WO2018155209A1 - Compressor piston, compressor, and heat pump unit - Google Patents

Compressor piston, compressor, and heat pump unit Download PDF

Info

Publication number
WO2018155209A1
WO2018155209A1 PCT/JP2018/004384 JP2018004384W WO2018155209A1 WO 2018155209 A1 WO2018155209 A1 WO 2018155209A1 JP 2018004384 W JP2018004384 W JP 2018004384W WO 2018155209 A1 WO2018155209 A1 WO 2018155209A1
Authority
WO
WIPO (PCT)
Prior art keywords
protrusion
compressor
communication hole
piston
compression chamber
Prior art date
Application number
PCT/JP2018/004384
Other languages
French (fr)
Japanese (ja)
Inventor
瑞生 工藤
元康 志賀
Original Assignee
株式会社前川製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社前川製作所 filed Critical 株式会社前川製作所
Publication of WO2018155209A1 publication Critical patent/WO2018155209A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0005Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • F04B39/1046Combination of in- and outlet valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections

Definitions

  • the present disclosure relates to a piston for a compressor, a compressor, and a heat pump unit.
  • the compressor is applied to, for example, a refrigeration cycle and is used for compressing a refrigerant.
  • the compressor described in Patent Document 1 is a reciprocating compressor, and includes a piston, a cylinder, a suction chamber, a discharge chamber, a suction valve, and a discharge valve.
  • the reciprocating compressor when power is supplied to the crankshaft from the outside and the piston reciprocates, the gas to be compressed is sucked into the cylinder from the suction chamber through the suction valve, and then compressed. Through the discharge chamber.
  • a reciprocating compressor in general, includes a gas compression chamber formed by a top surface of a piston and a cylinder, a discharge chamber (exhaust chamber) for discharging compressed gas, a compression chamber and an exhaust chamber. And an exhaust valve for switching the communication state.
  • a suction chamber and a suction valve may be provided in a member between a cylinder and an exhaust chamber, and a communication hole that communicates the compression chamber and the exhaust chamber passes through the above-described member. Sometimes formed. However, this communication hole becomes a dead volume (also referred to as a gap volume) for the compressor.
  • a dead volume is provided by providing a protrusion on the top surface of the piston so that the protrusion is inserted into the communication hole when the piston approaches the top dead center.
  • the compression resistance increases and the driving power of the compressor increases. Since the adiabatic efficiency of the compressor is proportional to the volumetric efficiency and inversely proportional to the driving power, the adiabatic efficiency may decrease if the driving power of the compressor increases even if the intake gas amount increases.
  • At least one embodiment of the present invention aims to provide a piston for a compressor, a compressor, and a heat pump unit that can reduce dead volume and suppress a decrease in heat insulation efficiency.
  • a piston body having a top surface forming a compression chamber for compressing gas together with the cylinder;
  • a protrusion provided so as to protrude from the top surface along the axial direction of the piston main body;
  • the protrusion is The dimension in the direction orthogonal to the axial direction is formed so as to decrease toward the tip of the protrusion,
  • the cross-sectional shape along the direction orthogonal to the axial direction is circular, Of the projections, the connection portion to the top surface gradually decreases in diameter from the top surface toward the tip of the projection, and the cross section along the axial direction becomes a concave curved surface.
  • a reciprocating compressor includes a gas compression chamber, an exhaust chamber for discharging compressed gas, and an exhaust for switching the communication state between the compression chamber and the exhaust chamber. And a valve. Further, in the reciprocating compressor, a communication hole that communicates the compression chamber and the exhaust chamber may be formed in a member to which the exhaust valve is attached.
  • the dead volume can be reduced and the re-expanded gas component can be reduced. Further, as will be described below, the compression resistance can be suppressed and the driving power of the compressor can be reduced, so that a decrease in heat insulation efficiency can be suppressed.
  • the compressor piston having the configuration (1) when used in the above-described reciprocating compressor, the gas compressed by the compressor piston flows through the communication hole. After the protrusion has entered the communication hole, the gas compressed by the compressor piston flows between the communication hole and the protrusion. Therefore, after the protrusion enters the communication hole, the cross-sectional area of the gas flow path in the communication hole decreases by the cross-sectional area of the protrusion.
  • the dimension in the direction orthogonal to the axial direction of the protrusion becomes smaller toward the tip of the protrusion, so that the protrusion entering the communication hole and the inner wall surface of the communication hole A gap formed between the gaps extends from the compression chamber toward the exhaust chamber. For this reason, the change of the gas flow path cross-sectional area when the protrusion starts to enter the communication hole can be mitigated, and the occurrence of overcompression due to insufficient discharge of the gas in the compression chamber can be suppressed.
  • the gas flowing from the compression chamber to the exhaust chamber via the gap between the protrusion and the inner wall surface of the communication hole during the period from when the protrusion starts to enter the communication hole until the piston reaches the top dead center, the gas flowing from the compression chamber to the exhaust chamber via the gap between the protrusion and the inner wall surface of the communication hole.
  • the compression resistance can be suppressed, the driving power of the compressor can be reduced, and a decrease in heat insulation efficiency can be suppressed. Moreover, the noise and vibration of the compressor can be suppressed. Furthermore, although the dimension in the direction orthogonal to the axial direction of the protrusion decreases toward the tip of the protrusion, the shape of the protrusion also serves as a draft when the compressor piston is manufactured by casting. If this is set, machining of the protrusion after casting can be omitted, and the manufacturing cost can be reduced.
  • the protrusion has a circular cross-sectional shape along the direction orthogonal to the axial direction.
  • the communication hole has a circular cross-sectional shape along the axial direction of the cylinder, that is, the direction orthogonal to the axial direction of the piston main body. Therefore, according to the configuration of (1) above, since the cross-sectional shape along the direction orthogonal to the axial direction of the protrusion is the same shape as the cross-sectional shape of the communication hole, the dead volume can be efficiently reduced. Thereby, the re-expanded gas component can be reduced.
  • connection portion to the top surface of the protrusions is gradually reduced in diameter from the top surface toward the tip of the protrusion, and the cross section along the axial direction becomes a concave curved surface.
  • the compressor piston having the configuration (1) as a compressor, the recompression power for the re-expanded gas of the compressor can be reduced, energy saving can be achieved, and noise and vibration of the compressor can be suppressed. . That is, when the compressor piston having the above-described configuration (1) is used in the above-described reciprocating compressor, among the gases flowing from the cylinder toward the communication hole and the projection, the communication hole and the projection. The gas flowing inward in the cylinder toward the inside of the cylinder can be smoothly changed from the radial direction to the axial direction by being guided along the connecting portion to the top surface of the protrusion. .
  • the compressor is: A compressor piston configured as described in (1) above, configured to move between a top dead center and a bottom dead center to compress gas; A cylinder forming the compression chamber together with the top surface of the compressor piston; An exhaust valve for switching the communication state between the exhaust chamber for discharging the gas compressed by the compressor piston and the compression chamber; A valve seat forming member including a valve seat that is formed with a communication hole that allows the compression chamber and the exhaust chamber to communicate with each other and that can contact the exhaust valve when the exhaust valve is closed; The compressor piston is configured such that at the top dead center, at least the tip of the protrusion of the compressor piston enters the communication hole of the valve seat forming member.
  • the re-expanded gas component can be reduced, the compression resistance can be suppressed and the driving power of the compressor can be reduced, and the reduction in heat insulation efficiency can be suppressed. Moreover, the noise and vibration of the compressor can be suppressed.
  • the gap between the opening edge of the communication hole on the compression chamber side surface of the valve seat forming member and the side surface of the protrusion is the minimum gap
  • the size of the gap between the side surface of the protrusion and the inner wall surface of the communication hole increases monotonously from the minimum gap as it approaches the tip of the protrusion.
  • the gap between the opening edge of the communication hole on the compression chamber side surface of the valve seat forming member and the side surface of the projection when the compressor piston is located at the top dead center is provided.
  • the compressor piston starts moving from the top dead center to the bottom dead center, the region in the communication hole on the exhaust chamber side of the gap and the compression chamber A pressure difference occurs. That is, when the compressor piston starts moving from the top dead center toward the bottom dead center, the pressure in the compression chamber becomes lower than the area in the communication hole on the exhaust chamber side with respect to the gap.
  • the valve opening time can be advanced.
  • the gap between the side surface and the inner wall surface of the communication hole is the opening edge of the communication hole and the protrusion.
  • the space between the side surfaces of the exhaust chamber is the narrowest and becomes wider toward the exhaust chamber side. Therefore, during the period from the first time point to the second time point, the gas in the gap between the side surface and the inner wall surface of the communication hole is likely to flow toward the exhaust chamber side.
  • any one of the above configurations (2) to (4) at a position facing the top surface from the tip by 75% of the axial dimension of the protrusion.
  • the outer diameter of the protrusion is in the range of 60% to 80% of the inner diameter of the communication hole on the compression chamber side surface of the valve seat forming member.
  • the dead volume can be reduced as the outer diameter of the protrusion increases.
  • the larger the outer diameter of the protrusion the smaller the gap between the protrusion and the inner wall surface of the communication hole, affecting the gas flow from the compression chamber to the exhaust chamber. Therefore, there is a possibility that the compression resistance increases and the driving power of the compressor increases.
  • the dead volume is effectively suppressed while suppressing the influence on the gas flow from the compression chamber to the exhaust chamber via the gap between the protrusion and the inner wall surface of the communication hole. Therefore, a decrease in heat insulation efficiency can be suppressed.
  • the heat pump unit is: A compressor having any one of the above configurations (2) to (5); A heat exchange unit having a heat exchanger for exchanging heat with the gas compressed by the compressor; Heat pump cycle components, Is provided.
  • a decrease in heat insulation efficiency can be suppressed.
  • an expression indicating that things such as “identical”, “equal”, and “homogeneous” are in an equal state not only represents an exactly equal state, but also has a tolerance or a difference that can provide the same function. It also represents the existing state.
  • expressions that represent shapes such as quadrangular shapes, cylindrical shapes, and columnar shapes not only represent geometrically strict shapes such as quadrangular shapes, cylindrical shapes, and columnar shapes, but are within the same range
  • shape including the uneven portion, the chamfered portion, and the like is also expressed, and in the range where the same effect can be obtained, for example, a shape such as a cylindrical shape or a columnar shape having a conical shape is also expressed.
  • the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one constituent element are not exclusive expressions for excluding the existence of other constituent elements.
  • FIG. 1 is a perspective view schematically showing an internal structure of a heat pump unit including a compressor according to an embodiment.
  • the heat pump unit 50 according to the embodiment includes a box-shaped casing 100 having a substantially rectangular parallelepiped shape, a heat exchange unit 30, and a heat pump cycle component device 52.
  • the box-shaped casing 100 is provided on an upper portion of a substantially rectangular base plate 51.
  • the air intake port 111 is formed in the upper region of the front surface 100 a and the back surface 100 b of the box type casing 100
  • the air outlet port 112 is formed on the upper surface of the box type casing 100.
  • the heat exchange unit 30 includes a fan 34 and a panel heat exchanger 36 provided in the box-type casing 100.
  • a pair of panel heat exchangers 36 provided in the box casing 100 along the vertical direction are arranged facing each other.
  • a fan 34 that allows air to pass through the pair of panel heat exchangers 36 is disposed above the pair of panel heat exchangers 36.
  • the pair of panel-like heat exchangers 36 are provided so as to face the two air intake ports 111, and are arranged in a V shape so that the distance between the pair of panel-like heat exchangers 36 decreases toward the bottom.
  • the fan 34 operates, the air flows into the box-shaped casing 100 from the air intake ports 111 provided on the front surface 100a and the back surface 100b, passes through the pair of panel heat exchangers 36, and enters the air outlet 112. A leading air flow a is formed.
  • FIG. 2 is a diagram illustrating an overall configuration of the heat pump unit 50 according to an embodiment.
  • the heat pump cycle component device 52 includes a compressor 200, a gas cooler 58, an internal heat exchanger 64, and a panel heat exchanger 36.
  • the refrigerant (for example, CO 2 ) compressed by the compressor 200 is supplied to the gas cooler 58 through the refrigerant circulation path 54 and is cooled by the cooling water flowing through the cooling water path 60 by the gas cooler 58.
  • the cooling water channel 60 is provided with a pump 62 that sends the cooling water to the gas cooler 58.
  • the refrigerant cooled by the gas cooler 58 is cooled by exchanging heat with the refrigerant sent from the panel heat exchanger 36 by the internal heat exchanger 64 and then depressurized via the expansion valve 66. Thereafter, the refrigerant is heated by the panel heat.
  • the exchanger 36 vaporizes air as a heat source. That is, the panel heat exchanger 36 is incorporated in the heat pump cycle constituent device 52 as an evaporator.
  • the vaporized refrigerant is heated by exchanging heat with the refrigerant sent from the gas cooler 58 by the internal heat exchanger 64 and then sent again to the compressor 200 to be compressed.
  • a bypass path 68 that branches from the refrigerant circulation path 54 on the downstream side of the gas cooler 58 and is connected to the refrigerant circulation path 54 on the downstream side of the expansion valve 66 is connected to the refrigerant circulation path 54.
  • a refrigerant tank 70 is provided in the bypass path 68, and electromagnetic valves 72 and 74 are provided on the upstream side and the downstream side of the refrigerant tank 70.
  • a part of the refrigerant in the refrigerant circulation path 54 is stored in the refrigerant tank 70, or the refrigerant stored in the refrigerant tank 70 is returned to the refrigerant circulation path 54, whereby the amount of refrigerant flowing through the refrigerant circulation path 54 can be adjusted.
  • the hot water heated by the gas cooler 58 can be supplied to a customer as a heat source.
  • the heat pump unit 50 includes a heat exchange unit 30 in an upper region inside the box-shaped casing 100, and a compressor 200, in a lower region inside the box-shaped casing 100.
  • a heat pump cycle component 52 such as a gas cooler 58 is provided.
  • the heat pump cycle components 52 such as the compressor 200, the gas cooler 58, and the refrigerant tank 70 are fixed on the base plate 51.
  • FIG. 3 is a cross-sectional view schematically showing the structure of the compressor 200 according to one embodiment.
  • the compressor 200 of one embodiment is a reciprocating compressor, and includes a casing 210, a cylinder 220, a piston 230, a crankshaft 241, a connecting rod 242, a valve plate 250, and a head cover 260.
  • a casing 210 In the compressor 200 shown in FIG. 3, one set of the cylinder 220 and the piston 230 is depicted, but the compressor 200 may be a single-cylinder reciprocating compressor, or a multi-cylinder reciprocating compressor. It may be.
  • the extending direction of the cylinder 220 is along the vertical direction of the paper surface, and the vertical relationship of each part will be described with reference to the vertical direction of the paper surface. .
  • crank chamber 211 and an intake chamber 212 are provided inside the casing 210.
  • a crankshaft 241 is rotatably supported in the crank chamber 211.
  • a refrigerant circulation path 54 is connected to the intake chamber 212, and the refrigerant flows from the refrigerant circulation path 54.
  • the cylinder 220 is disposed so as to extend in the vertical direction.
  • a piston 230 is slidably inserted into the cylinder 220. Piston 230 is connected to crankshaft 241 by connecting rod 242. In FIG. 3, the description of the piston ring and the like attached to the piston 230 is omitted.
  • a compression chamber 221 for compressing the refrigerant is formed by the top surface 232 of the piston 230 and the inner peripheral surface of the cylinder 220.
  • valve plate 250 is attached to the upper surface of the casing 210, and the head cover 260 is attached to the upper part of the valve plate 250.
  • an exhaust chamber 261 surrounded by the upper surface of the valve plate 250 and the inner wall surface of the head cover 260 is formed.
  • a refrigerant circulation path 54 is connected to the exhaust chamber 261, and the refrigerant compressed in the compression chamber 221 flows out to the refrigerant circulation path 54.
  • the intake passage 251 is a refrigerant flow path provided inside the valve plate 250 and connects the intake chamber 212 and the compression chamber 221. That is, the intake passage 251 has an upstream opening connected to the intake chamber 212 and a downstream opening 251 a connected to the compression chamber 221 via the intake valve 254.
  • the communication hole 252 is a refrigerant flow path that extends in the same direction as the cylinder 220 and connects the compression chamber 221 and the exhaust chamber 261, and has a circular cross section.
  • the inner diameter of the communication hole 252 is constant regardless of the axial position.
  • the central axis of the communication hole 252 coincides with the central axis of the cylinder 220, that is, the central axis of the piston 230.
  • An opening edge 252 a of the communication hole 252 on the surface of the valve plate 250 on the compression chamber 221 side faces the compression chamber 221.
  • An exhaust valve 255 for switching the communication state between the exhaust chamber 261 and the compression chamber 221 is provided at the end of the communication hole 252 on the exhaust chamber 261 side.
  • the exhaust valve 255 is attached to the valve plate 250 so as to be movable along the central axis of the communication hole 252 and is urged toward the compression chamber 221 by a spring (not shown), Is in contact with the exhaust valve seat 253.
  • the exhaust valve seat 253 is a valve seat with which the exhaust valve 255 abuts as described above, and on the surface of the valve plate 250 on the exhaust chamber 261 side, around the communication hole 252 having a circular shape when viewed from the exhaust chamber 261 side. Is formed. That is, the valve plate 250 of one embodiment is a valve seat forming member.
  • the exhaust valve 255 abuts the exhaust valve seat 253 of the valve plate 250 by the biasing force of a spring (not shown) to close the opening at the end of the communication hole 252 on the exhaust chamber 261 side, and the pressure in the compression chamber 221 increases. Then, it moves to the exhaust chamber 261 side against the urging force of a spring (not shown) and is separated from the exhaust valve seat 253 to open the opening at the end of the communication hole 252 on the exhaust chamber 261 side.
  • FIG. 4 is a view of the valve plate 250 as seen from the compression chamber 221 side.
  • a circle indicated by a two-dot chain line represents the position of the inner peripheral surface 220 a of the cylinder 220.
  • the description of the intake valve 254 is omitted.
  • a communication hole 252 is arranged so as to be coaxial with the cylinder 220.
  • the opening 251 a on the downstream side of the intake passage 251 is provided around the opening edge 252 a of the communication hole 252.
  • the opening 251a has a long hole shape extending along a circumferential direction coaxial with the opening edge 252a having a circular shape.
  • the three openings 251a are provided at substantially equal intervals along the circumferential direction around the opening edge 252a, but the number of openings 251a is not limited to three.
  • FIG. 5 is a perspective view of the piston 230 of one embodiment.
  • the piston 230 of one embodiment includes a piston main body 231 formed in a covered cylindrical shape, and a protrusion 233 provided so as to protrude from the top surface 232 of the piston main body 231 along the axis AX direction of the piston main body 231. And have.
  • the piston main body 231 is provided with a piston pin hole 231a, and a piston ring groove 231b is provided on the outer periphery on the top surface 232 side of the piston pin hole 231a.
  • a piston pin (not shown) for connecting to the connecting rod 242 is inserted into the piston pin hole 231a.
  • a piston ring (not shown) is mounted in the piston ring groove 231b.
  • the protrusion 233 is a part formed so as to be inserted into the communication hole 252 of the valve plate 250 when the piston 230 is moved from the bottom dead center to the top dead center in the cylinder 220. . That is, the piston 230 is configured such that at least the tip of the protrusion 233 enters the communication hole 252 of the valve plate 250 at the top dead center.
  • the protrusion 233 has a substantially cylindrical shape extending along the axis AX direction. That is, in one embodiment, the protrusion 233 has a circular cross-sectional shape along a direction orthogonal to the axis AX direction. In one embodiment, the protrusion 233 is formed such that the dimension in the direction orthogonal to the axis AX direction, that is, the outer diameter becomes smaller toward the tip 233a of the protrusion 233.
  • the protrusion 233 is formed such that the side surface 233b is linear in a cross section along the axis AX direction.
  • the connecting portion 233c of the protrusion 233 to the top surface 232 gradually decreases in diameter from the top surface 232 toward the tip 233a of the protrusion 233, and the cross section along the axis AX direction becomes a concave curved surface.
  • the connection portion 233 c is formed so as to expand from the tip 233 a of the protrusion 233 toward the top surface 232.
  • the length of the protrusion 233 along the axis AX direction is substantially equal to the extension length of the communication hole 252 of the valve plate 250. Thereby, dead volume can be reduced efficiently.
  • the length of the protrusion 233 along the axis AX direction May be set as appropriate.
  • the refrigerant is sucked, compressed, and discharged as follows.
  • the pressure in the compression chamber 221 decreases, so that the refrigerant in the intake chamber 212 flows into the intake passage 251 and the valve plate 250. It flows into the compression chamber 221 through the intake valve 254.
  • the piston 230 moves toward the top dead center, the refrigerant in the compression chamber 221 is compressed and the pressure in the compression chamber 221 increases.
  • the exhaust valve 255 moves to the exhaust chamber 261 side against the biasing force of a spring (not shown), the opening at the end of the communication hole 252 on the exhaust chamber 261 side is opened, and the compressed refrigerant is compressed into the compression chamber. 221 passes through the communication hole 252 and is discharged into the exhaust chamber 261.
  • FIG. 6 is a cross-sectional view showing the vicinity of the compression chamber 221 and the exhaust chamber 261, and shows a state in which the piston 230 moves toward the top dead center and the tip 233 a of the protrusion 233 starts to enter the communication hole 252. Show.
  • the tip 233a of the protrusion 233 starts to enter the communication hole 252
  • the refrigerant compressed in the compression chamber 221 passes through the gap between the inner peripheral surface of the communication hole 252 and the side surface 233b of the protrusion 233 and is exhausted. Flow into chamber 261.
  • the refrigerant in the compression chamber 221 flows into the communication hole 252 from the gap between the opening edge 252a of the communication hole 252 and the side surface 233b of the protrusion 233, as indicated by an arrow b in FIG.
  • the gap flows between the inner peripheral surface of the communication hole 252 and the side surface 233b of the protrusion 233 toward the exhaust chamber 261 side.
  • the refrigerant flows in the entire inner peripheral surface of the communication hole 252 toward the exhaust chamber 261.
  • the outer diameter of the protrusion 233 becomes smaller toward the tip 233a side. Further, the inner diameter of the communication hole 252 is constant regardless of the position in the axial direction. Therefore, the size of the gap between the inner peripheral surface of the communication hole 252 and the side surface 233b of the projection 233 is the smallest in the gap between the opening edge 252a of the communication hole 252 and the side surface 233b of the projection 233. It becomes larger toward the tip 233a of the part 233. That is, the period from the first time point when the tip 233a of the protrusion 233 reaches the opening edge 252a of the communication hole 252 on the compression chamber 221 side surface of the valve plate 250 to the second time point when the piston 230 reaches top dead center.
  • An annular hole end portion 256 is formed between the opening edge 252a of the communication hole 252 and the side surface 233b of the protrusion 233 so that the gap between the side surface 233b and the inner wall surface of the communication hole 252 is minimized. Therefore, the flow resistance in the gap between the inner peripheral surface of the communication hole 252 and the side surface 233b of the projection 233 is the largest at the annular hole end portion 256 and becomes smaller toward the tip 233a of the projection 233. On the downstream side of the hole end portion 256, the flow path resistance decreases, and the refrigerant easily flows toward the exhaust chamber 261 side.
  • the flow of gas from the compression chamber 221 toward the exhaust chamber 261 is not easily inhibited, so that the compression resistance can be suppressed. Therefore, the driving power of the compressor 200 can be reduced, energy saving can be achieved, and noise and vibration of the compressor 200 can be suppressed.
  • FIG. 7 is a cross-sectional view showing the vicinity of the compression chamber 221 and the exhaust chamber 261, and shows a state where the piston 230 has reached the top dead center.
  • the connecting portion 233c which is the base of the protrusion 233, is formed so as to expand from the tip 233a side of the protrusion 233 toward the top surface 232 of the piston main body 231. Accordingly, the refrigerant flowing from the radially outer side toward the inner side in the compression chamber 221 is guided toward the exhaust chamber 261 side by flowing along the connecting portion 233c as indicated by an arrow d in FIG. . Thereby, the flow of the refrigerant becomes smooth, and the refrigerant in the compression chamber 221 can be efficiently discharged to the exhaust chamber 261.
  • the communication hole 252 has a so-called dead volume, but it is desired to reduce the dead volume in terms of reducing the re-expanded gas component of the compressor 200.
  • the protrusion 233 provided so as to protrude from the top surface 232 of the piston 230 enters the communication hole 252 of the valve plate 250 in the compression and exhaust strokes of the refrigerant to reduce the dead volume. Expansion / recompression loss is improved.
  • the pressure in the compression chamber 221 starts to decrease.
  • the size of the gap between the inner peripheral surface of the communication hole 252 and the side surface 233 b of the protrusion 233 is the largest at the annular hole end portion 256. small.
  • the cross-sectional area of the annular hole end portion 256 is the smallest at the top dead center. Therefore, when the piston 230 starts to move toward the bottom dead center and the pressure in the compression chamber 221 begins to decrease, the inner peripheral surface of the communication hole 252 and the side surface 233b of the protrusion 233 are separated from the annular hole end portion 256.
  • a pressure difference is generated between the gap between the compression chamber 221 and the compression chamber 221. That is, the pressure in the compression chamber 221 is lower than the pressure in the gap between the inner peripheral surface of the communication hole 252 and the side surface 233b of the protrusion 233.
  • the opening timing of the intake valve 254 can be advanced, so that the refrigerant efficiently flows into the compression chamber 221, so that the inflow resistance of the compressor 200 can be reduced.
  • the piston 230 includes the piston body 231 having the top surface 232 that forms the compression chamber 221 that compresses the gas together with the cylinder 220, and the top surface along the axial direction of the piston body 231. And a protrusion 233 provided so as to protrude from the H.232.
  • the piston 230 is used in the compressor 200 described above, when the piston 230 moves to the top dead center side in the cylinder 220 of the compressor 200, the protrusion 233 enters the communication hole 252, thereby reducing the dead volume. Can be reduced. Therefore, the re-expanded gas component of the compressor 200 can be reduced.
  • the protrusion 233 is formed so that the dimension in the direction orthogonal to the axial direction of the piston main body 231 decreases as it goes toward the tip 233 a of the protrusion 233.
  • the piston 230 is used in the compressor 200 described above, the refrigerant compressed by the piston 230 flows through the communication hole 252. After the protrusion 233 enters the communication hole 252, the refrigerant compressed by the piston 230 flows between the communication hole 252 and the protrusion 233. Therefore, after the protrusion 233 enters the communication hole 252, the cross-sectional area of the refrigerant flow path in the communication hole 252 decreases by the cross-sectional area of the protrusion 233.
  • the dimension of the protrusion 233 in the direction orthogonal to the axial direction becomes smaller toward the tip 233a of the protrusion 233, it is formed between the protrusion 233 that has entered the communication hole 252 and the inner wall surface of the communication hole 252.
  • the gap is expanded from the compression chamber 221 toward the exhaust chamber 261.
  • the compression chamber 221 is separated from the compression chamber 221 through a gap between the protrusion 233 and the inner wall surface of the communication hole 252.
  • the gas flow toward the exhaust chamber 261 is not easily inhibited. Therefore, since compression resistance can be suppressed and the driving power of the compressor 200 can be reduced, energy saving can be achieved, and noise and vibration of the compressor 200 can be suppressed.
  • the projection 233 also serves as a draft that is set when the piston 230 is manufactured by casting. If the shape is set, machining of the projection 233 after casting can be omitted, and the manufacturing cost can be reduced.
  • the protrusion 233 has a circular cross-sectional shape along a direction orthogonal to the axial direction.
  • the communication hole 252 has a circular cross-sectional shape along a direction perpendicular to the axial direction of the cylinder 220, that is, the axial direction of the piston main body 231. Therefore, since the cross-sectional shape along the direction orthogonal to the axial direction of the protrusion 233 becomes the same shape as the cross-sectional shape of the communication hole 252, the dead volume can be efficiently reduced. Thereby, the reexpansion / recompression loss of the compressor 200 can be improved.
  • the connecting portion 233c of the protrusion 233 to the top surface 232 is gradually reduced in diameter from the top surface 232 toward the tip 233a of the protrusion 233, and the cross section along the axial direction becomes a concave curved surface.
  • the direction of the flow can be smoothly changed from the radial direction to the axial direction by being guided along the connection portion 233c to the top surface 232.
  • the protrusion 233 is formed such that the dimension in the axial direction of the piston main body 231 is larger than the dimension in the direction orthogonal to the axial direction.
  • the valve plate is thicker than a valve plate in which no refrigerant intake passage is provided.
  • the extending length of the communication hole 252 tends to be long.
  • the downstream side opening 251 a of the intake passage 251 is provided around the communication hole 252
  • the downstream of the intake passage is provided around the communication hole 252.
  • the diameter of the communication hole 252 tends to be smaller than that of a valve plate that is not provided with a side opening. Therefore, in one embodiment, the extension length of the communication hole 252 is larger than the diameter of the communication hole 252.
  • the refrigerant compressed by the piston 230 flows through the communication hole 252.
  • the refrigerant compressed by the piston 230 flows between the communication hole 252 and the protrusion 233. Therefore, after the protrusion 233 enters the communication hole 252, the cross-sectional area of the refrigerant flow path in the communication hole 252 decreases by the cross-sectional area of the protrusion 233.
  • the projecting portion 233 is formed so that the dimension of the piston main body 231 in the axial direction is larger than the dimension in the direction orthogonal to the axial direction, the passage of the refrigerant in the communication hole 252 is secured while Since the volume can be efficiently reduced, the compression resistance can be suppressed, the driving power of the compressor can be reduced, and a decrease in the heat insulation efficiency can be suppressed.
  • the compressor which concerns on one Embodiment forms the compression chamber 221 with said piston 230 comprised so that it may move between a top dead center and a bottom dead center, and compresses gas, and the top surface 232 of piston 230 A cylinder 220, an exhaust valve 255 for switching the communication state between the exhaust chamber 261 and the compression chamber 221 for discharging the refrigerant compressed by the piston 230, and a communication hole for communicating the compression chamber 221 and the exhaust chamber 261.
  • a valve plate 250 including an exhaust valve seat 253 with which the exhaust valve 255 can come into contact when the exhaust valve 255 is closed.
  • the tip 233 a of the protrusion 233 of the piston 230 enters the communication hole 252 of the valve plate 250.
  • the dead volume can be reduced by the protrusion 233 entering the communication hole 252, and the re-expansion / re-compression loss of the compressor 200 is improved. it can.
  • the valve plate 250 is provided inside the valve plate 250 and has an intake passage 251 for guiding the refrigerant to the compression chamber 221.
  • the inside of the valve plate 250 can be effectively used as an intake passage, and the compressor 200 can be downsized.
  • the gap between the opening edge 252a of the communication hole 252 and the side surface 233b of the protrusion 233 on the surface of the valve plate 250 on the compression chamber 221 side is the minimum gap.
  • the size of the gap between the side surface 233b of the protrusion 233 and the inner wall surface of the communication hole 252 monotonously increases from the minimum gap as it approaches the tip 233a of the protrusion 233.
  • the pressure difference between the compression chamber 221 and the region in the communication hole 252 closer to the exhaust chamber 261 than the gap is the boundary. Occurs. That is, when the piston 230 starts moving from the top dead center toward the bottom dead center, the pressure in the compression chamber 221 becomes lower than the area in the communication hole 252 on the exhaust chamber 261 side with respect to the gap.
  • the valve opening timing of the valve 254 can be advanced, and the refrigerant efficiently flows into the compression chamber 221, so that the re-expanded gas component of the compressor 200 can be reduced.
  • the gap between the side surface 233b and the inner wall surface of the communication hole 252 is narrowest between the opening edge 252a of the communication hole 252 and the side surface 233b of the protrusion 233. It becomes wider as it goes to the exhaust chamber 261 side. Therefore, during the period from the first time point to the second time point, the refrigerant in the gap between the side surface 233b and the inner wall surface of the communication hole 252 can easily flow toward the exhaust chamber 261 side. Thereby, since the compressed refrigerant can be exhausted efficiently, the re-expanded gas component of the compressor 200 can be reduced.
  • the re-expansion / recompression loss can be improved by reducing the re-expansion gas content of the compressor 200 while suppressing the decrease in the heat insulation efficiency.
  • the dead volume can be reduced and the re-expanded gas can be reduced.
  • the cross-sectional area of the refrigerant flow path between the communication hole 252 and the protrusion 233 is reduced.
  • the refrigerant flow from the compression chamber 221 toward the exhaust chamber 261 is affected. That is, if the protrusion is not made into an appropriate shape, the compression resistance increases and the driving power of the compressor increases, so that the heat insulation efficiency of the compressor 200 may be reduced.
  • the inventors conducted experiments on a plurality of patterns with different diameters of the protrusions 233, and verified how the heat insulation efficiency of the compressor changes depending on the diameter of the protrusions 233.
  • the side surface 233b of the protrusion 233 has a tapered shape, in the following description, 75% (0.75 h) of the dimension h in the axis AX direction of the protrusion 233 from the tip 233a of the protrusion 233. Only the diameter at the position facing the top surface 232 side is adopted as a representative value of the diameter of the protrusion 233.
  • the representative value of the diameter is simply referred to as a representative diameter d (see FIG. 8B).
  • FIG. 8 is a diagram for explaining the experimental results conducted by the inventors
  • FIG. 8A is a graph showing the experimental results conducted by the inventors
  • FIG. It is a figure which shows typically the state which the protrusion 233 penetrate
  • the diameter ratio ⁇ is a value obtained by dividing the representative diameter d by the inner diameter (communication hole diameter) D of the communication hole 252 at the opening edge 252a.
  • FIG. 8A is a graph of the adiabatic efficiency ⁇ ad of the compressor used in the experiment.
  • each plot of rhombus, square, and triangle for the adiabatic efficiency ⁇ ad corresponds to each of the experimental results under three different experimental conditions with the refrigerant suction pressure and exhaust pressure changed. .
  • the diameter ratio ⁇ should be set within the range of 60% or more and 80% or less in order to reduce the re-expansion gas component and suppress the decrease in heat insulation efficiency while improving the re-expansion / re-compression loss. Is desirable.
  • the heat pump unit 50 includes the above-described compressor 200, the heat exchange unit 30 having the panel heat exchanger 36 for exchanging heat with the refrigerant compressed by the compressor 200, and the heat pump cycle constituent device 52. With. Thereby, since the re-expansion gas content of the compressor 200 can be reduced and the re-expansion / re-compression loss can be improved and the decrease in the heat insulation efficiency can be suppressed, energy saving of the heat pump unit 50 can be achieved.
  • the protrusion 233 is formed so that the dimension of the piston main body 231 in the direction orthogonal to the axis AX direction decreases toward the tip 233a of the protrusion 233. That is, in the above-described embodiment, the side surface 233b of the protrusion 233 has a tapered shape. However, for example, the side surface 233b of the protrusion 233 may not have a tapered shape.
  • the protrusion 233 is solid or hollow.
  • the protrusion 233 may be solid or hollow.
  • the protrusion 233 has a circular cross-sectional shape along a direction orthogonal to the axis AX direction.
  • the projecting portion 233 may have a cross-sectional shape other than a circular shape along a direction orthogonal to the axis AX direction, for example, an elliptical shape, a polygonal shape, a straight line or a curved line The shape which combined suitably may be sufficient.
  • the protrusion 233 is formed so as to expand from the tip 233a of the protrusion 233 toward the top surface 232 at the connection portion 233c.
  • the cross section along the axial direction of the connecting portion 233c of the protrusion 233 may not be a concave curved surface, and the side surface 233b and the top surface 232 may intersect with each other.
  • the protrusion 233 is formed so that the dimension in the axis AX direction is larger than the dimension in the direction orthogonal to the axis AX direction.
  • the protrusion 233 has the same dimension in the axis AX direction as the dimension in the direction orthogonal to the axis AX direction, or the dimension in the axis AX direction is smaller than the dimension in the direction orthogonal to the axis AX direction. It may be formed.
  • valve plate 250 is provided with the intake passage 251 that is a refrigerant flow path.
  • the flow path for introducing the refrigerant into the compression chamber 221 may not be provided inside the valve plate 250.
  • the gap between the side surface 233b and the inner wall surface of the communication hole 252 is the smallest between the opening edge 252a of the communication hole 252 and the side surface 233b of the protrusion 233 at the top dead center.
  • the gap between the side surface 233b and the inner wall surface of the communication hole 252 may be the smallest on the exhaust chamber 261 side than the opening edge 252a of the communication hole 252.
  • the piston 230 reaches the top dead center from the first time point when the tip 233a of the protrusion 233 reaches the opening edge 252a of the communication hole 252 on the compression chamber 221 side surface of the valve plate 250.
  • the gap between the side surface 233b and the inner wall surface of the communication hole 252 is the smallest between the opening edge 252a of the communication hole 252 and the side surface 233b of the protrusion 233.
  • the gap between the side surface 233b and the inner wall surface of the communication hole 252 may be the smallest on the exhaust chamber 261 side than the opening edge 252a of the communication hole 252.
  • the heat pump unit 50 including the devices that configure the heat pump cycle has been described.
  • the above-described content of the heat pump unit 50 can be applied to a refrigeration unit including the devices that configure the refrigeration cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)

Abstract

A compressor piston according to at least one embodiment of the present invention includes: a piston body having a top surface that, together with a cylinder, forms a compression chamber in which a gas is compressed; and a protrusion provided so as to protrude from the top surface along the axial direction of the piston body. The protrusion is formed such that the dimension in a direction orthogonal to the axial direction becomes smaller towards the tip end of the protrusion. The shape of a cross section of the protrusion along the direction orthogonal to the axial direction is circular. A part of the protrusion that connects to the top surface gradually reduces in diameter from the top surface to the tip end of the protrusion, and has a cross section along the axial direction that forms a concave curved surface.

Description

圧縮機用ピストン、圧縮機及びヒートポンプユニットPiston for compressor, compressor and heat pump unit
 本開示は、圧縮機用ピストン、圧縮機及びヒートポンプユニットに関する。 The present disclosure relates to a piston for a compressor, a compressor, and a heat pump unit.
 圧縮機は、例えば冷凍サイクルに適用され、冷媒の圧縮に用いられる。
 例えば特許文献1に記載されている圧縮機は往復動圧縮機であり、ピストンと、シリンダと、吸入室と、吐出室と、吸入弁と、吐出弁とを備えている。往復動圧縮機の運転中、クランク軸に外部から動力が供給されてピストンが往復運動すると、圧縮対象の気体は、吸入室から吸入弁を通じてシリンダ内に吸入されてから圧縮され、そして、吐出弁を通じて吐出室に吐出される。
The compressor is applied to, for example, a refrigeration cycle and is used for compressing a refrigerant.
For example, the compressor described in Patent Document 1 is a reciprocating compressor, and includes a piston, a cylinder, a suction chamber, a discharge chamber, a suction valve, and a discharge valve. During operation of the reciprocating compressor, when power is supplied to the crankshaft from the outside and the piston reciprocates, the gas to be compressed is sucked into the cylinder from the suction chamber through the suction valve, and then compressed. Through the discharge chamber.
特開2011-214463号公報JP 2011-214463 A 特開2013-36381号公報JP 2013-36381 A
 一般的に往復動圧縮機には、ピストンの頂面とシリンダとで形成される気体の圧縮室と、圧縮された気体を排出するための吐出室(排気室)と、圧縮室と排気室との連通状態を切り替えるための排気弁とが設けられる。また、往復動圧縮機には、吸入室と吸入弁がシリンダと排気室の間の部材に設けられることがあり、圧縮室と排気室とを連通させる連通孔が、前述の部材を貫通して形成されることがある。しかし、この連通孔は圧縮機にとっては死容積(隙間容積ともいう)となってしまう。そのままでは排出されずに残った圧縮ガスが、吸入工程時に再膨張するため、その分の吸入ガス量が低下し、さらに再圧縮動力が必要となる再膨張・再圧縮損失が生じるため、断熱効率を低下させることになる。
 そこで、特許文献2に記載された圧縮機のように、ピストンの頂面に突部を設け、ピストンが上死点に近づくと突部が連通孔に挿入されるようにすることで、死容積を低減させて、成績係数を向上させることが考えられる。
 しかし、突部を適切な形状にしないと圧縮抵抗が増加し、圧縮機の駆動動力が増加してしまう。
 圧縮機の断熱効率は、体積効率に比例し、駆動動力に反比例するため、吸入ガス量が増加しても圧縮機の駆動動力が増加してしまうと断熱効率が低下するおそれがある。
In general, a reciprocating compressor includes a gas compression chamber formed by a top surface of a piston and a cylinder, a discharge chamber (exhaust chamber) for discharging compressed gas, a compression chamber and an exhaust chamber. And an exhaust valve for switching the communication state. Further, in a reciprocating compressor, a suction chamber and a suction valve may be provided in a member between a cylinder and an exhaust chamber, and a communication hole that communicates the compression chamber and the exhaust chamber passes through the above-described member. Sometimes formed. However, this communication hole becomes a dead volume (also referred to as a gap volume) for the compressor. Since the compressed gas remaining without being discharged as it is is re-expanded during the intake process, the amount of intake gas is reduced, and re-expansion / re-compression loss that requires re-compression power is generated. Will be reduced.
Therefore, like the compressor described in Patent Document 2, a dead volume is provided by providing a protrusion on the top surface of the piston so that the protrusion is inserted into the communication hole when the piston approaches the top dead center. To improve the coefficient of performance.
However, if the protrusion is not made into an appropriate shape, the compression resistance increases and the driving power of the compressor increases.
Since the adiabatic efficiency of the compressor is proportional to the volumetric efficiency and inversely proportional to the driving power, the adiabatic efficiency may decrease if the driving power of the compressor increases even if the intake gas amount increases.
 上述の事情に鑑みて、本発明の少なくとも一実施形態は、死容積を少なくし断熱効率の低下を抑制できる圧縮機用ピストン、圧縮機及びヒートポンプユニットを提供することを目的とする。 In view of the above-described circumstances, at least one embodiment of the present invention aims to provide a piston for a compressor, a compressor, and a heat pump unit that can reduce dead volume and suppress a decrease in heat insulation efficiency.
(1)少なくとも一実施形態に係る圧縮機用ピストンは、
 シリンダとともに気体を圧縮する圧縮室を形成する頂面を有するピストン本体部と、
 前記ピストン本体部の軸方向に沿って前記頂面から突出するように設けられる突部と、
を備え、
 前記突部は、
  前記軸方向と直交する方向の寸法が前記突部の先端に向かうにつれて小さくなるように形成され、
  前記軸方向と直交する方向に沿った断面形状が円形であり、
 前記突部のうち前記頂面への接続部は、前記頂面から前記突部の先端に向かって徐々に縮径して前記軸方向に沿った断面が凹状の曲面となる。
(1) The compressor piston according to at least one embodiment,
A piston body having a top surface forming a compression chamber for compressing gas together with the cylinder;
A protrusion provided so as to protrude from the top surface along the axial direction of the piston main body;
With
The protrusion is
The dimension in the direction orthogonal to the axial direction is formed so as to decrease toward the tip of the protrusion,
The cross-sectional shape along the direction orthogonal to the axial direction is circular,
Of the projections, the connection portion to the top surface gradually decreases in diameter from the top surface toward the tip of the projection, and the cross section along the axial direction becomes a concave curved surface.
 上記(1)の構成の圧縮機用ピストンを圧縮機に用いることで死容積を最適化して断熱効率の低下を抑制できる。すなわち、上述したように、一般的に往復動圧縮機には、気体の圧縮室と、圧縮された気体を排出するための排気室と、圧縮室と排気室との連通状態を切り替えるための排気弁とが設けられる。また、往復動圧縮機には、排気弁が取り付けられる部材に圧縮室と排気室とを連通させる連通孔が形成されることがある。
 上記(1)の構成の圧縮機用ピストンを、このような往復動圧縮機に用いた場合、圧縮機のシリンダ内で圧縮機用ピストンが上死点側に移動したとき、連通孔に突部が侵入することで、死容積を低減して再膨張ガス分を減少できる。また、以下で説明するように、圧縮抵抗を抑制して圧縮機の駆動動力を低減できるので、断熱効率の低下を抑制できる。
By using the compressor piston having the configuration (1) for the compressor, it is possible to optimize a dead volume and suppress a decrease in heat insulation efficiency. That is, as described above, in general, a reciprocating compressor includes a gas compression chamber, an exhaust chamber for discharging compressed gas, and an exhaust for switching the communication state between the compression chamber and the exhaust chamber. And a valve. Further, in the reciprocating compressor, a communication hole that communicates the compression chamber and the exhaust chamber may be formed in a member to which the exhaust valve is attached.
When the compressor piston having the configuration (1) is used in such a reciprocating compressor, when the compressor piston moves to the top dead center side in the cylinder of the compressor, a protrusion is formed in the communication hole. By intruding, the dead volume can be reduced and the re-expanded gas component can be reduced. Further, as will be described below, the compression resistance can be suppressed and the driving power of the compressor can be reduced, so that a decrease in heat insulation efficiency can be suppressed.
 すなわち、上記(1)の構成の圧縮機用ピストンを、上述した往復動圧縮機に用いた場合、圧縮機用ピストンで圧縮された気体は連通孔を流れる。突部が連通孔に侵入した後は、圧縮機用ピストンで圧縮された気体は連通孔と突部との間を流れる。そのため、突部が連通孔に侵入した後は、連通孔における気体の流路の断面積が突部の断面積の分だけ減少する。 That is, when the compressor piston having the configuration (1) is used in the above-described reciprocating compressor, the gas compressed by the compressor piston flows through the communication hole. After the protrusion has entered the communication hole, the gas compressed by the compressor piston flows between the communication hole and the protrusion. Therefore, after the protrusion enters the communication hole, the cross-sectional area of the gas flow path in the communication hole decreases by the cross-sectional area of the protrusion.
 しかし、上記(1)の構成によれば、突部の軸方向と直交する方向の寸法が突部の先端に向かうにつれて小さくなるので、連通孔に侵入した突部と連通孔の内壁面との間に形成される隙間は圧縮室から排気室に向かって広がる。このため、突部が連通孔に侵入し始めた際の気体の流路断面積の変化を緩和でき、圧縮室内の気体の排出が不十分となって過圧縮が生じることを抑制できる。また、突部が連通孔に侵入し始めてからピストンが上死点に到達するまでの期間において、突部と連通孔の内壁面との間の隙間を介して圧縮室から排気室に向かう気体の流れが阻害されにくくなる。よって、圧縮抵抗を抑制して圧縮機の駆動動力を低減でき、断熱効率の低下を抑制できる。また、圧縮機の騒音や振動を抑制できる。
 さらに、突部の軸方向と直交する方向の寸法が突部の先端に向かうにつれて小さくなっているが、圧縮機用ピストンを鋳造で製造する場合に設定される抜き勾配を兼ねて突部の形状を設定すれば、鋳造後の突部の機械加工を省略でき、製造コストを低減できる。
However, according to the configuration of the above (1), the dimension in the direction orthogonal to the axial direction of the protrusion becomes smaller toward the tip of the protrusion, so that the protrusion entering the communication hole and the inner wall surface of the communication hole A gap formed between the gaps extends from the compression chamber toward the exhaust chamber. For this reason, the change of the gas flow path cross-sectional area when the protrusion starts to enter the communication hole can be mitigated, and the occurrence of overcompression due to insufficient discharge of the gas in the compression chamber can be suppressed. In addition, during the period from when the protrusion starts to enter the communication hole until the piston reaches the top dead center, the gas flowing from the compression chamber to the exhaust chamber via the gap between the protrusion and the inner wall surface of the communication hole. The flow is less likely to be disturbed. Therefore, the compression resistance can be suppressed, the driving power of the compressor can be reduced, and a decrease in heat insulation efficiency can be suppressed. Moreover, the noise and vibration of the compressor can be suppressed.
Furthermore, although the dimension in the direction orthogonal to the axial direction of the protrusion decreases toward the tip of the protrusion, the shape of the protrusion also serves as a draft when the compressor piston is manufactured by casting. If this is set, machining of the protrusion after casting can be omitted, and the manufacturing cost can be reduced.
 上記(1)の構成によれば、突部は、軸方向と直交する方向に沿った断面形状が円形である。
 上述した往復動圧縮機では、一般的には、連通孔は、シリンダの軸方向、すなわちピストン本体部の軸方向と直交する方向に沿った断面形状が円形である。したがって、上記(1)の構成によれば、突部の軸方向と直交する方向に沿った断面形状が連通孔の断面形状と同様の形状となるので、死容積を効率よく低減できる。これにより、再膨張ガス分を減少できる。
According to the configuration of (1) above, the protrusion has a circular cross-sectional shape along the direction orthogonal to the axial direction.
In the above-described reciprocating compressor, generally, the communication hole has a circular cross-sectional shape along the axial direction of the cylinder, that is, the direction orthogonal to the axial direction of the piston main body. Therefore, according to the configuration of (1) above, since the cross-sectional shape along the direction orthogonal to the axial direction of the protrusion is the same shape as the cross-sectional shape of the communication hole, the dead volume can be efficiently reduced. Thereby, the re-expanded gas component can be reduced.
 上記(1)の構成によれば、突部のうち頂面への接続部は、頂面から突部の先端に向かって徐々に縮径して軸方向に沿った断面が凹状の曲面となる。 According to the configuration of (1) above, the connection portion to the top surface of the protrusions is gradually reduced in diameter from the top surface toward the tip of the protrusion, and the cross section along the axial direction becomes a concave curved surface. .
 したがって、上記(1)の構成の圧縮機用ピストンを圧縮機に用いることで圧縮機の再膨張ガス分の再圧縮動力を低減でき、省エネ化が図れる他、圧縮機の騒音や振動を抑制できる。すなわち、上記(1)の構成の圧縮機用ピストンを、上述した往復動圧縮機に用いた場合、シリンダ内から連通孔と突部との間に向かって流れる気体のうち、連通孔と突部との間に向かってシリンダ内を半径方向内側に流れる気体は、突部のうち頂面への接続部に沿って案内されることで流れの方向を半径方向から軸方向へとスムーズに変更できる。
 これにより、シリンダから排出される気体の流路抵抗を低減できるので、圧縮抵抗を抑制して圧縮機の駆動動力を低減でき、断熱効率の低下を抑制できる。また、圧縮機の騒音や振動を抑制できる。
Therefore, by using the compressor piston having the configuration (1) as a compressor, the recompression power for the re-expanded gas of the compressor can be reduced, energy saving can be achieved, and noise and vibration of the compressor can be suppressed. . That is, when the compressor piston having the above-described configuration (1) is used in the above-described reciprocating compressor, among the gases flowing from the cylinder toward the communication hole and the projection, the communication hole and the projection. The gas flowing inward in the cylinder toward the inside of the cylinder can be smoothly changed from the radial direction to the axial direction by being guided along the connecting portion to the top surface of the protrusion. .
Thereby, since the flow-path resistance of the gas discharged | emitted from a cylinder can be reduced, compression resistance can be suppressed and the driving power of a compressor can be reduced, and the fall of heat insulation efficiency can be suppressed. Moreover, the noise and vibration of the compressor can be suppressed.
(2)少なくとも一実施形態に係る圧縮機は、
 上死点と下死点との間を移動して気体を圧縮するように構成された上記(1)の構成の圧縮機用ピストンと、
 前記圧縮機用ピストンの前記頂面とともに前記圧縮室を形成するシリンダと、
 前記圧縮機用ピストンにより圧縮された気体を排出するための排気室と前記圧縮室との連通状態を切り替えるための排気弁と、
 前記圧縮室と前記排気室とを連通させる連通孔が形成されるとともに、前記排気弁の閉弁時に前記排気弁が当接可能な弁座を含む弁座形成部材と、を備え、
 前記圧縮機用ピストンは、前記上死点において、該圧縮機用ピストンの前記突部の少なくとも先端が前記弁座形成部材の前記連通孔に侵入するように構成された。
(2) The compressor according to at least one embodiment is:
A compressor piston configured as described in (1) above, configured to move between a top dead center and a bottom dead center to compress gas;
A cylinder forming the compression chamber together with the top surface of the compressor piston;
An exhaust valve for switching the communication state between the exhaust chamber for discharging the gas compressed by the compressor piston and the compression chamber;
A valve seat forming member including a valve seat that is formed with a communication hole that allows the compression chamber and the exhaust chamber to communicate with each other and that can contact the exhaust valve when the exhaust valve is closed;
The compressor piston is configured such that at the top dead center, at least the tip of the protrusion of the compressor piston enters the communication hole of the valve seat forming member.
 上記(2)の構成によれば、再膨張ガス分を減少でき、圧縮抵抗を抑制して圧縮機の駆動動力を低減でき、断熱効率の低下を抑制できる。また、圧縮機の騒音や振動を抑制できる。 According to the configuration of (2) above, the re-expanded gas component can be reduced, the compression resistance can be suppressed and the driving power of the compressor can be reduced, and the reduction in heat insulation efficiency can be suppressed. Moreover, the noise and vibration of the compressor can be suppressed.
(3)幾つかの実施形態では、上記(2)の構成において、
 前記圧縮機用ピストンが上死点に位置するときにおける、前記弁座形成部材の前記圧縮室側の表面における前記連通孔の開口縁と、前記突部の側面との隙間が最小間隙であり、
 前記突部の前記側面と前記連通孔の内壁面との間の隙間の大きさは、前記突部の前記先端に近づくにつれて前記最小間隙から単調増加する。
(3) In some embodiments, in the configuration of (2) above,
When the compressor piston is located at the top dead center, the gap between the opening edge of the communication hole on the compression chamber side surface of the valve seat forming member and the side surface of the protrusion is the minimum gap,
The size of the gap between the side surface of the protrusion and the inner wall surface of the communication hole increases monotonously from the minimum gap as it approaches the tip of the protrusion.
 上記(3)の構成によれば、圧縮機用ピストンが上死点に位置するときにおける、弁座形成部材の圧縮室側の表面における連通孔の開口縁と、突部の側面との隙間が最小間隙となるので、圧縮機用ピストンが上死点から下死点に向かって移動を開始すると、該隙間を境に、該隙間よりも排気室側にある連通孔内の領域と圧縮室とで圧力差が生じる。すなわち、圧縮機用ピストンが上死点から下死点に向かって移動を開始すると、該隙間よりも排気室側にある連通孔内の領域よりも圧縮室内の圧力が低くなるので、吸気弁の開弁時期を早めることができる。 According to the configuration of (3) above, the gap between the opening edge of the communication hole on the compression chamber side surface of the valve seat forming member and the side surface of the projection when the compressor piston is located at the top dead center is provided. When the compressor piston starts moving from the top dead center to the bottom dead center, the region in the communication hole on the exhaust chamber side of the gap and the compression chamber A pressure difference occurs. That is, when the compressor piston starts moving from the top dead center toward the bottom dead center, the pressure in the compression chamber becomes lower than the area in the communication hole on the exhaust chamber side with respect to the gap. The valve opening time can be advanced.
(4)幾つかの実施形態では、上記(3)の構成において、前記突部の前記先端が前記弁座形成部材の前記圧縮室側の表面における前記連通孔の開口縁に到達した第1時点から、前記圧縮機用ピストンが前記上死点に到達する第2時点までの期間、前記連通孔の前記開口縁と前記突部の側面との間に前記側面と前記連通孔の内壁面との間の隙間が最も小さくなる環状孔端部が形成される。 (4) In some embodiments, in the configuration of (3) above, a first time point when the tip of the protrusion reaches the opening edge of the communication hole on the compression chamber side surface of the valve seat forming member. Until the second time point when the compressor piston reaches the top dead center, the side surface and the inner wall surface of the communication hole are between the opening edge of the communication hole and the side surface of the protrusion. An annular hole end portion in which the gap between them is the smallest is formed.
 上記(4)の構成によれば、前記第1時点から前記第2時点までの期間、前記側面と前記連通孔の内壁面との間の隙間は、前記連通孔の前記開口縁と前記突部の側面との間が最も狭く、前記排気室側に向かうにつれて広くなる。したがって、前記第1時点から前記第2時点までの期間、前記側面と前記連通孔の内壁面との間の隙間の気体が前記排気室側に向かって流れやすくなる。これにより、圧縮された気体を効率的に排気できるので、再膨張ガス分を減少でき圧縮抵抗を抑制して圧縮機の駆動動力を低減でき、断熱効率の低下を抑制できる。 According to the configuration of (4) above, during the period from the first time point to the second time point, the gap between the side surface and the inner wall surface of the communication hole is the opening edge of the communication hole and the protrusion. The space between the side surfaces of the exhaust chamber is the narrowest and becomes wider toward the exhaust chamber side. Therefore, during the period from the first time point to the second time point, the gas in the gap between the side surface and the inner wall surface of the communication hole is likely to flow toward the exhaust chamber side. Thereby, since the compressed gas can be efficiently exhausted, the re-expanded gas component can be reduced, the compression resistance can be suppressed, the driving power of the compressor can be reduced, and the decrease in the heat insulation efficiency can be suppressed.
(5)幾つかの実施形態では、上記(2)乃至(4)の何れかの構成において、前記突部の前記軸方向の寸法の75%だけ前記先端から前記頂面側に向かった位置における前記突部の外径は、前記弁座形成部材の前記圧縮室側の表面における前記連通孔の内径の60%以上80%以下の範囲内である。 (5) In some embodiments, in any one of the above configurations (2) to (4), at a position facing the top surface from the tip by 75% of the axial dimension of the protrusion. The outer diameter of the protrusion is in the range of 60% to 80% of the inner diameter of the communication hole on the compression chamber side surface of the valve seat forming member.
 突部の外径が大きくなるほど死容積を低減することができる。しかし、突部の外径が大きくなるほど、突部と連通孔の内壁面との間の隙間が小さくなり、圧縮室から排気室に向かう気体の流れに影響を及ぼす。そのため、圧縮抵抗が増加し、圧縮機の駆動動力が増加するおそれがある。
 しかし、上記(5)の構成によれば、突部と連通孔の内壁面との間の隙間を介して圧縮室から排気室に向かう気体の流れに及ぼす影響を抑制しつつ、死容積を効果的に低減できるので、断熱効率の低下を抑制できる。
The dead volume can be reduced as the outer diameter of the protrusion increases. However, the larger the outer diameter of the protrusion, the smaller the gap between the protrusion and the inner wall surface of the communication hole, affecting the gas flow from the compression chamber to the exhaust chamber. Therefore, there is a possibility that the compression resistance increases and the driving power of the compressor increases.
However, according to the configuration of the above (5), the dead volume is effectively suppressed while suppressing the influence on the gas flow from the compression chamber to the exhaust chamber via the gap between the protrusion and the inner wall surface of the communication hole. Therefore, a decrease in heat insulation efficiency can be suppressed.
(6)少なくとも一実施形態に係るヒートポンプユニットは、
 上記(2)乃至(5)何れかの構成の圧縮機と、
 前記圧縮機で圧縮された気体と熱交換を行うための熱交換器を有する熱交換ユニットと、
 ヒートポンプサイクル構成機器と、
 を備える。
(6) The heat pump unit according to at least one embodiment is:
A compressor having any one of the above configurations (2) to (5);
A heat exchange unit having a heat exchanger for exchanging heat with the gas compressed by the compressor;
Heat pump cycle components,
Is provided.
 上記(6)の構成によれば、断熱効率の低下を抑制できる。これにより、ヒートポンプユニットの省エネ化を図れる。 According to the configuration of (6) above, it is possible to suppress a decrease in heat insulation efficiency. Thereby, energy saving of a heat pump unit can be achieved.
 本発明の少なくとも一実施形態によれば、断熱効率の低下を抑制できる。 According to at least one embodiment of the present invention, a decrease in heat insulation efficiency can be suppressed.
一実施形態に係る圧縮機を備えるヒートポンプユニットの内部構造を模式的に示す斜視図である。It is a perspective view showing typically an internal structure of a heat pump unit provided with a compressor concerning one embodiment. 一実施形態に係るヒートポンプユニットの全体構成を示す図である。It is a figure showing the whole heat pump unit composition concerning one embodiment. 一実施形態の圧縮機の構造を模式的に示す断面図である。It is sectional drawing which shows the structure of the compressor of one Embodiment typically. バルブプレートを圧縮室側から見た図である。It is the figure which looked at the valve plate from the compression chamber side. 一実施形態のピストンの斜視図である。It is a perspective view of the piston of one embodiment. 圧縮室及び排気室の近傍を示す断面図であり、ピストンが上死点に向かって移動して、突部の先端が連通孔に侵入し始めた状態を示す。It is sectional drawing which shows the vicinity of a compression chamber and an exhaust chamber, and shows the state which the piston moved toward the top dead center and the front-end | tip of the protrusion started to penetrate into a communicating hole. 圧縮室及び排気室の近傍を示す断面図であり、ピストンが上死点に到達した状態を示す。It is sectional drawing which shows the vicinity of a compression chamber and an exhaust chamber, and shows the state which the piston reached | attained a top dead center. 発明者らが行った実験結果について説明する図であり、(a)は、発明者らが行った実験結果を表すグラフであり、(b)は、突部の寸法hの75%(0.75h)だけ突部が連通孔に侵入した状態を模式的に示す図である。It is a figure explaining the experimental result which the inventors performed, (a) is a graph showing the experimental result which the inventors performed, (b) is 75% (0. It is a figure which shows typically the state which the protrusion penetrate | invaded into the communicating hole only for 75h).
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載され又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状、円柱形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状、円柱形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとし、同じ効果が得られる範囲で、例えば円筒形状や円柱形状等の側面が錐状となる形状も表すものとする。
 一方、一つの構成要素を「備える」、「具える」、「具備する」、「含む」、又は「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in the embodiments or shown in the drawings are not intended to limit the scope of the present invention, but are merely illustrative examples.
For example, expressions expressing relative or absolute arrangements such as “in a certain direction”, “along a certain direction”, “parallel”, “orthogonal”, “center”, “concentric” or “coaxial” are strictly In addition to such an arrangement, it is also possible to represent a state of relative displacement with an angle or a distance such that tolerance or the same function can be obtained.
For example, an expression indicating that things such as “identical”, “equal”, and “homogeneous” are in an equal state not only represents an exactly equal state, but also has a tolerance or a difference that can provide the same function. It also represents the existing state.
For example, expressions that represent shapes such as quadrangular shapes, cylindrical shapes, and columnar shapes not only represent geometrically strict shapes such as quadrangular shapes, cylindrical shapes, and columnar shapes, but are within the same range In addition, the shape including the uneven portion, the chamfered portion, and the like is also expressed, and in the range where the same effect can be obtained, for example, a shape such as a cylindrical shape or a columnar shape having a conical shape is also expressed.
On the other hand, the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one constituent element are not exclusive expressions for excluding the existence of other constituent elements.
 以下の説明では、初めに図1を参照して、一実施形態に係るヒートポンプユニットの構造について説明し、次いで、図2を参照して、一実施形態に係るヒートポンプユニットにおけるヒートポンプサイクル構成機器について説明する。その後、図3を参照して、一実施形態に係るヒートポンプユニットが有する圧縮機の構造について説明する。
 図1は、一実施形態に係る圧縮機を備えるヒートポンプユニットの内部構造を模式的に示す斜視図である。一実施形態に係るヒートポンプユニット50は、略直方体形状を呈する箱型ケーシング100と、熱交換ユニット30と、ヒートポンプサイクル構成機器52とを備える。
In the following description, the structure of the heat pump unit according to the embodiment will be described first with reference to FIG. 1, and then the heat pump cycle constituent device in the heat pump unit according to the embodiment will be described with reference to FIG. 2. To do. Then, with reference to FIG. 3, the structure of the compressor which the heat pump unit which concerns on one Embodiment has is demonstrated.
FIG. 1 is a perspective view schematically showing an internal structure of a heat pump unit including a compressor according to an embodiment. The heat pump unit 50 according to the embodiment includes a box-shaped casing 100 having a substantially rectangular parallelepiped shape, a heat exchange unit 30, and a heat pump cycle component device 52.
 箱型ケーシング100は、略矩形形状のベースプレート51の上部に設けられている。一実施形態では、箱型ケーシング100の正面100a及び背面100bの上部領域に空気取込口111が形成され、箱型ケーシング100の上面に空気流出口112が形成される。
 一実施形態に係る熱交換ユニット30は、箱型ケーシング100内に設けられたファン34とパネル状熱交換器36とを備える。具体的には、一実施形態では、箱型ケーシング100の内部に上下方向に沿って設けられた一対のパネル状熱交換器36が互いに向かい合わせて配置されている。そして、一対のパネル状熱交換器36に空気を通過させるファン34が一対のパネル状熱交換器36の上方に配置されている。一対のパネル状熱交換器36は2つの空気取込口111に対面して設けられると共に、一対のパネル状熱交換器36の間隔は下方に向かうにつれて小さくなるようにV字形に配置される。
 ファン34が稼働することで、箱型ケーシング100の内部には正面100a及び背面100bに設けられた空気取込口111から流入し、一対のパネル状熱交換器36を通り抜け、空気流出口112に至る空気流aが形成される。
The box-shaped casing 100 is provided on an upper portion of a substantially rectangular base plate 51. In one embodiment, the air intake port 111 is formed in the upper region of the front surface 100 a and the back surface 100 b of the box type casing 100, and the air outlet port 112 is formed on the upper surface of the box type casing 100.
The heat exchange unit 30 according to an embodiment includes a fan 34 and a panel heat exchanger 36 provided in the box-type casing 100. Specifically, in one embodiment, a pair of panel heat exchangers 36 provided in the box casing 100 along the vertical direction are arranged facing each other. A fan 34 that allows air to pass through the pair of panel heat exchangers 36 is disposed above the pair of panel heat exchangers 36. The pair of panel-like heat exchangers 36 are provided so as to face the two air intake ports 111, and are arranged in a V shape so that the distance between the pair of panel-like heat exchangers 36 decreases toward the bottom.
As the fan 34 operates, the air flows into the box-shaped casing 100 from the air intake ports 111 provided on the front surface 100a and the back surface 100b, passes through the pair of panel heat exchangers 36, and enters the air outlet 112. A leading air flow a is formed.
 図2は、一実施形態に係るヒートポンプユニット50の全体構成を示す図である。図2に示すように、ヒートポンプサイクル構成機器52は、圧縮機200と、ガスクーラ58と、内部熱交換器64と、パネル状熱交換器36とを含む。
 圧縮機200で圧縮された冷媒(例えばCO)は冷媒循環路54を介してガスクーラ58へ供給され、ガスクーラ58で冷却水路60を流れる冷却水によって冷却される。冷却水路60には冷却水をガスクーラ58に送るポンプ62が設けられる。ガスクーラ58で冷却された冷媒は内部熱交換器64でパネル状熱交換器36から送られる冷媒と熱交換して冷却された後、膨張弁66を経て減圧される、その後、冷媒はパネル状熱交換器36で空気を熱源として気化する。すなわち、パネル状熱交換器36は、蒸発器としてヒートポンプサイクル構成機器52に組み込まれている。
 気化した冷媒は、内部熱交換器64でガスクーラ58から送られる冷媒と熱交換して加熱された後、再び圧縮機200に送られて圧縮される。
FIG. 2 is a diagram illustrating an overall configuration of the heat pump unit 50 according to an embodiment. As shown in FIG. 2, the heat pump cycle component device 52 includes a compressor 200, a gas cooler 58, an internal heat exchanger 64, and a panel heat exchanger 36.
The refrigerant (for example, CO 2 ) compressed by the compressor 200 is supplied to the gas cooler 58 through the refrigerant circulation path 54 and is cooled by the cooling water flowing through the cooling water path 60 by the gas cooler 58. The cooling water channel 60 is provided with a pump 62 that sends the cooling water to the gas cooler 58. The refrigerant cooled by the gas cooler 58 is cooled by exchanging heat with the refrigerant sent from the panel heat exchanger 36 by the internal heat exchanger 64 and then depressurized via the expansion valve 66. Thereafter, the refrigerant is heated by the panel heat. The exchanger 36 vaporizes air as a heat source. That is, the panel heat exchanger 36 is incorporated in the heat pump cycle constituent device 52 as an evaporator.
The vaporized refrigerant is heated by exchanging heat with the refrigerant sent from the gas cooler 58 by the internal heat exchanger 64 and then sent again to the compressor 200 to be compressed.
 冷媒循環路54には、ガスクーラ58の下流側で冷媒循環路54から分岐し、膨張弁66の下流側で冷媒循環路54に接続されるバイパス路68が接続されている。バイパス路68には冷媒タンク70が設けられ、冷媒タンク70の上流側及び下流側に電磁弁72及び74が設けられている。冷媒循環路54の冷媒の一部を冷媒タンク70に貯留し、あるいは冷媒タンク70に貯留された冷媒を冷媒循環路54に戻すことで、冷媒循環路54を流れる冷媒量を調整できる。
 一実施形態のヒートポンプユニット50では、ガスクーラ58で加熱された温水を熱源として需要先に供給できる。
A bypass path 68 that branches from the refrigerant circulation path 54 on the downstream side of the gas cooler 58 and is connected to the refrigerant circulation path 54 on the downstream side of the expansion valve 66 is connected to the refrigerant circulation path 54. A refrigerant tank 70 is provided in the bypass path 68, and electromagnetic valves 72 and 74 are provided on the upstream side and the downstream side of the refrigerant tank 70. A part of the refrigerant in the refrigerant circulation path 54 is stored in the refrigerant tank 70, or the refrigerant stored in the refrigerant tank 70 is returned to the refrigerant circulation path 54, whereby the amount of refrigerant flowing through the refrigerant circulation path 54 can be adjusted.
In the heat pump unit 50 of one embodiment, the hot water heated by the gas cooler 58 can be supplied to a customer as a heat source.
 一実施形態に係るヒートポンプユニット50は、図1に示すように、箱型ケーシング100の内部の上部領域に熱交換ユニット30が設けられ、箱型ケーシング100の内部の下部領域に、圧縮機200、ガスクーラ58等のヒートポンプサイクル構成機器52が設けられる。圧縮機200、ガスクーラ58、及び冷媒タンク70等のヒートポンプサイクル構成機器52は、ベースプレート51上に固定されている。 As shown in FIG. 1, the heat pump unit 50 according to an embodiment includes a heat exchange unit 30 in an upper region inside the box-shaped casing 100, and a compressor 200, in a lower region inside the box-shaped casing 100. A heat pump cycle component 52 such as a gas cooler 58 is provided. The heat pump cycle components 52 such as the compressor 200, the gas cooler 58, and the refrigerant tank 70 are fixed on the base plate 51.
 図3は、一実施形態の圧縮機200の構造を模式的に示す断面図である。
 一実施形態の圧縮機200は往復動圧縮機であり、ケーシング210と、シリンダ220と、ピストン230と、クランク軸241と、連接棒242と、バルブプレート250と、ヘッドカバー260とを備えている。図3に示した圧縮機200では、シリンダ220及びピストン230が1組描かれているが、圧縮機200は単気筒型の往復動圧縮機であってもよく、多気筒型の往復動圧縮機であってもよい。なお、説明の便宜上、図3を参照した以下の説明において、シリンダ220の延在方向が紙面の上下方向に沿っているものと仮定し、紙面上下方向を参照して各部の上下関係を説明する。
FIG. 3 is a cross-sectional view schematically showing the structure of the compressor 200 according to one embodiment.
The compressor 200 of one embodiment is a reciprocating compressor, and includes a casing 210, a cylinder 220, a piston 230, a crankshaft 241, a connecting rod 242, a valve plate 250, and a head cover 260. In the compressor 200 shown in FIG. 3, one set of the cylinder 220 and the piston 230 is depicted, but the compressor 200 may be a single-cylinder reciprocating compressor, or a multi-cylinder reciprocating compressor. It may be. For convenience of explanation, in the following description with reference to FIG. 3, it is assumed that the extending direction of the cylinder 220 is along the vertical direction of the paper surface, and the vertical relationship of each part will be described with reference to the vertical direction of the paper surface. .
(ケーシング210)
 一実施形態では、ケーシング210の内部にはクランク室211と、吸気室212とが設けられている。クランク室211にはクランク軸241が回転可能に軸支されている。吸気室212には冷媒循環路54が接続されており、冷媒循環路54から冷媒が流入する。
 クランク室211の上方には、シリンダ220が上下方向に沿って延在するように配置されている。シリンダ220内には、ピストン230が摺動可能に挿入されている。ピストン230は連接棒242によってクランク軸241と連結されている。なお、図3では、ピストン230に装着されるピストンリング等の記載を省略している。ピストン230の頂面232とシリンダ220の内周面とによって冷媒を圧縮する圧縮室221が形成される。
(Casing 210)
In one embodiment, a crank chamber 211 and an intake chamber 212 are provided inside the casing 210. A crankshaft 241 is rotatably supported in the crank chamber 211. A refrigerant circulation path 54 is connected to the intake chamber 212, and the refrigerant flows from the refrigerant circulation path 54.
Above the crank chamber 211, the cylinder 220 is disposed so as to extend in the vertical direction. A piston 230 is slidably inserted into the cylinder 220. Piston 230 is connected to crankshaft 241 by connecting rod 242. In FIG. 3, the description of the piston ring and the like attached to the piston 230 is omitted. A compression chamber 221 for compressing the refrigerant is formed by the top surface 232 of the piston 230 and the inner peripheral surface of the cylinder 220.
 一実施形態では、ケーシング210の上面にはバルブプレート250が取り付けられ、バルブプレート250の上部にヘッドカバー260が取り付けられている。一実施形態の圧縮機200には、バルブプレート250の上面とヘッドカバー260の内壁面とで囲まれた排気室261が形成されている。排気室261には、冷媒循環路54が接続されており、圧縮室221で圧縮された冷媒が冷媒循環路54へ流出する。 In one embodiment, the valve plate 250 is attached to the upper surface of the casing 210, and the head cover 260 is attached to the upper part of the valve plate 250. In the compressor 200 of one embodiment, an exhaust chamber 261 surrounded by the upper surface of the valve plate 250 and the inner wall surface of the head cover 260 is formed. A refrigerant circulation path 54 is connected to the exhaust chamber 261, and the refrigerant compressed in the compression chamber 221 flows out to the refrigerant circulation path 54.
(バルブプレート250)
 一実施形態のバルブプレート250には、吸気通路251と、連通孔252と、排気弁座253とが形成されている。吸気通路251は、バルブプレート250の内部に設けられた冷媒の流路であり、吸気室212と圧縮室221とを接続する。すなわち、吸気通路251は、上流側の開口が吸気室212に接続され、下流側の開口251aが吸気弁254を介して圧縮室221と接続されている。
(Valve plate 250)
In the valve plate 250 of one embodiment, an intake passage 251, a communication hole 252, and an exhaust valve seat 253 are formed. The intake passage 251 is a refrigerant flow path provided inside the valve plate 250 and connects the intake chamber 212 and the compression chamber 221. That is, the intake passage 251 has an upstream opening connected to the intake chamber 212 and a downstream opening 251 a connected to the compression chamber 221 via the intake valve 254.
 連通孔252は、シリンダ220の延在方向と同じ方向に延在して圧縮室221と排気室261とを接続する冷媒の流路であり、円形断面を有する。一実施形態では、連通孔252の内径は、軸方向の位置にかかわらず一定である。一実施形態では、連通孔252の中心軸は、シリンダ220の中心軸、すなわちピストン230の中心軸と一致している。バルブプレート250の圧縮室221側の表面における連通孔252の開口縁252aは、圧縮室221に面している。
 連通孔252の排気室261側の端部には、排気室261と圧縮室221との連通状態を切り替えるための排気弁255が設けられている。排気弁255は、バルブプレート250に対して、連通孔252の中心軸に沿って移動可能に取り付けられており、不図示のバネによって圧縮室221側に向かって付勢されて、圧縮室221側の面が排気弁座253に当接している。
The communication hole 252 is a refrigerant flow path that extends in the same direction as the cylinder 220 and connects the compression chamber 221 and the exhaust chamber 261, and has a circular cross section. In one embodiment, the inner diameter of the communication hole 252 is constant regardless of the axial position. In one embodiment, the central axis of the communication hole 252 coincides with the central axis of the cylinder 220, that is, the central axis of the piston 230. An opening edge 252 a of the communication hole 252 on the surface of the valve plate 250 on the compression chamber 221 side faces the compression chamber 221.
An exhaust valve 255 for switching the communication state between the exhaust chamber 261 and the compression chamber 221 is provided at the end of the communication hole 252 on the exhaust chamber 261 side. The exhaust valve 255 is attached to the valve plate 250 so as to be movable along the central axis of the communication hole 252 and is urged toward the compression chamber 221 by a spring (not shown), Is in contact with the exhaust valve seat 253.
 排気弁座253は、上述したように排気弁255が当接する弁座であり、バルブプレート250の排気室261側の表面において、排気室261側から見て円形形状を呈する連通孔252の周囲に形成されている。すなわち、一実施形態のバルブプレート250は弁座形成部材である。 The exhaust valve seat 253 is a valve seat with which the exhaust valve 255 abuts as described above, and on the surface of the valve plate 250 on the exhaust chamber 261 side, around the communication hole 252 having a circular shape when viewed from the exhaust chamber 261 side. Is formed. That is, the valve plate 250 of one embodiment is a valve seat forming member.
 排気弁255は、不図示のバネの付勢力でバルブプレート250の排気弁座253に当接することで連通孔252の排気室261側の端部の開口を閉鎖し、圧縮室221の圧力が上昇すると、不図示のバネの付勢力に抗して排気室261側へ移動して排気弁座253から離間することで連通孔252の排気室261側の端部の開口を開放する。 The exhaust valve 255 abuts the exhaust valve seat 253 of the valve plate 250 by the biasing force of a spring (not shown) to close the opening at the end of the communication hole 252 on the exhaust chamber 261 side, and the pressure in the compression chamber 221 increases. Then, it moves to the exhaust chamber 261 side against the urging force of a spring (not shown) and is separated from the exhaust valve seat 253 to open the opening at the end of the communication hole 252 on the exhaust chamber 261 side.
 図4は、バルブプレート250を圧縮室221側から見た図である。図4において、二点鎖線で示した円は、シリンダ220の内周面220aの位置を表している。また、図4では、吸気弁254の記載を省略している。
 図4に示すように、一実施形態のバルブプレート250では、シリンダ220と同軸となるように連通孔252が配置されている。また、一実施形態のバルブプレート250では、吸気通路251の下流側の開口251aが連通孔252の開口縁252aの周囲に設けられている。一実施形態では、開口251aは、円形形状を呈する開口縁252aと同軸の円周方向に沿って延在する長孔形状を呈している。一実施形態では、開口縁252aの周囲に3つの開口251aが円周方向に沿って略等間隔で設けられているが、開口251aの数は3に限らない。
FIG. 4 is a view of the valve plate 250 as seen from the compression chamber 221 side. In FIG. 4, a circle indicated by a two-dot chain line represents the position of the inner peripheral surface 220 a of the cylinder 220. Further, in FIG. 4, the description of the intake valve 254 is omitted.
As shown in FIG. 4, in the valve plate 250 of one embodiment, a communication hole 252 is arranged so as to be coaxial with the cylinder 220. In the valve plate 250 of one embodiment, the opening 251 a on the downstream side of the intake passage 251 is provided around the opening edge 252 a of the communication hole 252. In one embodiment, the opening 251a has a long hole shape extending along a circumferential direction coaxial with the opening edge 252a having a circular shape. In one embodiment, the three openings 251a are provided at substantially equal intervals along the circumferential direction around the opening edge 252a, but the number of openings 251a is not limited to three.
(ピストン230)
 図5は、一実施形態のピストン230の斜視図である。一実施形態のピストン230は、有蓋円筒状に形成されたピストン本体部231と、ピストン本体部231の軸AX方向に沿ってピストン本体部231の頂面232から突出するように設けられる突部233とを有する。ピストン本体部231には、ピストンピン穴231aが設けられ、ピストンピン穴231aよりも頂面232側の外周にピストンリング溝231bが設けられる。ピストンピン穴231aには、連接棒242と連結するための不図示のピストンピンが挿入される。ピストンリング溝231bには、不図示のピストンリングが装着される。
(Piston 230)
FIG. 5 is a perspective view of the piston 230 of one embodiment. The piston 230 of one embodiment includes a piston main body 231 formed in a covered cylindrical shape, and a protrusion 233 provided so as to protrude from the top surface 232 of the piston main body 231 along the axis AX direction of the piston main body 231. And have. The piston main body 231 is provided with a piston pin hole 231a, and a piston ring groove 231b is provided on the outer periphery on the top surface 232 side of the piston pin hole 231a. A piston pin (not shown) for connecting to the connecting rod 242 is inserted into the piston pin hole 231a. A piston ring (not shown) is mounted in the piston ring groove 231b.
 一実施形態では、突部233は、ピストン230をシリンダ220内で下死点から上死点に向かって移動させると、バルブプレート250の連通孔252に挿入されるように形成された部位である。すなわち、ピストン230は、上死点において、突部233の少なくとも先端がバルブプレート250の連通孔252に侵入するように構成されている。
 一実施形態では、突部233は、軸AX方向に沿って延在する略円柱形状を呈する。すなわち、一実施形態では、突部233は、軸AX方向と直交する方向に沿った断面形状が円形である。一実施形態では、突部233は、軸AX方向と直交する方向の寸法、すなわち外径が突部233の先端233aに向かうにつれて小さくなるように形成されている。
In one embodiment, the protrusion 233 is a part formed so as to be inserted into the communication hole 252 of the valve plate 250 when the piston 230 is moved from the bottom dead center to the top dead center in the cylinder 220. . That is, the piston 230 is configured such that at least the tip of the protrusion 233 enters the communication hole 252 of the valve plate 250 at the top dead center.
In one embodiment, the protrusion 233 has a substantially cylindrical shape extending along the axis AX direction. That is, in one embodiment, the protrusion 233 has a circular cross-sectional shape along a direction orthogonal to the axis AX direction. In one embodiment, the protrusion 233 is formed such that the dimension in the direction orthogonal to the axis AX direction, that is, the outer diameter becomes smaller toward the tip 233a of the protrusion 233.
 一実施形態では、突部233は、側面233bが軸AX方向に沿った断面において直線状となるように形成されている。なお、突部233のうち頂面232への接続部233cは、頂面232から突部233の先端233aに向かって徐々に縮径して軸AX方向に沿った断面が凹状の曲面となる。すなわち、接続部233cは、突部233の先端233aから頂面232に向かうにつれて裾広がりとなるように形成されている。
 一実施形態では、突部233の軸AX方向に沿った長さがバルブプレート250の連通孔252の延在長さと略等しい。これにより、死容積を効率的に低減できる。しかし、例えば、一実施形態の圧縮機200に組み込まれたピストン230が上死点において突部233の先端233aが排気弁255に当接しなければ、突部233の軸AX方向に沿った長さを適宜設定してもよい。
In one embodiment, the protrusion 233 is formed such that the side surface 233b is linear in a cross section along the axis AX direction. Note that the connecting portion 233c of the protrusion 233 to the top surface 232 gradually decreases in diameter from the top surface 232 toward the tip 233a of the protrusion 233, and the cross section along the axis AX direction becomes a concave curved surface. In other words, the connection portion 233 c is formed so as to expand from the tip 233 a of the protrusion 233 toward the top surface 232.
In one embodiment, the length of the protrusion 233 along the axis AX direction is substantially equal to the extension length of the communication hole 252 of the valve plate 250. Thereby, dead volume can be reduced efficiently. However, for example, if the piston 230 incorporated in the compressor 200 of the embodiment does not contact the exhaust valve 255 at the top dead center, the length of the protrusion 233 along the axis AX direction. May be set as appropriate.
 一実施形態の圧縮機200では、次のようにして冷媒を吸入し、圧縮して排出する。
 一実施形態の圧縮機200では、ピストン230がシリンダ220内を下死点に向かって移動すると、圧縮室221の圧力が低下するので、吸気室212内の冷媒がバルブプレート250の吸気通路251及び吸気弁254を介して圧縮室221に流入する。ピストン230が上死点に向かって移動すると、圧縮室221内の冷媒が圧縮されて圧縮室221の圧力が上昇する。これにより、排気弁255が不図示のバネの付勢力に抗して排気室261側へ移動して連通孔252の排気室261側の端部の開口が開放され、圧縮された冷媒が圧縮室221から連通孔252を通過して排気室261へ排出される。
In the compressor 200 according to the embodiment, the refrigerant is sucked, compressed, and discharged as follows.
In the compressor 200 according to the embodiment, when the piston 230 moves in the cylinder 220 toward the bottom dead center, the pressure in the compression chamber 221 decreases, so that the refrigerant in the intake chamber 212 flows into the intake passage 251 and the valve plate 250. It flows into the compression chamber 221 through the intake valve 254. When the piston 230 moves toward the top dead center, the refrigerant in the compression chamber 221 is compressed and the pressure in the compression chamber 221 increases. As a result, the exhaust valve 255 moves to the exhaust chamber 261 side against the biasing force of a spring (not shown), the opening at the end of the communication hole 252 on the exhaust chamber 261 side is opened, and the compressed refrigerant is compressed into the compression chamber. 221 passes through the communication hole 252 and is discharged into the exhaust chamber 261.
 ピストン230が上死点に向かって移動すると、突部233の先端233aが連通孔252に侵入し始めるまでは、圧縮室221で圧縮された冷媒は、連通孔252の内周面内側の全体を流れる。 When the piston 230 moves toward the top dead center, the refrigerant compressed in the compression chamber 221 passes through the entire inner peripheral surface of the communication hole 252 until the tip 233a of the protrusion 233 starts to enter the communication hole 252. Flowing.
 図6は、圧縮室221及び排気室261の近傍を示す断面図であり、ピストン230が上死点に向かって移動して、突部233の先端233aが連通孔252に侵入し始めた状態を示す。
 突部233の先端233aが連通孔252に侵入し始めると、圧縮室221で圧縮された冷媒は、連通孔252の内周面と突部233の側面233bとの間の隙間を通過して排気室261へ流れる。具体的には、圧縮室221内の冷媒は、図6の矢印bで示すように、連通孔252の開口縁252aと突部233の側面233bとの間の隙間から連通孔252内に流入し、連通孔252の内周面と突部233の側面233bとの間の隙間を排気室261側に向かって流れる。突部233の先端233aよりも排気室261側では、矢印cで示すように、冷媒は連通孔252の内周面内側の全体を排気室261側に向かって流れる。
FIG. 6 is a cross-sectional view showing the vicinity of the compression chamber 221 and the exhaust chamber 261, and shows a state in which the piston 230 moves toward the top dead center and the tip 233 a of the protrusion 233 starts to enter the communication hole 252. Show.
When the tip 233a of the protrusion 233 starts to enter the communication hole 252, the refrigerant compressed in the compression chamber 221 passes through the gap between the inner peripheral surface of the communication hole 252 and the side surface 233b of the protrusion 233 and is exhausted. Flow into chamber 261. Specifically, the refrigerant in the compression chamber 221 flows into the communication hole 252 from the gap between the opening edge 252a of the communication hole 252 and the side surface 233b of the protrusion 233, as indicated by an arrow b in FIG. The gap flows between the inner peripheral surface of the communication hole 252 and the side surface 233b of the protrusion 233 toward the exhaust chamber 261 side. On the exhaust chamber 261 side from the tip 233a of the protrusion 233, as shown by the arrow c, the refrigerant flows in the entire inner peripheral surface of the communication hole 252 toward the exhaust chamber 261.
 上述したように、突部233の外径は先端233a側に向かうにつれて小さくなる。また、連通孔252の内径は、軸方向の位置にかかわらず一定である。したがって、連通孔252の内周面と突部233の側面233bとの間の隙間の大きさは、連通孔252の開口縁252aと突部233の側面233bとの間の隙間において最も小さく、突部233の先端233aに向かうにつれて大きくなる。すなわち、バルブプレート250の圧縮室221側の表面における連通孔252の開口縁252aに突部233の先端233aが到達した第1時点から、ピストン230が上死点に到達する第2時点までの期間、連通孔252の開口縁252aと突部233の側面233bとの間に側面233bと連通孔252の内壁面との間の隙間が最も小さくなる、環状孔端部256が形成される。
 そのため、連通孔252の内周面と突部233の側面233bとの間の隙間における流路抵抗は、環状孔端部256で最も大きく、突部233の先端233aに向かうにつれて小さくなるので、環状孔端部256より下流側では流路抵抗が低下して、冷媒が排気室261側に向かって流れやすくなる。すなわち、圧縮室221から排気室261に向かう気体の流れが阻害されにくくなるので、圧縮抵抗を抑制できる。したがって、圧縮機200の駆動動力を低減でき、省エネ化が図れる他、圧縮機200の騒音や振動を抑制できる。
As described above, the outer diameter of the protrusion 233 becomes smaller toward the tip 233a side. Further, the inner diameter of the communication hole 252 is constant regardless of the position in the axial direction. Therefore, the size of the gap between the inner peripheral surface of the communication hole 252 and the side surface 233b of the projection 233 is the smallest in the gap between the opening edge 252a of the communication hole 252 and the side surface 233b of the projection 233. It becomes larger toward the tip 233a of the part 233. That is, the period from the first time point when the tip 233a of the protrusion 233 reaches the opening edge 252a of the communication hole 252 on the compression chamber 221 side surface of the valve plate 250 to the second time point when the piston 230 reaches top dead center. An annular hole end portion 256 is formed between the opening edge 252a of the communication hole 252 and the side surface 233b of the protrusion 233 so that the gap between the side surface 233b and the inner wall surface of the communication hole 252 is minimized.
Therefore, the flow resistance in the gap between the inner peripheral surface of the communication hole 252 and the side surface 233b of the projection 233 is the largest at the annular hole end portion 256 and becomes smaller toward the tip 233a of the projection 233. On the downstream side of the hole end portion 256, the flow path resistance decreases, and the refrigerant easily flows toward the exhaust chamber 261 side. That is, the flow of gas from the compression chamber 221 toward the exhaust chamber 261 is not easily inhibited, so that the compression resistance can be suppressed. Therefore, the driving power of the compressor 200 can be reduced, energy saving can be achieved, and noise and vibration of the compressor 200 can be suppressed.
 上述したように、突部233の外径は先端233aからピストン本体部231の頂面232に向かうにつれて大きくなるので、突部233が連通孔252内に侵入するにつれて、連通孔252の開口縁252aと突部233の側面233bとの間の隙間、すなわち環状孔端部256の断面積は減少し、上死点において最小値となる。上死点における連通孔252の開口縁252aと突部233の側面233b(接続部233c)との間の隙間を最小隙間と呼ぶ。図7は、圧縮室221及び排気室261の近傍を示す断面図であり、ピストン230が上死点に到達した状態を示す。 As described above, since the outer diameter of the protrusion 233 increases from the tip 233a toward the top surface 232 of the piston main body 231, the opening edge 252a of the communication hole 252 increases as the protrusion 233 enters the communication hole 252. And the cross-sectional area of the annular hole end portion 256 are reduced to a minimum value at the top dead center. A gap between the opening edge 252a of the communication hole 252 and the side surface 233b (connection portion 233c) of the protrusion 233 at the top dead center is referred to as a minimum gap. FIG. 7 is a cross-sectional view showing the vicinity of the compression chamber 221 and the exhaust chamber 261, and shows a state where the piston 230 has reached the top dead center.
 上述したように、突部233の基部である接続部233cは、突部233の先端233a側からピストン本体部231の頂面232に向かうにつれて裾広がりとなるように形成されている。したがって、圧縮室221内で径方向外側から内側に向かって流れる冷媒は、図7の矢印dで示すように、接続部233cに沿って流れることで、排気室261側に向かうように案内される。これにより、冷媒の流れがスムーズになり、圧縮室221内の冷媒を効率的に排気室261へ排出できる。 As described above, the connecting portion 233c, which is the base of the protrusion 233, is formed so as to expand from the tip 233a side of the protrusion 233 toward the top surface 232 of the piston main body 231. Accordingly, the refrigerant flowing from the radially outer side toward the inner side in the compression chamber 221 is guided toward the exhaust chamber 261 side by flowing along the connecting portion 233c as indicated by an arrow d in FIG. . Thereby, the flow of the refrigerant becomes smooth, and the refrigerant in the compression chamber 221 can be efficiently discharged to the exhaust chamber 261.
 ピストン230に突部233を設けていない場合、連通孔252がいわゆる死容積となるが、圧縮機200の再膨張ガス分を減少させる点から死容積の低減が望まれる。
 一実施形態では、ピストン230の頂面232から突出するように設けられた突部233が冷媒の圧縮、排気行程においてバルブプレート250の連通孔252に侵入して、死容積を低減するので、再膨張・再圧縮損失が改善する。
When the protrusion 230 is not provided on the piston 230, the communication hole 252 has a so-called dead volume, but it is desired to reduce the dead volume in terms of reducing the re-expanded gas component of the compressor 200.
In one embodiment, the protrusion 233 provided so as to protrude from the top surface 232 of the piston 230 enters the communication hole 252 of the valve plate 250 in the compression and exhaust strokes of the refrigerant to reduce the dead volume. Expansion / recompression loss is improved.
 吸気行程では、ピストン230が上死点に到達後、下死点に向かって移動し始めると、圧縮室221内の圧力が低下し始める。上述したように、突部233が連通孔252に侵入していると、連通孔252の内周面と突部233の側面233bとの間の隙間の大きさは、環状孔端部256において最も小さい。また、環状孔端部256の断面積は、上死点において最も小さい。
 そのため、ピストン230が下死点に向かって移動し始めて圧縮室221内の圧力が低下し始めると、環状孔端部256を境に、連通孔252の内周面と突部233の側面233bとの間の隙間と、圧縮室221とで圧力差が生じる。すなわち、連通孔252の内周面と突部233の側面233bとの間の隙間の圧力よりも圧縮室221の圧力の方が低くなる。これにより吸気弁254が開くタイミングを早めることができるので、圧縮室221内に冷媒が効率的に流入するので、圧縮機200の流入抵抗が低減できる。
In the intake stroke, when the piston 230 starts moving toward the bottom dead center after reaching the top dead center, the pressure in the compression chamber 221 starts to decrease. As described above, when the protrusion 233 enters the communication hole 252, the size of the gap between the inner peripheral surface of the communication hole 252 and the side surface 233 b of the protrusion 233 is the largest at the annular hole end portion 256. small. The cross-sectional area of the annular hole end portion 256 is the smallest at the top dead center.
Therefore, when the piston 230 starts to move toward the bottom dead center and the pressure in the compression chamber 221 begins to decrease, the inner peripheral surface of the communication hole 252 and the side surface 233b of the protrusion 233 are separated from the annular hole end portion 256. A pressure difference is generated between the gap between the compression chamber 221 and the compression chamber 221. That is, the pressure in the compression chamber 221 is lower than the pressure in the gap between the inner peripheral surface of the communication hole 252 and the side surface 233b of the protrusion 233. As a result, the opening timing of the intake valve 254 can be advanced, so that the refrigerant efficiently flows into the compression chamber 221, so that the inflow resistance of the compressor 200 can be reduced.
 上述したように、一実施形態では、ピストン230は、シリンダ220とともに気体を圧縮する圧縮室221を形成する頂面232を有するピストン本体部231と、ピストン本体部231の軸方向に沿って頂面232から突出するように設けられる突部233と、を備える。
 ピストン230を、上記の圧縮機200に用いた場合、圧縮機200のシリンダ220内でピストン230が上死点側に移動したとき、連通孔252に突部233が侵入することで、死容積を低減できる。よって、圧縮機200の再膨張ガス分を減少できる。
As described above, in one embodiment, the piston 230 includes the piston body 231 having the top surface 232 that forms the compression chamber 221 that compresses the gas together with the cylinder 220, and the top surface along the axial direction of the piston body 231. And a protrusion 233 provided so as to protrude from the H.232.
When the piston 230 is used in the compressor 200 described above, when the piston 230 moves to the top dead center side in the cylinder 220 of the compressor 200, the protrusion 233 enters the communication hole 252, thereby reducing the dead volume. Can be reduced. Therefore, the re-expanded gas component of the compressor 200 can be reduced.
 突部233は、ピストン本体部231の軸方向と直交する方向の寸法が突部233の先端233aに向かうにつれて小さくなるように形成されている。
 ピストン230を、上記の圧縮機200に用いた場合、ピストン230で圧縮された冷媒は連通孔252を流れる。突部233が連通孔252に侵入した後は、ピストン230で圧縮された冷媒は連通孔252と突部233との間を流れる。そのため、突部233が連通孔252に侵入した後は、連通孔252における冷媒の流路の断面積が突部233の断面積の分だけ減少する。
The protrusion 233 is formed so that the dimension in the direction orthogonal to the axial direction of the piston main body 231 decreases as it goes toward the tip 233 a of the protrusion 233.
When the piston 230 is used in the compressor 200 described above, the refrigerant compressed by the piston 230 flows through the communication hole 252. After the protrusion 233 enters the communication hole 252, the refrigerant compressed by the piston 230 flows between the communication hole 252 and the protrusion 233. Therefore, after the protrusion 233 enters the communication hole 252, the cross-sectional area of the refrigerant flow path in the communication hole 252 decreases by the cross-sectional area of the protrusion 233.
 しかし、突部233の軸方向と直交する方向の寸法が突部233の先端233aに向かうにつれて小さくなるので、連通孔252に侵入した突部233と連通孔252の内壁面との間に形成される隙間は圧縮室221から排気室261に向かって広がる。このため、突部233が連通孔252に侵入し始めた際の気体の流路断面積の変化を緩和でき、圧縮室221内の気体の排出が不十分となって過圧縮が生じることを抑制できる。また、突部233が連通孔252に侵入し始めてからピストン230が上死点に到達するまでの期間において、突部233と連通孔252の内壁面との間の隙間を介して圧縮室221から排気室261に向かう気体の流れが阻害されにくくなる。よって、圧縮抵抗を抑制でき、圧縮機200の駆動動力を低減できるので、省エネ化が図れる他、圧縮機200の騒音や振動を抑制できる。
 また、突部233の軸方向と直交する方向の寸法が突部233の先端233aに向かうにつれて小さくなっているが、ピストン230を鋳造で製造する場合に設定される抜き勾配を兼ねて突部233の形状を設定すれば、鋳造後の突部233の機械加工を省略でき、製造コストを低減できる。
However, since the dimension of the protrusion 233 in the direction orthogonal to the axial direction becomes smaller toward the tip 233a of the protrusion 233, it is formed between the protrusion 233 that has entered the communication hole 252 and the inner wall surface of the communication hole 252. The gap is expanded from the compression chamber 221 toward the exhaust chamber 261. For this reason, the change of the flow path cross-sectional area of the gas when the protrusion 233 starts to enter the communication hole 252 can be alleviated, and the exhaust of the gas in the compression chamber 221 is insufficient and the occurrence of overcompression is suppressed. it can. Further, in a period from when the protrusion 233 starts to enter the communication hole 252 until the piston 230 reaches the top dead center, the compression chamber 221 is separated from the compression chamber 221 through a gap between the protrusion 233 and the inner wall surface of the communication hole 252. The gas flow toward the exhaust chamber 261 is not easily inhibited. Therefore, since compression resistance can be suppressed and the driving power of the compressor 200 can be reduced, energy saving can be achieved, and noise and vibration of the compressor 200 can be suppressed.
Further, although the dimension of the projection 233 in the direction orthogonal to the axial direction decreases toward the tip 233a of the projection 233, the projection 233 also serves as a draft that is set when the piston 230 is manufactured by casting. If the shape is set, machining of the projection 233 after casting can be omitted, and the manufacturing cost can be reduced.
 突部233は、軸方向と直交する方向に沿った断面形状が円形である。
 連通孔252は、シリンダ220の軸方向、すなわちピストン本体部231の軸方向と直交する方向に沿った断面形状が円形である。したがって、突部233の軸方向と直交する方向に沿った断面形状が連通孔252の断面形状と同様の形状となるので、死容積を効率よく低減できる。これにより、圧縮機200の再膨張・再圧縮損失が改善できる。
The protrusion 233 has a circular cross-sectional shape along a direction orthogonal to the axial direction.
The communication hole 252 has a circular cross-sectional shape along a direction perpendicular to the axial direction of the cylinder 220, that is, the axial direction of the piston main body 231. Therefore, since the cross-sectional shape along the direction orthogonal to the axial direction of the protrusion 233 becomes the same shape as the cross-sectional shape of the communication hole 252, the dead volume can be efficiently reduced. Thereby, the reexpansion / recompression loss of the compressor 200 can be improved.
 突部233のうち頂面232への接続部233cは、頂面232から突部233の先端233aに向かって徐々に縮径して軸方向に沿った断面が凹状の曲面となる。
 ピストン230を、上記の圧縮機200に用いた場合、突部233が連通孔252に侵入した後は、ピストン230で圧縮された冷媒は連通孔252と突部233との間を流れる。シリンダ220内から連通孔252と突部233との間に向かって流れる冷媒のうち、連通孔252と突部233との間に向かってシリンダ220内を半径方向内側に流れる冷媒は、突部233のうち頂面232への接続部233cに沿って案内されることで流れの方向を半径方向から軸方向へとスムーズに変更できる。
 これにより、シリンダ220から排出される冷媒の流路抵抗を低減できるので、圧縮抵抗を抑制できる。したがって、圧縮機200の駆動動力を低減でき、省エネ化が図れる他、圧縮機200の騒音や振動を抑制できる。
The connecting portion 233c of the protrusion 233 to the top surface 232 is gradually reduced in diameter from the top surface 232 toward the tip 233a of the protrusion 233, and the cross section along the axial direction becomes a concave curved surface.
When the piston 230 is used in the compressor 200, the refrigerant compressed by the piston 230 flows between the communication hole 252 and the protrusion 233 after the protrusion 233 enters the communication hole 252. Of the refrigerant that flows from the inside of the cylinder 220 toward the communication hole 252 and the protrusion 233, the refrigerant that flows radially inside the cylinder 220 toward the space between the communication hole 252 and the protrusion 233 is the protrusion 233. The direction of the flow can be smoothly changed from the radial direction to the axial direction by being guided along the connection portion 233c to the top surface 232.
Thereby, since the flow path resistance of the refrigerant | coolant discharged | emitted from the cylinder 220 can be reduced, compression resistance can be suppressed. Therefore, the driving power of the compressor 200 can be reduced, energy saving can be achieved, and noise and vibration of the compressor 200 can be suppressed.
 突部233は、ピストン本体部231の軸方向の寸法が軸方向と直交する方向の寸法よりも大きくなるように形成されている。
 一実施形態の圧縮機200では、バルブプレート250の内部に吸気通路251が設けられているので、内部に冷媒の吸気通路が設けられていないバルブプレートと比較すると、バルブプレートの厚さが厚くなり、連通孔252の延在長さが長くなる傾向にある。また、一実施形態の圧縮機200では、図4に示すように、連通孔252の周囲に吸気通路251の下流側の開口251aが設けられているので、連通孔252の周囲に吸気通路の下流側の開口が設けられていないバルブプレートと比較すると、連通孔252の直径が小さくなる傾向にある。そのため、一実施形態では、連通孔252の延在長さが連通孔252の径よりも大きい。
The protrusion 233 is formed such that the dimension in the axial direction of the piston main body 231 is larger than the dimension in the direction orthogonal to the axial direction.
In the compressor 200 of one embodiment, since the intake passage 251 is provided in the valve plate 250, the valve plate is thicker than a valve plate in which no refrigerant intake passage is provided. The extending length of the communication hole 252 tends to be long. Further, in the compressor 200 according to the embodiment, as shown in FIG. 4, since the downstream side opening 251 a of the intake passage 251 is provided around the communication hole 252, the downstream of the intake passage is provided around the communication hole 252. The diameter of the communication hole 252 tends to be smaller than that of a valve plate that is not provided with a side opening. Therefore, in one embodiment, the extension length of the communication hole 252 is larger than the diameter of the communication hole 252.
 ピストン230を、一実施形態の圧縮機200に用いた場合、ピストン230で圧縮された冷媒は連通孔252を流れる。突部233が連通孔252に侵入した後は、ピストン230で圧縮された冷媒は連通孔252と突部233との間を流れる。そのため、突部233が連通孔252に侵入した後は、連通孔252における冷媒の流路の断面積が突部233の断面積の分だけ減少する。
 しかし、ピストン本体部231の軸方向の寸法が軸方向と直交する方向の寸法よりも大きくなるように突部233が形成されているので、連通孔252における冷媒の流路を確保しつつ、死容積を効率的に低減できるので、圧縮抵抗を抑制して圧縮機の駆動動力を低減でき、断熱効率の低下を抑制できる。
When the piston 230 is used in the compressor 200 of the embodiment, the refrigerant compressed by the piston 230 flows through the communication hole 252. After the protrusion 233 enters the communication hole 252, the refrigerant compressed by the piston 230 flows between the communication hole 252 and the protrusion 233. Therefore, after the protrusion 233 enters the communication hole 252, the cross-sectional area of the refrigerant flow path in the communication hole 252 decreases by the cross-sectional area of the protrusion 233.
However, since the projecting portion 233 is formed so that the dimension of the piston main body 231 in the axial direction is larger than the dimension in the direction orthogonal to the axial direction, the passage of the refrigerant in the communication hole 252 is secured while Since the volume can be efficiently reduced, the compression resistance can be suppressed, the driving power of the compressor can be reduced, and a decrease in the heat insulation efficiency can be suppressed.
 一実施形態に係る圧縮機は、上死点と下死点との間を移動して気体を圧縮するように構成された上記のピストン230と、ピストン230の頂面232とともに圧縮室221を形成するシリンダ220と、ピストン230により圧縮された冷媒を排出するための排気室261と圧縮室221との連通状態を切り替えるための排気弁255と、圧縮室221と排気室261とを連通させる連通孔252が形成されるとともに、排気弁255の閉弁時に排気弁255が当接可能な排気弁座253を含むバルブプレート250と、を備える。ピストン230は、上死点において、ピストン230の突部233の少なくとも先端233aがバルブプレート250の連通孔252に侵入する。
 これにより、シリンダ220内でピストン230が上死点側に移動したとき、連通孔252に突部233が侵入することで、死容積を低減でき、圧縮機200の再膨張・再圧縮損失が改善できる。
The compressor which concerns on one Embodiment forms the compression chamber 221 with said piston 230 comprised so that it may move between a top dead center and a bottom dead center, and compresses gas, and the top surface 232 of piston 230 A cylinder 220, an exhaust valve 255 for switching the communication state between the exhaust chamber 261 and the compression chamber 221 for discharging the refrigerant compressed by the piston 230, and a communication hole for communicating the compression chamber 221 and the exhaust chamber 261. And a valve plate 250 including an exhaust valve seat 253 with which the exhaust valve 255 can come into contact when the exhaust valve 255 is closed. At the top dead center of the piston 230, at least the tip 233 a of the protrusion 233 of the piston 230 enters the communication hole 252 of the valve plate 250.
Thereby, when the piston 230 moves to the top dead center side in the cylinder 220, the dead volume can be reduced by the protrusion 233 entering the communication hole 252, and the re-expansion / re-compression loss of the compressor 200 is improved. it can.
 バルブプレート250は、バルブプレート250の内部に設けられ、圧縮室221へと冷媒を導くための吸気通路251を有する。
 これにより、バルブプレート250の内部を吸気通路として有効利用できるので、圧縮機200の小型化を図れる。
The valve plate 250 is provided inside the valve plate 250 and has an intake passage 251 for guiding the refrigerant to the compression chamber 221.
Thus, the inside of the valve plate 250 can be effectively used as an intake passage, and the compressor 200 can be downsized.
 ピストン230が上死点に位置するときにおける、バルブプレート250の圧縮室221側の表面における連通孔252の開口縁252aと、突部233の側面233bとの隙間が最小間隙である。突部233の側面233bと連通孔252の内壁面との間の隙間の大きさは、突部233の先端233aに近づくにつれて上記最小間隙から単調増加する。
 これにより、ピストン230が上死点に位置するときにおける、バルブプレート250の圧縮室221側の表面における連通孔252の開口縁252aと、突部233の側面233bとの隙間が最小間隙となる。そのため、ピストン230が上死点から下死点に向かって移動を開始すると、該隙間を境に、該隙間よりも排気室261側にある連通孔252内の領域と圧縮室221とで圧力差が生じる。すなわち、ピストン230が上死点から下死点に向かって移動を開始すると、該隙間よりも排気室261側にある連通孔252内の領域よりも圧縮室221内の圧力が低くなるので、吸気弁254の開弁時期を早めることができ、圧縮室221内に冷媒が効率的に流入するので、圧縮機200の再膨張ガス分を減少できる。
When the piston 230 is located at the top dead center, the gap between the opening edge 252a of the communication hole 252 and the side surface 233b of the protrusion 233 on the surface of the valve plate 250 on the compression chamber 221 side is the minimum gap. The size of the gap between the side surface 233b of the protrusion 233 and the inner wall surface of the communication hole 252 monotonously increases from the minimum gap as it approaches the tip 233a of the protrusion 233.
Thereby, when the piston 230 is located at the top dead center, the gap between the opening edge 252a of the communication hole 252 and the side surface 233b of the protrusion 233 on the surface of the valve plate 250 on the compression chamber 221 side becomes the minimum gap. Therefore, when the piston 230 starts to move from the top dead center toward the bottom dead center, the pressure difference between the compression chamber 221 and the region in the communication hole 252 closer to the exhaust chamber 261 than the gap is the boundary. Occurs. That is, when the piston 230 starts moving from the top dead center toward the bottom dead center, the pressure in the compression chamber 221 becomes lower than the area in the communication hole 252 on the exhaust chamber 261 side with respect to the gap. The valve opening timing of the valve 254 can be advanced, and the refrigerant efficiently flows into the compression chamber 221, so that the re-expanded gas component of the compressor 200 can be reduced.
 突部233の先端233aがバルブプレート250の圧縮室221側の表面における連通孔252の開口縁252aに到達した第1時点から、ピストン230が上死点に到達する第2時点までの期間、連通孔252の開口縁252aと突部233の側面233bとの間に側面233bと連通孔252の内壁面との間の隙間が最も小さくなる環状孔端部256が形成される。
 これにより、第1時点から第2時点までの期間、側面233bと連通孔252の内壁面との間の隙間は、連通孔252の開口縁252aと突部233の側面233bとの間が最も狭く、排気室261側に向かうにつれて広くなる。したがって、第1時点から第2時点までの期間、側面233bと連通孔252の内壁面との間の隙間の冷媒が排気室261側に向かって流れやすくなる。これにより、圧縮された冷媒を効率的に排気できるので、圧縮機200の再膨張ガス分を減少できる。
During the period from the first time point when the tip 233a of the protrusion 233 reaches the opening edge 252a of the communication hole 252 on the compression chamber 221 side surface of the valve plate 250 to the second time point when the piston 230 reaches top dead center Between the opening edge 252a of the hole 252 and the side surface 233b of the protrusion 233, an annular hole end portion 256 where the gap between the side surface 233b and the inner wall surface of the communication hole 252 is minimized is formed.
Accordingly, during the period from the first time point to the second time point, the gap between the side surface 233b and the inner wall surface of the communication hole 252 is narrowest between the opening edge 252a of the communication hole 252 and the side surface 233b of the protrusion 233. It becomes wider as it goes to the exhaust chamber 261 side. Therefore, during the period from the first time point to the second time point, the refrigerant in the gap between the side surface 233b and the inner wall surface of the communication hole 252 can easily flow toward the exhaust chamber 261 side. Thereby, since the compressed refrigerant can be exhausted efficiently, the re-expanded gas component of the compressor 200 can be reduced.
 このように、上述した一実施形態では、断熱効率の低下を抑制しつつ、圧縮機200の再膨張ガス分を減少させ再膨張・再圧縮損失が改善できる。 Thus, in the above-described embodiment, the re-expansion / recompression loss can be improved by reducing the re-expansion gas content of the compressor 200 while suppressing the decrease in the heat insulation efficiency.
 なお、上述したように、突部233の直径が大きくなるほど死容積を低減して再膨張ガス分を減少できるが、連通孔252と突部233との間を流れる冷媒の流路の断面積が減少し、圧縮室221から排気室261に向かう冷媒の流れに影響を及ぼす。すなわち、突部を適切な形状にしないと圧縮抵抗が増加し、圧縮機の駆動動力が増加してしまうため、圧縮機200の断熱効率が低下するおそれがある。 As described above, as the diameter of the protrusion 233 increases, the dead volume can be reduced and the re-expanded gas can be reduced. However, the cross-sectional area of the refrigerant flow path between the communication hole 252 and the protrusion 233 is reduced. And the refrigerant flow from the compression chamber 221 toward the exhaust chamber 261 is affected. That is, if the protrusion is not made into an appropriate shape, the compression resistance increases and the driving power of the compressor increases, so that the heat insulation efficiency of the compressor 200 may be reduced.
 そこで、発明者らは、突部233の直径を異ならせた複数のパターンについて実験を行い、圧縮機の断熱効率が突部233の直径によってどのように変化するのかを検証した。 Therefore, the inventors conducted experiments on a plurality of patterns with different diameters of the protrusions 233, and verified how the heat insulation efficiency of the compressor changes depending on the diameter of the protrusions 233.
 なお、上述したように、突部233の側面233bがテーパ形状を呈するので、以下の説明では、突部233の先端233aから突部233の軸AX方向の寸法hの75%(0.75h)だけ頂面232側に向かった位置における直径を突部233の直径の代表値として採用する。この直径の代表値を、以下、単に代表径dと呼ぶ(図8(b)参照)。 As described above, since the side surface 233b of the protrusion 233 has a tapered shape, in the following description, 75% (0.75 h) of the dimension h in the axis AX direction of the protrusion 233 from the tip 233a of the protrusion 233. Only the diameter at the position facing the top surface 232 side is adopted as a representative value of the diameter of the protrusion 233. Hereinafter, the representative value of the diameter is simply referred to as a representative diameter d (see FIG. 8B).
 図8は、発明者らが行った実験結果について説明する図であり、図8(a)は、発明者らが行った実験結果を表すグラフであり、図8(b)は、突部233の寸法hの75%(0.75h)だけ突部233が連通孔252に侵入した状態を模式的に示す図である。
 図8(a)において、径比Φは、代表径dを開口縁252aにおける連通孔252の内径(連通孔径)Dで除した値である。図8(a)は、実験に用いた圧縮機の断熱効率ηadのグラフである。図8(a)において、断熱効率ηadについての菱形、四角形、及び三角形のそれぞれのプロットは、冷媒の吸入圧力及び排気圧力を変更した3つの異なる実験条件による実験結果のそれぞれに対応するものである。
FIG. 8 is a diagram for explaining the experimental results conducted by the inventors, FIG. 8A is a graph showing the experimental results conducted by the inventors, and FIG. It is a figure which shows typically the state which the protrusion 233 penetrate | invaded into the communicating hole 252 only by 75% (0.75h) of the dimension h.
In FIG. 8A, the diameter ratio Φ is a value obtained by dividing the representative diameter d by the inner diameter (communication hole diameter) D of the communication hole 252 at the opening edge 252a. FIG. 8A is a graph of the adiabatic efficiency ηad of the compressor used in the experiment. In FIG. 8A, each plot of rhombus, square, and triangle for the adiabatic efficiency ηad corresponds to each of the experimental results under three different experimental conditions with the refrigerant suction pressure and exhaust pressure changed. .
 図示はしていないが、径比Φが大きくなれば、駆動動力は増加するとともに、駆動動力の増加度合いが大きくなる。また、図示はしていないが、体積効率は、径比Φが大きくなれば、径比Φに比例して向上する。
 そのため、図8(a)に示すように、断熱効率ηadは、所定の径比Φ(Φ=0.7の近傍)で最大となり、径比Φが所定の径比Φより大きくなっても、小さくなっても低下する。
Although not shown, as the diameter ratio Φ increases, the driving power increases and the degree of increase in the driving power increases. Although not shown, the volume efficiency increases in proportion to the diameter ratio Φ as the diameter ratio Φ increases.
Therefore, as shown in FIG. 8 (a), the heat insulation efficiency ηad is maximized at a predetermined diameter ratio Φ (near Φ = 0.7), and even if the diameter ratio Φ is larger than the predetermined diameter ratio Φ, Even if it gets smaller, it drops.
 以上のことから、再膨張ガス分を減少させ再膨張・再圧縮損失が改善しつつ断熱効率の低下を抑制するためには、径比Φは60%以上80%以下の範囲内に設定することが望ましい。 From the above, the diameter ratio Φ should be set within the range of 60% or more and 80% or less in order to reduce the re-expansion gas component and suppress the decrease in heat insulation efficiency while improving the re-expansion / re-compression loss. Is desirable.
 一実施形態のヒートポンプユニット50は、上述した圧縮機200と、圧縮機200で圧縮された冷媒と熱交換を行うためのパネル状熱交換器36を有する熱交換ユニット30と、ヒートポンプサイクル構成機器52とを備える。
 これにより、圧縮機200の再膨張ガス分を減少させ再膨張・再圧縮損失が改善しつつ断熱効率の低下を抑制できるので、ヒートポンプユニット50の省エネ化を図れる。
The heat pump unit 50 according to the embodiment includes the above-described compressor 200, the heat exchange unit 30 having the panel heat exchanger 36 for exchanging heat with the refrigerant compressed by the compressor 200, and the heat pump cycle constituent device 52. With.
Thereby, since the re-expansion gas content of the compressor 200 can be reduced and the re-expansion / re-compression loss can be improved and the decrease in the heat insulation efficiency can be suppressed, energy saving of the heat pump unit 50 can be achieved.
 以上、本発明の実施形態について説明したが、本発明は上記の形態に限定されるものではなく、本発明の目的を逸脱しない範囲で種々の変更が可能である。 As mentioned above, although embodiment of this invention was described, this invention is not limited to said form, A various change is possible in the range which does not deviate from the objective of this invention.
 上述した一実施形態では、突部233は、ピストン本体部231の軸AX方向と直交する方向の寸法が突部233の先端233aに向かうにつれて小さくなるように形成されている。すなわち、上述した一実施形態では、突部233の側面233bは、テーパ形状を呈する。しかし、例えば突部233の側面233bは、テーパ形状を呈していなくてもよい。 In the above-described embodiment, the protrusion 233 is formed so that the dimension of the piston main body 231 in the direction orthogonal to the axis AX direction decreases toward the tip 233a of the protrusion 233. That is, in the above-described embodiment, the side surface 233b of the protrusion 233 has a tapered shape. However, for example, the side surface 233b of the protrusion 233 may not have a tapered shape.
 上述した一実施形態では、突部233が中実であるか中空であるかについては特に言及していない。しかし、突部233は中実であってもよく、中空であってもよい。 In the above-described embodiment, no particular mention is made as to whether the protrusion 233 is solid or hollow. However, the protrusion 233 may be solid or hollow.
 上述した一実施形態では、突部233は、軸AX方向と直交する方向に沿った断面形状が円形である。しかし、突部233は、軸AX方向と直交する方向に沿った断面形状が円形以外の形状であってもよく、例えば楕円形であってもよく、多角形であってもよく、直線や曲線を適宜組み合わせた形状であってもよい。 In the above-described embodiment, the protrusion 233 has a circular cross-sectional shape along a direction orthogonal to the axis AX direction. However, the projecting portion 233 may have a cross-sectional shape other than a circular shape along a direction orthogonal to the axis AX direction, for example, an elliptical shape, a polygonal shape, a straight line or a curved line The shape which combined suitably may be sufficient.
 上述した一実施形態では、突部233は、接続部233cにおいて突部233の先端233aから頂面232に向かうにつれて裾広がりとなるように形成されている。しかし、例えば突部233の接続部233cにおける軸方向に沿った断面が凹状の曲面とならず、側面233bと頂面232とが交差するように形成されていてもよい。 In the above-described embodiment, the protrusion 233 is formed so as to expand from the tip 233a of the protrusion 233 toward the top surface 232 at the connection portion 233c. However, for example, the cross section along the axial direction of the connecting portion 233c of the protrusion 233 may not be a concave curved surface, and the side surface 233b and the top surface 232 may intersect with each other.
 上述した一実施形態では、突部233は、軸AX方向の寸法が軸AX方向と直交する方向の寸法よりも大きくなるように形成されている。しかし、例えば、突部233は、軸AX方向の寸法が軸AX方向と直交する方向の寸法と同じであるか、軸AX方向の寸法が軸AX方向と直交する方向の寸法よりも小さくなるように形成されていてもよい。 In the above-described embodiment, the protrusion 233 is formed so that the dimension in the axis AX direction is larger than the dimension in the direction orthogonal to the axis AX direction. However, for example, the protrusion 233 has the same dimension in the axis AX direction as the dimension in the direction orthogonal to the axis AX direction, or the dimension in the axis AX direction is smaller than the dimension in the direction orthogonal to the axis AX direction. It may be formed.
 上述した一実施形態では、バルブプレート250の内部に冷媒の流路である吸気通路251が設けられている。しかし、例えば圧縮室221内に冷媒を導く流路がバルブプレート250の内部に設けられていなくてもよい。 In the above-described embodiment, the valve plate 250 is provided with the intake passage 251 that is a refrigerant flow path. However, for example, the flow path for introducing the refrigerant into the compression chamber 221 may not be provided inside the valve plate 250.
 上述した一実施形態では、上死点において、側面233bと連通孔252の内壁面との間の隙間が連通孔252の開口縁252aと突部233の側面233bとの間で最も小さくなる。しかし、例えば、上死点において、連通孔252の開口縁252aよりも排気室261側で側面233bと連通孔252の内壁面との間の隙間が最も小さくなってもよい。 In the above-described embodiment, the gap between the side surface 233b and the inner wall surface of the communication hole 252 is the smallest between the opening edge 252a of the communication hole 252 and the side surface 233b of the protrusion 233 at the top dead center. However, for example, at the top dead center, the gap between the side surface 233b and the inner wall surface of the communication hole 252 may be the smallest on the exhaust chamber 261 side than the opening edge 252a of the communication hole 252.
 上述した一実施形態では、バルブプレート250の圧縮室221側の表面における連通孔252の開口縁252aに突部233の先端233aが到達した第1時点から、ピストン230が上死点に到達する第2時点までの期間、側面233bと連通孔252の内壁面との間の隙間が最も小さくなるのは、連通孔252の開口縁252aと突部233の側面233bとの間である。しかし、第1時点から第2時点までの期間、連通孔252の開口縁252aよりも排気室261側で側面233bと連通孔252の内壁面との間の隙間が最も小さくなってもよい。 In the above-described embodiment, the piston 230 reaches the top dead center from the first time point when the tip 233a of the protrusion 233 reaches the opening edge 252a of the communication hole 252 on the compression chamber 221 side surface of the valve plate 250. During the period up to two time points, the gap between the side surface 233b and the inner wall surface of the communication hole 252 is the smallest between the opening edge 252a of the communication hole 252 and the side surface 233b of the protrusion 233. However, during the period from the first time point to the second time point, the gap between the side surface 233b and the inner wall surface of the communication hole 252 may be the smallest on the exhaust chamber 261 side than the opening edge 252a of the communication hole 252.
 例えば、上述の実施形態では、ヒートポンプサイクルを構成する機器を備えるヒートポンプユニット50について説明したが、ヒートポンプユニット50について上述した内容は、冷凍サイクルを構成する機器を備える冷凍ユニットに適用可能である。 For example, in the above-described embodiment, the heat pump unit 50 including the devices that configure the heat pump cycle has been described. However, the above-described content of the heat pump unit 50 can be applied to a refrigeration unit including the devices that configure the refrigeration cycle.
30  熱交換ユニット
34  ファン
36  パネル状熱交換器
50  ヒートポンプユニット
51  ベースプレート
52  ヒートポンプサイクル構成機器
54  冷媒循環路
58  ガスクーラ
60  冷却水路
62  ポンプ
64  内部熱交換器
66  膨張弁
68  バイパス路
70  冷媒タンク
100  箱型ケーシング
111  空気取込み口
112  空気流出口
200  圧縮機
210  ケーシング
211  クランク室
212  吸気室
220  シリンダ
220a  内周面
221  圧縮室
230  ピストン
231  ピストン本体部
232  頂面
233   突部
233a  先端
233b  側面
233c  接続部
241  クランク軸
250  バルブプレート
251  吸気通路
251a  開口
252  連通孔
252a  開口縁
253  排気弁座
254  吸気弁
255  排気弁
256  環状孔端部
260  ヘッドカバー
261  排気室
a  空気流
AX  軸
30 heat exchange unit 34 fan 36 panel heat exchanger 50 heat pump unit 51 base plate 52 heat pump cycle component equipment 54 refrigerant circulation path 58 gas cooler 60 cooling water path 62 pump 64 internal heat exchanger 66 expansion valve 68 bypass path 70 refrigerant tank 100 box type Casing 111 Air intake port 112 Air outlet port 200 Compressor 210 Casing 211 Crank chamber 212 Intake chamber 220 Cylinder 220a Inner circumferential surface 221 Compression chamber 230 Piston 231 Piston body portion 232 Top surface 233 Projection portion 233a Tip 233b Side surface 233c Connection portion 241 Crank Shaft 250 Valve plate 251 Intake passage 251a Opening 252 Communication hole 252a Opening edge 253 Exhaust valve seat 254 Intake valve 255 Exhaust valve 256 Annular hole end 60 a head cover 261 exhaust chamber a airflow AX axis

Claims (6)

  1.  シリンダとともに気体を圧縮する圧縮室を形成する頂面を有するピストン本体部と、
     前記ピストン本体部の軸方向に沿って前記頂面から突出するように設けられる突部と、
    を備え、
     前記突部は、
      前記軸方向と直交する方向の寸法が前記突部の先端に向かうにつれて小さくなるように形成され、
      前記軸方向と直交する方向に沿った断面形状が円形であり、
     前記突部のうち前記頂面への接続部は、前記頂面から前記突部の先端に向かって徐々に縮径して前記軸方向に沿った断面が凹状の曲面となる
     圧縮機用ピストン。
    A piston body having a top surface forming a compression chamber for compressing gas together with the cylinder;
    A protrusion provided so as to protrude from the top surface along the axial direction of the piston main body;
    With
    The protrusion is
    The dimension in the direction orthogonal to the axial direction is formed so as to decrease toward the tip of the protrusion,
    The cross-sectional shape along the direction orthogonal to the axial direction is circular,
    The connecting portion to the top surface of the projecting portion gradually decreases in diameter from the top surface toward the tip of the projecting portion, and the cross section along the axial direction is a concave curved surface.
  2.  上死点と下死点との間を移動して気体を圧縮するように構成された請求項1に記載の圧縮機用ピストンと、
     前記圧縮機用ピストンの前記頂面とともに前記圧縮室を形成するシリンダと、
     前記圧縮機用ピストンにより圧縮された気体を排出するための排気室と前記圧縮室との連通状態を切り替えるための排気弁と、
     前記圧縮室と前記排気室とを連通させる連通孔が形成されるとともに、前記排気弁の閉弁時に前記排気弁が当接可能な弁座を含む弁座形成部材と、を備え、
     前記圧縮機用ピストンは、前記上死点において、該圧縮機用ピストンの前記突部の少なくとも先端が前記弁座形成部材の前記連通孔に侵入するように構成された
    圧縮機。
    The compressor piston according to claim 1, wherein the compressor piston is configured to move between a top dead center and a bottom dead center to compress gas.
    A cylinder forming the compression chamber together with the top surface of the compressor piston;
    An exhaust valve for switching the communication state between the exhaust chamber for discharging the gas compressed by the compressor piston and the compression chamber;
    A valve seat forming member including a valve seat that is formed with a communication hole that allows the compression chamber and the exhaust chamber to communicate with each other and that can contact the exhaust valve when the exhaust valve is closed;
    The compressor piston is configured such that at the top dead center, at least the tip of the protrusion of the compressor piston enters the communication hole of the valve seat forming member.
  3.  前記圧縮機用ピストンが上死点に位置するときにおける、前記弁座形成部材の前記圧縮室側の表面における前記連通孔の開口縁と、前記突部の側面との隙間が最小間隙であり、
     前記突部の前記側面と前記連通孔の内壁面との間の隙間の大きさは、前記突部の前記先端に近づくにつれて前記最小間隙から単調増加する請求項2に記載の圧縮機。
    When the compressor piston is located at the top dead center, the gap between the opening edge of the communication hole on the compression chamber side surface of the valve seat forming member and the side surface of the protrusion is the minimum gap,
    The compressor according to claim 2, wherein the size of the gap between the side surface of the protrusion and the inner wall surface of the communication hole monotonously increases from the minimum gap as it approaches the tip of the protrusion.
  4.  前記突部の前記先端が前記弁座形成部材の前記圧縮室側の表面における前記連通孔の開口縁に到達した第1時点から、前記圧縮機用ピストンが前記上死点に到達する第2時点までの期間、前記連通孔の前記開口縁と前記突部の側面との間に前記側面と前記連通孔の内壁面との間の隙間が最も小さくなる環状孔端部が形成される請求項3に記載の圧縮機。 A second time point when the compressor piston reaches the top dead center from a first time point when the tip of the protrusion reaches the opening edge of the communication hole on the compression chamber side surface of the valve seat forming member. An annular hole end portion in which the gap between the side surface and the inner wall surface of the communication hole is the smallest is formed between the opening edge of the communication hole and the side surface of the protrusion during the period up to The compressor described in 1.
  5.  前記突部の前記軸方向の寸法の75%だけ前記先端から前記頂面側に向かった位置における前記突部の外径は、前記弁座形成部材の前記圧縮室側の表面における前記連通孔の内径の60%以上80%以下の範囲内である請求項2乃至4の何れか一項に記載の圧縮機。 The outer diameter of the protrusion at a position from the tip toward the top surface side by 75% of the axial dimension of the protrusion is the surface of the communication hole on the compression chamber side surface of the valve seat forming member. The compressor according to any one of claims 2 to 4, which is in a range of 60% to 80% of the inner diameter.
  6.  請求項2乃至5の何れか一項に記載の圧縮機と、
     前記圧縮機で圧縮された気体と熱交換を行うための熱交換器を有する熱交換ユニットと、
     ヒートポンプサイクル構成機器と、
     を備えるヒートポンプユニット。
    A compressor according to any one of claims 2 to 5;
    A heat exchange unit having a heat exchanger for exchanging heat with the gas compressed by the compressor;
    Heat pump cycle components,
    A heat pump unit comprising:
PCT/JP2018/004384 2017-02-24 2018-02-08 Compressor piston, compressor, and heat pump unit WO2018155209A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017034031A JP6876463B2 (en) 2017-02-24 2017-02-24 Compressor piston, compressor and heat pump unit
JP2017-034031 2017-02-24

Publications (1)

Publication Number Publication Date
WO2018155209A1 true WO2018155209A1 (en) 2018-08-30

Family

ID=63254393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004384 WO2018155209A1 (en) 2017-02-24 2018-02-08 Compressor piston, compressor, and heat pump unit

Country Status (3)

Country Link
JP (1) JP6876463B2 (en)
CN (2) CN108506189B (en)
WO (1) WO2018155209A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022167326A1 (en) * 2021-02-04 2022-08-11 SPH Sustainable Process Heat GmbH Piston compressor, more particularly for a heat pump

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6928192B1 (en) * 2021-05-12 2021-09-01 株式会社三井E&Sマシナリー Piston pump
JP7200310B1 (en) 2021-08-05 2023-01-06 株式会社三井E&Sマシナリー piston pump

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518358A (en) * 1991-07-09 1993-01-26 Hitachi Ltd Closed type compressor
US20040253131A1 (en) * 2003-06-13 2004-12-16 Lg Electronics Inc. Compressor
WO2014192382A1 (en) * 2013-05-31 2014-12-04 株式会社前川製作所 Brayton cycle refrigeration device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1180214B1 (en) * 1999-05-25 2003-08-13 DANFOSS COMPRESSORS GmbH Axial piston refrigerant compressor
CN201096070Y (en) * 2007-08-07 2008-08-06 上海扎努西电气机械有限公司 Cold compressor piston decreasing clearance volume
JP5533061B2 (en) * 2009-06-12 2014-06-25 パナソニック株式会社 Hermetic compressor and refrigeration system
JP5617402B2 (en) * 2010-07-15 2014-11-05 パナソニック株式会社 Reciprocating compressor and refrigerator using the same
JP6065192B2 (en) * 2011-05-09 2017-01-25 パナソニックIpマネジメント株式会社 Hermetic compressor
JP5828136B2 (en) * 2011-08-08 2015-12-02 パナソニックIpマネジメント株式会社 Hermetic compressor
WO2014162727A1 (en) * 2013-04-01 2014-10-09 パナソニック株式会社 Sealed compressor and refrigeration device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518358A (en) * 1991-07-09 1993-01-26 Hitachi Ltd Closed type compressor
US20040253131A1 (en) * 2003-06-13 2004-12-16 Lg Electronics Inc. Compressor
WO2014192382A1 (en) * 2013-05-31 2014-12-04 株式会社前川製作所 Brayton cycle refrigeration device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022167326A1 (en) * 2021-02-04 2022-08-11 SPH Sustainable Process Heat GmbH Piston compressor, more particularly for a heat pump

Also Published As

Publication number Publication date
CN108506189B (en) 2020-08-28
JP6876463B2 (en) 2021-05-26
CN208595041U (en) 2019-03-12
CN108506189A (en) 2018-09-07
JP2018138780A (en) 2018-09-06

Similar Documents

Publication Publication Date Title
WO2018155209A1 (en) Compressor piston, compressor, and heat pump unit
KR102612940B1 (en) Reciprocating compressor
US20210388828A1 (en) Single piece valve plate assembly for a reciprocating compressor, the valve plate assembly including a valve plate and a suction valve retainer that are integrally formed as a unitary body
JP2006057634A (en) Refrigerant suction guide structure for reciprocating compressor
WO2014017081A1 (en) Condenser
EP3146192A1 (en) Supercharger outlet resonator
JP2011520059A (en) Discharge valve device for hermetic compressor
JP2015132264A (en) Variable suction mechanism for air-conditioning compressor to improve nvh by varying suction inlet flow area
JP5533061B2 (en) Hermetic compressor and refrigeration system
CN107061276B (en) Rotary compressor
CN107084133B (en) Compressor and refrigerating device with same
JP2004176706A (en) Intake muffler for reciprocating compressor
WO2024060638A1 (en) Oil separation cover and scroll compressor
JP2018138780A5 (en)
KR20180078936A (en) Compressor
KR102286811B1 (en) Compressor
US20240110555A1 (en) Sound reduction device for rocking piston compressors
JP6350916B2 (en) Rotary compressor
KR101543660B1 (en) Compressor and valve assembly for reducing pulsation thereof
KR102387075B1 (en) Piston for Compressor and Compressor having the same
KR102365966B1 (en) Compressor
KR20240102496A (en) Motor for compressor
JP2020133431A (en) Reciprocation type fluid machine
KR20180035611A (en) Compressor
KR20180035613A (en) Compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18758186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18758186

Country of ref document: EP

Kind code of ref document: A1