JP5004245B2 - Optical scanning device - Google Patents

Optical scanning device Download PDF

Info

Publication number
JP5004245B2
JP5004245B2 JP2008208476A JP2008208476A JP5004245B2 JP 5004245 B2 JP5004245 B2 JP 5004245B2 JP 2008208476 A JP2008208476 A JP 2008208476A JP 2008208476 A JP2008208476 A JP 2008208476A JP 5004245 B2 JP5004245 B2 JP 5004245B2
Authority
JP
Japan
Prior art keywords
substrate
mirror
drive source
optical scanning
scanning device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008208476A
Other languages
Japanese (ja)
Other versions
JP2010044234A (en
Inventor
純 明渡
載赫 朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008208476A priority Critical patent/JP5004245B2/en
Publication of JP2010044234A publication Critical patent/JP2010044234A/en
Application granted granted Critical
Publication of JP5004245B2 publication Critical patent/JP5004245B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Facsimile Heads (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)

Description

本発明は、光ビームの走査によりスキャンを行う光スキャナに関し、特に、捻れ梁(トーションバー)に支持された微小なミラーを揺動させて光ビームを偏光させる構成の光走査装置に関するものである。   The present invention relates to an optical scanner that performs scanning by scanning a light beam, and more particularly, to an optical scanning device configured to oscillate a minute mirror supported by a torsion beam and to polarize the light beam. .

近年におけるレーザ光等の光ビームを走査する光走査装置は、バーコードリーダ、レーザープリンタ、ヘッドマウントディスプレー等の光学機器、あるいは赤外線カメラ等入力デバイスの光取り入れ装置として用いられている。
この種の光走査装置として、シリコンマイクロマシニング技術を利用した微小ミラーを揺動させる構成のものが提案されている。
2. Description of the Related Art In recent years, an optical scanning device that scans a light beam such as a laser beam is used as an optical device such as a bar code reader, a laser printer, or a head-mounted display, or a light input device for an input device such as an infrared camera.
As this type of optical scanning device, a configuration in which a micro mirror using a silicon micromachining technique is swung has been proposed.

例えば、図7に示す光走査装置は、基板30に捻れ梁部31を形成し、該捻れ梁部31により支持されたミラー部32を揺動させてなる光走査装置において、前記基板30の一部に圧電体33を固定あるいは形成し、該圧電体33に電圧を印加して基板30に誘起される板波を利用して捻れ梁部31に支持されたミラー部32を励振させるものである(例えば、特許文献1参照)。   For example, the optical scanning device shown in FIG. 7 is an optical scanning device in which a torsion beam portion 31 is formed on a substrate 30 and a mirror portion 32 supported by the torsion beam portion 31 is swung. A piezoelectric body 33 is fixed or formed on the portion, and a voltage is applied to the piezoelectric body 33 to excite the mirror portion 32 supported by the torsion beam portion 31 using a plate wave induced on the substrate 30. (For example, refer to Patent Document 1).

特開2006−293116号公報JP 2006-293116 A

図7に示した従来の光走査装置において、駆動源となる圧電体33は薄膜あるいは薄板により正方形の形状に一体に形成されているものであり、その面積を、図8に示すように、広くすればするほど振動の発生力が大きくなる。
本発明者は、従来の光走査装置において圧電体33の面積を広くした場合、電圧に比例してミラー部32の光走査角度の増加が得られないという問題を発見し、その原因を究明した結果、以下のような新規な知見を得た。
In the conventional optical scanning device shown in FIG. 7, the piezoelectric body 33 as a driving source is integrally formed in a square shape by a thin film or a thin plate, and its area is wide as shown in FIG. The more you do it, the greater the force of vibration.
The present inventor discovered a problem that when the area of the piezoelectric body 33 is increased in the conventional optical scanning device, the optical scanning angle of the mirror portion 32 cannot be increased in proportion to the voltage, and the cause was investigated. As a result, the following new findings were obtained.

図9は、従来の光走査装置における板波振動の伝播を説明する説明図であって、(a)は平面図、(b)は、圧電体33および基板30をX1方向からみた側面図、および、(c)は、圧電体33および基板30をY1方向からみた正面図である。
今、図9(a)に示すように、一体に形成された圧電体33の面積を広くしたものにおいて、その平面形状が、例えば、板波振動のミラー部32への伝播方向Yの寸法に比べ、伝播方向Yと垂直方向Xの寸法を大きくした場合について考察する。
圧電体33に電圧を印加して駆動すると、板波振動はミラー部32への伝播方向Y、および、ミラー部32への伝播方向Yと垂直方向Xにも伝播し、その際、基板30には図(b)に示すミラー部32への伝播方向Yに曲げたわみが生じるとともに、図(c)に示すミラー部32への伝播方向と垂直方向Xにも曲げたわみが生じる。
9A and 9B are explanatory views for explaining propagation of plate wave vibration in a conventional optical scanning device, where FIG. 9A is a plan view, and FIG. 9B is a side view of the piezoelectric body 33 and the substrate 30 as viewed from the X1 direction. And (c) is the front view which looked at the piezoelectric body 33 and the board | substrate 30 from the Y1 direction.
As shown in FIG. 9A, in the case where the area of the integrally formed piezoelectric body 33 is increased, the planar shape thereof is, for example, the dimension in the propagation direction Y of the plate wave vibration to the mirror portion 32. In comparison, the case where the dimensions in the propagation direction Y and the vertical direction X are increased will be considered.
When driven by applying a voltage to the piezoelectric body 33, the plate wave vibration propagates in the propagation direction Y to the mirror portion 32 and also in the direction X perpendicular to the propagation direction Y to the mirror portion 32. In FIG. 5B, bending deflection occurs in the propagation direction Y to the mirror portion 32 shown in FIG. 5B, and bending deflection also occurs in the direction X perpendicular to the propagation direction to the mirror portion 32 shown in FIG.

