JP5002435B2 - Ultra high pressure reciprocating compressor - Google Patents

Ultra high pressure reciprocating compressor Download PDF

Info

Publication number
JP5002435B2
JP5002435B2 JP2007306181A JP2007306181A JP5002435B2 JP 5002435 B2 JP5002435 B2 JP 5002435B2 JP 2007306181 A JP2007306181 A JP 2007306181A JP 2007306181 A JP2007306181 A JP 2007306181A JP 5002435 B2 JP5002435 B2 JP 5002435B2
Authority
JP
Japan
Prior art keywords
valve body
valve
pressure
guide hole
reciprocating compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007306181A
Other languages
Japanese (ja)
Other versions
JP2009127592A (en
Inventor
治雄 三浦
茂 新井
彰規 赤沼
慎一郎 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2007306181A priority Critical patent/JP5002435B2/en
Publication of JP2009127592A publication Critical patent/JP2009127592A/en
Application granted granted Critical
Publication of JP5002435B2 publication Critical patent/JP5002435B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Check Valves (AREA)
  • Compressor (AREA)

Description

本発明は、可燃性ガスや毒性ガスを取扱う往復圧縮機に関し、特に40MPaを越えるような高圧で吐出する小容量高圧の往復圧縮機のバルブ構造に関する。   The present invention relates to a reciprocating compressor that handles flammable gas and toxic gas, and particularly relates to a valve structure of a small capacity high pressure reciprocating compressor that discharges at a high pressure exceeding 40 MPa.

従来のプランジャ式往復圧縮機の例が特許文献1に記載されている。この文献に記載された圧縮機では、シリンダ弁50内に設けられた第1バルブにより圧縮室60に吸込まれ、圧縮室60で圧縮されたガスは第2バルブにより吐出される。これらのバルブとしてはポペット弁が用いられる。この種往復圧縮機の一般的な例として、図3に示すようなものがある。本圧縮機は単段又は複数段を有する圧縮機で、一つのクランク機構を介して駆動機(本例ではモータ)の回転エネルギーを往復運動エネルギーに変え、プランジャー6が往復運動してガスを圧縮する。   An example of a conventional plunger type reciprocating compressor is described in Patent Document 1. In the compressor described in this document, the first valve provided in the cylinder valve 50 is sucked into the compression chamber 60 and the gas compressed in the compression chamber 60 is discharged by the second valve. Poppet valves are used as these valves. A typical example of this type of reciprocating compressor is shown in FIG. This compressor is a compressor having a single stage or a plurality of stages, and the rotational energy of the drive machine (motor in this example) is converted into reciprocating kinetic energy via one crank mechanism, and the plunger 6 reciprocates to generate gas. Compress.

駆動機に接続されたクランクシャフト1に、コネクティングロッド3が取付けられ、コネクティングロッド3の他端はクロスピン4を介してクロスヘッド5に連結されている。クランクシャフト1が回転運動すると、コネクティングロッド3は揺動運動し、クロスヘッド5はプランジャー6と共に往復運動を行う。プランジャー6の先端部にはシリンダ部7が構成されており、引き行程で吸込みポペット弁8からガスを吸い込み、押し行程で規定の吐出圧力に達すると、吐出ポペット弁9より圧縮ガスを吐出するものである。   A connecting rod 3 is attached to a crankshaft 1 connected to a drive machine, and the other end of the connecting rod 3 is connected to a cross head 5 via a cross pin 4. When the crankshaft 1 rotates, the connecting rod 3 swings and the crosshead 5 reciprocates together with the plunger 6. A cylinder portion 7 is formed at the distal end portion of the plunger 6. Gas is sucked from the suction poppet valve 8 in the pulling stroke, and when the specified discharge pressure is reached in the push stroke, the compressed gas is discharged from the discharge poppet valve 9. Is.

図4において、プランジャー6が引き行程になってシリンダ7内の圧力が吸込み圧力ラインよりも低下すると、ばね8bが縮み、吸込みポペット弁8が開いて、ガスが吸込みポート10から流路11を通りシリンダ7内へ流入する。次に、プランジャー6が押し行程になると、シリンダ7内の圧力が吐出圧力ラインを超えると、ばね9bが縮んで吐出ポペット弁9が開いて、ガスが流路11,12、14を通り吐出ポートから吐き出される。   In FIG. 4, when the plunger 6 is in the stroke and the pressure in the cylinder 7 is lower than the suction pressure line, the spring 8 b is contracted, the suction poppet valve 8 is opened, and the gas passes through the flow path 11 from the suction port 10. And flows into the cylinder 7. Next, when the plunger 6 is pushed, when the pressure in the cylinder 7 exceeds the discharge pressure line, the spring 9b is contracted and the discharge poppet valve 9 is opened, and the gas is discharged through the flow paths 11, 12, and 14. Exhaled from the port.

図5は一般的な円筒型ポペット弁の構造の一例で、例えば前記吐出ポペット弁9の弁体9aを示す。弁体9aの形状は内部に中空な空間9dを有する円筒形であるが、底板がある端面9b部が相手部品のシール面と接触してガスを閉止する。外周面9cはガイド穴23に装着されたときその内壁面に接触して、バルブが軸方向に摺動するためのガイドの役割をしている。弁体の空間9d内には弱いバネ9eが装着され、バルブ開閉の補助をしている。   FIG. 5 shows an example of the structure of a general cylindrical poppet valve. For example, the valve body 9a of the discharge poppet valve 9 is shown. The shape of the valve body 9a is a cylindrical shape having a hollow space 9d inside, but the end surface 9b portion with the bottom plate comes into contact with the sealing surface of the mating part to close the gas. When the outer peripheral surface 9c is attached to the guide hole 23, the outer peripheral surface 9c comes into contact with the inner wall surface and serves as a guide for the valve to slide in the axial direction. A weak spring 9e is mounted in the space 9d of the valve body to assist in opening and closing the valve.

特開2004−116330号公報JP 2004-116330 A

しかしながら、前記従来構造のポペット弁を採用した圧縮機を長時間運転試験すると、シリンダ付近から不連続的な打撃音が不定期に聞こえる現象が発生し、分解するとガイド穴を摺動するバルブ(弁体)の相手側シール面に進行の早い摩耗が見られた。そこで、この部位の摩耗速度低減構造の検討を行った。
ポペット弁の動作を次の運動方程式で近似し、
m・dh/dt+f(c)・dh/dt+k・h=ffld・t
プランジャーの回転角の変化とポペット弁の動きのシミュレーションを行った。
ここで、mは弁体の質量、hは弁体の移動距離、kはバネ剛性、ffldはバルブの内外差圧によって生じる押上げ力の単位時間当たりの変化量、dh/dtは弁体の速度、dh/dtは弁体の加速度である。
However, when a compressor using the conventional structure poppet valve is tested for a long time, a phenomenon in which a discontinuous striking sound is heard irregularly from the vicinity of the cylinder occurs. Body) was rapidly abraded on the mating seal surface. Therefore, the structure for reducing the wear rate of this part was examined.
Approximate the operation of the poppet valve with the following equation of motion:
m · dh / dt 2 + f (c) · dh / dt + k s · h = f fld · t
The change of the rotation angle of the plunger and the movement of the poppet valve were simulated.
Here, m valve body mass, h is the moving distance of the valve body, k s is the spring stiffness, f fld the amount of change per unit time of the upward force caused by the internal and external differential pressure of the valve, dh / dt is the valve Body speed, dh / dt 2 is the acceleration of the valve body.

前記式の左辺第2項のf(c)は、弁体が動こうとしたときに連動して発生する速度依存抵抗力で、バルブの安定不安定挙動に関係している。図6はこれを模式的に示したもので、バルブ速度を横軸に、縦軸に前記式の左辺第2項の抵抗力f(c)を採っている。一般のダンピング係数による速度依存抵抗力f(c)がバルブ(弁体)速度に比例し、実線で示すようにバルブ挙動を安定にする。バルブとバルブケース(ガイド穴)間の摩擦抵抗が大きいと図中点線で示すようにバルブの開閉転換時の静止摩擦係数が大きくなり、動摩擦に移行すると摩擦係数が小さくなるような現象が起る。摺動面に潤滑油があれば、図中破線で示したように、静止摩擦係数も小さくなり、動摩擦状態時は油膜のせん断抵抗により速度に比例して抵抗が増え、バルブの挙動を安定化させる。   F (c) in the second term on the left side of the above equation is a speed-dependent resistance force that is generated in conjunction with the valve body trying to move, and is related to the stable and unstable behavior of the valve. FIG. 6 schematically shows this. The valve speed is taken on the horizontal axis, and the resistance force f (c) of the second term on the left side of the above formula is taken on the vertical axis. A speed-dependent resistance force f (c) by a general damping coefficient is proportional to the valve (valve body) speed, and stabilizes the valve behavior as shown by the solid line. When the frictional resistance between the valve and the valve case (guide hole) is large, the static friction coefficient at the time of opening / closing switching of the valve increases as shown by the dotted line in the figure, and the phenomenon that the friction coefficient decreases when moving to dynamic friction occurs. . If there is lubricating oil on the sliding surface, as shown by the broken line in the figure, the coefficient of static friction also decreases, and in the dynamic friction state, the resistance increases in proportion to the speed due to the shear resistance of the oil film, stabilizing the valve behavior. Let

シミュレーションではf(c)をCと置き換え、このCとバルブの動作の関係を調べ、その結果を図7、図8に示す。図7は前記式左辺第2項の係数Cが比較的大きい(C=1)場合で、バルブ(弁体)の開閉動作はスムースである。図8は同Cの値が小さい(C=0.5)場合を示し、この場合一度開いたバルブが、途中から開閉の不安定な動作を起こしている。即ち、図6で示したバルブの動作速度dh/dtの係数を小さくする要因が存在すると、バルブの挙動を不安定にする可能性があることが分った。   In the simulation, f (c) is replaced with C, the relationship between C and valve operation is examined, and the results are shown in FIGS. FIG. 7 shows a case where the coefficient C of the second term on the left side of the equation is relatively large (C = 1), and the opening / closing operation of the valve (valve element) is smooth. FIG. 8 shows a case where the value of C is small (C = 0.5). In this case, the valve once opened causes an unstable operation of opening and closing from the middle. That is, it has been found that if there is a factor for reducing the coefficient of the valve operating speed dh / dt shown in FIG. 6, the valve behavior may be unstable.

バルブ(弁体)動作が不安定になる現象を、吐出弁を例にとって図9、10を用いて弁体の動きで説明する。ポペット弁9の弁体9aはガイド穴23に摺動可能に収納されている。弁体が閉じた状態から開放する動作では、吸込み弁の場合はシリンダ内の圧力P1がライン圧力P2よりも低下すると弁体9aが開こうとし、逆に吐出弁の場合は圧力P1が圧力P2よりも高くなると弁体9aが開こうとする。一方、弁体が開いた状態から閉じる動作では、吸込み弁の場合はシリンダ内圧力P1がライン圧力P2よりも高くなると弁体が閉じようとし、逆に吐出弁の場合はシリンダ内圧力P1がライン圧力P2よりも低くなるとポペット弁が閉じようとする。   The phenomenon in which the valve (valve element) operation becomes unstable will be described with reference to FIGS. The valve element 9 a of the poppet valve 9 is slidably accommodated in the guide hole 23. In the operation of releasing the valve body from the closed state, in the case of the suction valve, the valve body 9a tries to open when the pressure P1 in the cylinder falls below the line pressure P2, and conversely in the case of the discharge valve, the pressure P1 is the pressure P2. When it becomes higher, the valve body 9a tries to open. On the other hand, in the operation of closing the valve body from the open state, in the case of the suction valve, the cylinder body pressure P1 tends to close when the pressure in the cylinder P1 becomes higher than the line pressure P2. When the pressure is lower than P2, the poppet valve tends to close.

理想的には幾何学的に弁体9aと弁体のガイド穴23の軸心は一致しているのが好ましいが、実際には隙間があるので偏心し易い。この状態で弁体9aが瞬時的な摺動を始めると、隙間の大きい側と小さい側、即ち弁体9aの外周とガイド穴23の内壁間に不均一に圧力分布を生じ、弁体9aがガイド穴23の内壁面に偏って押し付けられる。図9のように、内壁の一方に並行に押し付けられる場合もあれば、図10のように傾斜を生じる場合もある。このような現象は、弁体の内筒空間の圧力P3とライン圧力P2との間に差が生じること等で、結果的に弁体9aの外周とガイド穴23の内壁間に不均一に圧力分布が生じるためである。   Ideally, it is preferable that the shaft centers of the valve body 9a and the guide hole 23 of the valve body are geometrically coincident with each other. When the valve element 9a starts to slide instantaneously in this state, a pressure distribution is unevenly generated between the large and small gaps, that is, between the outer periphery of the valve element 9a and the inner wall of the guide hole 23. It is biased against the inner wall surface of the guide hole 23. As shown in FIG. 9, it may be pressed against one of the inner walls in parallel, or it may be inclined as shown in FIG. Such a phenomenon is caused by, for example, a difference between the pressure P3 in the inner cylinder space of the valve body and the line pressure P2, resulting in uneven pressure between the outer periphery of the valve body 9a and the inner wall of the guide hole 23. This is because distribution occurs.

周方向に圧力分布を生じるとポペット弁は軸方向に直角方向の力を受け、ガイド穴23内壁面に押し付けられる。このような状態が発生すると、ポペット弁の動作が阻害され、前述したポペット弁の運動方程式の左辺第2項の速度依存抵抗力f(c)が負になるように働くので、ポペット弁の動きがギクシャクして発振するような状態となる。この状態では、シリンダ付近から不連続的な打撃音を発生させ、摺動する弁体の相手側シール面に摩耗を引起すと考えられる。   When a pressure distribution is generated in the circumferential direction, the poppet valve receives a force perpendicular to the axial direction and is pressed against the inner wall surface of the guide hole 23. When such a state occurs, the operation of the poppet valve is hindered, and the speed-dependent resistance force f (c) of the second term on the left side of the equation of motion of the poppet valve described above works negatively. Squeaks and oscillates. In this state, it is considered that a discontinuous impact sound is generated from the vicinity of the cylinder, and wear is caused on the mating seal surface of the sliding valve body.

本発明は、弁体の外周とガイド穴の内壁間の圧力分布を均一化することにより、弁体の摺動を円滑にして不連続的な打撃音と弁体の相手側シール面の摩耗を防止した往復圧縮機を提供することにある。   In the present invention, the pressure distribution between the outer periphery of the valve body and the inner wall of the guide hole is made uniform, thereby smoothing the sliding of the valve body and preventing the discontinuous impact sound and the wear of the seal surface on the other side of the valve body. The object is to provide a reciprocating compressor which is prevented.

本発明は、往復圧縮機のシリンダに吸込みポペット弁及び吐出ポペット弁を組込み、シリンダ内の圧力が吸込み圧力ラインより低下すると前記吸込みポペット弁が開き、シリンダ内の圧力が吐出圧力ラインを越えると前記吐出ポペット弁が開く超高圧往復圧縮機において、前記ポペット弁は、ガイド穴とこの中を摺動する弁体からなり、前記弁体は全体が円筒状を呈し、相手部材の平らなシール面に接触するシート面、弁体の外周面、および弁体の内部空間からなり、前記弁体の外周面とガイド穴の隙間をライン圧力に維持するように弁体の軸方向に細長い溝状の面取り部を弁体の外周面に設け、前記弁体の面取り部と内部空間に連通する連通孔を前記弁体に設けたことを特徴とする。 The present invention is seen embedded suction poppet valve and the discharge poppet valve cylinder of a reciprocating compressor, opens the intake poppet valve and the pressure in the cylinder drops below suction pressure line, the pressure in the cylinder exceeds the discharge pressure line And the discharge poppet valve opens , the poppet valve is composed of a guide hole and a valve body that slides in the guide hole, and the valve body has a cylindrical shape as a whole, and a flat seal of the mating member A sheet surface that contacts the surface, an outer peripheral surface of the valve body, and an inner space of the valve body, and is elongated in the axial direction of the valve body so as to maintain a line pressure between the outer peripheral surface of the valve body and the guide hole The chamfered portion is provided on the outer peripheral surface of the valve body, and a communication hole communicating with the chamfered portion of the valve body and the internal space is provided in the valve body .

本発明によれば、ガイド穴壁との周方向圧力分布を均一にしたので、外筒部の接触荷重を低減し、引いては摺動抵抗を小さく出来る。また、シール面の衝撃力を低減し、摩耗寿命を延長化でき、メンテナンス間隔の延長化に貢献できる。   According to the present invention, since the circumferential pressure distribution with the guide hole wall is made uniform, the contact load of the outer cylinder portion can be reduced, and the sliding resistance can be reduced. In addition, the impact force on the seal surface can be reduced, the wear life can be extended, and the maintenance interval can be extended.

以下、超高圧往復圧縮機に用いる本発明の一実施例のポペット弁について説明する。図1は本発明実施例のポペット弁の弁体の断面図で、図2は図1のA方向から見た側面図である。ポペット弁21は全体が円筒状を呈する弁体21aと圧縮機のシリンダに組み込まれた図示しないガイド穴23からなる。弁体21aは、相手部材のシール面に接触するシート面21b、弁体の外周面21c、弁体の内部空間21dからなる。内部空間21dは一方が開口している。本図には図示していないが、内部空間21dにバネが配され、弁体21aと一緒にガイド穴23に装着される。   Hereinafter, a poppet valve according to an embodiment of the present invention used in an ultrahigh pressure reciprocating compressor will be described. FIG. 1 is a sectional view of a valve body of a poppet valve according to an embodiment of the present invention, and FIG. 2 is a side view as viewed from the direction A in FIG. The poppet valve 21 includes a valve body 21a having a cylindrical shape as a whole and a guide hole 23 (not shown) incorporated in a cylinder of the compressor. The valve body 21a includes a seat surface 21b that comes into contact with the sealing surface of the counterpart member, an outer peripheral surface 21c of the valve body, and an internal space 21d of the valve body. One of the internal spaces 21d is open. Although not shown in the drawing, a spring is disposed in the internal space 21d and is mounted in the guide hole 23 together with the valve body 21a.

また、該弁体21aの外周面には弁体の摺動する軸方向に沿って、両端が開口した細長い溝状の面取り部21e(連通部)が設けられている。この面取り部21eは、弁体21aの周方向に均等に複数箇所(本例の場合は4箇所)に設けられている。なお、この面取り部21eは、シート面21bのシール性(気密性)を損なわないように形成されている。更に、該面取り部21eの底部から内部空間21dに連通する連通孔21f(第2の連通部)が設けられている。   Further, an elongated groove-like chamfered portion 21e (communication portion) having both ends opened is provided on the outer peripheral surface of the valve body 21a along the axial direction in which the valve body slides. The chamfered portions 21e are provided at a plurality of locations (four locations in this example) equally in the circumferential direction of the valve body 21a. The chamfered portion 21e is formed so as not to impair the sealing performance (air tightness) of the seat surface 21b. Furthermore, a communication hole 21f (second communication portion) that communicates from the bottom of the chamfered portion 21e to the internal space 21d is provided.

上記のように構成された弁体21aはバネと共に、例えば図3、図4に示すような超高圧往復圧縮機のシリンダ7に設けられたガイド穴23の中に組込まれて使用される。   The valve body 21a configured as described above is used together with a spring, for example, in a guide hole 23 provided in a cylinder 7 of an ultrahigh pressure reciprocating compressor as shown in FIGS.

プランジャー6の引き行程では、吸込みポペット弁からガスを吸い込み、押し行程では規定の吐出圧力に達すると吐出ポペット弁より、圧縮ガスを吐出する動作は、前述と同様なので説明を省略する。   In the pulling stroke of the plunger 6, the gas is sucked from the suction poppet valve, and in the push stroke, the operation of discharging the compressed gas from the discharge poppet valve when the specified discharge pressure is reached is the same as described above, and the description is omitted.

本実施例では弁体21aをガイド穴23に装着された状態で、弁体の外周面21cに両端が開口した細長い面取り部21eが設けられているので、外周面21cとガイド穴23の隙間が弁体21aの周方向と軸方向に渡って連通し、ほぼ均一な圧力に維持される。図11で説明すると、面取り部21eの右端の開口がガイド孔23に解放しているので、全ての面取り部21eがガイド孔23を介して連通して、上記隙間はライン圧力P2に維持され、不均一な圧力分布とならない。従って、弁体21aは軸心に対して直角方向の力を受けないので、ガイド穴23の内壁面に押し付けられることが無くなり、開閉動作が円滑になる。即ち、瞬時に動こうとするときの静止摩擦抵抗が少なくなるので、前記方程式の左辺第2項が負になることがなく、発振特性が無く摺動動作が安定する。   In the present embodiment, since the valve body 21a is mounted in the guide hole 23, the outer peripheral surface 21c of the valve body is provided with an elongated chamfered portion 21e having both ends open, so that the gap between the outer peripheral surface 21c and the guide hole 23 is formed. The valve body 21a communicates in the circumferential direction and the axial direction, and is maintained at a substantially uniform pressure. Referring to FIG. 11, since the opening at the right end of the chamfer 21e is open to the guide hole 23, all the chamfers 21e communicate with each other through the guide hole 23, and the gap is maintained at the line pressure P2. There is no uneven pressure distribution. Therefore, since the valve body 21a does not receive a force perpendicular to the shaft center, the valve body 21a is not pressed against the inner wall surface of the guide hole 23, and the opening / closing operation is smooth. That is, since the static frictional resistance when attempting to move instantaneously decreases, the second term on the left side of the equation does not become negative, and there is no oscillation characteristic and the sliding operation is stabilized.

また、面取り部21eの底部から内部空間21dに連通する貫通孔21fを設けているので、図11に示すように、外周面21cとガイド穴23の隙間と弁体21aの内部空間21dが連通する。従って、弁体21aの内側と外側の圧力差(図11で、ライン圧力P2と弁体の内部空間圧力P3との間の圧力差)が生じなくなる(或いは小さくなる)ので、弁体21aの外周面21cの周方向と軸方向に渡って不均一な圧力分布が少なくなる。   Further, since a through hole 21f that communicates from the bottom of the chamfered portion 21e to the internal space 21d is provided, the gap between the outer peripheral surface 21c and the guide hole 23 and the internal space 21d of the valve body 21a communicate with each other as shown in FIG. . Accordingly, the pressure difference between the inner side and the outer side of the valve body 21a (the pressure difference between the line pressure P2 and the internal space pressure P3 of the valve body in FIG. 11) does not occur (or becomes smaller). The non-uniform pressure distribution is reduced in the circumferential direction and the axial direction of the surface 21c.

これは、前記面取り部21eと同様に、弁体21aは軸心に対して直角方向の力を受けないので、ガイド穴23の内壁面に押し付けられることが無くなり、開閉動作が円滑になる。即ち、瞬時に動こうとするときの静止摩擦抵抗が少なくなるので、前記方程式の左辺第2項が負になることがなくなり、発振特性が無くなり摺動動作が安定する。   This is because, like the chamfered portion 21e, the valve body 21a does not receive a force in a direction perpendicular to the axial center, so that it is not pressed against the inner wall surface of the guide hole 23, and the opening / closing operation is smooth. That is, since the static frictional resistance when attempting to move instantaneously decreases, the second term on the left side of the equation does not become negative, the oscillation characteristics disappear, and the sliding operation is stabilized.

なお、本実施例では面取り部21eと連通孔21fの2つの連通部を有しているので、弁体21aの外周面21cとガイド穴23の内壁の隙間の圧力を、弁体21の周方向と軸方向に渡ってより均一にすることが出来、摺動動作が一層安定する。   In this embodiment, since there are two communicating portions, the chamfered portion 21e and the communicating hole 21f, the pressure in the gap between the outer peripheral surface 21c of the valve body 21a and the inner wall of the guide hole 23 is changed in the circumferential direction of the valve body 21. And more uniform in the axial direction, and the sliding motion is more stable.

本実施例を適用した場合の相手側(シート面)の摩耗量の実例を表すと、従来の高圧水素圧縮機の84MPa(100h運転)で磨耗量13μm(磨耗速度0.13μm/h)のデータに対し、100PMa(40h運転)で磨耗量0.5μm(磨耗速度0.013μm/h)のデータが得られ、大幅な摩耗低減の改善効果が得られた。   When an actual example of the wear amount on the other side (seat surface) when this embodiment is applied, data of a wear amount of 13 μm (wear rate of 0.13 μm / h) at 84 MPa (100 h operation) of a conventional high-pressure hydrogen compressor is shown. On the other hand, the data of the wear amount of 0.5 μm (wear rate 0.013 μm / h) was obtained at 100 PMa (40 h operation), and the effect of greatly reducing wear was obtained.

図12は本発明の他の実施例のポペット弁と弁体の説明図である。この実施例では、弁体22aの内側に内部空間を持たない中実の構造であり、外周面に軸方向に沿った面取り部22e(連通部)を有している。弁体22aの外周面22cに左右に開口した面取り部22eが設けられているので、この開口を介して外周面22cとガイド穴23の隙間が弁体22aの周方向と軸方向に渡って連通し、ほぼ均一な圧力に維持される。従って、弁体22aは軸心に対して直角方向の力を受けないので、ガイド穴23の内壁面に押し付けられることが無くなり、開閉動作がスムースになり、発振特性が無くなり摺動動作が安定する。   FIG. 12 is an explanatory view of a poppet valve and a valve body according to another embodiment of the present invention. In this embodiment, the valve body 22a has a solid structure having no internal space, and has a chamfered portion 22e (communication portion) along the axial direction on the outer peripheral surface. Since the chamfered portion 22e opened to the left and right is provided on the outer peripheral surface 22c of the valve body 22a, the clearance between the outer peripheral surface 22c and the guide hole 23 communicates through the opening in the circumferential direction and the axial direction of the valve body 22a. And maintained at a substantially uniform pressure. Accordingly, since the valve element 22a does not receive a force perpendicular to the shaft center, the valve element 22a is not pressed against the inner wall surface of the guide hole 23, the opening / closing operation is smooth, the oscillation characteristic is eliminated, and the sliding operation is stabilized. .

超高圧往復圧縮機の消耗部品としては、シリンダへのガスの供給、吐き出しを制御する圧縮機バルブがあり、高い面圧での摺動や衝撃的な接触を繰返し受ける過酷な条件で使用されるが、各実施例によれば摩耗寿命を長くし、運転時間を長くしてメンテナンス間隔を長くすることが可能となる。   As a consumable part of the ultra high pressure reciprocating compressor, there is a compressor valve that controls the supply and discharge of gas to the cylinder, and it is used under severe conditions that repeatedly undergo sliding and shocking contact at high surface pressure. However, according to each embodiment, it is possible to extend the wear life, extend the operation time, and extend the maintenance interval.

本発明実施例のポペット弁の弁体の断面図。Sectional drawing of the valve body of the poppet valve of this invention Example. 図1のA方向から見た側面図。The side view seen from the A direction of FIG. 往復圧縮機の一般的な圧縮機構造の断面図。Sectional drawing of the general compressor structure of a reciprocating compressor. 一般的なポペット弁構造の断面図。Sectional drawing of a general poppet valve structure. 一般的な円筒型ポペット弁の弁体の断面図。Sectional drawing of the valve body of a general cylindrical poppet valve. ポペット弁の動作速度と速度依存抵抗力の関係図。The relationship figure of the operation speed of a poppet valve, and speed-dependent resistance. ポペット弁の抵抗力が大きい場合の動作シミュレーション説明図。Operation | movement simulation explanatory drawing in case the resistance force of a poppet valve is large. ポペット弁の抵抗力が小さい場合の動作シミュレーション説明図。Operation | movement simulation explanatory drawing in case the resistance force of a poppet valve is small. 弁体の動作が不安定になる現象1の説明図。Explanatory drawing of the phenomenon 1 which operation | movement of a valve body becomes unstable. 弁体の動作が不安定になる現象2の説明図。Explanatory drawing of the phenomenon 2 which operation | movement of a valve body becomes unstable. 本発明実施例の弁体の動作が安定になる現象の説明図。Explanatory drawing of the phenomenon in which operation | movement of the valve body of this invention Example becomes stable. 本発明の他の実施例の弁体の説明図。Explanatory drawing of the valve body of the other Example of this invention.

符号の説明Explanation of symbols

1…クランクシャフト、5…クロスガイド、6…プランジャー、7…シリンダ、8…吸込みポペット弁、9…吐出ポペット弁、10…吸込みポート、11、12、13…ガス通路、14…吐出ポート、21,22…ポペット弁、21a22a…弁体、21c、22c…弁体の外周面、21d…弁体の内部空間、21e、22e…面取り部(連通部)、21f…連通孔(第2の連通部)、23…ガイド穴。   DESCRIPTION OF SYMBOLS 1 ... Crankshaft, 5 ... Cross guide, 6 ... Plunger, 7 ... Cylinder, 8 ... Suction poppet valve, 9 ... Discharge poppet valve, 10 ... Suction port, 11, 12, 13 ... Gas passage, 14 ... Discharge port, 21, 22 ... Poppet valve, 21a22a ... Valve body, 21c, 22c ... Outer peripheral surface of valve body, 21d ... Internal space of valve body, 21e, 22e ... Chamfered portion (communication portion), 21f ... Communication hole (second communication) Part), 23 ... guide holes.

Claims (2)

往復圧縮機のシリンダに吸込みポペット弁及び吐出ポペット弁を組込み、シリンダ内の圧力が吸込み圧力ラインより低下すると前記吸込みポペット弁が開き、シリンダ内の圧力が吐出圧力ラインを越えると前記吐出ポペット弁が開く超高圧往復圧縮機において、
前記ポペット弁は、ガイド穴とこの中を摺動する弁体からなり、前記弁体は全体が円筒状を呈し、相手部材の平らなシール面に接触するシート面、弁体の外周面、および弁体の内部空間からなり、前記弁体の外周面とガイド穴の隙間をライン圧力に維持するように弁体の軸方向に細長い溝状の面取り部を弁体の外周面に設け、前記弁体の面取り部と前記内部空間を連通する連通孔を前記弁体に設けたことを特徴とする超高圧往復圧縮機。
See Embedded suction poppet valve and the discharge poppet valve cylinder of a reciprocating compressor, the discharge poppet and open the intake poppet valve and the pressure in the cylinder drops below suction pressure line, the pressure in the cylinder exceeds the discharge pressure line In the ultra-high pressure reciprocating compressor that opens the valve ,
The poppet valve includes a guide hole and a valve body that slides in the guide hole, and the valve body has a cylindrical shape as a whole, a seat surface that contacts a flat sealing surface of a mating member, an outer peripheral surface of the valve body, and A groove-shaped chamfered portion that is elongated in the axial direction of the valve body is provided on the outer peripheral surface of the valve body so as to maintain a gap between the outer peripheral surface of the valve body and the guide hole at a line pressure. An ultra-high pressure reciprocating compressor characterized in that a communication hole for communicating a chamfered part of a body and the internal space is provided in the valve body.
前記面取り部は、前記弁体の軸方向に沿って両端が開口した溝であることを特徴とする請求項1に記載の超高圧往復圧縮機。 The ultra-high pressure reciprocating compressor according to claim 1, wherein the chamfered portion is a groove having both ends opened along the axial direction of the valve body.
JP2007306181A 2007-11-27 2007-11-27 Ultra high pressure reciprocating compressor Active JP5002435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007306181A JP5002435B2 (en) 2007-11-27 2007-11-27 Ultra high pressure reciprocating compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007306181A JP5002435B2 (en) 2007-11-27 2007-11-27 Ultra high pressure reciprocating compressor

Publications (2)

Publication Number Publication Date
JP2009127592A JP2009127592A (en) 2009-06-11
JP5002435B2 true JP5002435B2 (en) 2012-08-15

Family

ID=40818759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007306181A Active JP5002435B2 (en) 2007-11-27 2007-11-27 Ultra high pressure reciprocating compressor

Country Status (1)

Country Link
JP (1) JP5002435B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5356163U (en) * 1976-10-15 1978-05-13
JPS59181279U (en) * 1983-05-21 1984-12-03 ダイキン工業株式会社 Check valve for compressor

Also Published As

Publication number Publication date
JP2009127592A (en) 2009-06-11

Similar Documents

Publication Publication Date Title
US9309978B2 (en) Low head to stem ratio poppet valve
JP4698114B2 (en) Passive valve assembly
US6520751B2 (en) Variable displacement compressor having a noise reducing valve assembly
US7156626B2 (en) Double side action type reciprocating compressor
JP5050801B2 (en) Pulsation reduction device in variable capacity compressor
JP2007092539A (en) Hermetic compressor
JP5033372B2 (en) Compressor
JP2009503368A (en) Piston and cylinder assembly with variable diametric clearance and cylinder used for piston and cylinder assembly with variable diametric clearance
JP2008031857A (en) Compressor
JP5617402B2 (en) Reciprocating compressor and refrigerator using the same
JP5002435B2 (en) Ultra high pressure reciprocating compressor
JP4534881B2 (en) Regulating valve
JP5293622B2 (en) Hermetic rotary compressor
JP6004261B2 (en) Capacity control valve
JP2008038692A (en) Compressor
CN109404363B (en) Hydraulic cylinder for driving exhaust valve and working method thereof
JP7201311B2 (en) compressor
JP2006046171A (en) Compressor
JP2017106397A (en) Compressor
JP2005337156A (en) Hermetic compressor
JPH09100777A (en) Cylinder device for reciprocating compressor
US20060204369A1 (en) Variable displacement swash plate compressor
JP6321400B2 (en) Hermetic compressor
JP4837907B2 (en) Reciprocating compressor
JP7120103B2 (en) piston compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

R150 Certificate of patent or registration of utility model

Ref document number: 5002435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350