JP5002992B2 - Rolling bearing with encoder - Google Patents

Rolling bearing with encoder Download PDF

Info

Publication number
JP5002992B2
JP5002992B2 JP2006078837A JP2006078837A JP5002992B2 JP 5002992 B2 JP5002992 B2 JP 5002992B2 JP 2006078837 A JP2006078837 A JP 2006078837A JP 2006078837 A JP2006078837 A JP 2006078837A JP 5002992 B2 JP5002992 B2 JP 5002992B2
Authority
JP
Japan
Prior art keywords
encoder
axial direction
peripheral surface
ring
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006078837A
Other languages
Japanese (ja)
Other versions
JP2007255997A (en
Inventor
耕一 角田
隆 藤岡
宏一 矢嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006078837A priority Critical patent/JP5002992B2/en
Publication of JP2007255997A publication Critical patent/JP2007255997A/en
Application granted granted Critical
Publication of JP5002992B2 publication Critical patent/JP5002992B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/784Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race
    • F16C33/7843Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race with a single annular sealing disc
    • F16C33/7846Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race with a single annular sealing disc with a gap between the annular disc and the inner race
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls

Description

この発明に係るエンコーダ付転がり軸受は、例えばオートバイ、スクータ等の自動二輪車の車輪をフレームに対し回転自在に支持すると共に、この車輪の回転速度を求める為に使用する。   The rolling bearing with an encoder according to the present invention is used to support a wheel of a motorcycle such as a motorcycle or a scooter so as to be rotatable with respect to a frame, and to determine the rotational speed of the wheel.

自動車用の走行状態を安定させる為の装置として、アンチロックブレーキシステム(ABS)が広く使用されている。この様なABSは、従来は四輪自動車を中心に普及しているが、近年、自動二輪車にも採用され始めている。周知の様に、ABSの制御には、車輪の回転速度を求める必要がある為、車輪を懸架装置に回転自在に支持する為の車輪支持用転がり軸受ユニットに回転速度検出装置を組み込む事が、従来から広く実施されている。但し、四輪自動車用の回転速度検出装置の構造を、そのまま自動二輪車用に適用する事はできない。この主な理由は、次の(1)(2)の2通りである。
(1)四輪自動車用の車輪支持用転がり軸受ユニットに比べて自動二輪車用の車輪支持用転がり軸受ユニットは相当に小型である。
(2)四輪自動車用の車輪支持用転がり軸受ユニットの多くは内輪回転型であるのに対して、自動二輪車用の車輪支持用転がり軸受ユニットの多くは外輪回転型である。
An anti-lock brake system (ABS) is widely used as a device for stabilizing the running state for automobiles. Such ABS has been widely used mainly in four-wheeled vehicles, but has recently begun to be used in motorcycles. As is well known, since it is necessary to determine the rotational speed of the wheel in order to control the ABS, it is necessary to incorporate a rotational speed detection device into the wheel bearing rolling bearing unit for rotatably supporting the wheel on the suspension device. It has been widely practiced. However, the structure of the rotational speed detection device for a four-wheeled vehicle cannot be directly applied to a motorcycle. There are two main reasons for this (1) and (2).
(1) The wheel support rolling bearing unit for motorcycles is considerably smaller than the wheel support rolling bearing unit for automobiles.
(2) While most of the wheel bearing rolling bearing units for four-wheeled vehicles are of the inner ring rotating type, many of the wheel supporting rolling bearing units for motorcycles are of the outer ring rotating type.

図10は、自動二輪車の車輪支持部の構造の1例として、スクータの如き、比較的小型の自動二輪車の前輪を回転自在に支持する部分の構造を示している。この構造では、懸架装置を構成する左右1対のホーク1、1の下端部に1対の支持板2、2を、互いに平行な状態で固定している。そして、これら両支持板2、2同士の間に、支持軸3の両端部を支持固定している。又、この支持軸3の中間部2個所位置に1対の転がり軸受4、4を設置している。具体的には、これら両転がり軸受4、4を構成する内輪を上記支持軸3に外嵌すると共に、内輪間座5a、5b、5cにより、これら両内輪の軸方向位置を規制している。又、上記支持軸3の周囲に円筒状のハブ6を、この支持軸3と同心に配置している。そして、上記両転がり軸受4、4を構成する外輪を、上記ハブ6の内周面両端寄り部分に内嵌固定している。更に、上記ハブ6の外周面にホイール7を支持固定している。   FIG. 10 shows a structure of a part that rotatably supports the front wheel of a relatively small motorcycle, such as a scooter, as an example of the structure of the wheel support part of the motorcycle. In this structure, a pair of support plates 2 and 2 are fixed in parallel to each other at the lower ends of a pair of left and right forks 1 and 1 constituting the suspension device. The both ends of the support shaft 3 are supported and fixed between the support plates 2 and 2. Further, a pair of rolling bearings 4 and 4 are installed at two positions of the intermediate portion of the support shaft 3. Specifically, the inner rings constituting the both rolling bearings 4 and 4 are fitted onto the support shaft 3, and the axial positions of the inner rings are regulated by the inner ring spacers 5a, 5b and 5c. A cylindrical hub 6 is arranged around the support shaft 3 concentrically with the support shaft 3. And the outer ring | wheel which comprises the said both rolling bearings 4 and 4 is internally fitted and fixed to the inner peripheral surface near both ends of the said hub 6. FIG. Further, a wheel 7 is supported and fixed to the outer peripheral surface of the hub 6.

一方、自動二輪車にABSを組み込むべく、車輪の回転速度を求める為の回転速度検出装置として従来から、特許文献1に記載された構造が知られている。この特許文献1に記載された構造は、自動二輪車用の回転速度検出装置ではあるが、内輪回転型の車輪支持用転がり軸受ユニットを構成するハブの回転速度を検出する事を意図している。この為に、車輪と共に回転する回転軸の中間部で1対の転がり軸受ユニットの間部分に、外周面を被検出面としたエンコーダを固定している。又、回転しない外輪に支持したセンサの検出部を、このエンコーダの外周面に近接対向させている。この様な構造は、比較的大型の自動二輪車には適用できても、小型の自動二輪車に多い、外輪回転型の車輪支持用転がり軸受ユニットを使用した構造には適用できない。   On the other hand, a structure described in Patent Document 1 is conventionally known as a rotational speed detection device for obtaining the rotational speed of a wheel in order to incorporate ABS in a motorcycle. Although the structure described in Patent Document 1 is a rotational speed detection device for a motorcycle, it is intended to detect the rotational speed of a hub constituting a wheel bearing rolling bearing unit of an inner ring rotation type. For this purpose, an encoder having an outer peripheral surface as a detected surface is fixed at an intermediate portion of the rotating shaft that rotates together with the wheel, between the pair of rolling bearing units. Further, the detection part of the sensor supported on the non-rotating outer ring is placed in close proximity to the outer peripheral surface of the encoder. Although such a structure can be applied to a relatively large motorcycle, it cannot be applied to a structure using a wheel bearing rolling bearing unit of an outer ring rotation type, which is common in a small motorcycle.

これに対して、特許文献2、3には、転がり軸受ユニットの端部開口を塞ぐシールリングの一部にエンコーダを装着し、この転がり軸受ユニットを構成する回転側軌道輪の回転速度を測定可能とする構造が記載されている。上記特許文献2、3のうちの特許文献2には外輪回転型の構造が、特許文献3には内輪回転型の構造が、それぞれ記載されている。但し、これら特許文献2、3に記載されたエンコーダ付車輪支持用転がり軸受ユニットは、何れも四輪自動車の車輪の回転速度を検出する事を意図したものであって、転がり軸受ユニットが比較的大型である。この為、例えば外輪回転型である上記特許文献2に記載された構造を自動二輪車の車輪の回転速度を検出する場合に使用しても、径方向に関するエンコーダの幅寸法の確保が難しく、この回転速度検出に関する信頼性の確保が難しい等の問題を生じる。   On the other hand, in Patent Documents 2 and 3, an encoder is attached to a part of the seal ring that closes the end opening of the rolling bearing unit, and the rotational speed of the rotation-side bearing ring constituting the rolling bearing unit can be measured. Is described. Of Patent Documents 2 and 3, Patent Document 2 describes an outer ring rotation type structure, and Patent Document 3 describes an inner ring rotation type structure. However, the wheel bearing rolling bearing units with encoders described in Patent Documents 2 and 3 are all intended to detect the rotational speed of wheels of a four-wheeled vehicle, and the rolling bearing units are relatively It is large. For this reason, for example, even when the structure described in Patent Document 2 which is an outer ring rotating type is used when detecting the rotational speed of a wheel of a motorcycle, it is difficult to ensure the width dimension of the encoder in the radial direction. Problems such as difficulty in ensuring reliability with respect to speed detection occur.