圧電体33の平面形状が、図9(a)に示すようにX方向に大きな場合、基板30の曲げたわみはミラー部32への伝播方向と垂直方向Xにおいて大きくなる。
この基板30のミラー部32への伝播方向と垂直方向Xの曲げたわみは、板波振動のミラー部32への伝播方向Yの基板30の曲げ剛性を増大させることになる。その結果、ミラー部32の捻れ共振周波数が駆動電圧の増加に伴って高周波側にシフトしたり、ミラー部32に効率的に振動を伝播できなくなり、電圧に比例したミラー部32の光走査角度の増加が得られなくなるものである。
When the planar shape of the piezoelectric body 33 is large in the X direction as shown in FIG. 9A, the bending deflection of the substrate 30 becomes large in the direction X perpendicular to the propagation direction to the mirror portion 32.
The bending deflection in the direction X perpendicular to the propagation direction to the mirror portion 32 of the substrate 30 increases the bending rigidity of the substrate 30 in the propagation direction Y to the mirror portion 32 of plate wave vibration. As a result, the torsional resonance frequency of the mirror unit 32 shifts to the high frequency side as the drive voltage increases, or vibration cannot be propagated efficiently to the mirror unit 32, and the optical scanning angle of the mirror unit 32 proportional to the voltage is reduced. An increase cannot be obtained.

本発明は、基板と、基板に連結された捻れ梁部と、捻れ梁部により支持されるミラー部と、基板を振動させる駆動源と、ミラー部に光を投射する光源とを備え、ミラー部は駆動源によって基板に加えられる振動に応じて共振振動し、光源からミラー部に投射される光の反射光の方向がミラー部の振動に応じて変化する光走査装置において、基板のミラー部への伝播方向と垂直方向Xの曲げたわみを小さくすることにより、ミラー部の捻れ共振周波数の変化を押さえ、大きな電圧を印加した場合でも電圧に比例したミラー部の走査角度を増加させることができる光走査装置を提供することを目的とするものである。   The present invention includes a substrate, a torsion beam portion connected to the substrate, a mirror portion supported by the torsion beam portion, a drive source that vibrates the substrate, and a light source that projects light onto the mirror portion. Is resonantly oscillated according to the vibration applied to the substrate by the drive source, and in the optical scanning device in which the direction of the reflected light projected from the light source to the mirror unit changes according to the vibration of the mirror unit, By reducing the bending deflection in the vertical direction X with respect to the propagation direction of the light, the change in the torsional resonance frequency of the mirror part can be suppressed, and the scanning angle of the mirror part proportional to the voltage can be increased even when a large voltage is applied. An object of the present invention is to provide a scanning device.

上記目的を達成するための本発明のミラー部における捻れ振動の発生原理および装置の基本的事項について図1〜4を参照しながら以下に説明する。
図1は、本発明の光走査装置の基本構成を説明する斜視図、図2は、本発明の振動発生原理を説明するための概念図、図3は、本発明の駆動源となる圧電膜等の面積を全体として大きくするため、圧電膜等を短冊状パターン形状としている例を示す斜視図、図4は、本発明の光走査装置における板波振動の伝播を説明する説明図であって、(a)は平面図、(b)は、駆動源11および基板10をX1方向からみた側面図、および、(c)は、駆動源11および基板10をY1方向からみた正面図である。
The generation principle of the torsional vibration in the mirror portion of the present invention and the basic items of the apparatus for achieving the above object will be described below with reference to FIGS.
FIG. 1 is a perspective view for explaining the basic configuration of the optical scanning device of the present invention, FIG. 2 is a conceptual diagram for explaining the principle of vibration generation of the present invention, and FIG. 3 is a piezoelectric film serving as a drive source of the present invention. FIG. 4 is an explanatory diagram for explaining propagation of plate wave vibration in the optical scanning device of the present invention. (A) is a plan view, (b) is a side view of the drive source 11 and the substrate 10 as viewed from the X1 direction, and (c) is a front view of the drive source 11 and the substrate 10 as viewed from the Y1 direction.

〔ミラー部における捻れ振動の発生原理〕
本発明の光走査装置の基本構成は、図1〜4に示すとおり、基板本体20と基板本体の両側部から突出した2つの梁部22、22からなる基板10と、梁部22、22間にミラー部13を両側から支持するように設けられた捻れ梁部12、12と、基板本体20に設けられた圧電体または磁性体材料からなる薄膜または薄板(以下、「圧電膜等」と略すことがある。)からなる駆動源11とからなっている。ミラー部13を支持する捻れ梁部12は、梁部22の軸方向に対し垂直方向(図4のX軸方向)に設けられている。
図2に示すように、駆動源11である圧電膜等に電圧を印加すると、圧電膜等の直下の基板本体20は圧電膜等と一緒に曲げたわみを生じ、基板本体20に振動を発生する。
すなわち、図2(a)に示すように圧電膜等の側にプラスの電圧を印加すると圧電膜等は延び、逆に図2(b)に示すように圧電膜等の側にマイナスの電圧を印加すると圧電膜等は縮み、基板10に振動を発生する。
この時、基板本体20上に発生された振動は、基板本体20から梁部22を伝搬し、図1に示す捻れ梁部12で支持された水平状態にあるミラー部13に回転モーメントを与える力を作用させることができ、捻れ振動を誘起する。
[Generation principle of torsional vibration in the mirror part]
The basic configuration of the optical scanning device of the present invention is as shown in FIGS. 1 to 4. The substrate 10 is composed of a substrate body 20 and two beam portions 22, 22 protruding from both sides of the substrate body, and between the beam portions 22, 22. Torsion beam portions 12 and 12 provided to support the mirror portion 13 from both sides, and a thin film or thin plate (hereinafter abbreviated as “piezoelectric film etc.”) made of a piezoelectric or magnetic material provided on the substrate body 20. And a drive source 11 comprising: The torsion beam portion 12 that supports the mirror portion 13 is provided in a direction perpendicular to the axial direction of the beam portion 22 (X-axis direction in FIG. 4).
As shown in FIG. 2, when a voltage is applied to the piezoelectric film or the like that is the driving source 11, the substrate body 20 directly below the piezoelectric film or the like is bent along with the piezoelectric film or the like, and the substrate body 20 is vibrated. .
That is, when a positive voltage is applied to the piezoelectric film or the like as shown in FIG. 2 (a), the piezoelectric film or the like extends, and conversely, a negative voltage is applied to the piezoelectric film or the like as shown in FIG. 2 (b). When applied, the piezoelectric film and the like contract and generate vibration in the substrate 10.
At this time, the vibration generated on the substrate main body 20 propagates from the substrate main body 20 through the beam portion 22, and is a force that gives a rotational moment to the mirror portion 13 in a horizontal state supported by the torsion beam portion 12 shown in FIG. To induce torsional vibration.

〔駆動源の配置〕
一定の駆動電圧下でミラー部13の捻れ角度の最大振幅を得るためには、ミラー部13に対する駆動源11の配置が重要である。駆動源11をミラー部13に近い捻れ梁部12及び梁部22に設けた場合、大きな捻れ角度でミラー部13を振動させることはできない。ミラー部13を支持する捻れ梁部12と梁部22の接続位置から離れた位置、すなわち、基板本体20の一部、例えば基板本体20の中央部に駆動源11を配置すると大きな捻れ角度でミラー部13を振動させることができる。このように、ミラー部13を支持する捻れ梁部12と梁部22の接続位置から離れた位置に駆動源11を設けて振動を発生する場合、ミラー部13を支持している捻れ梁部12と梁部22の接続箇所において基板振動の最小振幅(板波の節)が得られる様に配置する。
また、ミラー部13を両側から支持する捻れ梁部12、12の振動モードを一致させるには、例えば、駆動源11を基板本体20の幅方向の中心(図4のY軸)に配置し、駆動源11から左右の捻れ梁部12、12までの距離を同じくするのも1つの手法である。
[Location of drive source]
In order to obtain the maximum amplitude of the twist angle of the mirror unit 13 under a constant drive voltage, the arrangement of the drive source 11 with respect to the mirror unit 13 is important. When the drive source 11 is provided on the torsion beam portion 12 and the beam portion 22 close to the mirror portion 13, the mirror portion 13 cannot be vibrated at a large torsion angle. If the drive source 11 is disposed at a position away from the connection position of the torsion beam portion 12 and the beam portion 22 that supports the mirror portion 13, that is, a part of the substrate body 20, for example, the central portion of the substrate body 20, the mirror is rotated at a large twist angle. The part 13 can be vibrated. As described above, when the drive source 11 is provided at a position away from the connection position between the torsion beam part 12 and the beam part 22 that supports the mirror part 13 to generate vibration, the torsion beam part 12 that supports the mirror part 13. And the beam portion 22 are arranged so that the minimum amplitude (plate wave node) of the substrate vibration is obtained.
In order to match the vibration modes of the torsion beam portions 12 and 12 that support the mirror portion 13 from both sides, for example, the drive source 11 is arranged at the center in the width direction of the substrate body 20 (Y axis in FIG. 4). One method is to make the distance from the drive source 11 to the left and right torsion beam portions 12, 12 the same.

〔駆動源となる圧電膜等の膜体の厚み及び面積〕
ミラー部13を振動させる駆動源11となる圧電膜等の膜体の厚みと、大きさは、基板本体20の厚みと大きさに応じて最適なサイズを取る必要がある。
光走査装置の使用条件を考えると、駆動電圧(圧電膜印加電圧)一定のもとでは、膜体の厚さが薄くなればなるほど、大きな変位が得られることになる。実際には、特にエアロゾルデポジッション法(以下「AD法」と略す場合がある。)により形成された膜で金属基板上に形成した圧電膜の特性、膜厚に関して依存性があり、薄すぎると圧電特性の低下やリーク電流の増加などの膜特性が低下し、厚すぎると分極処理が困難になる。
また、基板10の厚みに関しては、動作中のミラーの平坦性やプロジェクターデバイスなどへの応用で要求されるミラーサイズを考慮し、Si、ステンレス材の基板を想定すると、少なくとも10μm以上の厚みが要求される。以上のような点を考慮し、光走査装置の駆動に適した最適な圧電膜等の膜体の厚みは、基板本体20の厚さの6倍以下が適しており、膜体の厚さの下限は、おおよそ1μmで、このとき同一面積の膜厚に対し、最小の駆動電圧、消費電力で最大のミラー部走査角度を得ることができる。
[Thickness and area of the film body such as a piezoelectric film as a driving source]
The thickness and size of a film body such as a piezoelectric film that becomes the drive source 11 that vibrates the mirror unit 13 needs to take an optimum size according to the thickness and size of the substrate body 20.
Considering the use conditions of the optical scanning device, the larger the thickness of the film body, the larger the displacement is obtained under the constant driving voltage (piezoelectric film applied voltage). Actually, the film is formed by the aerosol deposition method (hereinafter may be abbreviated as “AD method”) and is dependent on the characteristics and film thickness of the piezoelectric film formed on the metal substrate. Film characteristics such as a decrease in piezoelectric characteristics and an increase in leakage current are reduced, and if it is too thick, polarization processing becomes difficult.
Further, regarding the thickness of the substrate 10, considering the flatness of the mirror in operation and the mirror size required for application to a projector device, a thickness of at least 10 μm is required when assuming a substrate of Si or stainless steel. Is done. Considering the above points, the optimum thickness of the film body such as a piezoelectric film suitable for driving the optical scanning device is suitable to be not more than 6 times the thickness of the substrate body 20, and the thickness of the film body The lower limit is about 1 μm. At this time, the maximum mirror section scanning angle can be obtained with the minimum driving voltage and power consumption for the film thickness of the same area.

また、駆動源11となる圧電膜等については、上記、膜厚範囲に於いて、図1に示すように、平面形状が長方形を有し、その長辺が、ミラー部13と駆動源11を結ぶ方向(Y軸方向)と平行になるように配置するか、あるいは、圧電膜等の面積を全体として大きくする場合、図3および4に示すように、短冊状の平面形状を有し、その長辺がミラー部13と駆動源11を結ぶ方向(Y軸方向)に平行に配置された個々の駆動源を、ミラー部13と駆動源11を結ぶ方向と垂直方向(X軸方向)に間隔を有して複数配置して構成するか、圧電膜等に短冊状の溝を入れ分離してなる複数の駆動源から構成するところの短冊状パターン形状に形成する。この構成により、ミラー部13と駆動源11を結ぶ板波振動の伝播方向と垂直方向(X軸方向)の基板10の曲げたわみの発生を、図4(c)に示すように小さくし、ミラー部13の捻れ共振周波数の変化を押さえ、大きな電圧を印加しても、電圧に比例してミラー部の光走査角度を増加することが可能となる。   As for the piezoelectric film or the like serving as the drive source 11, the planar shape has a rectangular shape as shown in FIG. When arranged so as to be parallel to the connecting direction (Y-axis direction), or when the area of the piezoelectric film or the like is increased as a whole, as shown in FIGS. 3 and 4, it has a strip-like planar shape, Individual drive sources whose long sides are arranged parallel to the direction connecting the mirror unit 13 and the drive source 11 (Y-axis direction) are spaced apart in the direction perpendicular to the direction connecting the mirror unit 13 and the drive source 11 (X-axis direction). Or a plurality of drive sources formed by inserting and separating strip-like grooves in a piezoelectric film or the like to form a strip-like pattern shape. With this configuration, the occurrence of bending deflection of the substrate 10 in the direction perpendicular to the propagation direction of the plate wave vibration connecting the mirror unit 13 and the drive source 11 (X-axis direction) is reduced as shown in FIG. Even when a change in the torsional resonance frequency of the portion 13 is suppressed and a large voltage is applied, the optical scanning angle of the mirror portion can be increased in proportion to the voltage.

また、図4に示すように、駆動源11となる短冊状にパターニングされた圧電膜等の短辺の長さ(d1)と間隔(d2)は、膜の厚みと基板の厚みによって最適化されるが、通常、上記短辺の長さ(d1)は、圧電膜の厚み(t)に対し、d1/t=1/2〜100程度に、また、間隔(d2)は、膜が分離していればよく、圧電体の面積を広げるには、なるべく細い方が好ましい。   In addition, as shown in FIG. 4, the length (d1) and the interval (d2) of the short sides of a piezoelectric film or the like patterned into a strip shape as the driving source 11 are optimized by the thickness of the film and the thickness of the substrate. However, the length (d1) of the short side is usually about d1 / t = 1/2 to 100 with respect to the thickness (t) of the piezoelectric film, and the distance (d2) is separated from the film. In order to increase the area of the piezoelectric body, the thinner one is preferable.

〔圧電膜の形成方法〕
圧電膜の形成方法については、エアロゾルデポジション法を用いて形成すれば、低温高速プロセスのため、容易に短時間で数ミクロン以上の厚膜を金属基板上などに直接形成できるが、これに限ったものでなく、例えば、Si基板など耐熱温度のある材料を利用すれば、スパッター法やCVD法、ゾル−ゲル法などの従来の薄膜技術を用いて、エピタキシャル成長した高性能の圧電薄膜を形成することも可能である。また、上記短冊状の平面形状を有し、その長辺がミラー部13と駆動源11を結ぶ方向(Y軸方向)に平行に配置された個々の駆動源を、ミラー部13と駆動源11を結ぶ方向と垂直方向(X軸方向)に間隔を有して複数配置して構成するか、圧電膜等に短冊状の溝を入れ分離してなる複数の駆動源から構成する、ところの短冊状パターンの圧電膜を基板10上に形成するには、フォトレジストを基板10に塗布し、短冊状に開口を有するフォトレジスト層をパターニング形成し、これをマスクとして、圧電膜をエアロゾルデポジション法で形成後、レジストを剥離するリフトオフ法や短冊状の開口を持つメタルマスクや樹脂マスクを基板に重ねて圧電膜を形成することと短冊状にパターニングされた微細な圧電膜を容易に形成できる。微小の光走査装置を構成する場合などに有用である。
[Method of forming piezoelectric film]
As for the method of forming a piezoelectric film, if it is formed using the aerosol deposition method, a thick film of several microns or more can be easily formed directly on a metal substrate in a short time because of a low temperature and high speed process. If, for example, a material having a heat-resistant temperature such as a Si substrate is used, a high-performance piezoelectric thin film that is epitaxially grown is formed using a conventional thin film technology such as a sputtering method, a CVD method, or a sol-gel method. It is also possible. In addition, the individual drive sources having the above-described strip-like planar shape, the long sides of which are arranged in parallel to the direction connecting the mirror unit 13 and the drive source 11 (Y-axis direction) are the mirror unit 13 and the drive source 11. A strip formed by arranging a plurality of strips with a gap in a direction perpendicular to the X direction (X-axis direction) or a plurality of drive sources formed by separating strip grooves in a piezoelectric film or the like. In order to form a piezoelectric film with a pattern on the substrate 10, a photoresist is applied to the substrate 10, a photoresist layer having a strip-like opening is patterned, and this is used as a mask to form the piezoelectric film with an aerosol deposition method. Then, a lift-off method for stripping the resist, a metal mask having a strip-shaped opening, or a resin mask is stacked on the substrate to form a piezoelectric film, and a fine piezoelectric film patterned into a strip-shaped pattern can be easily formed. This is useful when configuring a minute optical scanning device.

本発明は、上記の捻れ振動の発生原理および装置の基本的事項を有し、その要旨とするところは次のとおりである。
(1)本発明の光走査装置は、基板と、基板に連結された捻れ梁部と、捻れ梁部により支持されるミラー部と、基板を振動させる駆動源と、ミラー部に光を投射する光源とを備え、ミラー部は駆動源によって基板に加えられる振動に応じて共振振動し、光源からミラー部に投射される光の反射光の方向がミラー部の振動に応じて変化する光走査装置において、前記駆動源は、基板と捻れ梁部との連結部から離れた基板の一部に圧電体または磁性体材料からなる薄膜または薄板により形成され、長方形の平面形状を有し、その長辺がミラー部と駆動源を結ぶ方向に平行に配置されていることを特徴としている。
(2)また、本発明の光走査装置は、基板と、基板に連結された捻れ梁部と、捻れ梁部により支持されるミラー部と、基板を振動させる駆動源と、ミラー部に光を投射する光源とを備え、ミラー部は駆動源によって基板に加えられる振動に応じて共振振動し、光源からミラー部に投射される光の反射光の方向がミラー部の振動に応じて変化する光走査装置において、前記駆動源は、基板と捻れ梁部との連結部から離れた基板の一部に圧電体または磁性体材料からなる薄膜または薄板により形成され、短冊状の平面形状を有し、その長辺がミラー部と駆動源を結ぶ方向に平行に配置された個々の駆動源を、ミラー部と駆動源を結ぶ方向と垂直方向に間隔を有して複数配置して構成されることを特徴としている。
(3)また、本発明の光走査装置は、上記(2)の特徴において、駆動源の短冊状の短辺(d1)はその厚み(t)に対し、1/2<d1/t<100の範囲にあることを特徴としている。
(4)また、本発明の光走査装置は、上記(1)ないし(3)のいずれかの特徴において、駆動源の面積を基板本体の面積の1/10以上とすることを特徴としている。
The present invention has the above principle of torsional vibration and the basic items of the apparatus, and the gist thereof is as follows.
(1) The optical scanning device of the present invention projects light onto a substrate, a torsion beam portion connected to the substrate, a mirror portion supported by the torsion beam portion, a drive source for vibrating the substrate, and the mirror portion. An optical scanning device including a light source, wherein the mirror unit resonates in response to vibration applied to the substrate by the drive source, and the direction of reflected light of light projected from the light source to the mirror unit changes according to the vibration of the mirror unit The drive source is formed of a thin film or a thin plate made of a piezoelectric material or a magnetic material on a part of the substrate separated from the connection portion between the substrate and the torsion beam portion, and has a rectangular planar shape, and its long side Are arranged in parallel to the direction connecting the mirror portion and the drive source.
(2) Further, the optical scanning device of the present invention includes a substrate, a torsion beam portion connected to the substrate, a mirror portion supported by the torsion beam portion, a drive source that vibrates the substrate, and light to the mirror portion. A light source that projects light, the mirror unit resonates in response to vibration applied to the substrate by the drive source, and the direction of reflected light of the light projected from the light source to the mirror unit changes according to the vibration of the mirror unit In the scanning device, the driving source is formed of a thin film or a thin plate made of a piezoelectric material or a magnetic material on a part of the substrate apart from the connection portion between the substrate and the torsion beam portion, and has a strip-like planar shape, A plurality of individual drive sources whose long sides are arranged in parallel to the direction connecting the mirror unit and the drive source are arranged in a direction perpendicular to the direction connecting the mirror unit and the drive source. It is a feature.
(3) Further, in the optical scanning device of the present invention, in the feature (2), the strip-like short side (d1) of the drive source is 1/2 <d1 / t <100 with respect to the thickness (t). It is characterized by being in the range of.
(4) The optical scanning device of the present invention is characterized in that, in any of the features (1) to (3), the area of the drive source is 1/10 or more of the area of the substrate body.

本発明は、基板のミラー部への伝播方向と垂直方向Xの曲げたわみを小さくすることにより、ミラー部の捻れ共振周波数の変化を押さえ、大きな電圧を印加した場合でも電圧に比例したミラー部の走査角度を増加させることができるという優れた効果を奏する。   The present invention reduces the bending deflection in the direction X perpendicular to the propagation direction to the mirror portion of the substrate, thereby suppressing the change in the torsional resonance frequency of the mirror portion, and even when a large voltage is applied, the mirror portion is proportional to the voltage. There is an excellent effect that the scanning angle can be increased.

本発明に係る光走査装置を実施するための最良の形態を実施例に基づいて図面を参照して以下に説明する。   The best mode for carrying out the optical scanning device according to the present invention will be described below with reference to the drawings based on the embodiments.

〔実施の形態1〕
図5は、本発明の実施の形態1に係る光走査装置の斜視図である。
基板10は、厚さ30あるいは50μmのSUS304の方形をした板材をエッチングあるいはプレス加工により、捻れ梁部12及びミラー部13を残して中抜きされた形状に作製されている。基板10は、基板本体20及び基板本体20の一側の両側から平行に張り出した片持ち梁部19、19からなる。ミラー部13を支持する捻れ梁部12は、2本の片持ち梁部19、19の軸方向に対し直交する方向に設けられている。
また、基板本体20のミラー部13側と反対側の固定端部21は支持部材16により固定されており、基板10が支持部材16により片持ち状に支持される構造となっている。本例では、基板本体20の両側が三角形に切り取られた状態で中央部に固定端部21が形成されており、基板10がY字形状になっている。また、固定端部21の幅は基板本体20の幅の1/20〜3/4の範囲とするのがよい。
[Embodiment 1]
FIG. 5 is a perspective view of the optical scanning device according to Embodiment 1 of the present invention.
The substrate 10 is made into a shape in which a plate material of SUS304 having a thickness of 30 or 50 μm is hollowed out by etching or pressing, leaving the torsion beam portion 12 and the mirror portion 13. The substrate 10 includes a substrate body 20 and cantilever portions 19, 19 projecting in parallel from both sides of one side of the substrate body 20. The torsion beam portion 12 that supports the mirror portion 13 is provided in a direction orthogonal to the axial direction of the two cantilever portions 19 and 19.
Further, the fixed end 21 on the opposite side of the mirror body 13 side of the substrate body 20 is fixed by the support member 16, and the substrate 10 is supported in a cantilevered manner by the support member 16. In this example, a fixed end 21 is formed at the center with both sides of the substrate body 20 cut into a triangle, and the substrate 10 is Y-shaped. In addition, the width of the fixed end 21 is preferably in the range of 1/20 to 3/4 of the width of the substrate body 20.

基板10上の中央部には、本発明の発明者により発明された公知のAD法によるマスク成膜法で駆動源11を構成する圧電膜11’が接着剤を介さずに直接形成されている。
駆動源11は、例えば代表的な圧電材料であるチタン酸ジルコン酸鉛(PZT)からなり、短冊状の平面形状を有し、その長辺がミラー部13と駆動源11を結ぶ方向(Y軸方向)に平行に配置された個々の圧電膜11’を、ミラー部13と駆動源11を結ぶ方向と垂直方向(X軸方向)に間隔を有して複数配置してなる短冊状パターンに形成されている。
基板10上に公知のAD法により圧電膜11を直接形成する手法を簡単に説明する。
粒径0.5μm前後のチタン酸ジルコン酸鉛(PZT)をガスと混合してエアロゾル化し、ノズルから高速のジエットにして基板10上の所定の個所に吹き付け成膜する。成膜の際、PZT微粒子の基板1への衝突によってPZT微粒子に大きな機械的衝撃が生じ、PZT微粒子の破壊と新生表面の発生が同時に行われ、緻密な膜が形成される。このようにして形成される圧電膜11は、強誘電特性を有している。圧電膜11の成膜後、大気中において600℃で10分間熱処理した後、圧電膜11の上面に上部電極14を、例えば、金スパッターで形成する。なお、金スパッターに代えて、AD法により圧電膜11の成膜に続いて上部電極14を形成することにより、より小型化、構造の簡素化を図ることができる。
A piezoelectric film 11 ′ constituting the drive source 11 is directly formed on the central portion of the substrate 10 without using an adhesive by a known AD film forming method invented by the inventor of the present invention. .
The drive source 11 is made of, for example, lead zirconate titanate (PZT), which is a typical piezoelectric material, has a strip-like planar shape, and the long side thereof connects the mirror unit 13 and the drive source 11 (Y axis). Are formed in a strip-like pattern in which a plurality of piezoelectric films 11 ′ arranged in parallel with each other are arranged at intervals in the direction perpendicular to the direction connecting the mirror unit 13 and the drive source 11 (X-axis direction). Has been.
A method for directly forming the piezoelectric film 11 on the substrate 10 by a known AD method will be briefly described.
Lead zirconate titanate (PZT) having a particle size of about 0.5 μm is mixed with a gas to form an aerosol, sprayed from a nozzle to a predetermined portion on the substrate 10 with a high speed jet. At the time of film formation, the PZT fine particles collide with the substrate 1 to cause a large mechanical impact on the PZT fine particles, so that the PZT fine particles are destroyed and the new surface is generated at the same time, thereby forming a dense film. The piezoelectric film 11 formed in this way has ferroelectric characteristics. After the piezoelectric film 11 is formed, heat treatment is performed in the atmosphere at 600 ° C. for 10 minutes, and then the upper electrode 14 is formed on the upper surface of the piezoelectric film 11 by, for example, gold sputtering. In addition, it can replace with gold | metal | money sputter | spatter and can achieve size reduction and simplification of a structure by forming the upper electrode 14 following the film-forming of the piezoelectric film 11 by AD method.

また、上記短冊状パターンの圧電膜11’を基板10上に形成するには、フォトレジストを基板10に塗布し、短冊状に開口を有するフォトレジスト層をパターニング形成し、これをマスクとして、圧電膜11’をエアロゾルデポジション法で形成後、レジストを剥離するリフトオフ法や短冊状の開口を持つメタルマスクや樹脂マスクを基板10に重ねて圧電膜11’を形成することで短冊状にパターニングされた微細な圧電膜11’を容易に形成できる。   Further, in order to form the piezoelectric film 11 ′ having the strip-shaped pattern on the substrate 10, a photoresist is applied to the substrate 10, a photoresist layer having a strip-shaped opening is formed by patterning, and this is used as a mask. After the film 11 ′ is formed by the aerosol deposition method, it is patterned into a strip shape by forming a piezoelectric film 11 ′ by overlaying a substrate 10 with a lift-off method for stripping the resist or a metal mask or resin mask having a strip-shaped opening. A fine piezoelectric film 11 ′ can be easily formed.

駆動源11は、ミラー部13を支持する捻れ梁部12と片持ち梁部19との接続部から離れた位置、すなわち、基板本体20の一部、例えば、図6に示すように基板本体20の中央部に形成される。さらに、ミラー部13が駆動源11により基板10上に起こされる振動の最小振幅の近傍、すなわち最小振幅の位置から僅かにずれた位置に駆動源11が形成されるものである。また、ミラー部13を両側から支持する捻れ梁部12、12の振動モードを一致させるには、例えば、駆動源11を基板本体20の幅方向の中心(図1のY軸)に配置し、駆動源11から左右の捻れ梁部12、12までの距離を同じくするのも1つの手法である。   The drive source 11 is positioned away from the connecting portion between the torsion beam portion 12 and the cantilever beam portion 19 that supports the mirror portion 13, that is, a part of the substrate body 20, for example, the substrate body 20 as shown in FIG. It is formed in the center part. Further, the drive source 11 is formed in the vicinity of the minimum amplitude of vibration caused by the mirror 13 on the substrate 10 by the drive source 11, that is, a position slightly deviated from the position of the minimum amplitude. In order to match the vibration modes of the torsion beam portions 12 and 12 that support the mirror portion 13 from both sides, for example, the drive source 11 is arranged at the center in the width direction of the substrate body 20 (Y axis in FIG. 1). One method is to make the distance from the drive source 11 to the left and right torsion beam portions 12, 12 the same.

基板10の厚みに関しては、動作中のミラーの平坦性やプロジェクターデバイスなどへの応用で要求されるミラーサイズを考慮し、Si、ステンレス材の基板を想定して、少なくとも10μm以上の厚みにする。光走査装置の駆動に適した最適な圧電膜等の膜体の厚みは、基板本体20の厚さの6倍以下が適しており、膜体の厚さの下限は、おおよそ1μmで、このとき同一面積の膜厚に対し、最小の駆動電圧、消費電力で最大のミラー部走査角度を得ることができる。   The thickness of the substrate 10 is set to at least 10 μm or more, assuming a substrate of Si or stainless steel in consideration of the flatness of the mirror in operation and the mirror size required for application to a projector device. The optimum thickness of the film body such as a piezoelectric film suitable for driving the optical scanning device is not more than 6 times the thickness of the substrate body 20, and the lower limit of the thickness of the film body is approximately 1 μm. The maximum mirror section scanning angle can be obtained with the minimum driving voltage and power consumption for the film thickness of the same area.

〔実施の形態2〕
図6は、本発明の実施の形態2に係る光走査装置の平面図である。
図6に示された実施の形態2は、基本構造において実施の形態1と同じであるが、基板10が支持部材16により両側において支持される構造になっており、これに関連して、実施の形態1における片持ち梁部19も基板10に両端が支持される構造の両持ち梁部23となっている点で実施の形態1と相違している。
すなわち、実施の形態2においては、基板10が駆動源11側とミラー部13側の両側において支持部材16により支持されている。
このような基板10が両側において支持されている場合においても、前記圧電膜11’を短冊状にパターンニングした駆動源11を設けると、ミラー部13の走査振幅を増加することができる。
[Embodiment 2]
FIG. 6 is a plan view of an optical scanning device according to Embodiment 2 of the present invention.
The second embodiment shown in FIG. 6 is the same as the first embodiment in the basic structure, but the substrate 10 is supported on both sides by the support member 16. The cantilever portion 19 in the first embodiment is also different from the first embodiment in that the cantilever portion 19 has a structure in which both ends are supported by the substrate 10.
That is, in the second embodiment, the substrate 10 is supported by the support member 16 on both sides of the drive source 11 side and the mirror unit 13 side.
Even when the substrate 10 is supported on both sides, the scanning amplitude of the mirror unit 13 can be increased by providing the drive source 11 in which the piezoelectric film 11 ′ is patterned in a strip shape.

本発明の光走査装置の基本構成を説明する斜視図である。It is a perspective view explaining the basic composition of the optical scanning device of the present invention. 本発明の振動発生原理を説明するための概念図である。It is a conceptual diagram for demonstrating the vibration generation principle of this invention. 本発明の駆動源となる圧電膜等の面積を全体として大きくするため、圧電膜等を短冊状パターン形状としている例を示す斜視図である。FIG. 3 is a perspective view showing an example in which a piezoelectric film or the like has a strip-like pattern shape in order to increase the overall area of the piezoelectric film or the like serving as a driving source of the present invention. 図3に示す短冊状パターンの圧電膜等を用いた場合の基板の曲げたわみを示す説明図である。It is explanatory drawing which shows the bending bending of a board | substrate at the time of using the piezoelectric film etc. of the strip shape pattern shown in FIG. 本発明の実施の形態1に係る光走査装置の斜視図である。1 is a perspective view of an optical scanning device according to Embodiment 1 of the present invention. 本発明の実施の形態2に係る光走査装置の平面図である。It is a top view of the optical scanning device concerning Embodiment 2 of the present invention. 従来の光走査装置を示す斜視図である。It is a perspective view which shows the conventional optical scanning device. 従来の光走査装置において、駆動源となる圧電体の面積を広くした例を説明する斜視図である。In the conventional optical scanning apparatus, it is a perspective view explaining the example which widened the area of the piezoelectric material used as a drive source. 従来の光走査装置において、駆動源となる圧電体の面積を広くした場合の基板の曲げたわみを示す説明図である。In the conventional optical scanning device, it is explanatory drawing which shows the bending bending of the board | substrate when the area of the piezoelectric material used as a drive source is expanded.

符号の説明Explanation of symbols

10 基板
11 駆動源
11’ 圧電膜
12 捻れ梁部
13 ミラー部
14 上部電極
15 電源
16 支持部材
17 レーザビーム
18 レーザ光
19 片持ち梁部
20 基板本体
21 固定端部
22 両持ち梁部
DESCRIPTION OF SYMBOLS 10 Board | substrate 11 Drive source 11 'Piezoelectric film 12 Twist beam part 13 Mirror part 14 Upper electrode 15 Power supply 16 Support member 17 Laser beam 18 Laser beam 19 Cantilever part 20 Substrate body 21 Fixed end part 22 Both-end support part

Claims (4)

基板と、基板に連結された捻れ梁部と、捻れ梁部により支持されるミラー部と、基板を振動させる駆動源と、ミラー部に光を投射する光源とを備え、ミラー部は駆動源によって基板に加えられる振動に応じて共振振動し、光源からミラー部に投射される光の反射光の方向がミラー部の振動に応じて変化する光走査装置において、前記駆動源は、基板と捻れ梁部との連結部から離れた基板の一部に圧電体または磁性体材料からなる薄膜または薄板により形成され、長方形の平面形状を有し、その長辺がミラー部と駆動源を結ぶ方向に平行に配置されていることを特徴とする光走査装置。   A substrate, a torsion beam portion connected to the substrate, a mirror portion supported by the torsion beam portion, a drive source that vibrates the substrate, and a light source that projects light onto the mirror portion, the mirror portion depending on the drive source In the optical scanning device in which the direction of reflected light of light projected from the light source to the mirror unit changes according to the vibration of the mirror unit, the drive source includes the substrate and the torsion beam. Formed by a thin film or thin plate made of piezoelectric or magnetic material on a part of the substrate away from the connecting part with the part, has a rectangular planar shape, and its long side is parallel to the direction connecting the mirror part and the drive source An optical scanning device characterized by being arranged in the above. 基板と、基板に連結された捻れ梁部と、捻れ梁部により支持されるミラー部と、基板を振動させる駆動源と、ミラー部に光を投射する光源とを備え、ミラー部は駆動源によって基板に加えられる振動に応じて共振振動し、光源からミラー部に投射される光の反射光の方向がミラー部の振動に応じて変化する光走査装置において、前記駆動源は、基板と捻れ梁部との連結部から離れた基板の一部に圧電体または磁性体材料からなる薄膜または薄板により形成され、短冊状の平面形状を有し、その長辺がミラー部と駆動源を結ぶ方向に平行に配置された個々の駆動源を、ミラー部と駆動源を結ぶ方向と垂直方向に間隔を有して複数配置して構成されることを特徴とする光走査装置。   A substrate, a torsion beam portion connected to the substrate, a mirror portion supported by the torsion beam portion, a drive source that vibrates the substrate, and a light source that projects light onto the mirror portion, the mirror portion depending on the drive source In the optical scanning device in which the direction of reflected light of light projected from the light source to the mirror unit changes according to the vibration of the mirror unit, the drive source includes the substrate and the torsion beam. It is formed of a thin film or thin plate made of a piezoelectric or magnetic material on a part of the substrate that is away from the connecting part to the part, has a strip-like planar shape, and its long side is in the direction connecting the mirror part and the drive source An optical scanning device characterized in that a plurality of individual drive sources arranged in parallel are arranged at intervals in a direction perpendicular to the direction connecting the mirror section and the drive source. 上記駆動源の短冊状の短辺(d1)はその厚み(t)に対し、1/2<d1/t<100の範囲にあることを特徴とする請求項2記載の光走査装置。   3. The optical scanning device according to claim 2, wherein the strip-like short side (d1) of the driving source is in a range of 1/2 <d1 / t <100 with respect to its thickness (t). 駆動源の面積を基板本体の面積の1/10以上とすることを特徴とする請求項1乃至請求項3のいずれか1項に記載の光走査装置。   4. The optical scanning device according to claim 1, wherein an area of the driving source is set to be 1/10 or more of an area of the substrate body. 5.
JP2008208476A 2008-08-13 2008-08-13 Optical scanning device Active JP5004245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008208476A JP5004245B2 (en) 2008-08-13 2008-08-13 Optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008208476A JP5004245B2 (en) 2008-08-13 2008-08-13 Optical scanning device

Publications (2)

Publication Number Publication Date
JP2010044234A JP2010044234A (en) 2010-02-25
JP5004245B2 true JP5004245B2 (en) 2012-08-22

Family

ID=42015667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008208476A Active JP5004245B2 (en) 2008-08-13 2008-08-13 Optical scanning device

Country Status (1)

Country Link
JP (1) JP5004245B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5358536B2 (en) * 2010-08-27 2013-12-04 Necトーキン株式会社 Optical scanning element and manufacturing method thereof
KR102032044B1 (en) * 2018-01-26 2019-10-14 이화여자대학교 산학협력단 Scanning micromirror

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8125699B2 (en) * 2006-09-27 2012-02-28 National Institute Of Advanced Industrial Science And Technology Optical scanning device
JP5157499B2 (en) * 2008-02-05 2013-03-06 ブラザー工業株式会社 Optical scanner
JP5296427B2 (en) * 2008-06-20 2013-09-25 キヤノン電子株式会社 Optical scanning device, control method therefor, image reading device, and display device

Also Published As

Publication number Publication date
JP2010044234A (en) 2010-02-25

Similar Documents

Publication Publication Date Title
JP5229704B2 (en) Optical scanning device
JP4691704B2 (en) Optical scanning device
JP4092283B2 (en) Two-dimensional optical scanner and optical device
JP4982814B2 (en) Optical beam scanning device
JP5319939B2 (en) Optical deflector and optical device
US20120008185A1 (en) Light beam scanning device
JP2005128147A (en) Optical deflector and optical apparatus using the same
JPWO2008038649A1 (en) Optical scanning device
JP2009186652A (en) Optical scanner
JP2009128463A (en) Method of manufacturing oscillating body apparatus, optical deflector composed of oscillating body apparatus manufactured by the method and optical equipment
JP2001004952A (en) Optical deflector
JP4766353B2 (en) Optical beam scanning device
JP2009258210A (en) Optical reflection element
WO2011121946A1 (en) Optical reflection element
JP5004245B2 (en) Optical scanning device
KR100939499B1 (en) Oscillating device, light deflector, and image forming apparatus using the light deflector
JP5353761B2 (en) Manufacturing method of optical deflector
JP2009186721A (en) Optical reflection element
JP5239382B2 (en) Optical reflection element
JP5327813B2 (en) Optical scanning device
JP2010044307A (en) Optical reflection element
JP2011053570A (en) Optical scanner
JP2009223271A (en) Optical reflecting element
JPS6150121A (en) Optical deflector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120517

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5004245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250