JP5003650B2 - Heat exchange equipment - Google Patents

Heat exchange equipment Download PDF

Info

Publication number
JP5003650B2
JP5003650B2 JP2008270590A JP2008270590A JP5003650B2 JP 5003650 B2 JP5003650 B2 JP 5003650B2 JP 2008270590 A JP2008270590 A JP 2008270590A JP 2008270590 A JP2008270590 A JP 2008270590A JP 5003650 B2 JP5003650 B2 JP 5003650B2
Authority
JP
Japan
Prior art keywords
air
heat exchange
exhaust
supply
air passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008270590A
Other languages
Japanese (ja)
Other versions
JP2010101507A (en
Inventor
孝昭 中曽根
吉彦 高山
俊彦 橋本
忍 織戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008270590A priority Critical patent/JP5003650B2/en
Priority to PCT/JP2009/005401 priority patent/WO2010047066A1/en
Publication of JP2010101507A publication Critical patent/JP2010101507A/en
Application granted granted Critical
Publication of JP5003650B2 publication Critical patent/JP5003650B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/006Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • F28D9/0068Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements with means for changing flow direction of one heat exchange medium, e.g. using deflecting zones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

本発明は、室内換気を室内空気と屋外空気をファンモーターによる送風と熱交換素子によって、省エネルギーでおこなうにあたり、屋外からの給気と室内からの排気をダクトを介して行なう熱交換機器において、風路の構成板を形成する技術に関する。   The present invention relates to a heat exchange device that performs indoor air supply and outdoor air through a duct in order to save energy by blowing air from a fan motor and using a heat exchange element for indoor air and outdoor air. The present invention relates to a technique for forming a component plate of a road.

熱交換機器用風路構成板の従来例として図12〜図13を参照しながら説明する。   A conventional example of an air path component plate for heat exchange equipment will be described with reference to FIGS.

図12および図13に示すように、本体114は下面に点検カバー101を、側面に室内吸込口102と室内吹出口103と、屋外吸込口104と屋外吹出口105を有し、また、中央部内に排気用羽根106と給気用羽根107を電動機108に装着し排気用羽根106の外側に排気用ファンケーシング109と、給気用羽根107の外側に給気用ファンケーシング110とを設け、熱交換素子111を排気用ファンケーシング109および給気用ファンケーシング110の外周部に配置し、屋外吸込口104から給気用風路構成板115と熱交換素子111と給気用羽根107および吹出管117を通じ室内吹出口103に連通すると、室内吸込口102から排気用風路構成板116と熱交換素子111と排気用羽根106および吹出管117を通じ屋外吹出口105に連通する排気風路113を設けた構成となっている(例えば、特許文献1参照)。   As shown in FIGS. 12 and 13, the main body 114 has an inspection cover 101 on the lower surface, an indoor air inlet 102, an indoor air outlet 103, an outdoor air inlet 104, and an outdoor air outlet 105 on the side surface. The exhaust vane 106 and the air supply vane 107 are attached to the electric motor 108, the exhaust fan casing 109 is provided outside the exhaust vane 106, and the air supply fan casing 110 is provided outside the air supply vane 107. The exchange element 111 is disposed on the outer peripheral portion of the exhaust fan casing 109 and the supply fan casing 110, and the supply air path component plate 115, the heat exchange element 111, the supply blade 107, and the outlet pipe from the outdoor suction port 104. When communicating with the indoor outlet 103 through 117, the exhaust air passage constituting plate 116, the heat exchange element 111, the exhaust vane 106, and the outlet pipe are communicated from the indoor inlet 102. It has a structure in which a discharge air path 113 which communicates with the outdoor air outlet 105 through 17 (for example, see Patent Document 1).

この構成において、屋外吸込口104から吸引される屋外吸込空気118が冷たく、室内吸込口102から吸引される室内吸込空気119が暖かい状態となる冬季等の場合、給気風路112と排気風路113に介在する熱交換素子111によって、排気風路113の空気は、給気風路112の空気に熱量を奪われることによって減熱され、室内吸込空気119よりも低い温度で、排気用羽根106によって吹出管117通り、屋外吹出口105を介し、屋外吹出空気120として屋外に排気される。一方、給気風路112の空気は、排気風路113の空気から熱量を加えられることによって加熱され、屋外吸込空気118よりも高い温度で、給気用羽根107によって吹出管117通り、室内吹出口103を介し、室内吹出空気121として室内に給気される。しかしながら、排気風路113に介在している電動機108からの発熱エネルギーは、室内吹出空気121の加熱には利用されず、屋外吹出空気120として屋外へ排気されている。   In this configuration, in the winter season when the outdoor intake air 118 sucked from the outdoor intake port 104 is cold and the indoor intake air 119 sucked from the indoor intake port 102 is in a warm state, the supply air passage 112 and the exhaust air passage 113 are used. The air in the exhaust air passage 113 is reduced in heat by the heat in the air supply air passage 112 being taken away by the heat exchange element 111 interposed in the air, and blown out by the exhaust vane 106 at a temperature lower than the indoor intake air 119. The air is exhausted outdoors as outdoor air 120 through the pipe 117 and the outdoor air outlet 105. On the other hand, the air in the supply air passage 112 is heated by adding heat from the air in the exhaust air passage 113, and is heated at a temperature higher than the outdoor intake air 118 by the supply blades 107 through the outlet pipe 117 and the indoor outlet. The air is supplied into the room as indoor blowing air 121 through 103. However, the heat generation energy from the electric motor 108 interposed in the exhaust air passage 113 is not used for heating the indoor blowing air 121 but is exhausted to the outside as the outdoor blowing air 120.

また、屋外吸込口104から吸引される屋外吸込空気118が暖かく、室内吸込口102から吸引される室内吸込空気119が冷たい状態となる夏季等の場合、給気風路112と排気風路113に介在する熱交換素子111によって、排気風路113の空気は、給気風路112の空気から熱量を加えられることによって加熱され、室内吸込空気119よりも高い温度で、排気用羽根106によって吹出管117通り、屋外吹出口105を介し、屋外吹出空気120として屋外に排気される。一方、給気風路112の空気は、排気風路113の空気に熱量を奪われることによって減熱され、屋外吸込空気118よりも低い温度で、給気用羽根107によって吹出管117通り、室内吹出口103を介し、室内吹出空気121として室内に給気される。しかしながら、給気風路113に介在している電動機108からの発熱エネルギーは、屋外吹出空気120として屋外に排気されず、減熱すべく室内吹出空気121を加熱して室内へ給気されている。
特開2006−349223号公報
Further, in the summer season when the outdoor intake air 118 sucked from the outdoor intake port 104 is warm and the indoor intake air 119 sucked from the indoor intake port 102 is in a cold state, the air supply air passage 112 and the exhaust air passage 113 are interposed. The air in the exhaust air passage 113 is heated by adding heat from the air in the air supply air passage 112 by the heat exchanging element 111 that is heated to a temperature higher than the indoor intake air 119 by the exhaust vane 106 and the outlet pipe 117. Then, the air is exhausted outdoors as outdoor air 120 through the outdoor air outlet 105. On the other hand, the air in the supply air passage 112 is reduced in heat by the air in the exhaust air passage 113 being deprived of heat, and at a temperature lower than that of the outdoor intake air 118, the air supply blades 107 pass through the outlet pipe 117 and the indoor The air is supplied into the room as indoor blowing air 121 through the outlet 103. However, the heat generation energy from the electric motor 108 intervening in the supply air passage 113 is not exhausted to the outside as the outdoor blowing air 120, but the indoor blowing air 121 is heated and supplied to the room to reduce the heat.
JP 2006-349223 A

このような従来の熱交換器では、電動機の発熱エネルギーを熱交換効率に有効利用できていないという課題がある。   In such a conventional heat exchanger, there is a problem that the heat generation energy of the electric motor cannot be effectively used for the heat exchange efficiency.

本発明は、このような従来の課題を解決するものであり、電動機の発熱エネルギーを有効利用することで熱交換効率向上することができる熱交換機器を提供することを目的とする。   This invention solves such a conventional subject, and it aims at providing the heat exchange apparatus which can improve heat exchange efficiency by using effectively the heat_generation | fever energy of an electric motor.

本発明の熱交換機器は、上記目的を達成するために、熱交換素子と給気風路および排気風路を有する熱交換機器において、前記給気風路と前記排気風路を仕切り部材で仕切り、この仕切り部材に凹凸部を設け、給気側電動機、排気側電動機を一体にした電動機を、前記給気風路側であって前記凹凸部の凹部内に設けたものである。 In order to achieve the above object, the heat exchange device of the present invention is a heat exchange device having a heat exchange element, a supply air passage, and an exhaust air passage, and the supply air passage and the exhaust air passage are partitioned by a partition member. An uneven portion is provided on the partition member, and an electric motor in which an air supply side motor and an exhaust side motor are integrated is provided in the concave portion of the uneven portion on the supply air path side .

また、他の手段は、前記電動機を、前記給気風路内の熱交換素子の風下側に設けたものである。 In another means, the electric motor is provided on the leeward side of the heat exchange element in the supply air passage.

本発明によれば、熱交換素子と給気風路および排気風路を有する熱交換機器において、前記給気風路と前記排気風路を仕切り部材で仕切り、この仕切り部材に凹凸部を設け、給気側電動機、排気側電動機を一体にした電動機を、前記給気風路側であって前記凹凸部の凹部内に設けたことにより、限られたスペースの中で、電動機をコンパクトに収納しながら、熱交換効率を向上することができるという効果のある熱交換機器を提供することができる。 According to the present invention, in a heat exchange device having a heat exchange element, an air supply air passage, and an exhaust air passage , the air supply air passage and the exhaust air passage are partitioned by a partition member, and an uneven portion is provided on the partition member. By providing a motor integrated with the side motor and the exhaust side motor on the air supply air path side and in the concave portion of the concave and convex portions , heat exchange while accommodating the motor compactly in a limited space It is possible to provide a heat exchange device having an effect of improving the efficiency.

また、前記電動機を、前記給気風路内の熱交換素子の風下側に設けたことにより、暖房時の熱交換効率を向上し暖房効率を向上することができるという効果のある熱交換機器を提供することができる。 In addition, by providing the electric motor on the leeward side of the heat exchange element in the air supply air passage, there is provided a heat exchange device having an effect of improving the heat exchange efficiency during heating and improving the heating efficiency. can do.