特に、上記特許文献2に記載されたエンコーダ付転がり軸受の場合には、エンコーダとシールリップとを、径方向に関して直列に配置している為、外輪の内周面と内輪の外周面との間隔に対する、エンコーダの幅寸法の割合が小さくなる。自動二輪車の車輪支持用転がり軸受ユニットの場合、上記両周面同士の間隔が元々小さい為、上記割合が小さくなると、上記エンコーダの被検出面である軸方向側面の幅寸法の絶対値が相当に小さくなる。この結果、検出部をこの被検出面に対向させたセンサの出力信号の変化が小さくなり、回転速度検出の信頼性確保の面から不利になる。要するに、上記特許文献2、3に記載された構造は、そのまま自動二輪車の車輪の回転速度を検出する為に使用できるものではない。   In particular, in the case of the rolling bearing with an encoder described in Patent Document 2, since the encoder and the seal lip are arranged in series in the radial direction, the distance between the inner peripheral surface of the outer ring and the outer peripheral surface of the inner ring. As a result, the ratio of the width dimension of the encoder becomes smaller. In the case of a rolling bearing unit for supporting a wheel of a motorcycle, since the distance between the two peripheral surfaces is originally small, the absolute value of the width dimension of the axial side surface, which is the detected surface of the encoder, is considerably reduced when the ratio is small. Get smaller. As a result, the change in the output signal of the sensor having the detection unit opposed to the detected surface becomes small, which is disadvantageous in terms of ensuring the reliability of rotation speed detection. In short, the structures described in Patent Documents 2 and 3 cannot be used as they are to detect the rotational speed of the wheels of the motorcycle.

特開平5−105158号公報JP-A-5-105158 特開2005−121669号公報JP 2005-121669 A 特開2005−233923号公報JP 2005-233923 A

本発明は、上述の様な事情に鑑みて、自動二輪車の車輪の回転速度を高い信頼性で検出できるエンコーダ付転がり軸受を実現すべく発明したものである。   The present invention has been invented in order to realize a rolling bearing with an encoder capable of detecting the rotational speed of a motorcycle wheel with high reliability in view of the circumstances as described above.

本発明のエンコーダ付転がり軸受は、外輪と、内輪と、複数個の転動体と、エンコーダとを備える。
このうちの外輪は、内周面に外輪軌道を有し、使用時に回転する。
又、上記内輪は、外周面に内輪軌道を有し、使用時にも回転しない。
又、上記各転動体は、この内輪軌道と上記外輪軌道との間に転動自在に設けられている。
又、上記エンコーダは、上記外輪と共に回転するもので、上記転動体と反対側の側面である軸方向外側面の磁気特性を、円周方向に関して交互に変化させている。
又、上記エンコーダの外周縁部を上記外輪の軸方向外端部に、この外輪との間のシール性を確保した状態で支持固定しており、上記エンコーダ自体の内周縁を上記内輪に対し、全周に亙り摺接若しくは近接対向させている。
更に、本発明の場合には、上記エンコーダの軸方向外側面の内径寄り部分に、外径側が深く、内径側が浅くなった凹溝を、全周に亙り形成している。
The rolling bearing with an encoder of the present invention includes an outer ring, an inner ring, a plurality of rolling elements, and an encoder.
Of these, the outer ring has an outer ring raceway on the inner peripheral surface and rotates during use.
The inner ring has an inner ring raceway on the outer peripheral surface and does not rotate during use.
Each rolling element is provided between the inner ring raceway and the outer ring raceway so as to roll freely.
The encoder rotates together with the outer ring, and alternately changes the magnetic characteristics of the outer surface in the axial direction, which is the side surface opposite to the rolling element, in the circumferential direction.
In addition, the outer peripheral edge of the encoder is supported and fixed to the outer end in the axial direction of the outer ring in a state in which a sealing property between the outer ring and the outer ring is ensured. The entire circumference is in sliding contact or in close proximity.
Further, in the case of the present invention , a concave groove having a deep outer diameter side and a shallow inner diameter side is formed over the entire circumference at a portion closer to the inner diameter of the outer surface in the axial direction of the encoder.

上述の様な本発明を実施する場合に、例えば請求項3に記載した発明の様に、上記エンコーダとして、芯金と永久磁石とを備えたものを使用する。このうちの芯金は、鋼板、フェライト系或いはマルテンサイト系のステンレス鋼板等の磁性金属板を、全体を円輪状に形成したものとする。そして、上記芯金の外周縁に形成した円筒部を上記外輪の軸方向外端部内周面に、締り嵌めで内嵌固定する。
又、上記永久磁石は、ゴムの如きエラストマー、或いは合成樹脂の如きプラストマー等の高分子材料中に、鉄、フェライト等の磁性粉を分散させて成るもので、軸方向外側面にS極とN極とを、交互に配置する。この様な永久磁石は、上記芯金の軸方向外側面に添設する。
When carrying out the present invention as described above, for example, as in the invention described in claim 3 , an encoder including a cored bar and a permanent magnet is used as the encoder. Of these, the metal core is formed of a magnetic metal plate such as a steel plate, a ferritic or martensitic stainless steel plate, etc., in a ring shape as a whole. And the cylindrical part formed in the outer periphery of the said metal core is fitted and fixed to the inner peripheral surface of the axial direction outer end part of the said outer ring by interference fitting.
The permanent magnet is formed by dispersing magnetic powders such as iron and ferrite in a polymer material such as an elastomer such as rubber or a plastomer such as a synthetic resin. The poles are arranged alternately. Such a permanent magnet is attached to the outer surface in the axial direction of the cored bar.

或いは、本発明を実施する場合に、例えば請求項2に記載した発明の様に、エンコーダを、燒結材料製で円輪状の永久磁石を含んで構成する。そして、この永久磁石の軸方向外側面にS極とN極とを交互に配置し、且つ、この永久磁石の内周縁を内輪の外周面に、全周に亙り近接対向させる。言い換えれば、この永久磁石の内周縁と内輪の外周面とを摺接させず、これら内周縁と外周面との間にラビリンスシールを設ける。 Alternatively, when the present invention is implemented , the encoder is configured to include an annular permanent magnet made of a sintered material, for example, as in the invention described in claim 2 . S poles and N poles are alternately arranged on the outer surface in the axial direction of the permanent magnet, and the inner peripheral edge of the permanent magnet is closely opposed to the outer peripheral surface of the inner ring over the entire circumference. In other words, the labyrinth seal is provided between the inner peripheral edge and the outer peripheral surface without bringing the inner peripheral edge of the permanent magnet into contact with the outer peripheral surface of the inner ring.

又、本発明を実施する場合に好ましくは、請求項4に記載した発明の様に、外輪の軸方向外端部内周面に、軸方向内側に隣接する部分よりも内径が大きくなった内周面側大径部を設ける。そして、エンコーダの外周縁部を、この内周面側大径部に内嵌固定する。
或いは、請求項5に記載した発明の様に、上記内周面側大径部を省略する代わりに、或いはこの内周面側大径部を設けると共に、内輪の軸方向外端部外周面に、軸方向内側に隣接する部分よりも外径が小さくなった外周面側小径部を設ける。そして、エンコーダの内周縁部をこの外周面側小径部に入り込ませて、この内周縁部と上記軸方向内側に隣接する部分とを軸方向に関して互いに重畳させる。
Further, when the present invention is carried out, preferably, as in the invention described in claim 4 , the inner circumference of the outer circumferential surface of the outer ring in the axial direction outer end portion is larger in inner diameter than the portion adjacent to the inner side in the axial direction. A surface-side large diameter portion is provided. Then, the outer peripheral edge portion of the encoder is fitted and fixed to the inner peripheral surface side large diameter portion.
Alternatively, as in the invention described in claim 5 , instead of omitting the inner peripheral surface side large diameter portion, or providing this inner peripheral surface side large diameter portion, the outer peripheral surface of the inner ring in the axial direction outer end portion is provided. A small-diameter portion on the outer peripheral surface side having an outer diameter smaller than that of the portion adjacent to the inside in the axial direction is provided. Then, the inner peripheral edge portion of the encoder enters the outer peripheral surface side small diameter portion, and the inner peripheral edge portion and the portion adjacent to the inner side in the axial direction are overlapped with each other in the axial direction.

上述の様に構成する本発明によれば、例えば自動二輪車の車輪の回転速度を高い信頼性で検出できるエンコーダ付転がり軸受を実現できる。即ち、本発明の場合には、エンコーダの外周縁部を外輪の軸方向外端部に支持固定すると共に、このエンコーダ自体の内周縁を内輪に対し、全周に亙り摺接若しくは近接対向させているので、径方向に関する、このエンコーダの幅寸法を確保できる。この為、検出部をこのエンコーダの被検出面である軸方向外側面に対向させたセンサの出力信号の変化を大きくできて、回転速度検出の信頼性を確保し易くなる。
又、本発明の場合には、外径側が深く、内径側が浅くなった凹溝が、上記エンコーダの軸方向外側面に付着してこの軸方向外側面を内径側に移動する異物を捕集し、この異物がこのエンコーダの内周縁に迄達するのを防止する。この為、転動体を設置した空間内への異物進入防止に関して、優れた効果を得られる。
例えば、請求項2、3に示した様な、円輪状の永久磁石を含むエンコーダを使用した場合、このエンコーダの被検出面から出入りする磁束を多くして、上記センサの出力信号の変化を大きくできる。
特に、請求項4、5に記載した構造を採用すれば、径方向に関するエンコーダの幅寸法を、外輪の内周面のうちで内周面側大径部に隣接する部分と、内輪の外周面のうちで外周面側小径部に隣接する部分との間隔よりも大きくできる。この為、上記エンコーダの幅寸法をより大きくして、上記センサの出力信号の変化をより大きくでき、回転速度検出の信頼性をより向上させられる。又、請求項4に記載した構造の場合には、上記効果に加えて、エンコーダの軸方向内側面の外径側端部を内周面側大径部の奥に存在する段部に突き合わせる事で、このエンコーダの軸方向位置を容易且つ確実に規制できる、と言った効果を得られる。
According to the present invention configured as described above, it is possible to realize a rolling bearing with an encoder that can detect, for example, the rotational speed of a wheel of a motorcycle with high reliability. That is, in the case of the present invention, the outer peripheral edge of the encoder is supported and fixed to the outer end in the axial direction of the outer ring, and the inner peripheral edge of the encoder itself is slidably contacted or closely opposed to the inner ring over the entire circumference. Therefore, the width dimension of the encoder in the radial direction can be ensured. For this reason, it is possible to increase the change in the output signal of the sensor in which the detection unit is opposed to the outer surface in the axial direction, which is the detection surface of the encoder, and it is easy to ensure the reliability of rotation speed detection.
Further, in the case of the present invention, a concave groove having a deep outer diameter side and a shallow inner diameter side adheres to the outer side surface of the encoder in the axial direction and collects foreign matters moving on the outer side surface in the axial direction toward the inner diameter side. This foreign matter is prevented from reaching the inner peripheral edge of the encoder. For this reason, the outstanding effect can be acquired regarding the foreign material approach prevention into the space which installed the rolling element.
For example, when an encoder including a ring-shaped permanent magnet as shown in claims 2 and 3 is used, the magnetic flux entering and exiting the detected surface of the encoder is increased to greatly change the output signal of the sensor. it can.
In particular, if the structures described in claims 4 and 5 are employed, the width dimension of the encoder in the radial direction is set such that the inner peripheral surface of the outer ring is adjacent to the inner peripheral surface side large diameter portion and the outer peripheral surface of the inner ring. Among these, it can be made larger than the interval with the portion adjacent to the outer peripheral surface side small diameter portion. For this reason, the width dimension of the encoder can be further increased, the change in the output signal of the sensor can be increased, and the reliability of rotation speed detection can be further improved. Further, in the case of the structure described in claim 4 , in addition to the above effects, the outer diameter side end of the inner surface in the axial direction of the encoder is abutted with the stepped portion existing behind the large diameter portion on the inner peripheral surface side. Thus, the effect that the axial position of the encoder can be easily and reliably regulated can be obtained.

本発明に関する参考例の第1例
図1は、本発明に関する参考例の第1例を示している。本参考例のエンコーダ付転がり軸受8は、外輪9と、内輪10と、複数個の転動体11と、エンコーダ12とを備える。このエンコーダ付転がり軸受8の(内輪10の)内径Rは、例えば12〜25mm程度、同じく(外輪9の)外径Dは35〜50mm程度である。そして、使用時には、例えば前述の図10に示した様に、支持軸3の外周面とハブ6の内周面との間に組み付けて、この支持軸3の周囲にこのハブ6を回転自在に支持する。尚、上記図10の構造に関して本参考例の構造を適用する場合には、この図10に示した1対の転がり軸受4、4のうちの一方の転がり軸受のみを、上記エンコーダ付転がり軸受8とする。他方の転がり軸受は、エンコーダを備えない、一般的な転がり軸受とする。
[ First example of reference example of the present invention ]
FIG. 1 shows a first example of a reference example related to the present invention . The rolling bearing 8 with an encoder according to this reference example includes an outer ring 9, an inner ring 10, a plurality of rolling elements 11, and an encoder 12. The inner diameter R (of the inner ring 10) of the rolling bearing with encoder 8 is, for example, about 12 to 25 mm, and the outer diameter D (of the outer ring 9) is about 35 to 50 mm. In use, for example, as shown in FIG. 10, the hub 6 is assembled between the outer peripheral surface of the support shaft 3 and the inner peripheral surface of the hub 6 so that the hub 6 can be freely rotated around the support shaft 3. To support. When the structure of this reference example is applied to the structure shown in FIG. 10, only one of the pair of rolling bearings 4 and 4 shown in FIG. And The other rolling bearing is a general rolling bearing without an encoder.

上述の様に、例えば上記支持軸3の外周面と上記ハブ6の内周面との間に組み付けられる、上記エンコーダ付転がり軸受8を構成する上記外輪9は、内周面に外輪軌道13を有する。図示の例では、この外輪軌道13を、断面円弧形の深溝型としている。この様な外輪9は、使用時には上記ハブ6に内嵌固定された状態で、このハブ6と共に回転する。
又、上記内輪10は、外周面に内輪軌道14を有する。図示の例では、この内輪軌道14に就いても、深溝型としている。この様な内輪10は、使用時には上記支持軸3に外嵌固定された状態のまま、回転しない。
又、上記各転動体11は、保持器15に保持された状態で、上記外輪軌道13と上記内輪軌道14との間に転動自在に設けられている。図示の例では、上記各転動体11として、玉を使用している。
As described above, for example, the outer ring 9 constituting the rolling bearing 8 with the encoder assembled between the outer peripheral surface of the support shaft 3 and the inner peripheral surface of the hub 6 has the outer ring raceway 13 on the inner peripheral surface. Have. In the illustrated example, the outer ring raceway 13 is a deep groove type having a circular arc cross section. Such an outer ring 9 rotates together with the hub 6 while being fitted and fixed to the hub 6 at the time of use.
The inner ring 10 has an inner ring raceway 14 on the outer peripheral surface. In the illustrated example, the inner ring raceway 14 is also of a deep groove type. Such an inner ring 10 does not rotate while being fitted and fixed to the support shaft 3 during use.
Each rolling element 11 is provided between the outer ring raceway 13 and the inner ring raceway 14 so as to be freely rollable while being held by a cage 15. In the illustrated example, balls are used as the rolling elements 11.

又、上記エンコーダ12は、それぞれが円輪状である、芯金16と永久磁石17とを一体的に結合固定して成る。このうちの芯金16は、鋼板、フェライト系或いはマルテンサイト系のステンレス鋼板等の磁性金属板製で、円輪部18の外周縁部を軸方向外側(上記各転動体11を設置した空間と反対側で、図1の左側)に向け直角に折り曲げる事により円筒部19を形成し、断面L字形で全体を円輪状に形成している。
尚、上記エンコーダ12を構成する芯金16は、上記図1に示した構造に限らず、外輪9の端部内周面に嵌合する為の円筒部19と、永久磁石17を保持する為の円輪部18とを備えた構造であれば良い。例えば図11に示す様に、上記エンコーダ12を構成する芯金16を、円輪部18の外周縁部と円筒部19との間に、断面クランク形の係止部32を設けた構成とする事もできる。この様な構成を採用した場合には、上記円筒部19と上記外輪9の端部内周面とを直接(上記永久磁石17を介さずに)嵌合させて、上記係止部32とこの外輪9の内周面との間でこの永久磁石17の径方向位置を規制できる為、回転速度検出に関する検出精度の向上を図れる。
The encoder 12 is formed by integrally connecting and fixing a metal core 16 and a permanent magnet 17 each having an annular shape. Of these, the core 16 is made of a magnetic metal plate such as a steel plate, a ferritic or martensitic stainless steel plate, and the outer peripheral edge of the annular portion 18 is axially outward (the space in which the rolling elements 11 are installed). On the opposite side, the cylindrical portion 19 is formed by being bent at right angles toward the left side of FIG. 1, and is formed into an annular shape with an L-shaped cross section.
The core metal 16 constituting the encoder 12 is not limited to the structure shown in FIG. 1, and the cylindrical portion 19 for fitting to the inner peripheral surface of the end of the outer ring 9 and the permanent magnet 17 are held. What is necessary is just a structure provided with the ring part 18. FIG. For example, as shown in FIG. 11, the metal core 16 constituting the encoder 12 is configured such that a locking portion 32 having a crank-shaped cross section is provided between the outer peripheral edge portion of the annular ring portion 18 and the cylindrical portion 19. You can also do things. When such a configuration is adopted, the cylindrical portion 19 and the inner peripheral surface of the end of the outer ring 9 are directly fitted (without the permanent magnet 17), and the locking portion 32 and the outer ring are fitted. Since the position in the radial direction of the permanent magnet 17 can be regulated between the inner peripheral surface 9 and the inner peripheral surface 9, it is possible to improve the detection accuracy related to rotation speed detection.

一方、上記永久磁石17は、ゴムの如きエラストマー、或いは合成樹脂の如きプラストマー等の高分子材料中に、鉄、フェライト等の磁性粉を分散させて成る。この様な永久磁石17は、この磁性粉を含有した上記高分子材料を金型のキャビティ内に送り込む、射出成形により造るが、この射出成形時に、上記芯金16をこのキャビティ内にセットしておく。又、この芯金16のうちで上記永久磁石17と当接する面には、予めプライマ(接着剤)を塗布しておく。従って、この永久磁石17と上記芯金16とは、この永久磁石17の射出成形と同時に接合固定される。この永久磁石17は、軸方向に着磁すると共に、着磁方向を、円周方向に関して交互に且つ等間隔に異ならせている。従って、被検出面である、上記永久磁石17の軸方向外側面には、S極とN極とが、交互に、且つ、等間隔に配置されている。これらS極とN極との数は、ABSに要求される性能等により設計的に規制するが、最大で、永久磁石17の全周で50極ずつ(S極とN極との合計で100極)程度になる。   On the other hand, the permanent magnet 17 is formed by dispersing magnetic powder such as iron or ferrite in a polymer material such as elastomer such as rubber or plastomer such as synthetic resin. Such a permanent magnet 17 is manufactured by injection molding, in which the polymer material containing the magnetic powder is fed into a mold cavity. At the time of injection molding, the core metal 16 is set in the cavity. deep. In addition, a primer (adhesive) is applied in advance to the surface of the core bar 16 that contacts the permanent magnet 17. Accordingly, the permanent magnet 17 and the cored bar 16 are joined and fixed simultaneously with the injection molding of the permanent magnet 17. The permanent magnet 17 is magnetized in the axial direction, and the magnetization direction is alternately varied at equal intervals in the circumferential direction. Therefore, the south pole and the north pole are alternately arranged at equal intervals on the outer surface in the axial direction of the permanent magnet 17 that is the detected surface. The number of these S poles and N poles is regulated by design depending on the performance required for the ABS, etc., but at most 50 poles on the entire circumference of the permanent magnet 17 (a total of 100 S poles and N poles). Extreme).

尚、上記永久磁石17の内周縁部は、上記芯金16の内周縁よりも径方向内方に突出している。従って、上記エンコーダ12全体としての内周縁は、上記永久磁石17の内周縁となる。上述した様にこの永久磁石17は、上記高分子材料の射出成形により造られるので、この永久磁石17の内径、延ては、上記エンコーダ12全体としての内径は、高精度に仕上げられる。又、上記永久磁石17の軸方向外側面は、外径側端部で、中間部乃至内径側部分よりも軸方向内側(上記各転動体11を設置した空間側で、図1の右側)に凹ませている。従って、上記エンコーダ12の軸方向外側面の外径側端部に環状凹部20が、全周に亙って存在する。そして、この環状凹部20の底面に、上記永久磁石17を射出成形する際のゲートを位置させて、このゲートの存在が、被検出面である、この永久磁石17の外側面から出入りする磁束の密度に悪影響を及ぼす事を防止している。又、この永久磁石17の軸方向外側面は、前記外輪9及び内輪10の端面よりも、軸方向内方に凹んだ位置に存在する。従って、前記エンコーダ付転がり軸受8を前記ハブ6と前記支持軸3との間に組み込む以前の、このエンコーダ付転がり軸受8単体の状態で、上記エンコーダ12が他の物体とぶつかって損傷する事を防止できる。   The inner peripheral edge of the permanent magnet 17 protrudes radially inward from the inner peripheral edge of the cored bar 16. Therefore, the inner peripheral edge of the encoder 12 as a whole is the inner peripheral edge of the permanent magnet 17. As described above, the permanent magnet 17 is manufactured by injection molding of the polymer material. Therefore, the inner diameter of the permanent magnet 17 and the inner diameter of the encoder 12 as a whole can be finished with high accuracy. Moreover, the axial direction outer side surface of the permanent magnet 17 is an outer diameter side end portion, and is axially inner than the intermediate portion or inner diameter side portion (on the space side where the rolling elements 11 are installed, on the right side in FIG. 1). It is recessed. Therefore, the annular recess 20 exists on the outer diameter side end of the axially outer side surface of the encoder 12 over the entire circumference. Then, a gate for injection molding the permanent magnet 17 is positioned on the bottom surface of the annular recess 20, and the presence of the gate is a surface to be detected. The magnetic flux entering and exiting from the outer surface of the permanent magnet 17. Prevents negative effects on density. Further, the outer surface of the permanent magnet 17 in the axial direction is present at a position recessed inward in the axial direction from the end surfaces of the outer ring 9 and the inner ring 10. Therefore, before the rolling bearing 8 with the encoder is assembled between the hub 6 and the support shaft 3, the encoder 12 may collide with another object and be damaged in the state of the rolling bearing 8 with the encoder alone. Can be prevented.

更に、上記外輪9の内周面の軸方向外端部には、軸方向内側に隣接する部分よりも内径が大きくなった、内周面側大径部21を形成している。上述の様なエンコーダ12は、上記芯金16の外周縁部に形成した前記円筒部19を上記内周面側大径部21に、締り嵌めで内嵌する事により、上記外輪9の端部内周面に固定している。この状態で、この外輪9の端部内周面と上記エンコーダ12の外周縁との間のシール性が確保される。又、このエンコーダ12の内周縁が、上記内輪10の端部外周面に、全周に亙り近接対向して、これら内周縁と外周面との間にラビリンスシールを構成する。上述の様に、上記エンコーダ12の内径は十分高精度に加工でき、又、上記内輪10の外径も精度良く加工される。従って、上記ラビリンスシールの、径方向に関する幅寸法は十分に小さくできて、このラビリンスシールのシール性能を十分良好にできる。   Furthermore, an inner peripheral surface side large-diameter portion 21 having an inner diameter larger than that of the portion adjacent to the inner side in the axial direction is formed at the axially outer end portion of the inner peripheral surface of the outer ring 9. The encoder 12 as described above is fitted inside the end portion of the outer ring 9 by fitting the cylindrical portion 19 formed on the outer peripheral edge portion of the core metal 16 into the inner peripheral surface side large-diameter portion 21 with an interference fit. It is fixed to the peripheral surface. In this state, the sealing performance between the inner peripheral surface of the end portion of the outer ring 9 and the outer peripheral edge of the encoder 12 is ensured. Further, the inner peripheral edge of the encoder 12 is closely opposed to the outer peripheral surface of the end portion of the inner ring 10 over the entire periphery, and a labyrinth seal is formed between the inner peripheral edge and the outer peripheral surface. As described above, the inner diameter of the encoder 12 can be processed with sufficiently high accuracy, and the outer diameter of the inner ring 10 is also processed with high accuracy. Therefore, the width dimension in the radial direction of the labyrinth seal can be made sufficiently small, and the sealing performance of the labyrinth seal can be made sufficiently good.

上述の様に構成する本参考例のエンコーダ付転がり軸受によれば、例えば自動二輪車の車輪の回転速度を高い信頼性で検出できる。即ち、本参考例の場合には、エンコーダ12自体の内周縁を上記内輪10の外周面に近接対向させて上記ラビリンスシールを構成している。従って、前述の特許文献2に記載された構造の如く、エンコーダとシールリップとを径方向に関して直列に配置した構造とは異なり、径方向に関する上記エンコーダ12の幅寸法を大きくできる。この為、検出部をこのエンコーダ12の被検出面である軸方向外側面に対向させたセンサの出力信号の変化を大きくできる。即ち、上記エンコーダ12を構成する前記永久磁石17の軸方向外側面から出入りする磁束を多くして、上記センサの出力信号が変化する程度を大きくし、上記外輪9を内嵌固定した、前記ハブ6、延てはこのハブ6に結合固定した車輪の回転速度検出の信頼性を確保し易くなる。 According to the rolling bearing with an encoder of the present reference example configured as described above, for example, the rotational speed of a wheel of a motorcycle can be detected with high reliability. That is, in the case of this reference example, the labyrinth seal is configured with the inner peripheral edge of the encoder 12 itself facing the outer peripheral surface of the inner ring 10 in close proximity. Therefore, unlike the structure described in Patent Document 2 described above, the encoder 12 and the seal lip are arranged in series in the radial direction, and the width dimension of the encoder 12 in the radial direction can be increased. For this reason, the change in the output signal of the sensor in which the detection unit is opposed to the outer surface in the axial direction, which is the detection surface of the encoder 12, can be increased. In other words, the hub in which the outer ring 9 is fitted and fixed by increasing the magnetic flux entering and exiting from the outer surface in the axial direction of the permanent magnet 17 constituting the encoder 12 to increase the degree to which the output signal of the sensor changes. 6. As a result, it becomes easy to ensure the reliability of detecting the rotational speed of the wheel coupled and fixed to the hub 6.

しかも本参考例の場合には、上記外輪9の端部に形成した内周面側大径部21に上記エンコーダ12の外周縁部を内嵌している為、このエンコーダ12の外径を上記外輪9のうちで上記内周面側大径部21に隣接する部分の内径よりも大きくできる。この為、上記エンコーダ12の幅寸法をより大きくして、上記センサの出力信号の変化をより大きくでき、回転速度検出の信頼性をより向上させられる。更に、上記エンコーダ12の軸方向位置は、このエンコーダ12の軸方向内側面の外径側端部を上記内周面側大径部21の奥に存在する段部22に突き合わせる事で、容易且つ確実に(高精度で)規制できる。この為、上記エンコーダ12が前記保持器15と干渉する事を確実に防止できる他、このエンコーダ12の被検出面と上記センサの検出部との間隔を適正に規制して、この面からも、上記回転速度検出に関する信頼性向上を図れる。尚、上記エンコーダ12がエラストマーにより構成したものであれば、このエンコーダの内周縁を内輪10の外周面と摺接させても良い。 Moreover, in the case of this reference example , since the outer peripheral edge of the encoder 12 is fitted into the inner peripheral surface side large diameter portion 21 formed at the end of the outer ring 9, the outer diameter of this encoder 12 is The outer ring 9 can be larger than the inner diameter of the portion adjacent to the inner peripheral surface side large diameter portion 21. For this reason, the width of the encoder 12 can be made larger, the change in the output signal of the sensor can be made larger, and the reliability of rotation speed detection can be further improved. Further, the axial position of the encoder 12 can be easily achieved by abutting the outer diameter side end portion of the inner surface in the axial direction of the encoder 12 with the step portion 22 existing in the inner diameter surface side large diameter portion 21. And it can be regulated reliably (with high accuracy). For this reason, in addition to reliably preventing the encoder 12 from interfering with the retainer 15, the distance between the detected surface of the encoder 12 and the detection portion of the sensor is properly regulated, and from this surface, The reliability related to the rotational speed detection can be improved. If the encoder 12 is made of an elastomer, the inner peripheral edge of the encoder may be brought into sliding contact with the outer peripheral surface of the inner ring 10.

本発明に関する参考例の第2例
図2は、本発明に関する参考例の第2例を示している。本参考例の場合には、永久磁石17aの外側面内径寄り部分と内周縁とに凹溝23、24を、それぞれ全周に亙って形成している。これら両凹溝23、24のうち、外側面内径寄り部分の凹溝23は、エンコーダ12aの軸方向外側面に付着してこの軸方向外側面を内径側に移動する異物を捕集し、この異物がこのエンコーダ12aの内周縁に迄達するのを防止する役目を有する。又、内周縁の凹溝24は、この内周縁と内輪10の外周面との間のラビリンスシールの絞り回数を多くして、このラビリンスシールのシール性能を向上させる役目を有する。従って本参考例の構造は、上述した参考例の第1例の構造に比べて、転動体11を設置した空間内への異物進入防止効果が優れている。その他の部分の構造及び作用は、上述した参考例の第1例と同様であるから、重複する説明は省略する。
[ Second Example of Reference Example of the Present Invention ]
FIG. 2 shows a second example of a reference example relating to the present invention . In the case of this reference example , the concave grooves 23 and 24 are formed over the entire circumference on the outer surface inner diameter side portion and the inner peripheral edge of the permanent magnet 17a. Of these concave grooves 23 and 24, the concave groove 23 near the inner diameter of the outer surface is attached to the outer surface in the axial direction of the encoder 12a and collects foreign matters moving on the outer diameter surface in the axial direction. It serves to prevent foreign matter from reaching the inner periphery of the encoder 12a. The concave groove 24 on the inner peripheral edge serves to increase the number of times the labyrinth seal is squeezed between the inner peripheral edge and the outer peripheral surface of the inner ring 10 to improve the sealing performance of the labyrinth seal. Therefore, the structure of the present reference example is more effective in preventing foreign matter from entering the space in which the rolling elements 11 are installed than the structure of the first example of the reference example described above. Since the structure and operation of the other parts are the same as those of the first example of the reference example described above, a duplicate description is omitted.

本発明に関する参考例の第3例
図3は、本発明に関する参考例の第3例を示している。本参考例の場合には、内輪10aの軸方向外端部外周面に、軸方向内側に隣接する部分よりも外径が小さくなった、外周面側小径部25を設けている。そして、エンコーダ12bの内周縁部をこの外周面側小径部25に入り込ませて、この内周縁部と上記軸方向内側に隣接する部分とを軸方向に関して互いに重畳させている。又、上記エンコーダ12bの軸方向内側面内径寄り部分と、上記外周面側小径部25の奥に存在する段部26とを近接対向させている。この様な本参考例の場合には、径方向に関する上記エンコーダ12bの幅寸法を、前述した参考例の第1例及び上述した参考例の第2例のエンコーダ12、12aの幅寸法よりも大きくして、回転速度検出に関する信頼性を、より一層向上させられる。又、上記エンコーダ12bの内周縁部と上記内輪10aの表面との間に存在するラビリンスシールの長さを長くして、シール性能の向上を図れる。その他の部分の構造及び作用は、前述した参考例の第1例と同様であるから、重複する説明は省略する。
[ Third example of reference example of the present invention ]
FIG. 3 shows a third example of the reference example related to the present invention . In the case of this reference example , the outer peripheral surface side small-diameter portion 25 having an outer diameter smaller than that of the portion adjacent to the inner side in the axial direction is provided on the outer peripheral surface of the inner end 10a in the axial direction. The inner peripheral edge portion of the encoder 12b is inserted into the outer peripheral surface side small diameter portion 25, and the inner peripheral edge portion and the portion adjacent to the inner side in the axial direction are overlapped with each other in the axial direction. Further, a portion closer to the inner diameter of the inner surface in the axial direction of the encoder 12b and a step portion 26 existing in the back of the outer diameter surface side small diameter portion 25 are made to face each other. In the case of this reference example, the width of the encoder 12b in the radial direction, greater than the width dimension of encoder 12,12a of the second example of the first embodiment and the above-mentioned Reference Example Reference example described above Thus, the reliability relating to the rotation speed detection can be further improved. In addition, the length of the labyrinth seal existing between the inner peripheral edge of the encoder 12b and the surface of the inner ring 10a can be increased to improve the sealing performance. Since the structure and operation of other parts are the same as those in the first example of the reference example described above, a duplicate description is omitted.

本発明に関する参考例の第4例
図4は、本発明に関する参考例の第4例を示している。本参考例の場合には、エンコーダ12cの内周縁の軸方向内半部の内径を軸方向外半部の内径よりも大きくして、この軸方向内半部に段部27を、全周に亙って形成している。この為、この段部27と、内輪10aの外端部外周面に設けた外周面側小径部25との間の中間部に、両側部分に比べて容積が大きくなった部分が存在する。この結果、上記エンコーダ12cの内周縁と上記内輪10aの外面との間のラビリンスシールの絞り回数を多くして、このラビリンスシールのシール性能を向上させる事ができる。従って本参考例の構造は、上述した参考例の第3例の構造に比べて、転動体11を設置した空間内への異物進入防止効果が優れている。その他の部分の構造及び作用は、上述した参考例の第3例と同様であるから、重複する説明は省略する。
[ Fourth example of a reference example related to the present invention ]
FIG. 4 shows a fourth example of the reference example related to the present invention . In the case of this reference example , the inner diameter of the inner circumferential edge of the encoder 12c is made larger than the inner diameter of the outer half of the axial direction, and a step portion 27 is formed on the inner half of this axial direction. It is formed in a row. For this reason, a portion having a larger volume than the both side portions exists in an intermediate portion between the step portion 27 and the outer peripheral surface side small diameter portion 25 provided on the outer peripheral surface of the outer end portion of the inner ring 10a. As a result, the number of times the labyrinth seal is squeezed between the inner peripheral edge of the encoder 12c and the outer surface of the inner ring 10a can be increased, and the sealing performance of the labyrinth seal can be improved. Therefore, the structure of this reference example is superior in the effect of preventing foreign matter from entering the space where the rolling elements 11 are installed, as compared with the structure of the third example of the reference example described above. Since the structure and operation of other parts are the same as those of the third example of the reference example described above, a duplicate description is omitted.

本発明に関する参考例の第5例
図5は、本発明に関する参考例の第5例を示している。本参考例の場合には、エンコーダ12dの内周縁の軸方向内半部を、軸方向内側面に向かう程内径が大きくなる方向に傾斜した部分円すい状凹面としている。又、内輪10bの外端部外周面に形成した、外周面側小径部25の奥端部に存在する段部26aを、この内輪10bの中心に向かう程外径が大きくなる方向に傾斜した部分円すい状凸面としている。そして、上記エンコーダ12dの内周縁の軸方向内半部と上記段部26aとを近接対向させている。この様な本参考例の構造は、上記エンコーダ12dの内周縁部の軸方向位置が多少ずれた場合でも、上記軸方向内半部と上記段部26aとがすれにくい(ラビリンスシール部分の隙間厚さを同じとした場合、軸方向位置のずれに対する許容度が大きくなる)。その他の部分の構造及び作用は、前述した参考例の第3例と同様であるから、重複する説明は省略する。
[ Fifth Example of Reference Example Related to the Present Invention ]
FIG. 5 shows a fifth example of the reference example relating to the present invention . In the case of this reference example, the inner half in the axial direction of the inner periphery of the encoder 12d is a partially conical concave surface that is inclined in a direction in which the inner diameter increases toward the inner surface in the axial direction. Further, a portion formed on the outer peripheral surface of the outer end portion of the inner ring 10b, which is inclined in a direction in which the outer diameter becomes larger toward the center of the inner ring 10b, the stepped portion 26a existing at the rear end portion of the outer peripheral side small diameter portion 25. It has a conical convex surface. The inner half of the inner periphery of the encoder 12d is in close proximity to the stepped portion 26a. Such a structure of this reference example is less likely to slip between the axially inner half portion and the stepped portion 26a even when the axial position of the inner peripheral edge of the encoder 12d is slightly shifted (gap thickness of the labyrinth seal portion). If the length is the same, the tolerance for the displacement in the axial direction is increased). Since the structure and operation of other parts are the same as those of the third example of the reference example described above, a duplicate description is omitted.

本発明に関する参考例の第6例
図6は、本発明に関する参考例の第6例を示している。本参考例の場合には、エンコーダ12eの永久磁石17bを構成する高分子材料により、芯金16の内周縁部及び円筒部19の内周面を覆っている。本参考例の場合には、この構成により、ラビリンスシールの長さを長くして、シール性の向上を図っている。併せて、上記芯金16を、特に耐食性を持たない金属板により造った場合でも、この金属板が腐食する事を防止できる様にしている。その他の部分の構造及び作用は、前述した参考例の第5例と同様であるから、重複する説明は省略する。
[ Sixth Reference Example for the Present Invention ]
FIG. 6 shows a sixth example of the reference example related to the present invention . In the case of this reference example , the inner peripheral edge of the cored bar 16 and the inner peripheral surface of the cylindrical part 19 are covered with a polymer material that constitutes the permanent magnet 17b of the encoder 12e. In the case of the present reference example , the length of the labyrinth seal is increased by this configuration to improve the sealing performance. In addition, even when the metal core 16 is made of a metal plate having no corrosion resistance, the metal plate can be prevented from corroding. Since the structure and operation of the other parts are the same as in the fifth example of the reference example described above, a duplicate description is omitted.

本発明に関する参考例の第7例
図7は、本発明に関する参考例の第7例を示している。本参考例の場合には、内輪10cの端部外周面に形成した外周面側小径部25aの軸方向内半部に凹溝28を、全周に亙って形成している。又、エンコーダ12fの内周縁部を二股状に形成し、この内周縁部に凹溝24aを、全周に亙って形成している。そして、この内周縁部のうちでこの凹溝24aよりも軸方向外側部分を、上記外周面側小径部25aの軸方向外半部外周面に近接対向させている。一方、上記内周縁部のうちで上記凹溝24aよりも軸方向内側部分の内側面を、上記外周面側小径部25aの奥端部に存在する段部26bに近接対向させている。この様な本参考例の構造によれば、上記エンコーダ12fの内周縁と上記内輪10cの外面との間のラビリンスシールの絞り回数を多くすると共に、絞りの間に存在する空間の容積を大きくして、このラビリンスシールのシール性能を向上させる事ができる。その他の部分の構造及び作用は、前述した参考例の第5例と同様であるから、重複する説明は省略する。
[ Seventh example of a reference example related to the present invention ]
FIG. 7 shows a seventh example of the reference example related to the present invention . In the case of this reference example , the concave groove 28 is formed over the entire circumference in the inner half in the axial direction of the outer peripheral surface side small diameter portion 25a formed on the outer peripheral surface of the end portion of the inner ring 10c. Further, the inner peripheral edge of the encoder 12f is formed in a bifurcated shape, and a concave groove 24a is formed in the inner peripheral edge over the entire periphery. Of the inner peripheral edge portion, the outer side portion in the axial direction than the concave groove 24a is close to and opposed to the outer peripheral surface of the outer half portion in the axial direction of the outer peripheral surface side small diameter portion 25a. On the other hand, the inner side surface of the inner peripheral edge of the inner side portion in the axial direction from the concave groove 24a is made to face and oppose the stepped portion 26b existing at the inner end of the outer peripheral surface side small diameter portion 25a. According to the structure of this reference example, the number of times of labyrinth seal throttling between the inner peripheral edge of the encoder 12f and the outer surface of the inner ring 10c is increased, and the volume of the space existing between the throttling is increased. Thus, the sealing performance of the labyrinth seal can be improved. Since the structure and operation of the other parts are the same as in the fifth example of the reference example described above, a duplicate description is omitted.

本発明の実施の形態の1例
図8は、請求項1、3、4、5に対応する、本発明の実施の形態の1例を示している。本例の場合には、エンコーダ12gの軸方向外側面の内径寄り部分に、外径側が深く、内径側が浅くなった凹溝23aを、全周に亙って形成している。この凹溝23aは、上記エンコーダ12gの軸方向外側面に付着してこの軸方向外側面を内径側に移動する異物を捕集し、この異物がこのエンコーダ12gの内周縁に迄達するのを防止する役目を有する。従って本例の構造は、上述した参考例の第7例の構造に比べて、転動体11を設置した空間内への異物進入防止効果が優れている。その他の部分の構造及び作用は、上述した参考例の第7例と同様であるから、重複する説明は省略する。
[ One Example of Embodiment of the Present Invention ]
FIG. 8 shows an example of an embodiment of the present invention corresponding to claims 1, 3 , 4 and 5 . In the case of this example, a concave groove 23a having a deep outer diameter side and a shallow inner diameter side is formed over the entire circumference at a portion closer to the inner diameter of the outer surface in the axial direction of the encoder 12g. The concave groove 23a collects foreign matter that adheres to the outer surface in the axial direction of the encoder 12g and moves to the inner diameter side of the outer surface in the axial direction, and prevents the foreign matter from reaching the inner peripheral edge of the encoder 12g. Has a role to play. Therefore, the structure of this example is superior in the effect of preventing foreign matter from entering the space where the rolling elements 11 are installed, as compared with the structure of the seventh example of the reference example described above. Since the structure and operation of the other parts are the same as in the seventh example of the reference example described above, a duplicate description is omitted.

本発明を実施する場合に、エンコーダの被検出面(軸方向外側面)とセンサの検出部とを、他の部材を介する事なく、直接近接対向させる事が好ましい。この理由は、上記センサの検出部での磁気特性の変化を大きくしてこのセンサの出力信号の変化を大きくし、回転速度検出の信頼性向上を図り易い為である。但し、エンコーダの保護を図る為に、例えば図9に示す様に、エンコーダ12の被検出面を非磁性材製の被覆膜29により覆う事もできる。又は、この被覆膜29を省略する代わりに、或いはこの被覆膜29を設けると共に、内輪10に支持固定した非磁性材製のカバー30により、上記被検出面を覆う事もできる。この様な被覆膜29又はカバー30を設けた場合、この被検出面とセンサの検出部との間隔が大きくなる事が避けられない。この為、このセンサの出力信号の変化を確保する為には、上記エンコーダ12の被検出面から出入りする磁束の量を多くする必要がある。この磁束の量を多くする為には、上記エンコーダ12を、磁性粉を熱可塑性の合成樹脂により固めたプラスチック磁石とする事が考えられる。プラスチック磁石の場合には、ゴム磁石の場合に比べて磁性粉の量を多くできるので、上記磁束の量を多くし易い。尚、上記エンコーダ12と反対側に設けるシールリング31は、エンコーダを持たない、一般的なシールリングである。   When carrying out the present invention, it is preferable that the detected surface of the encoder (the outer surface in the axial direction) and the detection portion of the sensor are directly close to each other without interposing other members. This is because it is easy to improve the reliability of rotation speed detection by increasing the change in the magnetic characteristics at the detection unit of the sensor to increase the change in the output signal of the sensor. However, in order to protect the encoder, for example, as shown in FIG. 9, the surface to be detected of the encoder 12 can be covered with a coating film 29 made of a nonmagnetic material. Alternatively, instead of omitting the coating film 29 or providing the coating film 29, the detected surface can be covered with a cover 30 made of a nonmagnetic material supported and fixed to the inner ring 10. When such a coating film 29 or cover 30 is provided, it is inevitable that the distance between the detected surface and the detection portion of the sensor becomes large. For this reason, in order to ensure a change in the output signal of the sensor, it is necessary to increase the amount of magnetic flux entering and exiting from the detection surface of the encoder 12. In order to increase the amount of the magnetic flux, it is conceivable that the encoder 12 is a plastic magnet in which magnetic powder is hardened with a thermoplastic synthetic resin. In the case of a plastic magnet, the amount of magnetic powder can be increased compared to the case of a rubber magnet, so that the amount of magnetic flux can be easily increased. The seal ring 31 provided on the side opposite to the encoder 12 is a general seal ring having no encoder.

又、エンコーダとして使用する永久磁石は、ゴム磁石、プラスチック磁石に代えて、フェライト、希土類等の磁性粉と、オーステナイト系ステンレス鋼、錫等の非磁性金属の粉末とを混合して燒結した、燒結磁石を使用する事もできる。この様な燒結磁石製のエンコーダの形状は、図1〜8の何れかのエンコーダの形状(芯金と永久磁石とを合わせた形状)の如くする。この様な燒結磁石製のエンコーダは、外輪の端部に内嵌固定する。燒結磁石製のエンコーダは、靱性は低いが、内嵌固定時には圧縮応力が加わるのみで、亀裂に結び付く引っ張り応力は加わらない。従って、燒結磁石単体でも、必要とする強度を確保できる。この様な燒結磁石製のエンコーダは、図1〜8に示す様な態様でも、或いは図9に示す様な態様でも、何れも使用可能である。即ち、燒結磁石は、硬度が高い為、異物により損傷を受けにくく、図1〜8に示した態様で実施しても、被検出面が損傷を受ける可能性は低い。一方、被検出面から出入りする磁束の量を多くし易い為、上記被検出面の保護をより充実させるべく、図9に示した態様で実施しても、センサの検出部に達する磁束の量を確保し易い。   In addition, permanent magnets used as encoders are sintered by mixing magnetic powders such as ferrite and rare earth and nonmagnetic metal powders such as austenitic stainless steel and tin instead of rubber magnets and plastic magnets. A magnet can also be used. The shape of such a sintered magnet encoder is the same as the shape of any of the encoders shown in FIGS. 1 to 8 (a shape in which a cored bar and a permanent magnet are combined). Such an encoder made of a sintered magnet is fitted and fixed to the end of the outer ring. An encoder made of a sintered magnet has low toughness, but only a compressive stress is applied when the inner fitting is fixed, and a tensile stress that leads to a crack is not applied. Therefore, the required strength can be secured even with a single sintered magnet. Such an encoder made of a sintered magnet can be used either in the form shown in FIGS. 1 to 8 or in the form shown in FIG. That is, since the sintered magnet is high in hardness, it is not easily damaged by foreign matter, and even if it is carried out in the mode shown in FIGS. On the other hand, since it is easy to increase the amount of magnetic flux entering and exiting from the detected surface, the amount of magnetic flux reaching the detection portion of the sensor even if the embodiment shown in FIG. 9 is implemented to further enhance the protection of the detected surface. Easy to secure.

本発明に関する参考例の第1例を示す部分断面図。 The fragmentary sectional view which shows the 1st example of the reference example regarding this invention . 同第2例を示す部分断面図。The fragmentary sectional view which shows the 2nd example. 同第3例を示す部分断面図。The fragmentary sectional view which shows the 3rd example. 同第4例を示す部分断面図。The fragmentary sectional view which shows the 4th example. 同第5例を示す部分断面図。The fragmentary sectional view which shows the 5th example. 同第6例を示す部分断面図。The fragmentary sectional view which shows the 6th example. 同第7例を示す部分断面図。The fragmentary sectional view showing the 7th example. 本発明の実施の形態の1例を示す部分断面図。 The fragmentary sectional view which shows one example of embodiment of this invention . 本発明に関する参考例の第8例を示す部分断面図。 The fragmentary sectional view which shows the 8th example of the reference example regarding this invention . 自動二輪車の車輪の回転支持部の1例を示す断面図。Sectional drawing which shows an example of the rotation support part of the wheel of a motorcycle. 本発明の対象となるエンコーダの別例を示す、図1のA部に相当する図。The figure equivalent to the A section of FIG. 1 which shows another example of the encoder used as the object of this invention.

1 ホーク
2 支持板
3 支持軸
4 転がり軸受
5a、5b、5c 内輪間座
6 ハブ
7 ホイール
8 エンコーダ付転がり軸受
9 外輪
10、10a、10b、10c 内輪
11 転動体
12、12a〜12g エンコーダ
13 外輪軌道
14 内輪軌道
15 保持器
16 芯金
17、17a、17b 永久磁石
18 円輪部
19 円筒部
20 環状凹部
21 内周面側大径部
22 段部
23、23a 凹溝
24、24a 凹溝
25、25a 外周面側小径部
26、26a、26b 段部
27 段部
28 凹溝
29 被覆膜
30 カバー
31 シールリング
32 係止部
DESCRIPTION OF SYMBOLS 1 Hawk 2 Support plate 3 Support shaft 4 Rolling bearing 5a, 5b, 5c Inner ring spacer 6 Hub 7 Wheel 8 Rolling bearing with an encoder 9 Outer ring 10, 10a, 10b, 10c Inner ring 11 Rolling element 12, 12a-12g Encoder 13 Outer ring track 14 Inner ring raceway 15 Cage 16 Core metal 17, 17a, 17b Permanent magnet 18 Circular ring part 19 Cylindrical part 20 Annular recess 21 Inner peripheral surface side large diameter part 22 Step part 23, 23a Concave groove 24, 24a Concave groove 25, 25a Outer peripheral surface side small diameter portion 26, 26a, 26b Step portion 27 Step portion 28 Concave groove 29 Coating film 30 Cover 31 Seal ring 32 Locking portion

Claims (5)

内周面に外輪軌道を有し使用時に回転する外輪と、外周面に内輪軌道を有し使用時にも回転しない内輪と、この内輪軌道と上記外輪軌道との間に転動自在に設けられた複数個の転動体と、上記外輪と共に回転する、軸方向外側面の磁気特性を円周方向に関して交互に変化させたエンコーダとを備え、このエンコーダの外周縁部は上記外輪の軸方向外端部に、この外輪との間のシール性を確保した状態で支持固定されると共に、上記エンコーダ自体の内周縁が上記内輪に対し、全周に亙り摺接若しくは近接対向しており、このエンコーダの軸方向外側面の内径寄り部分に、外径側が深く、内径側が浅くなった凹溝が、全周に亙って形成されているエンコーダ付転がり軸受。   An outer ring that has an outer ring raceway on the inner peripheral surface and that rotates when used, an inner ring that has an inner ring raceway on the outer peripheral surface and does not rotate even when used, and is provided between the inner ring raceway and the outer ring raceway so as to be rotatable A plurality of rolling elements and an encoder that rotates together with the outer ring and has an axially outer surface whose magnetic characteristics are alternately changed with respect to the circumferential direction, and an outer peripheral edge portion of the encoder is an outer end portion in the axial direction of the outer ring. In addition, the inner periphery of the encoder itself is slidably in contact with or close to the inner ring with respect to the inner ring in a state in which a sealing property with the outer ring is ensured. A rolling bearing with an encoder in which a concave groove having a deep outer diameter side and a shallow inner diameter side is formed over the entire circumference in a portion closer to the inner diameter of the outer side surface in the direction. エンコーダが、燒結材料製で円輪状の永久磁石を含んで構成されており、この永久磁石の軸方向外側面にS極とN極とが、交互に配置されており、且つ、この永久磁石の内周縁が内輪の外周面に、全周に亙り近接対向している、請求項1に記載したエンコーダ付転がり軸受。 The encoder is made of a sintered material and includes a ring-shaped permanent magnet. S poles and N poles are alternately arranged on the outer surface in the axial direction of the permanent magnet. The rolling bearing with an encoder according to claim 1 , wherein the inner peripheral edge is closely opposed to the outer peripheral surface of the inner ring over the entire periphery. エンコーダは、磁性金属板により全体を円輪状に造られた芯金と、この芯金の軸方向外側面に添設された、高分子材料中に磁性粉を分散させて成る永久磁石とを備え、上記芯金の外周縁に形成された円筒部が外輪の軸方向外端部内周面に、締り嵌めで内嵌固定されており、上記永久磁石の軸方向外側面にS極とN極とが、交互に配置されている、請求項1に記載したエンコーダ付転がり軸受。 The encoder includes a cored bar made of a magnetic metal plate in an annular shape, and a permanent magnet formed by dispersing magnetic powder in a polymer material attached to the axially outer surface of the cored bar. A cylindrical portion formed on the outer peripheral edge of the core metal is fitted and fixed to the inner peripheral surface of the outer end in the axial direction of the outer ring by an interference fit, and the S pole and the N pole are fixed on the outer side in the axial direction of the permanent magnet. The rolling bearings with an encoder according to claim 1 , which are arranged alternately. 外輪の軸方向外端部内周面に、軸方向内側に隣接する部分よりも内径が大きくなった内周面側大径部が設けられており、エンコーダの外周縁部がこの内周面側大径部に内嵌固定されている、請求項1〜3のうちの何れか1項に記載したエンコーダ付転がり軸受。 An inner peripheral surface side large-diameter portion whose inner diameter is larger than a portion adjacent to the inner side in the axial direction is provided on the inner peripheral surface of the outer end portion in the axial direction of the outer ring. The rolling bearing with an encoder according to any one of claims 1 to 3 , which is fitted and fixed to a diameter portion. 内輪の軸方向外端部外周面に、軸方向内側に隣接する部分よりも外径が小さくなった外周面側小径部が設けられており、エンコーダの内周縁部がこの外周面側小径部に入り込んで、この内周縁部と上記軸方向内側に隣接する部分とが軸方向に関して互いに重畳している、請求項1〜4のうちの何れか1項に記載したエンコーダ付転がり軸受。 An outer peripheral surface side small diameter portion having an outer diameter smaller than a portion adjacent to the inner side in the axial direction is provided on the outer peripheral surface of the inner end in the axial direction of the inner ring, and the inner peripheral edge portion of the encoder is connected to the outer peripheral surface side small diameter portion. The rolling bearing with an encoder according to any one of claims 1 to 4 , wherein the inner peripheral edge portion and the portion adjacent to the inner side in the axial direction overlap with each other in the axial direction.
JP2006078837A 2006-03-22 2006-03-22 Rolling bearing with encoder Expired - Fee Related JP5002992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006078837A JP5002992B2 (en) 2006-03-22 2006-03-22 Rolling bearing with encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006078837A JP5002992B2 (en) 2006-03-22 2006-03-22 Rolling bearing with encoder

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012083883A Division JP5252101B2 (en) 2012-04-02 2012-04-02 Rolling bearing with encoder

Publications (2)

Publication Number Publication Date
JP2007255997A JP2007255997A (en) 2007-10-04
JP5002992B2 true JP5002992B2 (en) 2012-08-15

Family

ID=38630399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006078837A Expired - Fee Related JP5002992B2 (en) 2006-03-22 2006-03-22 Rolling bearing with encoder

Country Status (1)

Country Link
JP (1) JP5002992B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6763164B2 (en) * 2016-03-22 2020-09-30 Tdk株式会社 Magnet structure and rotation angle detector

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3427829B2 (en) * 1997-03-31 2003-07-22 日本精工株式会社 Rolling bearing unit with encoder
JP2003133127A (en) * 2001-10-29 2003-05-09 Koyo Seiko Co Ltd Pulsar ring
JP2005121669A (en) * 2004-12-02 2005-05-12 Nsk Ltd Rolling bearing unit having tone wheel

Also Published As

Publication number Publication date
JP2007255997A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
WO2007122919A1 (en) Sealing device
JP4862685B2 (en) Deep groove ball bearing with encoder and wheel rotation speed detection device for motorcycle
JP2010180912A (en) Roller bearing unit with rotation speed detection device
JP2007285514A5 (en)
WO2007086363A1 (en) Rolling bearing with rotation sensor
JP4720400B2 (en) Rolling bearing unit for wheel support with combined seal ring and manufacturing method thereof
JP5252101B2 (en) Rolling bearing with encoder
JP6654941B2 (en) Wheel bearing device
JP5098730B2 (en) Rotational speed detection device for motorcycle wheels
JP5002992B2 (en) Rolling bearing with encoder
WO2008075456A1 (en) Sensor holder, and bearing device adapted for use for wheel, having rotation speed detection device, and integral with the sensor holder
JP4742796B2 (en) Rolling bearing unit with rotation detector
JP5061652B2 (en) Magnetized pulsar ring and sensor-equipped rolling bearing device using the same
JP2003130075A (en) Rolling bearing unit with tone wheel
JP2006064180A5 (en)
JP4743385B2 (en) Magnetic encoder and tone wheel
JP2008094243A (en) Bearing device for wheel
JP6417701B2 (en) Rolling bearing unit with rotational speed detector
JP6500345B2 (en) Sensor and rolling bearing unit
JP5598150B2 (en) Rolling bearing unit with encoder
JP5327367B2 (en) Rotational speed detection device for motorcycle wheels
JP2007198886A (en) Encoder, sealing device for roller bearing, and roller bearing apparatus with sensor
JP2008175286A (en) Rolling bearing unit with encoder
JP4803572B2 (en) Magnetic encoder and wheel bearing device provided with the same
JP2006064145A (en) Bearing device for wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090217

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees