる。
第3の実施形態
本実施形態の遠心分離膜装置30は、図4に示すように、回転容器31、回転軸32および分離膜モジュール33を備えて構成されている。回転容器31は、同図に示すように、断面が略六角形状に形成されている。回転容器31の最大径部には分離膜モジュール33が取り付けられ、分離膜モジュール33によって回転容器31内を上下二室に区画している。回転容器31の上下中央部にはそれぞれ第1、第2回転軸32A、32Bが接続され、これらの回転軸32A、32Bはいずれも中空回転軸として形成されている。第1回転軸32Aは原料液供給管を兼ね、第2回転軸32Bは透過液排出管を兼ねている。
上記分離膜モジュール33は、多孔質担体と有機高分子膜とを有する円形状の平膜として形成されている。回転容器31内の分離膜モジュール33の上方には原料液室31Aが形成され、分離膜モジュール33の下方には透過液室31Bが形成されている。そして、本実施形態では、原料液室31A側と透過液室31B側との間に圧力差を付け、この圧力差で原料液B中の微粒子を分離するようにしている。尚、同図では分離膜モジュール33の孔を模式的に大きく表示してあるが、実際には極めて細かい微細孔であることは云うまでもない。
また、上記第1回転軸32Aはロータリジョイント34Aを介して原料供給配管35に接続され、第2回転軸32Bはロータリジョイント34Bを介して透過液排出配管36に接続されている。従って、回転容器31は上下のロータリジョイント34A、34B間で回転するように構成されている。図示してないが、原料液供給配管35には加圧ポンプ等の加圧手段が設けられ、透過液排出配管36には真空ポンプ等の吸引手段が設けられている。加圧手段及び吸引手段は、原料液室31Aと透過液室31Bとの間に差圧を設け、原料液供給配管35から原料液を供給し、透過液排出配管36から透過液を排出できるように、原料液供給配管35または透過液排出配管36の少なくともいずれか一方に取り付けてあれば良い。
第1回転軸32A及び原料供給配管35内にはそれぞれの軸芯を通る濃縮液排出管37が設けられ、この濃縮液排出管37は第1回転軸32Aから回転容器31内に延設され、その延設端が回転容器31の最大径部に達している。従って、原料液Bは、第1回転軸32Aから回転容器31内に供給され、濃縮液が濃縮液排出管37から外部へ排出される。また、透過液Cは、第2回転軸32Bから外部へ排出される。
次に、動作について説明する。回転容器21が回転する状態で、原料液供給配管35から原料液Bを加圧供給すると、原料液Bは第1回転軸32Aから回転容器31の原料液室31A内に流入する。この時、回転容器31が所定速度で図4の矢印Aで示すように回転しているため、原料液B中の微粒子は遠心力を受け、微粒子が液体との比重差で原料液室31A内の中心から外周に向けて粒度分布が生じ、粒径の大きな微粒子が原料液室31Aの内周面に集積されて濃縮液を形成する。また、原料液室31Aと透過液室31Bとの圧力差によって原料液B中の微粒子が分離膜モジュール33によって分離され、微粒子が分離膜モジュール33の上面に徐々に堆積し、透過液Cが分離膜モジュール33を透過して透過液室31Bに流入する。透過液室31B内の透過液Cは第2回転軸32Bの中空部からなる透過液排出配管36から外部へ排出される。
分離膜モジュール33の上面において微粒子が成長して大きくなると、成長微粒子は微粒子の時より更に大きな遠心力を受けて分離膜モジュール33から剥離して原料液B中に戻る。しかし、成長微粒子は液分との大きな比重差によって原料液室31Aの内周面寄りの濃縮液側へ移動し、原料液室31Aの最大径部へ集積されて濃縮液となる。従って、分離膜モジュール33の上面は遠心力によりセルフクリーニングされて常に清浄な状態を維持し、長時間に渡って原料液B中の微粒子を分離することができる。また、原料液室31Aの内周面寄りに集まった濃縮液は濃縮液排出配管37を経由して外部へ排出される。
従って本実施形態によれば、分離膜モジュール33の上流側の回転容器31内の最大径部に濃縮液排出管37を設けたため、濃縮液を連続的に排出することができる。また、本実施形態おいても原料液Bを長時間に渡って微粒子を分離処理することができ、上記各実施形態に準じた作用効果を期することができる。
上記各実施形態において、原料液を長時間に渡って処理すると、分離膜モジュール13、23、33に目詰まりが発生するが、この場合にはそれぞれの分離膜モジュール13、23、33を透過液側から原料液側に向けて透過液または洗浄液を通液し、逆洗することによって目詰まりを解消することができる。
その他の実施形態
第1の実施形態では複数の円板状分離膜体を有する分離膜モジュールについて説明し、第2の実施形態では複数の傘状分離膜体を有する分離膜モジュールについて説明したが、第1、第2の実施形態では分離膜体がいずれも多孔質担体と有機高分子膜からなる複合平面膜または複合曲面膜であったが、分離膜体としては、板状分離膜体または管状分離膜体を回転軸に放射状に取り付け、放射状の板状分離膜体または放射状の棒状分離膜体を回転軸に複数段に渡って取り付けたものであっても良い。これらの板状分離膜体または管状分離膜体としては、例えば中空糸膜を束ねてその端部を集合させた分離膜モジュールを用いることもできる。その他の構成は上記各実施形態に準じて構成されている。
本実施例では図3に示す傘状分離膜を有する遠心分離膜装置を用いて、回転容器の回転速度を表1に示すように変えてCMP排水の遠心分離処理を行った。また、比較例1は、回転容器及び分離膜モジュールとも回転させない場合、比較例2は回転容器のみを回転させた場合、比較例3は分離膜モジュールのみを回転させた場合を示している。
Figure 0005005180
表1に示す結果によれば、実施例1〜3の場合にはいずれの場合にも連続運転時間が10時間以上と長く、分離膜モジュールの性能が長時間に渡って維持できることが判った。これに対して、回転容器及び分離膜モジュールの双方とも回転させない比較例1の場合には運転時間が30分と極めて短いことが判った。
尚、本発明は上記各実施形態に何等制限されるものではなく、必要に応じて各構成要素を適宜設計変更することができる。
本発明は、石油、化学工業、食品工業、医薬品工業、バイオテクノロジーの分野などで使用される遠心分離膜装置に好適に利用することができる。
本発明の遠心分離膜装置の一実施形態の全体を模式的に示す断面図である。 図1に示す遠心分離膜装置の回転軸の第1中空回転軸部の水平方向の断面を示す断面図である。 本発明の遠心分離膜装置の他の実施形態の全体を模式的に示す断面図である。 本発明の遠心分離膜装置の更に他の実施形態に示す概念図である。
符号の説明
10、20、30 遠心分離膜装置
11、21、31 回転容器
12、22、32A、32B 回転軸
13、23、33 分離膜モジュール
13A 円板状分離膜体
18 濃縮液排出管
19 透過液排出管
23A 傘状分離膜体
26 原料液供給管
28 透過液排出管
121 第1中空回転軸部
122 第2中空回転軸部
124 原料液供給通路(被処理液の供給手段)

Claims (8)

  1. 懸濁物質を含有する被処理液が供給される回転容器と、この回転容器に回転力を付与する回転軸と、この回転軸に上記回転容器内に位置させて装着された分離膜モジュールと、を備え、上記回転軸を介して上記回転容器及び上記分離膜モジュールを回転させて上記被処理液に遠心力を付与し、この遠心力及び上記分離膜モジュールの透過分離作用で上記被処理液中の懸濁物質を分離する装置であって、
    上記回転容器を回転させる上記回転軸に上記被処理液の供給通路及び上記分離膜モジュールの透過液の排出通路それぞれ設けると共に、上記回転軸を、上記回転容器内に位置する大径管と小径管とからなる二重管構造の第1中空回転軸部と上記回転容器外に位置する第2中空回転軸部とに隔壁により区画し、且つ、
    上記第1中空回転軸部を二重管構造の中空回転軸として形成し、上記二重管構造の中空回転軸の外側中空部を上記被処理液の供給通路として形成すると共にその内側中空部を上記透過液の排出通路として形成し
    また、上記回転容器は、その半径方向の最大径部に、上記分離膜モジュールによって分離された懸濁物質を排出するバルブを有する
    ことを特徴とする遠心分離膜装置。
  2. 懸濁物質を含有する被処理液が供給される容器と、この容器内に配置され且つ上記容器内の被処理液が循環する孔が形成された回転容器と、この回転容器に上記被処理液中で回転力を付与する回転軸と、この回転軸に上記回転容器内に位置させて装着された分離膜モジュールと、を備え、上記被処理液中で上記回転軸を介して上記回転容器及び上記分離膜モジュールを回転させて上記回転容器の上記被処理液に遠心力を付与し、この遠心力及び上記分離膜モジュールの透過分離作用で上記回転容器内において上記被処理液中の懸濁物質を分離する装置であって、上記回転軸を二重管構造の中空回転軸として形成すると共に上記中空回転軸の外側または内側の中空部を上記分離膜モジュールの透過液側と連通する透過液の排出手段として形成したことを特徴とする遠心分離膜装置。
  3. 上記中空回転軸の上記排出手段とは別の中空部を、上記分離膜モジュールによって分離された懸濁物質の排出手段として形成したことを特徴とする請求項2に記載の遠心分離膜装置。
  4. 上記回転容器は、その半径方向の最大径部に、上記分離膜モジュールによって分離された懸濁物質の排出手段を有することを特徴とする請求項3に記載の遠心分離膜装置。
  5. 上記分離膜モジュールは、複数の円板状分離膜体または複数の傘状分離膜体が上記回転軸の軸芯に沿って複数段に渡って取り付けられていることを特徴とする請求項1〜請求項4のいずれか1項に記載の遠心分離膜装置。
  6. 上記被処理液の供給通路に加圧手段及び/または上記透過液の排出通路に吸引排出手段を設けたことを特徴とする請求項1〜請求項5のいずれか1項に記載の遠心分離膜装置。
  7. 懸濁物質を含有する被処理液が供給される回転容器と、この回転容器に回転力を付与する回転軸と、上記回転容器内を被処理液室と透過液室の二室に区画して装着される分離膜モジュールと、を備え、上記回転軸を介して上記回転容器及び上記分離膜モジュールを回転させて上記被処理液に遠心力を付与し、この遠心力及び上記分離膜モジュールの透過分離作用で上記被処理液中の懸濁物質を分離する装置であって、上記回転軸を上記被処理液室側と連通して上記被処理液の供給通路となる中空回転軸及び上記透過液室側と連通して透過液の排出通路となる中空回転軸として形成したことを特徴とする遠心分離膜装置。
  8. 上記被処理液室内の半径方向の最大径部に連通する非透過液の排出手段を設けたことを特徴とする請求項7に記載の遠心分離膜装置。
JP2005100094A 2005-03-30 2005-03-30 遠心分離膜装置 Active JP5005180B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005100094A JP5005180B2 (ja) 2005-03-30 2005-03-30 遠心分離膜装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005100094A JP5005180B2 (ja) 2005-03-30 2005-03-30 遠心分離膜装置

Publications (2)

Publication Number Publication Date
JP2006272299A JP2006272299A (ja) 2006-10-12
JP5005180B2 true JP5005180B2 (ja) 2012-08-22

Family

ID=37207547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005100094A Active JP5005180B2 (ja) 2005-03-30 2005-03-30 遠心分離膜装置

Country Status (1)

Country Link
JP (1) JP5005180B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101760674B1 (ko) 2015-10-13 2017-07-24 김대건 세라믹 분리막 모듈 및 이를 구비한 여과농축장치
CN106311492A (zh) * 2016-09-30 2017-01-11 江苏牡丹离心机制造有限公司 一种离心机的进料管及立式离心机

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62121667A (ja) * 1985-11-22 1987-06-02 Iijima Seimitsu Kogyo Kk 半透膜を用いた遠心式連続濾過装置
DE10027958A1 (de) * 2000-06-08 2002-01-10 Westfalia Separator Food Tec G Zentrifuge mit Siebanordnung und Verfahren zu deren Betrieb

Also Published As

Publication number Publication date
JP2006272299A (ja) 2006-10-12

Similar Documents

Publication Publication Date Title
US9186604B1 (en) Hydroclone with vortex flow barrier
JP3577460B2 (ja) 軸力の減少手段を備えた回転円板型濾過装置
AU741391B2 (en) Rotary filtration device with flow-through inner member
US8308953B2 (en) Methods of dynamic filtration using centrifugal force and methods of making a dynamic filtration device
US9050610B2 (en) Hydroclone with inlet flow shield
CA2828922C (en) Multi-chambered hydroclone
CN101700472B (zh) 旋转式膜分离装置及其应用
EP0902723B1 (en) Immersible rotary disc filtration device
JPS5858144B2 (ja) ろ過装置及び方法
CN1569302A (zh) 离心分离混合物的方法及离心分离器
US4717485A (en) Multi-phase separator with porous filter disks
JP2006510475A (ja) ろ過装置
CN110075717B (zh) 降低陶瓷膜污染的旋转式过滤结构、装置及方法
JP5005180B2 (ja) 遠心分離膜装置
EP0289674A1 (en) Multi-phase separator
JPH05309242A (ja) 濾過素子及び液体処理装置
RU2226419C1 (ru) Устройство центробежного типа для очистки жидкости от дисперсных примесей
CN215693227U (zh) 一种分离纯化装置
RU2699121C2 (ru) Способ разделения жидких неоднородных дисперсных систем и установка для его реализации
JP2013252478A (ja) 油分含有排水の処理方法及び処理装置
JP2004230343A (ja) 差圧連続濾過装置
JP2011255257A (ja) 遠心分離機
RU2246980C1 (ru) Роторный мембранный фильтр
RU14016U1 (ru) Центрифуга

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5005180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250