本発明の請求項1記載の熱交換機器は、熱交換素子と給気風路および排気風路を有する熱交換機器において、前記給気風路と前記排気風路を仕切り部材で仕切り、この仕切り部材に凹凸部を設け、給気側電動機、排気側電動機を一体にした電動機を、前記給気風路側であって前記凹凸部の凹部内に設けたものであり、電動機の発熱エネルギーを利用するという作用を有する。 The heat exchange device according to claim 1 of the present invention is a heat exchange device having a heat exchange element, a supply air passage, and an exhaust air passage, and the supply air passage and the exhaust air passage are partitioned by a partition member. An uneven portion is provided, and an electric motor integrated with an air supply side motor and an exhaust side motor is provided in the concave portion of the uneven portion on the supply air path side , and has the effect of using the heat generated by the motor. Have.

また、前記電動機を、前記給気風路内の熱交換素子の風下側に設けたものであり、電動機の発熱エネルギーを給気風路に利用するという作用を有する。 Further, the electric motor is provided on the leeward side of the heat exchange element in the air supply air passage, and has an effect that heat generated by the electric motor is used for the air supply air passage.

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1および図2に示すように、熱交換機器としての本体1は、下面に点検カバー2と、側面に室内吸込口3と室内吹出口4と、屋外吸込口5と屋外吹出口6を有している。本体1の中央部内には、排気用羽根7を駆動する排気側電動機9aと給気用羽根8を駆動する給気側電動機9bとを一体構造とした電動機9が備えられている。この電動機9に排気用羽根7および給気用羽根8を装着し、さらに、排気用羽根7の外側に排気用ファンケーシング10と、給気用羽根8の外側に給気用ファンケーシング11とが設けられている。排気用ファンケーシング10および給気用ファンケーシング11の外周部には熱交換素子12が配置されている。給気風路15は、屋外吸込口5から給気用風路構成板13と熱交換素子12と給気用羽根8および給気用吹出管14を通じ室内吹出口4に連通するものである。排気風路18は、室内吸込口3から排気用風路構成板16と熱交換素子12と排気用羽根7および排気用吹出管17を通じ屋外吹出口6に連通するものである。給気風路15と排気風路18を隔てる仕切り部材としての風路仕切板19に電動機9を給気風路15側に設け、電動機9が取り付く風路仕切板19を排気用ファンケーシング10側に窪ませ、凹凸部19aとした構成となっている。
(Embodiment 1)
As shown in FIG. 1 and FIG. 2, the main body 1 as a heat exchange device has an inspection cover 2 on the lower surface, an indoor air inlet 3 and an indoor air outlet 4 on the side surface, an outdoor air inlet 5 and an outdoor air outlet 6. is doing. In the central portion of the main body 1, an electric motor 9 is provided in which an exhaust side electric motor 9 a that drives the exhaust vane 7 and an air supply side electric motor 9 b that drives the air supply vane 8 are integrated. An exhaust vane 7 and an air supply vane 8 are mounted on the electric motor 9. Further, an exhaust fan casing 10 is provided outside the exhaust vane 7, and an air supply fan casing 11 is provided outside the air supply vane 8. Is provided. A heat exchange element 12 is disposed on the outer periphery of the exhaust fan casing 10 and the air supply fan casing 11. The air supply air passage 15 communicates with the indoor air outlet 4 from the outdoor air inlet 5 through the air supply air passage constituting plate 13, the heat exchange element 12, the air supply blade 8, and the air supply outlet pipe 14. The exhaust air passage 18 communicates with the outdoor air outlet 6 from the indoor suction port 3 through the exhaust air passage constituting plate 16, the heat exchange element 12, the exhaust blade 7, and the exhaust outlet pipe 17. An electric motor 9 is provided on the supply air passage 15 side on the air passage partition plate 19 as a partition member separating the supply air passage 15 and the exhaust air passage 18, and the air passage partition plate 19 to which the electric motor 9 is attached is recessed on the exhaust fan casing 10 side. However, it is configured as the uneven portion 19a.

図3は、本実施の形態の熱交換素子12の詳細図である。熱交換素子12は、伝熱板20に風路壁21aと風路壁21bにより風路が形成される素子板22aと、風路壁21aと風路壁21bの配置を左右逆にした素子板22bを交互に積層して構成されている。すなわち、熱交換素子12は、給気風路15となるA風路と排気風路18となるB風路を構成した形状となっている。給気風路15(A風路)と排気風路18(B風路)を通過する空気の間では、伝熱板20を介して熱移動するものである。   FIG. 3 is a detailed view of the heat exchange element 12 of the present embodiment. The heat exchange element 12 includes an element plate 22a in which an air passage is formed by the air passage wall 21a and the air passage wall 21b in the heat transfer plate 20, and an element plate in which the arrangement of the air passage wall 21a and the air passage wall 21b is reversed right and left. 22b is laminated alternately. That is, the heat exchange element 12 has a shape that forms an A air passage that becomes the supply air passage 15 and a B air passage that becomes the exhaust air passage 18. Between the air passing through the supply air passage 15 (A air passage) and the exhaust air passage 18 (B air passage), heat is transferred through the heat transfer plate 20.

図4は、直交する風路となる熱交換素子12を有した構成概略図であり、給気風路15と排気風路18が直交するものである。   FIG. 4 is a schematic configuration diagram including the heat exchange element 12 serving as an orthogonal air path, in which the supply air path 15 and the exhaust air path 18 are orthogonal to each other.

図5は、対向する風路となる熱交換素子12を有した構成概略図であり、給気風路15と排気風路18が対向するものである。   FIG. 5 is a schematic configuration diagram including the heat exchange element 12 serving as an opposed air path, in which the supply air path 15 and the exhaust air path 18 face each other.

図4および図5に示すように、熱交換機器としての本体1は、側面に室内吸込口3と室内吹出口4と、屋外吸込口5と屋外吹出口6を有し、排気用羽根7と給気用羽根8を電動機9に装着し排気用羽根7の外側に排気用ファンケーシング10と、給気用羽根8の外側に給気用ファンケーシング11とを設け、熱交換素子12の風下側に給気用羽根8を配置し、屋外吸込口5から熱交換素子12と給気用羽根8および給気用吹出管14を通じ室内吹出口4に連通する給気風路15と、室内吸込口3から排気用羽根7および排気用吹出管17と熱交換素子12とを通じ屋外吹出口6に連通する排気風路18と、給気風路15と排気風路18を隔てる仕切り部材としての風路仕切板19に電動機9を給気風路15側に設けた構成となっている。   As shown in FIGS. 4 and 5, the main body 1 as a heat exchange device has an indoor inlet 3, an indoor outlet 4, an outdoor inlet 5, and an outdoor outlet 6 on the side surface, An air supply vane 8 is mounted on the electric motor 9, an exhaust fan casing 10 is provided outside the exhaust vane 7, and an air supply fan casing 11 is provided outside the air supply vane 8. The air supply vane 8 is disposed in the air supply air passage 15, which communicates with the indoor air outlet 4 through the heat exchange element 12, the air supply vane 8 and the air supply outlet pipe 14 from the outdoor air inlet 5, and the indoor air inlet 3. The exhaust air passage 18 communicates with the outdoor air outlet 6 through the exhaust blade 7 and the exhaust air outlet pipe 17 and the heat exchange element 12, and the air passage partition plate as a partition member separating the supply air passage 15 and the exhaust air passage 18. In FIG. 19, the electric motor 9 is provided on the supply air passage 15 side.

次に、図1〜図5を用いて動作を示す。   Next, the operation will be described with reference to FIGS.

屋外吸込口5から吸引される屋外吸込空気23が冷たく、室内吸込口3から吸引される室内吸込空気24が暖かい状態となる冬季の暖房時を主として使用する場合の説明をする。室内を暖房する場合、給気風路15と排気風路18に介在する熱交換素子12によって、排気風路18の空気は、給気風路15の空気に熱量を奪われることにより減熱され、排気用羽根7によって室内吸込空気24よりも低い温度で、屋外吹出口6を介し、屋外吹出空気25として屋外に排気される。一方、給気風路15の空気は、排気風路18の空気から熱量を加えられることによって加熱され、給気用羽根8によって、屋外吸込空気23よりも高い温度で、室内吹出口4を介し、室内吹出空気26として室内に給気される。このとき、排気用羽根7と給気用羽根8に装着された電動機9は、印加される入力に対し20〜90%の効率で送風エネルギーとして出力されるが、残りの10〜80%は電動機9の発熱エネルギーとして発熱される。電動機9が取り付く風路仕切板19は、排気用ファンケーシング10側に窪ませ、凹凸部19aとした構成となっているため、排気用羽根7と給気用羽根8を駆動させるために発生する発熱エネルギーを、排気風路18に伝えず給気風路15内に放熱することになり、熱交換素子12によって加熱された給気風路15の空気は、さらに加熱され室内吹出空気26として室内に給気される。熱交換素子12の熱交換効率は、式1で表すことができるので、室内吸込空気24と屋外吸込空気23の温度が同じであるため分母が同じとなり、分子の室内吹出空気26の温度が高くなり大きくなるため、熱交換効率を向上することができることとなる。   A description will be given of a case where the outdoor intake air 23 sucked from the outdoor suction port 5 is mainly used during the heating in winter when the indoor suction air 24 sucked from the indoor suction port 3 is in a warm state. When the room is heated, the heat exchange element 12 interposed between the supply air passage 15 and the exhaust air passage 18 reduces the heat of the air in the exhaust air passage 18 by the heat of the air in the supply air passage 15 being deprived of heat. The blades 7 are exhausted to the outside as outdoor blowing air 25 through the outdoor blowing outlet 6 at a temperature lower than the indoor suction air 24. On the other hand, the air in the supply air passage 15 is heated by adding heat from the air in the exhaust air passage 18 and is heated by the air supply blade 8 at a temperature higher than the outdoor intake air 23 through the indoor outlet 4. The air is supplied into the room as indoor blown air 26. At this time, the motor 9 mounted on the exhaust blade 7 and the air supply blade 8 is output as blowing energy with an efficiency of 20 to 90% with respect to the applied input, but the remaining 10 to 80% is the motor. Heat is generated as heat generation energy of 9. The air passage partition plate 19 to which the electric motor 9 is attached is recessed to the exhaust fan casing 10 side and has a concavo-convex portion 19a, and is generated to drive the exhaust vane 7 and the air supply vane 8. The generated heat energy is dissipated into the supply air passage 15 without being transmitted to the exhaust air passage 18, and the air in the supply air passage 15 heated by the heat exchange element 12 is further heated and supplied to the room as indoor blowing air 26. I care. Since the heat exchange efficiency of the heat exchange element 12 can be expressed by Equation 1, since the temperature of the indoor intake air 24 and the outdoor intake air 23 is the same, the denominator is the same, and the temperature of the numerator indoor blowing air 26 is high. Therefore, the heat exchange efficiency can be improved.

Figure 0005003650
Figure 0005003650

また、風路仕切板19を排気用ファンケーシング10側に窪ませ、凹凸部19aとした構成となっているため、排気側電動機9aと給気側電動機9bを一体で構成した電動機9は、給気風路15と排気風路18に均等に張り出し、給気用羽根8の吸込み空間と排気用羽根7の吸込み空間が同等に確保され、吸込み圧損が同等となる。   Further, since the air passage partition plate 19 is recessed to the exhaust fan casing 10 side to form an uneven portion 19a, the motor 9 in which the exhaust side electric motor 9a and the supply side electric motor 9b are integrally formed is provided with The air flow path 15 and the exhaust air path 18 are evenly projected, and the suction space of the air supply blade 8 and the suction space of the exhaust blade 7 are ensured equally, and the suction pressure loss becomes equal.

このように本発明の実施の形態1の熱交換機器によれば、電動機取付のための構造が簡素化にしつつ電動機周囲の通風性が向上するので、電動機をコンパクトに収納しながら電動機の発熱を積極的に有効活用することで熱交換効率を向上することができ、特に暖房時の熱交換効率を向上することができることとなる。   As described above, according to the heat exchanging device of Embodiment 1 of the present invention, the air permeability around the motor is improved while simplifying the structure for mounting the motor, so that the motor generates heat while storing the motor in a compact manner. By actively utilizing it effectively, the heat exchange efficiency can be improved, and in particular, the heat exchange efficiency during heating can be improved.

なお、図6に示すように給気側電動機9bと排気側電動機9aを分けて構成し、給気側電動機9bと排気側電動機9aを給気風路15内に介在させる構造も可能であるが、給気風路15内に介在する排気側電動機9aが熱交換素子12の上流側となるため、排気側電動機9aで発生するすべての発熱エネルギーを利用することは出来ないが、熱交換素子12へ流入する屋外吸込空気23の温度を上昇することができるので、排気側電動機9aの発熱エネルギーをそのまま屋外吹出口6から屋外へ排気するよりも熱交換効率を向上することができる。   In addition, as shown in FIG. 6, a structure is possible in which the supply-side motor 9b and the exhaust-side motor 9a are configured separately, and the supply-side motor 9b and the exhaust-side motor 9a are interposed in the supply air passage 15. Since the exhaust side electric motor 9a interposed in the supply air passage 15 is on the upstream side of the heat exchange element 12, it is not possible to use all the heat generation energy generated in the exhaust side electric motor 9a, but it flows into the heat exchange element 12 Since the temperature of the outdoor intake air 23 to be increased can be increased, the heat exchange efficiency can be improved as compared with the case where the heat generation energy of the exhaust-side electric motor 9a is directly exhausted from the outdoor outlet 6 to the outside.

(実施の形態2)
図7および図8に示すように、熱交換機器としての本体1は、下面に点検カバー2と、側面に室内吸込口3と室内吹出口4と、屋外吸込口5と屋外吹出口6を有している。本体1の中央部内には、排気用羽根7を駆動する排気側電動機9aと給気用羽根8を駆動する給気側電動機9bとを一体構造とした電動機9が備えられている。この電動機9に排気用羽根7および給気用羽根8を装着し、さらに、排気用羽根7の外側に排気用ファンケーシング10と、給気用羽根8の外側に給気用ファンケーシング11とを設けられている。排気用ファンケーシング10および給気用ファンケーシング11の外周部には熱交換素子12が配置されている。給気風路15は、屋外吸込口5から給気用風路構成板13と熱交換素子12と給気用羽根8および給気用吹出管14を通じ室内吹出口4に連通するものである。排気風路18は、室内吸込口3から排気用風路構成板16と熱交換素子12と排気用羽根7および排気用吹出管17を通じ屋外吹出口6に連通するものである。給気風路15と排気風路18を隔てる仕切り部材としての風路仕切板19に電動機9を給気風路15側に設け、電動機9が取り付く風路仕切板19を給気用ファンケーシング11側に窪ませ、凹凸部19aとした構成となっている。
(Embodiment 2)
As shown in FIGS. 7 and 8, the main body 1 as a heat exchange device has an inspection cover 2 on the lower surface, an indoor inlet 3 and an indoor outlet 4 on the side, an outdoor inlet 5 and an outdoor outlet 6. is doing. In the central portion of the main body 1, an electric motor 9 is provided in which an exhaust side electric motor 9 a that drives the exhaust vane 7 and an air supply side electric motor 9 b that drives the air supply vane 8 are integrated. An exhaust vane 7 and an air supply vane 8 are mounted on the electric motor 9, and an exhaust fan casing 10 is provided outside the exhaust vane 7, and an air supply fan casing 11 is provided outside the air supply vane 8. Is provided. A heat exchange element 12 is disposed on the outer periphery of the exhaust fan casing 10 and the air supply fan casing 11. The air supply air passage 15 communicates with the indoor air outlet 4 from the outdoor air inlet 5 through the air supply air passage constituting plate 13, the heat exchange element 12, the air supply blade 8, and the air supply outlet pipe 14. The exhaust air passage 18 communicates with the outdoor air outlet 6 from the indoor suction port 3 through the exhaust air passage constituting plate 16, the heat exchange element 12, the exhaust blade 7, and the exhaust outlet pipe 17. An electric motor 9 is provided on the supply air passage 15 side on an air passage partition plate 19 as a partition member separating the supply air passage 15 and the exhaust air passage 18, and the air passage partition plate 19 to which the electric motor 9 is attached is provided on the air supply fan casing 11 side. It is the structure which made it the dent and the uneven | corrugated | grooved part 19a.

図9は、直交する風路となる熱交換素子12を有した構成概略図であり、給気風路15と排気風路18が直交するものである。   FIG. 9 is a schematic configuration diagram including the heat exchange element 12 serving as an orthogonal air path, in which the supply air path 15 and the exhaust air path 18 are orthogonal to each other.

図10は、対向する風路となる熱交換素子12を有した構成概略図であり、給気風路15と排気風路18が対向するものである。   FIG. 10 is a schematic diagram of the configuration having the heat exchange element 12 serving as an opposed air path, in which the supply air path 15 and the exhaust air path 18 face each other.

図9および図10に示すように、熱交換機器としての本体1は、側面に室内吸込口3と室内吹出口4と、屋外吸込口5と屋外吹出口6を有し、排気用羽根7と給気用羽根8を電動機9に装着し排気用羽根7の外側に排気用ファンケーシング10と、給気用羽根8の外側に給気用ファンケーシング11とを設け、熱交換素子12の風下側に排気用羽根7を配置し、屋外吸込口5から給気用羽根8および給気用吹出管14と熱交換素子12とを通じ室内吹出口4に連通する給気風路15と、室内吸込口3から熱交換素子12と排気用羽根7および排気用吹出管17とを通じ屋外吹出口6に連通する排気風路18と、給気風路15と排気風路18を隔てる仕切り部材としての風路仕切板19に電動機9を排気風路18側に設けた構成となっている。   As shown in FIGS. 9 and 10, the main body 1 as a heat exchange device has an indoor inlet 3, an indoor outlet 4, an outdoor inlet 5, and an outdoor outlet 6 on the side surface, An air supply vane 8 is mounted on the electric motor 9, an exhaust fan casing 10 is provided outside the exhaust vane 7, and an air supply fan casing 11 is provided outside the air supply vane 8. The exhaust air vane 7 is disposed in the air supply air passage 15, which communicates with the indoor air outlet 4 from the outdoor air inlet 5 through the air supply blade 8, the air supply outlet pipe 14 and the heat exchange element 12, and the indoor air inlet 3. To the outdoor air outlet 6 through the heat exchange element 12, the exhaust vane 7 and the exhaust outlet pipe 17, and the air path partition plate as a partition member separating the supply air path 15 and the exhaust air path 18. 19, the electric motor 9 is provided on the exhaust air passage 18 side.

次に、図7〜図10を用いて動作を示す。   Next, the operation will be described with reference to FIGS.

屋外吸込口5から吸引される屋外吸込空気23が暖かく、室内吸込口3から吸引される室内吸込空気24が冷たい状態となる夏季の冷房時を主として使用する場合、給気風路15と排気風路18に介在する熱交換素子12によって、排気風路18の空気は、給気風路15の空気から熱量を加えられることにより加熱され、排気用羽根7によって室内吸込空気24よりも高い温度で、屋外吹出口6を介し、屋外吹出空気25として屋外に排気される。一方、給気風路15の空気は、排気風路18の空気から熱量を奪われることによって減熱され、給気用羽根8によって、屋外吸込空気23よりも低い温度で、室内吹出口4を介し、室内吹出空気26として室内に給気される。   When mainly used during cooling in summer when the outdoor intake air 23 sucked from the outdoor intake port 5 is warm and the indoor intake air 24 sucked from the indoor intake port 3 is cold, the supply air passage 15 and the exhaust air passage The heat exchange element 12 interposed in the air 18 heats the air in the exhaust air passage 18 by adding heat from the air in the air supply air passage 15, and the outdoor air at a temperature higher than the indoor intake air 24 by the exhaust vanes 7. The air is exhausted to the outside as the outdoor air 25 through the air outlet 6. On the other hand, the air in the supply air passage 15 is reduced in heat by taking the amount of heat from the air in the exhaust air passage 18, and is supplied to the air supply blade 8 through the indoor outlet 4 at a temperature lower than the outdoor intake air 23. Then, the air is supplied into the room as the indoor blowing air 26.

このとき、排気用羽根7と給気用羽根8に装着された電動機9は、印加される入力に対し20〜90%の効率で送風エネルギーとして出力されるが、残りの10〜80%は電動機9の発熱エネルギーとして発熱される。電動機9が取り付く風路仕切板19を給気用ファンケーシング11側に窪ませ、凹凸部19aとした構成となっているため、排気用羽根7と給気用羽根8を駆動させるために発生する発熱エネルギーを、給気風路15に伝えず排気風路18内に放熱し、屋外吹出空気25として屋外へ排気することにより、熱交換素子12によって減熱された給気風路15の空気は、電動機9の発熱エネルギーによって加熱されることなく室内吹出空気26として室内に給気される。熱交換素子12の熱交換効率は、式2で表すことができるので、室内吸込空気24と屋外吸込空気23の温度が同じであるため分母が同じとなり、分子の室内吹出空気26の温度が電動機9の発熱エネルギーによって高くならないため、熱交換効率を向上することができることとなる。   At this time, the motor 9 mounted on the exhaust blade 7 and the air supply blade 8 is output as blowing energy with an efficiency of 20 to 90% with respect to the applied input, but the remaining 10 to 80% is the motor. Heat is generated as heat generation energy of 9. Since the air passage partition plate 19 to which the electric motor 9 is attached is recessed toward the air supply fan casing 11 to form the uneven portion 19a, it is generated to drive the exhaust blade 7 and the air supply blade 8. The heat generated in the supply air passage 15, which has been reduced in heat by the heat exchange element 12, is radiated into the exhaust air passage 18 without being transmitted to the supply air passage 15 and exhausted to the outside as the outdoor blowing air 25. The indoor air is supplied to the room without being heated by the heat generation energy 9. Since the heat exchange efficiency of the heat exchange element 12 can be expressed by Equation 2, since the indoor intake air 24 and the outdoor intake air 23 have the same temperature, the denominator is the same, and the temperature of the numerator indoor air 26 is the electric motor. Therefore, the heat exchange efficiency can be improved.

Figure 0005003650
Figure 0005003650

また、風路仕切板19を給気用ファンケーシング11側に窪ませ、凹凸部19aとした構成となっているため、排気側電動機9aと給気側電動機9bを一体で構成した電動機9は、給気風路15と排気風路18に均等に張り出し、給気用羽根8の吸込み空間と排気用羽根7の吸込み空間が同等に確保され、吸込み圧損が同等となる。   In addition, since the air passage partition plate 19 is recessed to the air supply fan casing 11 side to form a concavo-convex portion 19a, the electric motor 9 configured integrally with the exhaust side electric motor 9a and the air supply side electric motor 9b is: The air supply passage 15 and the exhaust air passage 18 are evenly projected, so that the suction space of the supply blade 8 and the suction space of the exhaust blade 7 are ensured equally, and the suction pressure loss becomes equal.

このように本発明の実施の形態2の熱交換機器によれば、電動機9取付のための構造が簡素化にしつつ電動機9周囲の通風性が向上するので、電動機9をコンパクトに収納しながら電動機の発熱を効率よく排気することで熱交換効率を向上することができ、特に冷房時の熱交換効率を向上することができることとなる。   As described above, according to the heat exchange device of the second embodiment of the present invention, the air permeability around the motor 9 is improved while the structure for mounting the motor 9 is simplified. The heat exchange efficiency can be improved by exhausting the heat generated efficiently, and in particular, the heat exchange efficiency during cooling can be improved.

なお、図11に示すように給気側電動機9bと排気側電動機9aを分けて構成し、給気側電動機9bと排気側電動機9aを排気風路18内に介在させる構造も可能であるが、排気風路18内に介在する給気側電動機9bが熱交換素子12の上流側となるため、給気側電動機9bで発生するすべての発熱エネルギーを排気することは出来ないが、熱交換素子12を介することで給気側電動機9bで発生する発熱エネルギーを抑制し、室内吹出空気26の温度上昇を抑えることができるので、給気側電動機9bの発熱エネルギーをそのまま室内吹出口4から室内へ給気するよりも熱交換効率を向上することができる。   As shown in FIG. 11, it is possible to configure the supply side motor 9b and the exhaust side motor 9a separately so that the supply side motor 9b and the exhaust side motor 9a are interposed in the exhaust air passage 18. Since the supply side electric motor 9b interposed in the exhaust air passage 18 is upstream of the heat exchange element 12, it is impossible to exhaust all the heat generation energy generated in the supply side electric motor 9b, but the heat exchange element 12 Since the heat generation energy generated in the air supply side motor 9b can be suppressed and the temperature rise of the indoor blown air 26 can be suppressed, the heat generation energy of the air supply side motor 9b is supplied to the room from the indoor outlet 4 as it is. The heat exchange efficiency can be improved rather than being concerned.

本発明の熱交換機器は、本体高さを低く保ちながら、熱交換効率を向上させることが可能なため、天井裏寸法の確保が難しい近年の居住および非居住の建築物の換気装置として有用である。   The heat exchange device of the present invention can improve the heat exchange efficiency while keeping the body height low, and is useful as a ventilator for recent residential and non-residential buildings where it is difficult to secure the dimensions of the ceiling. is there.

本発明の実施の形態1の熱交換機器の正面断面図Front sectional drawing of the heat exchange apparatus of Embodiment 1 of this invention 同熱交換機器の側面断面図Side sectional view of the heat exchanger 同熱交換機器の熱交換素子の詳細図Detailed view of heat exchange element of the same heat exchange equipment 同熱交換機器の直交する風路となる熱交換素子を有した構成概略図Schematic configuration with heat exchange elements that form orthogonal air paths of the heat exchange equipment 同熱交換機器の対向する風路となる熱交換素子を有した構成概略図Schematic configuration with heat exchange elements that serve as air paths facing the heat exchange equipment 同熱交換機器の別手段の構成概略図Schematic diagram of another means of the heat exchange device 本発明の実施の形態2の熱交換機器の正面断面図Front sectional drawing of the heat exchange apparatus of Embodiment 2 of this invention 同熱交換機器の側面断面図Side sectional view of the heat exchanger 同熱交換機器の直交する風路となる熱交換素子を有した構成概略図Schematic configuration with heat exchange elements that form orthogonal air paths of the heat exchange equipment 同熱交換機器の対向する風路となる熱交換素子を有した構成概略図Schematic configuration with heat exchange elements that serve as air paths facing the heat exchange equipment 同熱交換機器の別手段の構成概略図Schematic diagram of another means of the heat exchange device 従来の熱交換機器の正面断面図Front sectional view of a conventional heat exchange device 同側面断面図Cross-sectional side view

符号の説明Explanation of symbols

1 本体
9 電動機
9a 排気側電動機
9b 給気側電動機
12 熱交換素子
15 給気風路
18 排気風路
19 風路仕切板
19a 凹凸部
DESCRIPTION OF SYMBOLS 1 Main body 9 Electric motor 9a Exhaust side motor 9b Supply side motor 12 Heat exchange element 15 Supply air path 18 Exhaust air path 19 Air path partition plate 19a Uneven part

Claims (2)

熱交換素子と給気風路および排気風路を有する熱交換機器において、
前記給気風路と前記排気風路を仕切り部材で仕切り、
この仕切り部材に凹凸部を設け、
給気側電動機、排気側電動機を一体にした電動機を、前記給気風路側であって前記凹凸部の凹部内に設けたことを特徴とする熱交換機器。
In a heat exchange device having a heat exchange element and an air supply and exhaust air passage,
Partitioning the supply air passage and the exhaust air passage with a partition member;
The partition member is provided with an uneven portion,
A heat exchanging device , wherein an electric motor integrated with an air supply side motor and an exhaust side electric motor is provided in the concave portion of the concavo-convex portion on the air supply air path side .
前記電動機を、前記給気風路内の熱交換素子の風下側に設けたことを特徴とする請求項1記載の熱交換機器。 The heat exchange device according to claim 1 , wherein the electric motor is provided on a leeward side of a heat exchange element in the supply air passage.
JP2008270590A 2008-10-21 2008-10-21 Heat exchange equipment Expired - Fee Related JP5003650B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008270590A JP5003650B2 (en) 2008-10-21 2008-10-21 Heat exchange equipment
PCT/JP2009/005401 WO2010047066A1 (en) 2008-10-21 2009-10-16 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008270590A JP5003650B2 (en) 2008-10-21 2008-10-21 Heat exchange equipment

Publications (2)

Publication Number Publication Date
JP2010101507A JP2010101507A (en) 2010-05-06
JP5003650B2 true JP5003650B2 (en) 2012-08-15

Family

ID=42119121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008270590A Expired - Fee Related JP5003650B2 (en) 2008-10-21 2008-10-21 Heat exchange equipment

Country Status (2)

Country Link
JP (1) JP5003650B2 (en)
WO (1) WO2010047066A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220129A (en) * 2011-04-12 2012-11-12 Panasonic Corp Heat exchange type ventilation apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2506997B2 (en) * 1988-10-19 1996-06-12 松下精工株式会社 Heat exchange type ventilator
JPH08291930A (en) * 1995-04-24 1996-11-05 Matsushita Seiko Co Ltd Heat exchanger type ventilating device
JP3707340B2 (en) * 2000-03-21 2005-10-19 三菱電機株式会社 Air conditioning fan
JP4278633B2 (en) * 2005-04-27 2009-06-17 三菱電機株式会社 Ventilation equipment
KR100628090B1 (en) * 2005-05-11 2006-09-26 엘지전자 주식회사 Air-conditioning system
JP4507995B2 (en) * 2005-06-14 2010-07-21 パナソニック株式会社 Heat exchange equipment
JP2007278565A (en) * 2006-04-05 2007-10-25 Matsushita Electric Ind Co Ltd Heat exchanging ventilation device

Also Published As

Publication number Publication date
JP2010101507A (en) 2010-05-06
WO2010047066A1 (en) 2010-04-29

Similar Documents

Publication Publication Date Title
WO2007040073A1 (en) Centrifugal fan and air conditioner using the same
EP2679920A3 (en) Indoor unit of air conditioner and method of controlling the air conditioner
MX2011003436A (en) Heat exchanger for an indoor unit of an air conditioner.
EP1628081A3 (en) Indoor unit of air conditioner
CN104864494A (en) Indoor unit of air conditioner
JP3160838U (en) Heat dissipation device
JP5003650B2 (en) Heat exchange equipment
JP2011058701A (en) Heat exchanger
KR100816925B1 (en) Apparatus for both ventilation and air conditioning
JP2015129621A (en) Heat exchange type ventilation system
JP6370406B2 (en) Air conditioner
JP2009121727A (en) Total enthalpy heat exchange-type ventilation device
JP2004263922A (en) Air conditioner indoor unit
JP2011174630A (en) Air conditioner
JP2010196945A (en) Outdoor unit
JP5705015B2 (en) Air conditioning system and building
JP2008185325A (en) Outdoor unit for air conditioner
KR100697892B1 (en) Heat application structure of supply and exhaust motor of ventilating device
WO2015182113A1 (en) Storage cell-cooling device
JP2014066423A (en) Air conditioner
CN215675574U (en) Heating and ventilation air conditioner heat radiation structure
JP2007247975A (en) Air conditioner
TWI276760B (en) Integral air conditioner
JP2006098041A5 (en)
JP6433606B2 (en) Air conditioner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5003650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees