JP5004331B2 - HNF-4α activity inhibitor - Google Patents

HNF-4α activity inhibitor Download PDF

Info

Publication number
JP5004331B2
JP5004331B2 JP2006322220A JP2006322220A JP5004331B2 JP 5004331 B2 JP5004331 B2 JP 5004331B2 JP 2006322220 A JP2006322220 A JP 2006322220A JP 2006322220 A JP2006322220 A JP 2006322220A JP 5004331 B2 JP5004331 B2 JP 5004331B2
Authority
JP
Japan
Prior art keywords
hnf
nitrogenistin
activity
target gene
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006322220A
Other languages
Japanese (ja)
Other versions
JP2008133247A5 (en
JP2008133247A (en
Inventor
美城 高橋
秀彦 近藤
孝利 村瀬
知彦 金山
隆一郎 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
University of Tokyo NUC
Original Assignee
Kao Corp
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp, University of Tokyo NUC filed Critical Kao Corp
Priority to JP2006322220A priority Critical patent/JP5004331B2/en
Publication of JP2008133247A publication Critical patent/JP2008133247A/en
Publication of JP2008133247A5 publication Critical patent/JP2008133247A5/ja
Application granted granted Critical
Publication of JP5004331B2 publication Critical patent/JP5004331B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高トリグリセリド血症、脂肪肝又は糖尿病の予防若しくは改善に有用なHNF−4α(hepatocyte nuclear factor-4α)活性抑制剤に関する。   The present invention relates to an inhibitor of HNF-4α (hepatocyte nuclear factor-4α) activity useful for the prevention or improvement of hypertriglyceridemia, fatty liver or diabetes.

ステロイド、甲状腺ホルモン、レチノイドなどの低分子脂溶性リガンドは、核内受容体へのリガンド特異的な結合を介して、個体発生における形態形成、細胞の増殖、分化、生体の恒常性の維持など多様な生理機能の調節に関与している。核内受容体はリガンドと結合することで立体構造が変化し、転写共役因子と複合体を形成する。この核内受容体と転写共役因子の複合体は、標的遺伝子のプロモーター領域の特定配列に結合し、さらに基本転写因子群をリクルートし、標的遺伝子の発現を転写レベルで制御する。   Low-molecular-weight lipophilic ligands such as steroids, thyroid hormones, and retinoids are diverse, such as morphogenesis in ontogeny, cell proliferation and differentiation, and maintenance of homeostasis through ligand-specific binding to nuclear receptors. Is involved in the regulation of physiological functions. The nuclear receptor binds to a ligand to change its steric structure and form a complex with a transcriptional coupling factor. This complex of a nuclear receptor and a transcription coupling factor binds to a specific sequence in the promoter region of the target gene, further recruits basic transcription factors, and controls the expression of the target gene at the transcription level.

HNF−4αは核内受容体の1種であり、肝臓に多く存在する転写因子として同定された(非特許文献1)。当初、HNF−4αは、外因性リガンドの非存在下において標的遺伝子の転写を活性化することが報告されたが(非特許文献1)、その後の研究で、特定の脂肪酸アシルCoAがHNF−4αを活性化することが示され、これらがHNF−4αの内因性リガンドであることが明らかになった(非特許文献2)。HNF−4αは、MTP(microsomal triglyceride transfer protein)、apoB(apolipoprotein B)、及びapoCIII(apolipoprotein CIII)等の脂質輸送に関わる遺伝子やPEPCK(phosphenolpyruvate carboxykinase)及びG6Pase(glucose-6-phosphatase)等の糖代謝に関わる遺伝子の発現を正に制御することが知られている。HNF−4αは、肝臓の他に、腎臓や小腸にも発現しており、脂肪酸の合成・輸送・分泌、細胞周期の調節など幅広く生体のエネルギー代謝や恒常性の維持に関わるものと考えられている。   HNF-4α is a kind of nuclear receptor and has been identified as a transcription factor that is present in large amounts in the liver (Non-patent Document 1). Initially, HNF-4α was reported to activate transcription of target genes in the absence of exogenous ligands (Non-Patent Document 1), but in subsequent studies, a specific fatty acyl CoA was found to be HNF-4α. It was revealed that these are endogenous ligands of HNF-4α (Non-patent Document 2). HNF-4α is a gene involved in lipid transport such as MTP (microsomal triglyceride transfer protein), apoB (apolipoprotein B), and apoCIII (apolipoprotein CIII), and sugars such as PEPCK (phosphenolpyruvate carboxykinase) and G6Pase (glucose-6-phosphatase). It is known to positively control the expression of genes involved in metabolism. HNF-4α is expressed not only in the liver but also in the kidney and small intestine and is considered to be involved in the maintenance of energy metabolism and homeostasis in a wide range of organisms, including fatty acid synthesis, transport and secretion, and cell cycle regulation. Yes.

実際に、肝臓特異的にHNF−4αを欠失させたマウスでは、肝臓におけるMTP及びapoタンパク質の発現減少、血清コレステロール及び血清トリグリセリドの減少、及び体重減少が認められている(非特許文献3)。この様に、HNF−4α活性抑制剤は、脂質代謝調節能及び糖代謝調節能を有し、高トリグリセリド血症、脂肪肝、糖尿病の予防あるいは改善剤として有用であると考えられる。しかしながら、これまでにHNF−4αのアンタゴニストの報告例はない。   Actually, in mice lacking HNF-4α specifically in the liver, decreased expression of MTP and apo protein in the liver, decreased serum cholesterol and serum triglycerides, and decreased body weight were observed (Non-patent Document 3). . Thus, the HNF-4α activity inhibitor has lipid metabolism regulating ability and sugar metabolism regulating ability, and is considered useful as an agent for preventing or improving hypertriglyceridemia, fatty liver and diabetes. However, there has been no report of an antagonist of HNF-4α so far.

HNF−4αの転写活性は、FXR(farnesoid X receptor)の標的遺伝子の一つであるSHP(small heterodimer partner)によって抑制されることが分かっている(非特許文献4)。FXRリガンドであるケノデオキシコール酸(CDCA)と培養した肝癌由来細胞株HepG2細胞では、SHP発現増強に伴い、HNF−4α標的遺伝子であるMTP、apoBの遺伝子発現が減少すること、及びVLDL分泌が減少することが報告されている(非特許文献5)。しかしながら、CDCAは毒性をもつリトコール酸に代謝されるため、医薬品あるいは食品としての活用は困難であると考えられている。以上のことから、安全で優れたHNF−4α活性抑制能を有する化合物の同定が望まれる。   It has been found that the transcriptional activity of HNF-4α is suppressed by SHP (small heterodimer partner), which is one of the target genes of FXR (farnesoid X receptor) (Non-patent Document 4). In hepatoma-derived cell line HepG2 cells cultured with chenodeoxycholic acid (CDCA), an FXR ligand, gene expression of HTP-4α target genes MTP and apoB decreases and VLDL secretion decreases with increased SHP expression (Non-Patent Document 5). However, since CDCA is metabolized to toxic lithocholic acid, it is considered difficult to utilize it as a medicine or food. From the above, it is desired to identify a safe and excellent compound having the ability to suppress HNF-4α activity.

一方、ニトロゲニステインは、フラボノイド類似化合物であり、チロシンキナーゼ阻害作用を有することが知られている(非特許文献6)。
しかしながら、ニトロゲニステインに脂質代謝調節能や糖代謝調節能があることは知られていない。
Sladek, F. M., et al., Genes Dev., 4, 2353-2365, 1990 Hertz, R., et al., Nature, 392, 512-516, 1998 Hayhurst, G. P., et al., Mol. Cel. Biol., 21, 1393-1403, 2001 Lee, Y., et al., Mol. Cell Biol., 20, 187-195, 2000 Hirokene, H., et al,. J. Biol. Chem., 279, 45685-45692, 2004 Cushman, M., et al., J. Med. Chem., 34, 798-806, 1991
On the other hand, nitrogenistin is a flavonoid-like compound and is known to have a tyrosine kinase inhibitory action (Non-patent Document 6).
However, it is not known that nitrogenistin has the ability to regulate lipid metabolism or sugar metabolism.
Sladek, FM, et al., Genes Dev., 4, 2353-2365, 1990 Hertz, R., et al., Nature, 392, 512-516, 1998 Hayhurst, GP, et al., Mol. Cel. Biol., 21, 1393-1403, 2001 Lee, Y., et al., Mol. Cell Biol., 20, 187-195, 2000 Hirokene, H., et al ,. J. Biol. Chem., 279, 45685-45692, 2004 Cushman, M., et al., J. Med. Chem., 34, 798-806, 1991

本発明は、高トリグリセリド血症、脂肪肝又は糖尿病の予防若しくは改善に有用な医薬又は食品を提供することに関する。   The present invention relates to providing a medicament or food useful for preventing or improving hypertriglyceridemia, fatty liver or diabetes.

本発明者らは、上記課題に鑑み、種々の物質を探索したところ、ニトロゲニステインにHNF−4α活性抑制作用があること、また、FXR及びLXRα(liver X receptor α)が標的とする脂質代謝関連遺伝子の発現調節作用を有することを見出した。   In view of the above problems, the present inventors have searched for various substances, and as a result, nitrogenistein has an inhibitory action on HNF-4α activity and is related to lipid metabolism targeted by FXR and LXRα (liver X receptor α). It was found to have a gene expression regulating action.

すなわち、本発明は、以下の1)〜5)に係るものである。
1)ニトロゲニステインを有効成分とするHNF−4α活性抑制剤。
2)ニトロゲニステインを有効成分とするFXR標的遺伝子発現調節剤。
3)ニトロゲニステインを有効成分とするLXRα標的遺伝子発現調節剤。
4)ニトロゲニステインを有効成分とする脂質代謝調節剤。
5)ニトロゲニステインを有効成分とする糖代謝調節剤。
That is, the present invention relates to the following 1) to 5).
1) An HNF-4α activity inhibitor containing nitrogenistain as an active ingredient.
2) FXR target gene expression regulator containing nitrogenistain as an active ingredient.
3) LXRα target gene expression regulator comprising nitrogenistain as an active ingredient.
4) A lipid metabolism regulator comprising nitrogenistain as an active ingredient.
5) A sugar metabolism regulator comprising nitrogenistain as an active ingredient.

本発明によれば、HNF−4α活性抑制を介して優れた脂質代謝調節能及び糖代謝調節能を発揮し、高トリグリセリド血症、脂肪肝又は糖尿病の予防若しくは改善に有用な医薬又は食品を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the pharmaceutical or foodstuff which exhibits the lipid-metabolism regulation ability and glucose metabolism regulation ability which were excellent through suppression of HNF-4 (alpha) activity, and is useful for prevention or improvement of hypertriglyceridemia, fatty liver, or diabetes is provided. can do.

本発明において、ニトロゲニステイン(nitrogenistein)とは、4’−Nitro−6−hydroxyflavoneであり、下記構造式で表される化合物である。   In the present invention, nitrogenigenin is 4'-Nitro-6-hydroxyflavone, which is a compound represented by the following structural formula.

Figure 0005004331
Figure 0005004331

斯かるニトロゲニステインは、例えばCushman, M., et al.,J. Med. Chem., 34, 798-806, 1991に記載の方法により製造することができる。また、ALEXIS社製等の市販品のニトロゲニステインを用いてもよい。   Such nitrogenistein can be produced, for example, by the method described in Cushman, M., et al., J. Med. Chem., 34, 798-806, 1991. Moreover, you may use commercially available nitrogeni stains, such as the product made from ALEXIS.

ニトロゲニステインは、後記実施例に示すように、HNF−4αの転写活性抑制作用(実施例1)を有し、HNF−4αの標的遺伝子であるMTP(microsomal triglyceride transfer protein)、apoB(apolipoprotein B)、apoCIII(apolipoprotein CIII)、PEPCK(phosphenolpyruvate carboxykinase)、及びG6Pase(glucose-6-phosphatase)の遺伝子発現抑制作用(実施例2)を有する。ここで、MTP、apoB及びapoCIIIはトリグリセリド分泌関連遺伝子であり、PEPCK及びG6Paseは糖新生関連遺伝子であることから、ニトロゲニステインは、肝臓からのトリグリセリド分泌を抑制し、血中トリグリセリドの上昇を抑制すると共に、糖新生を抑制し、血糖調節や糖尿病の予防又は改善に有効であると考えられる。   Nitrogenstein has a transcriptional activity suppression action (Example 1) of HNF-4α, as shown in Examples below, and is a target gene of HNF-4α, MTP (microsomal triglyceride transfer protein), apoB (apolipoprotein B) ApoCIII (apolipoprotein CIII), PEPCK (phosphenolpyruvate carboxykinase), and G6Pase (glucose-6-phosphatase) gene expression inhibitory effect (Example 2). Here, since MTP, apoB, and apoCIII are triglyceride secretion-related genes, and PEPCK and G6Pase are gluconeogenesis-related genes, nitrogenistin suppresses secretion of triglycerides from the liver and suppresses increase in blood triglycerides. At the same time, gluconeogenesis is suppressed, and it is considered effective for blood glucose control and diabetes prevention or improvement.

また、HNF−4αの転写活性は、FXR(farnesoid X receptor)の標的遺伝子の一つであるSHP(small heterodimer partner)によって抑制されることが知られているが(前記非特許文献4)、ニトロゲニステインは、このSHP(small heterodimer partner)及び脂質分泌輸送関連遺伝子であるPLTP(phospholipids transfer protein)の発現を増強する作用(実施例3)を有することが明らかになった。つまり、ニトロゲニステインは、FXR標的遺伝子であるSHPを介してHNF−4αの核内受容体の転写活性を抑制するものと考えられる。従って、ニトロゲニステインは、脂質代謝・糖代謝調節効果を発揮するFXR標的遺伝子調節剤となり得る。   Moreover, it is known that the transcriptional activity of HNF-4α is suppressed by SHP (small heterodimer partner) which is one of target genes of FXR (farnesoid X receptor) (Non-patent Document 4), It was revealed that genistein has an action (Example 3) that enhances the expression of SHP (small heterodimer partner) and PLTP (phospholipids transfer protein) which is a lipid secretion and transport related gene. That is, nitrogenisin is thought to suppress the transcriptional activity of the nuclear receptor for HNF-4α via SHP, which is an FXR target gene. Therefore, nitrogenistin can be an FXR target gene regulator that exerts lipid metabolism / sugar metabolism regulation effect.

更に、HNF−4αと同様にSHPにより制御される核内受容体としてLXRα(liver X receptor α)があるが、ニトロゲニステインは、当該LXRαの標的遺伝子である脂肪酸合成関連遺伝子、SREBP1c(sterol regulatory element binding protein)、ACC1(acetyl-CoA carboxylase)、FAS(fatty acid synthase)についてもその発現を抑制する作用(実施例4)を有することが確認された。従って、ニトロゲニステインは、肝臓の脂肪酸合成を抑制し、肝脂肪の予防又は治療効果を発揮するLXRα標的遺伝子調節剤となり得る。   Furthermore, there is LXRα (liver X receptor α) as a nuclear receptor controlled by SHP as in HNF-4α. Nitrogenstein is a fatty acid synthesis-related gene, SREBP1c (sterol regulatory element) which is a target gene of LXRα. Binding protein), ACC1 (acetyl-CoA carboxylase), and FAS (fatty acid synthase) were also confirmed to have an action to suppress their expression (Example 4). Therefore, nitrogenistin can be an LXRα target gene regulator that suppresses liver fatty acid synthesis and exerts a preventive or therapeutic effect on liver fat.

かように、ニトロゲニステインは、HNF−4α活性抑制剤、脂質代謝調節剤、糖代謝調節剤、FXR標的遺伝子調節剤及びLXRα標的遺伝子調節剤(以下、HNF−4α活性抑制剤等という)として使用することができ、また、HNF−4α活性抑制剤等を製造するために使用することができる。当該HNF−4α活性抑制剤等は、高トリグリセリド血症、脂肪肝又は糖尿病の予防若しくは改善効果を発揮する、ヒト若しくは動物用の医薬品、医薬部外品、又は食品として使用可能である。また、当該HNF−4α活性抑制剤等は、高トリグリセリド血症、脂肪肝又は糖尿病の予防若しくは改善等をコンセプトとし、必要に応じてその旨を表示した美容食品、病者用食品若しくは特定保健用食品等の機能性食品として使用することができる。   Thus, nitrogenistin is used as an HNF-4α activity inhibitor, lipid metabolism regulator, sugar metabolism regulator, FXR target gene regulator, and LXRα target gene regulator (hereinafter referred to as HNF-4α activity inhibitor, etc.). It can also be used to produce HNF-4α activity inhibitors and the like. The said HNF-4 (alpha) activity inhibitor etc. can be used as a pharmaceutical for humans or animals, a quasi-drug, or a foodstuff which exhibits the effect of preventing or improving hypertriglyceridemia, fatty liver, or diabetes. The HNF-4α activity inhibitor, etc. is based on the concept of prevention or improvement of hypertriglyceridemia, fatty liver or diabetes, etc., and if necessary, beauty food, food for the sick or for specified health use It can be used as a functional food such as food.

本発明のHNF−4α活性抑制剤等を医薬品として用いる場合の投与形態としては、例えば錠剤、カプセル剤、顆粒剤、散剤、シロップ剤、腸溶剤、トローチ剤、ドリンク剤等による経口投与又は注射剤、坐剤、経皮吸収剤、外用剤等による非経口投与が挙げられる。また、このような種々の剤型の医薬製剤を調製するには、本発明のニトロゲニステインを単独で、又は他の薬学的に許容される賦形剤(ソルビトール、グルコース、乳糖、デキストリン、澱粉等の糖類、炭酸カルシウム等の無機物、結晶セルロース、蒸留水、ゴマ油、とうもろこし油、オリーブ油、菜種油等)、結合剤、滑沢剤、増量剤、崩壊剤、界面活性剤、滑沢剤、分散剤、懸濁剤、乳化剤、緩衝剤、保存剤、嬌味剤、香料、被膜剤、担体、希釈剤、抗酸化剤、細菌抑制剤等を適宜組み合わせて用いることができる。これらの投与形態のうち、好ましい形態は経口投与であり、経口投与用製剤として用いる場合の当該製剤中の本発明のニトロゲニステインの含有量は、通常製剤中に0.001〜80質量%とするのが好ましく、特に0.5〜80質量%とするのがより好ましい。   Examples of the dosage form when the HNF-4α activity inhibitor of the present invention is used as a pharmaceutical agent include oral administration or injection by tablets, capsules, granules, powders, syrups, enteric solvents, troches, drinks, etc. Parenteral administration with suppositories, transdermal absorption agents, external preparations and the like. In order to prepare pharmaceutical preparations of such various dosage forms, the nitrogenistin of the present invention alone or other pharmaceutically acceptable excipients (sorbitol, glucose, lactose, dextrin, starch, etc.) Saccharides, inorganic substances such as calcium carbonate, crystalline cellulose, distilled water, sesame oil, corn oil, olive oil, rapeseed oil, etc.), binders, lubricants, extenders, disintegrants, surfactants, lubricants, dispersants, Suspending agents, emulsifiers, buffers, preservatives, flavoring agents, fragrances, coating agents, carriers, diluents, antioxidants, bacterial inhibitors, and the like can be used in appropriate combinations. Among these dosage forms, the preferred form is oral administration, and when used as a preparation for oral administration, the content of the nitrogenistin of the present invention in the preparation is usually 0.001 to 80% by mass in the preparation. Of these, it is preferable, and it is more preferable to set it as 0.5-80 mass% especially.

本発明のHNF−4α活性抑制剤等を食品として用いる場合の形態としては、例えば、パン、麺類等に代表される小麦粉加工食品、お粥、炊き込みご飯等の米加工食品、ビスケット、ケーキ、ゼリー、チョコレート、せんべい、アイスクリーム等の菓子類、豆腐、その加工食品等の大豆加工食品、清涼飲料、果汁飲料、乳飲料、炭酸飲料等の飲料類、ヨーグルト、チーズ、バター、牛乳等の乳製品、醤油、ソース、味噌、マヨネーズ、ドレッシング等の調味料、ハム、ベーコン、ソーセージ等の蓄肉、蓄肉加工食品、はんぺん、ちくわ、魚の缶詰等の水産加工食品、調理油ならびにフライ用油等が挙げられる。また、この他、カプセル等の錠剤食、濃厚流動食、自然流動食、半消化態栄養食、成分栄養食、ドリンク栄養食等の経口経腸栄養食品、機能性食品等の形態とすることもできる。
種々の形態の飲食品を調製するには、本発明のニトロゲニステインを単独で、又は他の食品材料や、溶剤、軟化剤、油、乳化剤、防腐剤、香科、安定剤、着色剤、酸化防止剤、保湿剤、増粘剤等を適宜組み合わせて用いることができる。当該食品中の本発明のニトロゲニステインの含有量は、一般的に0.001〜1質量%とするのが好ましく、更に0.002〜0.2質量%、特に0.005〜0.05質量%とするのが好ましい。
Examples of the case where the HNF-4α activity inhibitor of the present invention is used as a food include, for example, processed wheat foods such as bread and noodles, rice processed foods such as rice cakes and cooked rice, biscuits, cakes and jelly , Chocolate, rice crackers, ice cream and other sweets, tofu, processed processed foods such as processed foods, soft drinks, fruit juices, milk drinks, carbonated drinks, and other dairy products such as yogurt, cheese, butter and milk Seasonings such as soy sauce, sauce, miso, mayonnaise, dressing, meat storage such as ham, bacon, sausage, processed meat products, processed fish food such as hampen, chikuwa, canned fish, cooking oil and frying oil . In addition, it may be in the form of tablet foods such as capsules, concentrated liquid foods, natural liquid foods, semi-digested nutritional foods, component nutritional foods, drink nutritional foods, oral enteral nutrition foods, functional foods, etc. it can.
In order to prepare various forms of food and drink, the nitrogenistain of the present invention alone or other food materials, solvents, softeners, oils, emulsifiers, preservatives, fragrances, stabilizers, colorants, oxidation An inhibitor, a humectant, a thickener and the like can be used in appropriate combination. The content of nitrogenistin of the present invention in the food is generally preferably 0.001 to 1% by mass, more preferably 0.002 to 0.2% by mass, particularly 0.005 to 0.05% by mass. % Is preferable.

本発明のHNF−4α活性抑制剤等を医薬品又は食品として使用する場合、成人1人当たりの1日の投与又は摂取量は、本発明のニトロゲニステインとして、例えば5〜2000mg、更に10〜1000mg、特に20〜500mgとするのが好ましい。また、当該製剤は、1日1回〜数回に分けて投与することが好ましい。   When the HNF-4α activity inhibitor or the like of the present invention is used as a pharmaceutical or food, the daily administration or intake amount per adult is, for example, 5 to 2000 mg, more preferably 10 to 1000 mg, particularly as nitrogenisin of the present invention. It is preferable to set it as 20-500 mg. The preparation is preferably administered once to several times a day.

実施例1 ニトロゲニステインのHNF−4α活性抑制能評価 Example 1 Evaluation of ability of nitrogenistein to suppress HNF-4α activity

ニトロゲニステインのHNF−4α活性抑制能をルシフェラーゼアッセイにより評価した。ヒト肝臓由来細胞株HepG2を12ウェルプレートにまき、10% fetal bovine serum(FBS、ICN Biomedicals)および100units/ml penicillin、100μg/ml streptomycin(Invitrogen)を含むDulbecco’s modified Eagle’s medium(DMEM、SIGMA)中で1日培養した。評価は、pGV−B2ベクターのホタルルシフェラーゼ遺伝子の上流にHNF−4α標的遺伝子の一つであるヒトMTPのプロモーター領域(nt −204 to +33, Genbank NM_000253)を連結したMTPレポータープラスミド(MTPp−Luc)とpGV−Pベクターのホタルルシフェラーゼ遺伝子の上流にHNF−4αのコンセンサス結合配列であるDR1(AGTTTGGAGTCTGAGAGTTTGGAGTCTG(配列番号1))を連結したDR1レポータープラスミド(DR1−Luc)の2種類で行った。レポータープラスミドおよびウミシイタケルシフェラーゼ遺伝子の上流にチミジンキナーゼプロモーター遺伝子が連結されたコントロールプラスミド(phRL−TK、Promega)を同時に、1ウェルあたり各々0.33、0.03μgを遺伝子導入試薬(Lipofectamine2000、Promega)を用いてHepG2細胞に遺伝子導入した。遺伝子導入後、20μMのニトロゲニステインを含む無血清DMEM培地に交換し、さらに24時間培養した。   The ability of nitrogenistin to inhibit HNF-4α activity was evaluated by luciferase assay. Human liver-derived cell line HepG2 is seeded in a 12-well plate and 10% fetal bovine serum (FBS, ICN Biomedicals) and 100 units / ml penicillin, 100 μg / ml streptomycin (Invitrogen) and Dulbecco's medimemedi'em medi In SIGMA), the cells were cultured for 1 day. The evaluation is based on the MTP reporter plasmid (MTPp-Luc) in which the human MTP promoter region (nt-204 to +33, Genbank NM_000253), which is one of the HNF-4α target genes, is linked upstream of the firefly luciferase gene of the pGV-B2 vector. ) And DR1 reporter plasmid (DR1-Luc) in which DR1 (AGTTTGGAGTCTGAGAGTTGGATCTG (SEQ ID NO: 1)), a consensus binding sequence of HNF-4α, was linked upstream of the firefly luciferase gene of the pGV-P vector. A control plasmid (phRL-TK, Promega) ligated with a thymidine kinase promoter gene upstream of the reporter plasmid and the Renilla luciferase gene was simultaneously added at 0.33 and 0.03 μg per well, respectively, as a gene introduction reagent (Lipofectamine2000, Promega). Was used to introduce genes into HepG2 cells. After the gene transfer, the medium was replaced with a serum-free DMEM medium containing 20 μM nitrogenstein and further cultured for 24 hours.

ルシフェラーゼ活性測定には、デュアルルシフェラーゼアッセイシステム(Promega)を用いた。細胞を溶解、溶解液にルシフェリンを含む基質溶液を加え、ルミノメーター(MiniLumat、ベルトールド社)にてホタル及びウミシイタケルシフェラーゼの発光を各々測定した。本実験系でルシフェラーゼ活性(HNF−4αの転写活性)を測定することにより、HNF−4α活性抑制物質の評価を行った。ルシフェラーゼ活性(HNF−4αの転写活性)は以下の式により計算した。 ルシフェラーゼ活性(HNF−4αの転写活性)=(MTPp−LucまたはDR1−Lucによるホタルルシフェラーゼ発光計測値)/(phRL−TKによるウミシイタケルシフェラーゼ発光計測値)
また、ルシフェラーゼ活性は、溶媒コントロールであるDMSOによるHNF−4αの転写活性を1とした相対値で示した。
A dual luciferase assay system (Promega) was used for luciferase activity measurement. Cells were lysed, a substrate solution containing luciferin was added to the lysate, and firefly and Renilla luciferase luminescence was measured with a luminometer (MiniLumat, Bertoled). By measuring the luciferase activity (HNF-4α transcriptional activity) in this experimental system, the HNF-4α activity inhibitory substance was evaluated. Luciferase activity (transcription activity of HNF-4α) was calculated by the following formula. Luciferase activity (transcription activity of HNF-4α) = (measured value of firefly luciferase luminescence by MTPp-Luc or DR1-Luc) / (measured value of renilla luciferase luminescence by phRL-TK)
The luciferase activity was expressed as a relative value with the transcriptional activity of HNF-4α by DMSO as a solvent control being 1.

図1に示す様に、いずれのレポーターベクターを用いた場合も、20μMのニトロゲニステインにより、HNF−4αの転写活性が30%以下に抑制された。従って、ニトロゲニステインはHNF−4α転写活性を抑制することが分かる。   As shown in FIG. 1, in any of the reporter vectors, 20 μM nitrogenistin inhibited the transcriptional activity of HNF-4α to 30% or less. Thus, nitrogenisin is found to suppress HNF-4α transcriptional activity.

実施例2 ニトロゲニステインによるHNF−4α標的遺伝子発現抑制
ニトロゲニステインによるHNF−4α標的遺伝子発現への影響を解析した。ヒト肝臓由来細胞株HepG2を12ウェルプレートにまき、10%チャコール処理FBS及び100units/ml penicillin、100μg/ml streptomycin(Invitrogen)を含むDMEM中で1日培養した。培養開始から1日目に培地を無血清DMEMに交換し、2日目に1、5、10μMのニトロゲニステインまたは10μMのゲニステインを含む培地に交換した。添加24時間後の細胞からRNA抽出試薬を用いてtotal RNAを抽出した。抽出したtotal RNA 125ngを用いて逆転写反応を行った。合成されたcDNA(total RNA 6.25ng分)を用い、Real−time PCR法により、HNF−4αの標的遺伝子であるトリグリセリド分泌関連遺伝子(MTP、apoB、apoCIII)、糖新生関連遺伝子(PEPCK、G6Pase)のmRNA発現量の定量を行った。
Example 2 Inhibition of HNF-4α Target Gene Expression by Nitrogenstein The influence of nitrogenistain on HNF-4α target gene expression was analyzed. The human liver-derived cell line HepG2 was seeded in a 12-well plate and cultured in DMEM containing 10% charcoal-treated FBS and 100 units / ml penicillin, 100 μg / ml streptomycin (Invitrogen) for 1 day. On the first day from the start of the culture, the medium was replaced with serum-free DMEM, and on the second day, the medium was replaced with a medium containing 1, 5, 10 μM nitrogenistein or 10 μM genistein. Total RNA was extracted from the cells 24 hours after the addition using an RNA extraction reagent. Reverse transcription reaction was performed using 125 ng of the extracted total RNA. Using synthesized cDNA (total RNA: 6.25 ng), by real-time PCR method, triglyceride secretion-related genes (MTP, apoB, apoCIII), gluconeogenesis-related genes (PEPCK, G6Pase) which are target genes of HNF-4α ) MRNA expression level was quantified.

解析に用いたプライマーの配列を以下に示す。
<MTP増幅用プライマー>
5'側:GCATGCAGATGGACAAGGATGAAG(配列番号2)
3'側:CGCTGGAAGTACTATCCGGC(配列番号3)
<apoB増幅用プライマー>
5'側:GCCATTGCGACGAAGAAAATA(配列番号4)
3'側:TGACTGTGGTTGATTGCAGCTT(配列番号5)
<apoCIII増幅用プライマー>
5'側:TCAGTTCCCTGAAAGACTACTGGA(配列番号6)
3'側:ATGGATAGGCAGGTGGACTTG(配列番号7)
<PEPCK増幅用プライマー>
5'側:GTGCTGGAGTGGATGTTCAAC(配列番号8)
3'側:ACATCTGGCTTATTCTTTGCTTC(配列番号9)
<G6Pase増幅用プライマー>
5'側:GCCTCAGCTCTATTGTAGCCTC(配列番号10)
3'側:CCGCACTCTTGCAGAAGGACA(配列番号11)
<36B4増幅用プライマー>
5'側:CTGATCATCCAGCAGGTGTT(配列番号12)
3'側:CCAGGAAGGCCTTGACCTTT(配列番号13)
The primer sequences used for the analysis are shown below.
<MTP amplification primer>
5 'side: GCATGCCAGATGGACAAGGATGAAG (SEQ ID NO: 2)
3 ′ side: CCGTGGAAGTACCATCCGCC (SEQ ID NO: 3)
<Primer for apoB amplification>
5 'side: GCCATTGCGACGAAGAAAAATA (SEQ ID NO: 4)
3 ′ side: TGACTGTGGTTGATTGCAGCTT (SEQ ID NO: 5)
<Primer for apoCIII amplification>
5 'side: TCAGTTCCCTGAAAGATACCTGGGA (SEQ ID NO: 6)
3 ′ side: ATGGATAGGGCAGGTGGAACTTG (SEQ ID NO: 7)
<PEPCK amplification primer>
5 'side: GTGCTGGAGTGGATGTTCAAC (SEQ ID NO: 8)
3 'side: ACATCTGGCTTATTCTTTGCTTC (SEQ ID NO: 9)
<G6Pase amplification primer>
5 'side: GCCTCAGCTCTATTTGTAGCCTC (SEQ ID NO: 10)
3 ′ side: CCGCACTCTTGCAGAAGGACA (SEQ ID NO: 11)
<36B4 amplification primer>
5 'side: CTGATCATCCAGCAGGTGTT (SEQ ID NO: 12)
3 ′ side: CCAGGAAGGCCTTGACCTT (SEQ ID NO: 13)

尚、解析はSYBR Green Master Mix及びABI PRISM7000 Seaquence Detectoin System(アプライドバイオジャパン)を用いて行い、各遺伝子のmRNA発現量は、36B4遺伝子のmRNA発現量により補正した。また、遺伝子発現量は、コントロールとして使用したDMSOにおける遺伝子発現量を1とした相対値で示した。   The analysis was performed using SYBR Green Master Mix and ABI PRISM 7000 Sequence Detection System (Applied Bio Japan), and the mRNA expression level of each gene was corrected by the mRNA expression level of 36B4 gene. Moreover, the gene expression level is shown as a relative value with the gene expression level in DMSO used as a control as 1.

図2に示す様に、ニトロゲニステインの存在下で培養したHepG2細胞において、HNF−4α標的遺伝子であるMTP、apoB、apoCIII、PEPCK、及びG6Paseの遺伝子発現量がほぼ濃度依存的に抑制された。従って、HNF−4α活性抑制作用を有するニトロゲニステインは、実際にHNF−4αの標的遺伝子の発現を抑制することが分る。つまり、ニトロゲニステインは肝臓からのトリグリセリド分泌を抑制することにより、血中トリグリセリドの上昇抑制に有効であり、糖新生を抑制することにより、血糖調節や糖尿病抑制に有効であると考えられる。   As shown in FIG. 2, gene expression levels of HTP-4α target genes MTP, apoB, apoCIII, PEPCK, and G6Pase were suppressed in a concentration-dependent manner in HepG2 cells cultured in the presence of nitrogenistin. Therefore, it can be seen that nitrogenistin having an inhibitory action on HNF-4α activity actually suppresses the expression of the target gene of HNF-4α. In other words, nitrogenistin is effective in suppressing the increase in blood triglyceride by suppressing the secretion of triglyceride from the liver, and it is considered effective in controlling blood glucose and diabetes by suppressing gluconeogenesis.

実施例3 ニトロゲニステインによるFXR標的遺伝子発現調節
ニトロゲニステインによるFXR標的遺伝子発現への影響を解析した。実施例3と同様に、HepG2細胞を1、5、10μMのニトロゲニステインと培養し、Real−time PCR法により、FXR標的遺伝子であるSHP、及び脂質分泌輸送関連遺伝子であるPLTP(phospholipids transfer protein)のmRNA発現量の定量を行った。
Example 3 Regulation of FXR target gene expression by nitrogenistin The influence of nitrogenistine on FXR target gene expression was analyzed. In the same manner as in Example 3, HepG2 cells were cultured with 1, 5, and 10 μM nitrogenistin, and were subjected to Real-time PCR to SFX as an FXR target gene and PLTP (phospholipids transfer protein) as a lipid secretion transport-related gene. The mRNA expression level was quantified.

解析に用いたプライマーの配列を以下に示す。
<SHP増幅用プライマー>
5'側:AACTGCCAGACAGACCCCAG(配列番号14)
3'側:GCACCAGGGTTCCAGGACTT(配列番号15)
<PLTP増幅用プライマー>
5'側:ATTCCAACCATTCTGCACTGG(配列番号16)
3'側:TGCACAAAGTTGATGCCCTC(配列番号17)
The primer sequences used for the analysis are shown below.
<Primer for SHP amplification>
5 'side: AACTGCCCAGACAGACCCCAG (SEQ ID NO: 14)
3 'side: GCACCAGGGTTCCAGGACTT (SEQ ID NO: 15)
<Primer for PLTP amplification>
5 ′ side: ATTCCAACCATTCTGCACTGG (SEQ ID NO: 16)
3 ′ side: TGCACAAAGTTGATGCCCTC (SEQ ID NO: 17)

図3に示す様に、ニトロゲニステイン存在下で培養したHepG2細胞において、SHP、PLTPの遺伝子発現量が増強した。従って、実施例3において、HNF−4α標的遺伝子の発現抑制が示されたニトロゲニステインは、FXR標的遺伝子の発現調節剤としても有用であることが明らかになった。つまり、ニトロゲニステインは、SHPを介してLXRαやHNF−4α等の核内受容体の転写活性を抑制することにより、脂質代謝・糖代謝調節に有効であると考えられる。   As shown in FIG. 3, gene expression levels of SHP and PLTP were enhanced in HepG2 cells cultured in the presence of nitrogenistin. Therefore, in Example 3, it was revealed that nitrogenistin, which was shown to suppress the expression of the HNF-4α target gene, was also useful as an FXR target gene expression regulator. In other words, nitrogenistin is thought to be effective in regulating lipid metabolism and sugar metabolism by suppressing the transcriptional activity of nuclear receptors such as LXRα and HNF-4α via SHP.

実施例4 ニトロゲニステインによるLXRα標的遺伝子発現調節
ニトロゲニステインによるLXRα標的遺伝子発現への影響を解析した。実施例3、4と同様に、HepG2細胞を1、5、10μMのニトロゲニステインと培養し、Real−time PCR法により、LXRαの標的遺伝子である脂肪酸合成関連遺伝子であるSREBP1c(sterol regulatory element binding protein)、ACC1(acetyl−CoA carboxylase)、FAS(fatty acid synthase)のmRNA発現量の定量を行った。
Example 4 Regulation of LXRα Target Gene Expression by Nitrogenstein The influence of nitrogenistine on LXRα target gene expression was analyzed. In the same manner as in Examples 3 and 4, HepG2 cells were cultured with 1, 5, 10 μM nitrogenistin, and SREBP1c (sterol regulatory element binding protein, which is a gene related to fatty acid synthesis, which is a target gene of LXRα, was obtained by Real-time PCR. ), ACC1 (acetyl-CoA carboxylase), and FAS (fatty acid synthase) mRNA expression levels were quantified.

解析に用いたプライマーの配列を以下に示す。
<SREBP1c増幅用プライマー>
5'側: AGGGGTAGGGCCAACGGCCT(配列番号18)
3'側: GAAGCATGTCTTCGAAAGTGCAATCC(配列番号19)
<FAS増幅用プライマー>
5'側:GTAGGTGTTAGGCATGTCCCA(配列番号20)
3'側:GGTCTCTACCAGCAATGCAAT(配列番号21)
<ACC1増幅用プライマー>
5'側:GGAGATGTACGCTGACCGAGAA(配列番号22)
3'側:ACCCGACGCATGGTTTTCA(配列番号23)
The primer sequences used for the analysis are shown below.
<SREBP1c amplification primer>
5 'side: AGGGGGTAGGCCAACGGCCCT (SEQ ID NO: 18)
3 'side: GAAGCATGTCTTCGAAAGTGCAATCC (SEQ ID NO: 19)
<Primer for FAS amplification>
5 'side: GTAGGTGTTAGGGCATGTCCCA (SEQ ID NO: 20)
3 'side: GGTCTCTACCAGCAATGCAAT (SEQ ID NO: 21)
<Primer for ACC1 amplification>
5 'side: GGAGATGTACCGCTGACCGAGAA (SEQ ID NO: 22)
3 ′ side: ACCGACGCGCATGGTTTTCA (SEQ ID NO: 23)

図4に示す様に、ニトロゲニステイン存在下で培養したHepG2細胞において、LXRα標的遺伝子であるSREBP1c、FAS、及びACC1の遺伝子発現量が濃度依存的に抑制された。従って、ニトロゲニステインは、実施例2、3において、HNF−4α標的遺伝子の発現抑制作用、及びFXR標的遺伝子の発現調節作用が示されたニトロゲニステインは、LXRα標的遺伝子の発現調節剤としても有用であることが明らかになった。つまり、ニトロゲニステインは、肝臓の脂肪酸合成を抑制することにより、肝脂肪の抑制に有効であると考えられる。   As shown in FIG. 4, in HepG2 cells cultured in the presence of nitrogenistin, the gene expression levels of LRERa target genes SREBP1c, FAS, and ACC1 were suppressed in a concentration-dependent manner. Therefore, nitrogenistain is useful as an LXRα target gene expression regulator, as shown in Examples 2 and 3, in which nitrogenistein showed an HNF-4α target gene expression suppressing action and an FXR target gene expression regulating action. It became clear that there was. In other words, nitrogenisin is considered to be effective in suppressing liver fat by inhibiting liver fatty acid synthesis.

実施例5 ニトロゲニステインによるアポリポタンパク質B分泌抑制
ニトロゲニステインによるアポリポタンパク質B(apoB)分泌への影響を解析した。ヒト肝臓由来細胞株HepG2を6ウェルプレートにまき、10%チャコール処理FBS及び100units/ml penicillin、100μg/ml streptomycin(Invitrogen)を含むDMEMで培養した。培養開始から1日目に、5μMのニトロゲニステイン、及び5%のリポ蛋白欠乏血清(LPDS)を含む培地に交換した。添加後2日目に培地をニトロゲニステインを含む無血清DMEMに交換し、その18時間後に細胞及び培地を回収した。培地中に分泌されたapoBをTotal human apolipoprotein B ELISA Assay キット(ALerCHEK)用いて定量した。各値は細胞内タンパク量で補正した。
Example 5 Suppression of Apolipoprotein B Secretion by Nitrogenstein The influence of nitrogenistine on apolipoprotein B (apoB) secretion was analyzed. A human liver-derived cell line HepG2 was plated on a 6-well plate and cultured in DMEM containing 10% charcoal-treated FBS and 100 units / ml penicillin, 100 μg / ml streptomycin (Invitrogen). On the first day from the start of the culture, the medium was replaced with a medium containing 5 μM nitrogenistin and 5% lipoprotein-deficient serum (LPDS). On the second day after the addition, the medium was replaced with serum-free DMEM containing nitrogenistein, and cells and medium were collected 18 hours later. ApoB secreted into the medium was quantified using a Total human apolipoprotein B ELISA Assay kit (ALerCHEK). Each value was corrected by the amount of intracellular protein.

図5に示す様に、ニトロゲニステイン存在下で培養したHepG2細胞において、apoB分泌が抑制された。従って、実施例3において、HNF−4α標的遺伝子であるMTP及びapoBの遺伝子発現抑制が示されたニトロゲニステインは、実際にapoB分泌を抑制することが明らかになった。   As shown in FIG. 5, apoB secretion was suppressed in HepG2 cells cultured in the presence of nitrogenistin. Therefore, in Example 3, it was revealed that nitrogenistein, which was shown to suppress gene expression of HTP-4α target genes MTP and apoB, actually suppressed apoB secretion.

実施例6
下記成分を用い、常法に従って1錠200mgの錠剤を製造した。
Example 6
Using the following ingredients, one tablet of 200 mg was produced according to a conventional method.

Figure 0005004331
Figure 0005004331

実施例7
下記成分を用い、常法に従って1錠200mgの錠剤を製造した。
Example 7
Using the following ingredients, one tablet of 200 mg was produced according to a conventional method.

Figure 0005004331
Figure 0005004331

実施例8
茶葉100gを温度80℃の蒸留水1000gで10分間抽出し、ろ過した茶抽出液を調製した。次に、下記成分を混合し、脱気後、139℃で10秒間加熱処理後、500mLペットボトルに充填して容器詰飲料を製造した。
Example 8
100 g of tea leaves were extracted with 1000 g of distilled water at a temperature of 80 ° C. for 10 minutes to prepare a filtered tea extract. Next, the following components were mixed, degassed, heat-treated at 139 ° C. for 10 seconds, and then filled into a 500 mL plastic bottle to produce a container-packed beverage.

Figure 0005004331
Figure 0005004331

ニトロゲニステインのHNF−4α活性抑制能を示したグラフ。Mean±S.D. **:p<0.01The graph which showed the ability to inhibit HNF-4α activity of nitrogenistin. Mean ± S.D. **: p <0.01 ニトロゲニステインのHNF−4α標的遺伝子発現調節能を示したグラフ。Mean±S.D. *:p<0.05、**:p<0.01The graph which showed the ability to regulate HNF-4α target gene expression of nitrogenistin. Mean ± S.D. *: p <0.05, **: p <0.01 ニトロゲニステインのFXR標的遺伝子発現調節能を示したグラフ。Mean±S.D. *:p<0.05、**:p<0.01The graph which showed the FXR target gene expression control ability of nitrogenistin. Mean ± S.D. *: p <0.05, **: p <0.01 ニトロゲニステインのLXRα標的遺伝子発現調節能を示したグラフ。Mean±S.D. *:p<0.05、**:p<0.01The graph which showed the LXR (alpha) target gene expression control ability of nitrogenistin. Mean ± S.D. *: p <0.05, **: p <0.01 ニトロゲニステインのapoB分泌抑制能を示したグラフ。Mean±S.D. *:p<0.05The graph which showed the apoB secretion suppression ability of nitrogenistin. Mean ± S.D. *: P <0.05

Claims (6)

ニトロゲニステインを有効成分とするHNF−4α活性抑制剤。   An HNF-4α activity inhibitor containing nitrogenistain as an active ingredient. ニトロゲニステインを有効成分とするFXR標的遺伝子発現調節剤。   FXR target gene expression regulator containing nitrogenistain as an active ingredient. ニトロゲニステインを有効成分とするLXRα標的遺伝子発現調節剤。   A LXRα target gene expression regulator comprising nitrogenistain as an active ingredient. ニトロゲニステインを有効成分とするアポリポタンパク質B分泌抑制剤。An apolipoprotein B secretion inhibitor containing nitrogenistain as an active ingredient. ニトロゲニステインを有効成分とする脂質代謝調節剤。   A lipid metabolism regulator containing nitrogenistain as an active ingredient. ニトロゲニステインを有効成分とする糖代謝調節剤。   A glucose metabolism regulator comprising nitrogenistain as an active ingredient.
JP2006322220A 2006-11-29 2006-11-29 HNF-4α activity inhibitor Active JP5004331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006322220A JP5004331B2 (en) 2006-11-29 2006-11-29 HNF-4α activity inhibitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006322220A JP5004331B2 (en) 2006-11-29 2006-11-29 HNF-4α activity inhibitor

Publications (3)

Publication Number Publication Date
JP2008133247A JP2008133247A (en) 2008-06-12
JP2008133247A5 JP2008133247A5 (en) 2009-02-26
JP5004331B2 true JP5004331B2 (en) 2012-08-22

Family

ID=39558345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006322220A Active JP5004331B2 (en) 2006-11-29 2006-11-29 HNF-4α activity inhibitor

Country Status (1)

Country Link
JP (1) JP5004331B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160193238A1 (en) 2015-01-05 2016-07-07 National Cancer Center HNF4-alpha ANTAGONIST AND USE THEREOF

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000078956A (en) * 1998-06-23 2000-03-21 Ezaki Glico Co Ltd Food and medicine
JP4933730B2 (en) * 2001-05-04 2012-05-16 パラテック ファーマシューティカルズ インコーポレイテッド Transcription factor modulating compounds and methods of use thereof
KR20050026101A (en) * 2003-08-28 2005-03-15 학교법인 인제학원 Pharmaceutical composition comprising isoflavones for prevention and treatment of hypertriglyceridemia, oxidative stress and inflammatory-related diseases
KR101139070B1 (en) * 2004-09-25 2012-04-30 (주)아모레퍼시픽 Compositions for the improvement of fatty liver

Also Published As

Publication number Publication date
JP2008133247A (en) 2008-06-12

Similar Documents

Publication Publication Date Title
CN102216317B (en) Antioxidant
US9492424B2 (en) Muscle atrophy inhibitor
US9993493B2 (en) Composition for prevention, amelioration or treatment of metabolic syndrome
CN102216318B (en) Antioxidant
US11806352B2 (en) Theobromine for increasing HDL-cholesterol
JP5004331B2 (en) HNF-4α activity inhibitor
WO2013129334A1 (en) AGONIST THAT MIMICS MOTIONAL EFFECT, AND CO-ACTIVATOR FOR AMPK AND PPARδ
JP2013194007A (en) Anti-oxidative stress agent and application of the same
JP2006096666A (en) SELECTIVE HUMAN beta3 ADRENALIN RECEPTOR AGONIST AGENT
JP2016027012A (en) Ucp-1 expression promoter
JP6553375B2 (en) UCP-1 expression promoter
AU2013367872B2 (en) Igf-1 production-promoting agent
JP5346623B2 (en) PPAR activator
JP5801572B2 (en) PPARγ activator
JP6166592B2 (en) Agents containing a millet vinegar composition
JP5346624B2 (en) PPAR activator
JP2013091608A (en) Myostatin/smad signal inhibitor
JP2009114138A (en) Cholesterol level increase inhibitor
US20230106742A1 (en) Composition for inducing browning, containing milk exosomes
JP2011184347A (en) Srebp1 inhibitor
JP2007277187A (en) New fat cell differentiation inhibitor
JP6533412B2 (en) FoxO3a phosphorylation inhibition reagent
KR20140019277A (en) Composition containing trail for preventing or treating metabolic disease
JP2008105966A (en) Apolipoprotein b secretion inhibitor comprising chlorophyll-related compound as active ingredient
JP2009173597A (en) Preventive or ameliorating agent of hyperlipidemia

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5004331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250