JP5000410B2 - Method for evaluating mineral structure of iron ore for sintering by X-ray CT and method for producing sintered ore - Google Patents

Method for evaluating mineral structure of iron ore for sintering by X-ray CT and method for producing sintered ore Download PDF

Info

Publication number
JP5000410B2
JP5000410B2 JP2007194898A JP2007194898A JP5000410B2 JP 5000410 B2 JP5000410 B2 JP 5000410B2 JP 2007194898 A JP2007194898 A JP 2007194898A JP 2007194898 A JP2007194898 A JP 2007194898A JP 5000410 B2 JP5000410 B2 JP 5000410B2
Authority
JP
Japan
Prior art keywords
iron ore
ray
ore
density
mineral structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007194898A
Other languages
Japanese (ja)
Other versions
JP2009030104A (en
Inventor
慎治 河内
俊次 笠間
潤 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007194898A priority Critical patent/JP5000410B2/en
Publication of JP2009030104A publication Critical patent/JP2009030104A/en
Application granted granted Critical
Publication of JP5000410B2 publication Critical patent/JP5000410B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、高炉原料用の焼結鉱の製造に用いる各種銘柄の鉄鉱石の特性を評価する方法と、焼結鉱を製造するため該方法を用いて該鉄鉱石の配分を設計し、該配合の下で焼結鉱を製造する方法に関するものである。   The present invention is a method for evaluating the characteristics of various brands of iron ore used for the production of sintered ore for blast furnace raw materials, and the distribution of the iron ore using the method for producing sintered ore, The invention relates to a method for producing sintered ore under compounding.

高炉原料用の焼結鉱は、一般に、以下のように製造される。まず、粉鉄鉱石に、石灰粉等のCaO含有副原料、珪石や蛇紋岩等のSiO2含有副原料、および、コークス粉等の炭材を配合し、これに適量の水を加えて混合・造粒する。この造粒された配合原料(焼結原料)を、ドワイトロイド式焼結機のパレットの上に所定の厚さに充填し、充填ベッド表層部の炭材に着火した後、下方に向けて空気を吸引しながら充填ベッド内部の炭材を燃焼させ、燃焼熱により配合原料を焼結させて焼結ケーキとする。そして、この焼結ケーキを破砕・整粒することにより、粒径が数mm以上の成品焼結鉱が得られる。 Generally, the sintered ore for blast furnace raw material is manufactured as follows. First, powdered iron ore is mixed with CaO-containing auxiliary materials such as lime powder, SiO 2- containing auxiliary materials such as silica and serpentine, and carbon materials such as coke powder, and an appropriate amount of water is added and mixed. Granulate. This granulated compounded raw material (sintered raw material) is filled to a predetermined thickness on the pallet of a Dwytroid type sintering machine, ignited the charcoal on the surface part of the packed bed, and then air downwards. The carbonaceous material in the packed bed is burned while sucking the slag, and the blended raw material is sintered by the combustion heat to obtain a sintered cake. Then, by crushing and sizing the sintered cake, a product sintered ore having a particle size of several mm or more can be obtained.

この焼結プロセスにおいて、安定した焼結操業を行い、高炉原料として必要な品質、例えば、強度、被還元性、還元粉化性などの品質を満足した焼結鉱を製造するため、主原料である海外から輸入された鉄鉱石については、入船毎の受入時に化学分析と粒度分析が行われる。この分析方法は、例えば、JIS−Z8815、JIS−M8211〜JIS−M8213に詳しく規定されている。   In this sintering process, in order to produce stable sinter operations and to produce sintered ore that satisfies the qualities required for blast furnace raw materials such as strength, reducibility, and reduced powdering properties, For iron ore imported from one foreign country, chemical analysis and grain size analysis are performed at the time of receiving each ship. This analysis method is defined in detail in, for example, JIS-Z8815, JIS-M8211 to JIS-M8213.

また、特許文献1には、実際の焼結過程により近づけて鉄鉱石を評価するため、成型した微粉鉄鉱石の上に成型した低融点物質を載せ、大気中または低酸素雰囲気下で1000℃以上に昇温して低融点物質を溶融させ、その溶融した融液を鉄鉱石粉中に溶融させ、その融液が浸透した距離、断面積および体積の1種または2種以上を測定することにより、鉄鉱石粉への融液浸透性を評価する方法が提案されている。   In Patent Document 1, in order to evaluate the iron ore closer to the actual sintering process, a low melting point material formed on the formed fine iron ore is placed, and 1000 ° C. or higher in the air or in a low oxygen atmosphere. To melt the low melting point material, melt the melt into the iron ore powder, and measure one or more of the distance, cross-sectional area and volume penetrated by the melt, A method for evaluating the melt penetration into iron ore powder has been proposed.

また、焼結性には、化学成分と粒度だけでなく、鉱石種も大きな影響を与えることから、鉱石種の中でも、特に、マータイト(γ−Fe23:マグヘマイト)を分析する方法として、示差熱分析とX線回折分析を併用する方法が提案されている(特許文献2、参照)。 In addition, since not only the chemical composition and particle size but also the ore species has a great influence on the sinterability, among the ore species, in particular, as a method for analyzing martite (γ-Fe 2 O 3 : maghemite) A method using both differential thermal analysis and X-ray diffraction analysis has been proposed (see Patent Document 2).

また、特許文献3には、X線CT装置を用いて、焼結体の2次元的な気孔率を求め、焼結未完了部の発生を制御する方法が提案されている。この方法は、X線CTを用いて焼結体の任意の断面の撮像を行い、得られた画像より、円相当径で5mm以上の気孔の比率を求め、この気孔率が40%を超えないように焼結工程の制御を行うものである。   Patent Document 3 proposes a method of obtaining the two-dimensional porosity of a sintered body by using an X-ray CT apparatus and controlling the generation of unsintered parts. In this method, an arbitrary cross section of a sintered body is imaged using X-ray CT, and the ratio of pores having an equivalent circle diameter of 5 mm or more is obtained from the obtained image, and the porosity does not exceed 40%. Thus, the sintering process is controlled.

しかし、近年、良質な鉄鉱石である赤鉄鉱(α−Fe23:ヘマタイト)や、磁鉄鉱(Fe34:マグネタイト)を主体とする鉄鉱石は枯渇に向かっており、将来的に、鉄鉱石は、埋蔵量の豊富な結晶水を5〜9%含むマラマンバ鉱石等を、山元でブレンドした商品として出荷される見込みである。そのため、輸入鉄鉱石は、1つの銘柄の中に、高品位鉱種と低品位鉱種が混在した商品になると予想される。 However, in recent years, iron ores mainly composed of hematite (α-Fe 2 O 3 : hematite) and magnetite (Fe 3 O 4 : magnetite), which are high-quality iron ores, are heading for depletion. Iron ore is expected to be shipped as a product blended at the foot of a maramamba ore containing 5-9% crystal water with abundant reserves. For this reason, imported iron ore is expected to be a product in which high grade or low grade ore is mixed in one brand.

一方、非特許文献1では、同じ銘柄中の低品位鉱種の配合割合が、焼結鉱の生産に悪影響を与えることを明らかにしている。今後、1銘柄中の低品位鉱種の量が増えると、焼結鉱の生産性が低下してしまう懸念がある。   On the other hand, Non-Patent Document 1 clarifies that the blending ratio of low-grade ore species in the same brand adversely affects the production of sintered ore. If the amount of low-grade ore in one brand increases in the future, there is a concern that the productivity of sintered ore will decrease.

従来、鉱種の評価は、対象鉄鉱石を樹脂等に埋め込み、切断後、表面を研磨して、顕微鏡観察することにより行われてきた。しかし、この手法では、経験的要素が強く、また、判別の基準が曖昧なため、定量的な評価が行われていない。   Conventionally, evaluation of ore species has been performed by embedding a target iron ore in a resin or the like, cutting the surface, polishing the surface, and observing under a microscope. However, this method has a strong empirical factor, and the criteria for discrimination are ambiguous, so quantitative evaluation is not performed.

特許文献1、および、特許文献2の焼結用配合の分析方法は、経験的要素が少なく、定量的な評価が可能であるが、この方法に用いられる試料の量が数g程度であるため、大量の鉄鉱石を処理する製鉄プロセスに採用すると、縮分の精度によっては、対象鉱石を代表して評価できているとは言いがたく、また、評価に時間がかかる。   The method for analyzing the composition for sintering in Patent Document 1 and Patent Document 2 has few empirical elements and can be quantitatively evaluated. However, the amount of the sample used in this method is about several grams. When it is adopted in an iron making process for processing a large amount of iron ore, it is difficult to say that the target ore can be evaluated depending on the accuracy of shrinkage, and it takes time to evaluate.

特開昭59−153845号公報JP 59-153845 A 特開2006−257477号公報JP 2006-257477 A 特開昭61−110729号公報Japanese Unexamined Patent Publication No. 61-110729 鉄と鋼 Vol.92(2006)No.12 p21〜28Iron and steel Vol. 92 (2006) No. 12 p21-28

本発明においては、上述した従来技術の課題を踏まえ、多鉱種が混合された鉱石中のヘマタイト鉱石の量を定量化することにより、簡易で効率的な鉄鉱石の評価方法を提供することを第一の目的とする。さらに、本発明での評価を用いて、焼結特性を定量的に予測し、評価する方法を提供することを第二の目的とする。   In the present invention, based on the above-mentioned problems of the prior art, it is possible to provide a simple and efficient method for evaluating iron ore by quantifying the amount of hematite ore in the ore mixed with multiple ore species. The first purpose. Furthermore, the second object is to provide a method for quantitatively predicting and evaluating the sintering characteristics using the evaluation in the present invention.

上記目的を達成する本発明の要旨は、以下のとおりである。
(1)マイクロフォーカスX線CTを用いて焼結用鉄鉱石の断面画像を撮像し、該断面画像から前記鉄鉱石の鉱物組織を評価する方法であって、
(i)管電圧が150kV以上の条件で、X線源から発生したX線を、下記(1)式で定義するフィルター指数Fを0.89以上とする密度ρと厚みLを有するフィルターを介して、複数の方向から、前記鉄鉱石に照射し、
(ii)該鉄鉱石の照射X線の強度と透過X線の強度から、鉄鉱石内部のX線吸収係数に対応するCT値の空間分布を求め、さらに、該X線吸収係数CT値の空間分布から、鉄鉱石断面における見掛密度を求め、
(iii)該見掛密度を基に、前記鉄鉱石の鉱物組織を特定するとともに、特定した鉱物組織の全鉄鉱石断面に対する面積率から、該鉱物組織の含有量を求める
ことを特徴とするX線CTによる焼結用鉄鉱石の鉱物組織評価方法。
F=ρ×L ・・・(1)
ただし、ρ:フィルターの密度(g/cm3
L:フィルターの厚み(cm)
The gist of the present invention for achieving the above object is as follows.
(1) A method of taking a cross-sectional image of a sintered iron ore using microfocus X-ray CT, and evaluating the mineral structure of the iron ore from the cross-sectional image,
(I) Under the condition that the tube voltage is 150 kV or higher, the X-ray generated from the X-ray source is passed through a filter having a density ρ and a thickness L with a filter index F defined by the following formula (1) of 0.89 or higher. Irradiating the iron ore from a plurality of directions,
(Ii) Obtain the spatial distribution of CT values corresponding to the X-ray absorption coefficient inside the iron ore from the intensity of the irradiated X-ray and the transmitted X-ray intensity of the iron ore, and further, the space of the X-ray absorption coefficient CT value From the distribution, find the apparent density in the iron ore section,
(Iii) Based on the apparent density, the mineral structure of the iron ore is specified, and the content of the mineral structure is obtained from the area ratio of the specified mineral structure to the entire iron ore section. Evaluation method of mineral structure of iron ore for sintering by wire CT.
F = ρ × L (1)
Where ρ: filter density (g / cm 3 )
L: Filter thickness (cm)

(2)前記見掛密度ρzは、前記X線吸収係数CTの測定値から、下記(2)式を用いて求めることを特徴とする上記(1)に記載のX線CTによる焼結用鉄鉱石の鉱物組織評価方法。
ρz= ρair +(ρc − ρair)/(CTc −CTair)×(CT − CTair)
・・・(2)
ただし、ρz:鉱物組織の見掛密度(g/cm3
ρair:空気の密度(=1.3×10-3)(g/cm3
ρc:校正用試料の密度(g/cm3
CT:鉱物組織のCT値
CTair:空気のCT値
CTc:校正用試料のCT値
(2) The apparent density ρz is obtained from the measured value of the X-ray absorption coefficient CT using the following equation (2), and the iron ore for sintering by X-ray CT according to (1) above Method for evaluating the mineral structure of stone.
ρz = ρair + (ρc−ρair) / (CTc−CTair) × (CT−CTair)
... (2)
Where ρz: apparent density of mineral structure (g / cm 3 )
ρair: density of air (= 1.3 × 10 −3 ) (g / cm 3 )
ρc: Density of calibration sample (g / cm 3 )
CT: CT value of mineral structure
CTair: CT value of air
CTc: CT value of the calibration sample

(3)前記見掛密度が4.4g/cm3以上の鉱物組織をヘマタイトとし、前記見掛密度が3.5g/cm3以上、4.4g/cm3未満の鉱物組織をゲーサイトとヘマタイトの混合組織とし、前記見掛密度が2.8g/cm3以上、3.5g/cm3未満の鉱物組織をゲーサイトとし、前記見掛密度が1.5g/cm3以上、2.8g/cm3未満の鉱物組織を脈石鉱物とし、前記見掛密度が1.5g/cm3未満を気孔とすることを特徴とする上記(1)または(2)に記載のX線CTによる焼結用鉄鉱石の鉱物組織評価方法。 (3) The mineral structure having an apparent density of 4.4 g / cm 3 or more is hematite, and the mineral structure having an apparent density of 3.5 g / cm 3 or more and less than 4.4 g / cm 3 is goethite and hematite. And a mineral structure having an apparent density of 2.8 g / cm 3 or more and less than 3.5 g / cm 3 as a goethite, and an apparent density of 1.5 g / cm 3 or more and 2.8 g / cm 2. Sintering by X-ray CT according to (1) or (2) above, wherein the mineral structure of less than cm 3 is a gangue mineral and the apparent density is less than 1.5 g / cm 3. Mineral structure evaluation method for iron ore.

(4)焼結鉱の製造方法において、
(i)上記(3)に記載のX線CTによる焼結用鉄鉱石の鉱物組織評価方法を用いて、焼結原料に配合する鉄含有原料(ただし、返鉱および篩下枌を除く)を構成する銘柄iの鉄鉱石から採取した粒度1mm以上の鉄鉱石におけるヘマタイト含有量を測定し、
(ii)該へマタイト含有量の測定値ai、銘柄iの鉄鉱石における粒度1mm以上の鉄鉱石の累積質量%bi、および、銘柄iの鉄鉱石の配合割合Xiから、下記(3)式を用いて全鉄含有原料中の粒度1mm以上の鉄鉱石におけるヘマタイト含有量WHを求め、
(iii)WHが35%以上となるように、前記鉄含有原料を構成する銘柄iの鉄鉱石の配合割合Xiを調整した後、該配合炭焼結機で焼成することを特徴とする焼結鉱の製造方法。
WH=Σi=1〜n(ai×bi)×Xi ・・・(3)
ただし、ai:銘柄iの鉄鉱石から採取した粒度1mm以上の鉄鉱石におけるヘマタイ
ト含有量(質量%)
bi:銘柄iの鉄鉱石における粒度1mm以上の鉄鉱石の累積(質量%)
Xi:銘柄iの鉄鉱石の配合割合(質量%)
Σi=1〜n(ai×bi)×Xi:配合割合Xiによる(ai×bi)の重み付
け平均値(i=1〜nの自然数)
(4) In the method for producing sintered ore,
(I) Using the method for evaluating the mineral structure of iron ore for sintering by X-ray CT as described in (3) above, iron-containing raw materials (but excluding returning minerals and under-slags) included in the sintered raw materials Measure the hematite content in iron ore with a grain size of 1 mm or more collected from the iron ore of brand I
(Ii) From the measured value ai of the hematite content, the cumulative mass% bi of iron ore having a particle size of 1 mm or more in the iron ore of brand i, and the blending ratio Xi of the iron ore of brand i, the following formula (3) is obtained. The hematite content WH in the iron ore having a particle size of 1 mm or more in the total iron-containing raw material is used,
(Iii) A sintered ore characterized by adjusting the blending ratio Xi of the iron ore of the brand i constituting the iron-containing raw material so that the WH becomes 35% or more, and then firing the blended coal sintering machine. Manufacturing method.
WH = Σ i = 1 to n (ai × bi) × Xi (3)
However, ai: Hematai in iron ore with a particle size of 1mm or more collected from iron ore of brand i
G content (% by mass)
bi: Accumulation (% by mass) of iron ore having a particle size of 1 mm or more in the iron ore of brand i
Xi: Mixing ratio of iron ore of brand i (mass%)
Σ i = 1 to n (ai × bi) × Xi: Weighting of (ai × bi) by blending ratio Xi
Average value (i = 1 to n)

本発明によれば、入荷鉱石中に存在する、焼結性向上に寄与する高品位鉱種の存在比率を、迅速かつ正確に分析でき、また、焼結原料に配合される原料鉱石の粗粒緻密鉱石の量を管理することにより、原料鉱石の種類に関わりなく、焼結鉱を高い生産性で製造することができる。   According to the present invention, it is possible to quickly and accurately analyze the abundance ratio of high-grade ore species existing in the incoming ore that contribute to the improvement of sinterability, and the coarse particles of the raw ore blended in the sintered raw material By controlling the amount of dense ore, sintered ore can be produced with high productivity regardless of the type of raw ore.

以下に、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1に、マイクロフォーカスX線CTを用いた本発明の実施形態の一例を示す。   FIG. 1 shows an example of an embodiment of the present invention using microfocus X-ray CT.

マイクロフォーカスX線CT(Computerized Tomography)の装置は、X線5を発生するための陰極と陽極を有する真空管からなるマイクロフォーカスX線源1と、X線5の低エネルギー成分を除去するためのフィルター2と、鉄鉱石試料3を固定するとともに、鉄鉱石試料3を、その中心軸の周りに回転し、X線5の照射方向を変えることが可能な試料ステージ4と、鉄鉱石試料3を透過したX線5(以下、透過X線と言う)を可視光画像に変換するための外径230mmφのX線検出器4(以下、これをイメージインテンシファイアー(Image Intensifier:I.I.)型検出器という)。   An apparatus for microfocus X-ray CT (Computerized Tomography) includes a microfocus X-ray source 1 composed of a vacuum tube having a cathode and an anode for generating X-rays 5, and a filter for removing low energy components of X-rays 5. 2 and the iron ore sample 3 are fixed, the iron ore sample 3 is rotated around its central axis, and the irradiation stage of the X-ray 5 can be changed, and the iron ore sample 3 is transmitted. X-ray detector 4 (hereinafter referred to as an image intensifier (II) type) having an outer diameter of 230 mm for converting the X-ray 5 (hereinafter referred to as transmitted X-ray) into a visible light image. Called detector).

マイクロフォーカスX線源1では、真空および高電圧下で陰極で発生させた電子ビームを収束し、加速して、陽極のターゲット(タングステン等)の焦点に衝突させることによりX線5を発生させる。なお、本発明では、測定試料が密度の高い鉄鉱石を対象とするため、X線源として、管電圧が最大225kVと高く、かつ、最小焦点寸法が4μmと小さい、マイクロフォーカスX線源を使用することが好ましい。   In the microfocus X-ray source 1, the electron beam generated at the cathode under vacuum and high voltage is converged, accelerated, and collided with the focus of the anode target (tungsten or the like) to generate the X-ray 5. In the present invention, since the sample to be measured is a high-density iron ore, a microfocus X-ray source having a high tube voltage as high as 225 kV and a minimum focal size as small as 4 μm is used as the X-ray source. It is preferable to do.

マイクロフォーカスX線源1で発生させたX線5を、鉄鉱石試料に、複数の方向から照射し、鉄鉱石試料を透過した透過X線を、I.I.型検出器4で可視光画像に変換し、再構成計算によって、照射X線の強度と透過X線の強度から、鉄鉱石試料内部のX線吸収係数の空間分布を求める。   The X-ray 5 generated by the microfocus X-ray source 1 is irradiated on the iron ore sample from a plurality of directions, and the transmitted X-ray transmitted through the iron ore sample is visualized by the II type detector 4. The spatial distribution of the X-ray absorption coefficient inside the iron ore sample is obtained from the intensity of the irradiated X-ray and the intensity of the transmitted X-ray by reconstruction calculation.

通常のX線CTでは、X線吸収係数を、さらに、水(密度=1)のCT値が0、空気(密度≒0)のCT値が−1000となるように、水を基準としたCTの相対値(無次元)とし、コンピュータにより、CT値に応じた256階調(CT=0(空気のCT)〜255)の濃淡(輝度)画像として、鉄鉱石試料の断面像を表示する。   In normal X-ray CT, the X-ray absorption coefficient is calculated based on water so that the CT value of water (density = 1) is 0 and the CT value of air (density≈0) is −1000. The cross-sectional image of the iron ore sample is displayed as a grayscale (brightness) image having 256 gradations (CT = 0 (CT of air) to 255) according to the CT value.

鉄鉱石試料の断面像は、CT値が高い画素領域で明るく(白)なり、CT値が低い画素領域で暗く(黒)なるように表示される。   The cross-sectional image of the iron ore sample is displayed so as to be bright (white) in a pixel region having a high CT value and dark (black) in a pixel region having a low CT value.

一般に、鉄鉱石試料の照射X線の強度I0、透過X線の強度I、および、鉄鉱石試料内のX線光路長(試料厚み)Lから、下記(4)式によって求められるX線吸収係数μは、単一波長(単一エネルギー)の場合に、図2に示すように、鉄鉱石試料の密度に比例し、X線吸収係数μ(CT値に対応する)が高くなるほど、密度も高くなる。
I=I0×exp(−μ・L) ・・・(4)
In general, the X-ray absorption obtained from the following equation (4) from the intensity I 0 of the irradiated X-ray of the iron ore sample, the intensity I of the transmitted X-ray, and the X-ray optical path length (sample thickness) L in the iron ore sample In the case of a single wavelength (single energy), the coefficient μ is proportional to the density of the iron ore sample, and as the X-ray absorption coefficient μ (corresponding to the CT value) increases, the density also increases as shown in FIG. Get higher.
I = I 0 × exp (−μ · L) (4)

マイクロフォーカスX線CTによって得られた鉄鉱石試料のCT値は、以下のようにして、密度に変換することができる。   The CT value of the iron ore sample obtained by microfocus X-ray CT can be converted to density as follows.

例えば、図2に示すように、アルミニウム(密度:2.7g/cm3)、アクリル(密度:1.1g/cm3)、水(密度:1g/cm3)などの、密度がわかっているものを校正用試料とし、鉄鉱石試料のCT値を測定する前に、予め、校正用試料のCT値CTcと空気のCT値CTairを、それぞれ測定しておくことで、下記(2)式により、鉄鉱石試料のCT値を密度に換算することができる。 For example, as shown in FIG. 2, the density of aluminum (density: 2.7 g / cm 3 ), acrylic (density: 1.1 g / cm 3 ), water (density: 1 g / cm 3 ), etc. is known. Before measuring the CT value of the iron ore sample using the calibration sample, the CT value CTc of the calibration sample and the CT value CTair of the air are measured in advance. The CT value of the iron ore sample can be converted into a density.

なお、校正用試料は、特に、特定のものに限られるものではないが、密度のばらつきがなく、取り扱い、および、入手の点から、アルミニウム(密度:2.7g/cm3)が好ましい。
ρz= ρair +(ρc − ρair)/(CTc −CTair)×(CT − CTair)
・・・(2)
ρz:鉱物組織の密度(g/cm3
ρair:空気の密度(=1.3×10-3)(g/cm3
ρc:校正用試料の密度(g/cm3
CT:鉱物組織のCT値
CTair:空気のCT値
CTc:校正用試料のCT値
The calibration sample is not particularly limited to a specific one, but aluminum (density: 2.7 g / cm 3 ) is preferable from the viewpoints of no variation in density and handling and availability.
ρz = ρair + (ρc−ρair) / (CTc−CTair) × (CT−CTair)
... (2)
ρz: Mineral structure density (g / cm 3 )
ρair: density of air (= 1.3 × 10 −3 ) (g / cm 3 )
ρc: Density of calibration sample (g / cm 3 )
CT: CT value of mineral structure CTair: CT value of air CTc: CT value of calibration sample

本発明は、マイクロフォーカスX線CTを用いて焼結用鉄鉱石の断面画像を撮像し、該断面画像から前記鉄鉱石の鉱物組織を評価するものであるが、鉄鉱石の鉱物組織を正確に定量するためのCTの分解能と精度を得るために、以下に説明するように、特に、X線源の管電圧、および、フィルターの密度ρと厚みLの条件を最適化する。   The present invention captures a cross-sectional image of a sintered iron ore using microfocus X-ray CT and evaluates the mineral structure of the iron ore from the cross-sectional image. In order to obtain the resolution and accuracy of CT for quantification, the conditions of the tube voltage of the X-ray source and the density ρ and thickness L of the filter are particularly optimized as described below.

<フィルターの密度ρと厚みL>
上述したように、上記(4)式によって求められるX線吸収係数μは、単一波長(単一エネルギー)の場合には、鉄鉱石試料の密度に比例する。
<Filter density ρ and thickness L>
As described above, the X-ray absorption coefficient μ obtained by the above equation (4) is proportional to the density of the iron ore sample in the case of a single wavelength (single energy).

しかし、実際に、マイクロフォーカスX線源から発生したX線には、長波長(低エネルギー)成分が含まれており、鉄鉱石試料のCT値を測定した場合には、この長波長(低エネルギー)成分が、特に、試料周辺近傍で選択的に吸収されることにより、見掛け上のX線吸収係数が高くなり、その結果、CTの空間分解能が低下することが判明した。   However, the X-rays generated from the microfocus X-ray source actually contain a long wavelength (low energy) component. When the CT value of an iron ore sample is measured, this long wavelength (low energy) ) Component is selectively absorbed particularly in the vicinity of the periphery of the sample, so that the apparent X-ray absorption coefficient is increased, and as a result, the spatial resolution of CT is decreased.

一般に、このようなX線中に含まれる低エネルギー成分の吸収によるX線スペクトルおよびCT値の変化は、線質硬化(ビームハードニング)現象として知られているが、本発明者らは、鉄鉱石のような高密度物質を試料とするCT撮像において、その影響が顕著となることを確認した。   Generally, such changes in the X-ray spectrum and CT value due to absorption of low energy components contained in X-rays are known as a phenomenon of hardening of the beam (beam hardening). In CT imaging using a high-density material such as stone as a sample, it was confirmed that the influence becomes significant.

図3に、フィルターを使用しない条件で撮像した場合の、平均円相当径4.1mmの試薬ヘマタイト焼成体試料のマイクロフォーカスX線CT断面画像を示す。また、図4に、密度ρが8.9g/cm3で厚み2mmの銅フィルターを使用し、X線中の長波長(低エネルギー)成分を除去した条件で撮像した場合の、上記試料と同じ試料のマイクロフォーカスX線CT断面画像を示す。なお、試薬ヘマタイト焼成体試料は、平均真密度(気孔を除く固体部分の密度)が5.3の均一密度の試料である。 FIG. 3 shows a microfocus X-ray CT cross-sectional image of a reagent hematite fired body sample having an average equivalent circle diameter of 4.1 mm when imaged under a condition where no filter is used. 4 is the same as the above sample in the case of imaging using a copper filter having a density ρ of 8.9 g / cm 3 and a thickness of 2 mm and removing a long wavelength (low energy) component in X-rays. The microfocus X-ray CT cross-sectional image of a sample is shown. The reagent hematite fired body sample is a sample having a uniform density with an average true density (the density of the solid portion excluding pores) of 5.3.

図3に、示すフィルターを使用しない条件で撮像した試料のCT断面画像は、試料外周部が白く表示され、試料周辺部の見掛け上の密度が高くなっている(線質硬化現象)ことが解る。一方、図4に示すように、フィルターを使用することにより、線質硬化が抑制され、均一密度を有する試薬ヘマタイト焼成体を再現する輝度(CT値)分布が均一のCT画像が得られている。   FIG. 3 shows that the CT cross-sectional image of the sample imaged without using the filter shown in FIG. 3 displays the outer periphery of the sample in white, and the apparent density of the periphery of the sample is high (linear hardening phenomenon). . On the other hand, as shown in FIG. 4, by using the filter, a CT image with a uniform luminance (CT value) distribution that reproduces the calcined reagent hematite with a uniform density is obtained by using the filter. .

さらに、本発明者らは、鉄鉱石試料のX線CTにおける線質硬化を抑制し、試料中の鉱物組織を正確に定量するために必要なCT値の空間分解能を確保することができるフィルターの密度ρと厚みLの条件について検討を行った。   Furthermore, the present inventors have provided a filter that can suppress the hardening of the iron ore sample in X-ray CT and ensure the spatial resolution of the CT value necessary for accurately quantifying the mineral structure in the sample. The conditions of density ρ and thickness L were examined.

図5に、上記試薬ヘマタイト焼成体試料のマイクロフォーカスX線CTにおいて用いた銅製フィルターの厚みと、CTの相対標準偏差RSDの関係を示す。   FIG. 5 shows the relationship between the thickness of the copper filter used in the microfocus X-ray CT of the reagent hematite fired body sample and the relative standard deviation RSD of CT.

相対標準偏差RSD(Relative Standard Deviztion)は、標準偏差(σ)を平均値(μ)で除したもの(σ/μ)であり、一般に、測定精度や分布の広がり度合いを、相対的に評価するための指標として用いられている。   Relative Standard Deviation (RSD) is the standard deviation (σ) divided by the mean value (μ) (σ / μ), and generally evaluates the measurement accuracy and the extent of distribution relatively. It is used as an indicator for

図6に、上記試薬ヘマタイト焼成体と、焼結原料に用いられる主な鉄鉱石の平均真密度を示す。なお、平均真密度は、液相置換法により求めた気孔を除く固体部分の平均密度を示す。   FIG. 6 shows the average true density of the above-described reagent hematite fired body and main iron ore used as a sintering raw material. In addition, an average true density shows the average density of the solid part except the porosity calculated | required by the liquid phase substitution method.

図6から、MBR−PF、カラジャス、および、Mtニューマンの平均真密度は、4.4g/cm3以上である。一般に、これらの鉄鉱石の鉱物組成は、ヘマタイト主体であることが知られている。 From FIG. 6, the average true density of MBR-PF, Carajas, and Mt Newman is 4.4 g / cm 3 or more. Generally, it is known that the mineral composition of these iron ores is mainly hematite.

なお、ヘマタイト主体の鉱物組織を有するMBR−PF、カラジャス、および、Mtニューマンの平均真密度が、いずれも、試薬ヘマタイト焼結体の平均真密度(5.3g/cm3)より低い理由は、MBR−PF、カラジャス、および、Mtニューマンには、ヘマタイト以外に、脈石鉱物などが含有されているからである。 The reason why the average true density of MBR-PF, Carajas, and Mt Newman having a mineral structure mainly composed of hematite is lower than the average true density (5.3 g / cm 3 ) of the reagent hematite sintered body is that This is because MBR-PF, Carajas, and Mt Newman contain gangue minerals in addition to hematite.

また、Wアンジェラス、および、ローブリバーの密度は、3.5g/cm3以上、4.4g/cm3未満である。一般に、これらの鉄鉱石の鉱物組織は、ヘマタイトとゲーサイトの混合組織である(なお、ヘマタイトは、多孔質構造を有し、マータイトと呼ばれることもある)。 Further, the density of W Angelus and the lobe river is 3.5 g / cm 3 or more and less than 4.4 g / cm 3 . Generally, the mineral structure of these iron ores is a mixed structure of hematite and goethite (note that hematite has a porous structure and may be called martite).

本発明では、図6に示す主要鉄鉱石の中で、平均密度差Xが約7%と最も近い関係にある、Mtニューマン(豪州産ヘマタイト鉱石)とWアンジェラス(豪州産マラバンバ鉱石)の2銘柄を、95.4%の信頼度で区別するためには、CT値の相対標準偏差(σ/μ)の4倍(4σ/μ)が7%以下、つまり、1銘柄当りの鉄鉱石のCT値の相対標準偏差(σ/μ)は1.75%以下とする必要がある。   In the present invention, 2 of Mt Newman (Australian hematite ore) and W Angelus (Australian Malabamba ore), which have the closest average density difference X of about 7% among the main iron ores shown in FIG. In order to distinguish brands with a confidence level of 95.4%, four times the relative standard deviation (σ / μ) of CT values (4σ / μ) is 7% or less, that is, iron ore per brand. The relative standard deviation (σ / μ) of the CT value needs to be 1.75% or less.

したがって、図5に示す、密度ρが8.9g/cm3の銅フィルターの厚みとCTの相対標準偏差RSDとの関係から、平均密度差が7%の2種の鉱物組織を、95.4%の信頼度で区別することができる、1.75%以下の相対標準偏差RSDを安定して確保するためには、銅製フィルターの厚みは、1mm以上とする必要があることが解る。 Therefore, from the relationship between the thickness of a copper filter having a density ρ of 8.9 g / cm 3 and the relative standard deviation RSD of CT shown in FIG. 5, two kinds of mineral structures having an average density difference of 7% are represented by 95.4. It can be seen that the thickness of the copper filter needs to be 1 mm or more in order to stably secure a relative standard deviation RSD of 1.75% or less that can be distinguished with a reliability of%.

なお、図5では、密度ρが8.9g/cm3の銅製フィルターの厚みとCTの相対標準偏差RSDとの関係を示したが、フィルターの厚みを変えずに、フィルターの密度ρを増加することによっても、同様に、CTの相対標準偏差RSDを低下させる、つまり、CTの空間分解能を向上する効果が得られる。 FIG. 5 shows the relationship between the thickness of a copper filter having a density ρ of 8.9 g / cm 3 and the relative standard deviation RSD of CT, but the filter density ρ is increased without changing the filter thickness. Similarly, the effect of reducing the relative standard deviation RSD of CT, that is, improving the spatial resolution of CT can be obtained.

図11に、上記試薬ヘマタイト焼成体試料のマイクロフォーカスX線CTにおける下記(1)式で求められるF値とCTの相対標準偏差RSDとの関係を示す。
F=ρ×L ・・・(1)
ただし、ρ:フィルターの密度(g/cm3
L:フィルターの厚み(cm)
FIG. 11 shows the relationship between the F value obtained by the following equation (1) and the relative standard deviation RSD of CT in the microfocus X-ray CT of the reagent hematite fired body sample.
F = ρ × L (1)
Where ρ: filter density (g / cm 3 )
L: Filter thickness (cm)

図11から、図5に示す、密度ρが0.89g/cm3の銅製フィルターの厚み:1(mm)以上に相当する、「上記(1)式で定義するフィルター指数Fを0.89以上とする密度ρと厚みLを有するフィルター」を用いることにより、CTの相対標準偏差RSDの低下効果、つまり、CTの空間分解能の向上効果が得られることが解る。 From FIG. 11, the thickness of a copper filter having a density ρ of 0.89 g / cm 3 shown in FIG. 5 corresponds to 1 mm or more, “the filter index F defined by the above formula (1) is 0.89 or more. It can be seen that the effect of reducing the relative standard deviation RSD of CT, that is, the effect of improving the spatial resolution of CT can be obtained by using the “filter having density ρ and thickness L”.

図10に、フィルター指数Fが0.89未満(F<0.89)の場合(A)、および、フィルター指数Fが0.89以上(F≧0.89)の場合(B)のそれぞれにおいて、平均密度の差がX%の鉱物組織1(平均密度:X1)と鉱物組織2(平均密度:X2)のX線CT値の分布を示す。   FIG. 10 shows a case where the filter index F is less than 0.89 (F <0.89) (A) and a case where the filter index F is 0.89 or more (F ≧ 0.89) (B). The distribution of X-ray CT values of mineral structure 1 (average density: X1) and mineral structure 2 (average density: X2) with a difference in average density of X% is shown.

フィルター指数Fが0.89未満(F<0.89)、例えば、X=2σ/μの場合(A)は、2つの鉱物組織を区別(分離)できる、領域Aが広くなり、X線CT値から算出した密度から鉱物組織1と鉱物組織2を分離する際の信頼度は、68.3%程度と低い。   When the filter index F is less than 0.89 (F <0.89), for example, when X = 2σ / μ (A), the two mineral structures can be distinguished (separated), the region A becomes wide, and the X-ray CT The reliability when separating the mineral structure 1 and the mineral structure 2 from the density calculated from the values is as low as about 68.3%.

これに対して、フィルター指数Fが0.89以上、例えば、X=4σ/μの場合(B)は2つの鉱物組織を区別(分離)できる、領域Aが小さくなり、X線CT値から算出した密度から鉱物組織1と鉱物組織2を分離する際の信頼度は、95.4%以上となり、十分なCTの密度分解能を確保することが可能となる。   On the other hand, when the filter index F is 0.89 or more, for example, X = 4σ / μ (B), the two mineral structures can be distinguished (separated), the region A becomes smaller, and is calculated from the X-ray CT value. The reliability at the time of separating the mineral structure 1 and the mineral structure 2 from the obtained density is 95.4% or more, and a sufficient density resolution of CT can be ensured.

上記(1)式で定義するフィルター指数Fを0.89以上とする密度ρと厚みLを有するフィルターは、特に、特定の材質、形状のものに限定されるものではないが、密度ρが8.9g/cm3で、かつ、厚みLが1mm以上の銅製フィルターの他に、密度ρが2.7g/cm3で、かつ、厚みLが3mm以上のアルミ二ウム製フィルター、密度ρが7.8g/cm3で、かつ、厚みLが1.2mm以上の鉄製フィルターを適用することができる。 A filter having a density ρ and a thickness L with a filter index F defined by the above formula (1) of 0.89 or more is not particularly limited to a specific material and shape, but the density ρ is 8 in .9g / cm 3, and, in addition the thickness L is equal to or greater than the copper filter 1 mm, a density ρ is 2.7 g / cm 3, and the thickness L is 3mm or more aluminum made filter, the density ρ is 7 An iron filter having a thickness L of 1.2 mm or more can be applied at 0.8 g / cm 3 .

本発明では、密度の高い鉄鉱石試料に対して、上記(1)式で定義するフィルター指数Fが0.89以上のフィルターを用いて、高い感度でX線CTを測定するため、X線は、フィルター透過によるX線の減衰を考慮し、鉄鉱石試料を十分に透過できるだけのX線透過能力を備える必要がある。   In the present invention, since X-ray CT is measured with high sensitivity using a filter having a filter index F defined by the above formula (1) of 0.89 or more for a high-density iron ore sample, In consideration of the attenuation of X-rays due to filter transmission, it is necessary to have an X-ray transmission capability that can sufficiently transmit an iron ore sample.

図7に、銅製フィルターの厚みと、管電圧80〜210kVで発生したX線のヘマタイト透過能力の関係を示す。   FIG. 7 shows the relationship between the thickness of the copper filter and the ability of transmitting X-ray hematite generated at a tube voltage of 80 to 210 kV.

ここで、ヘマタイト透過能力とは、それぞれの管電圧条件で発生したX線をヘマタイトに照射した場合に、ヘマタイトを透過できる限界厚みを意味する。   Here, the hematite permeation ability means a limit thickness that allows hematite to pass through when the hematite is irradiated with X-rays generated under each tube voltage condition.

通常の焼結鉱用として使用する粉状鉄鉱石の最大粒径は、10mmである。このため、CT値の空間分解能と感度の両方を確保するためには、図7から、上記(1)式で求めるF値が0.89以上で、銅製フィルターの厚みが1mm以上の条件で、かつ管電圧を150kV以上の条件として、十分な透過能力を有する高エネルギーX線を照射する必要がある。   The maximum particle size of powdered iron ore used for ordinary sintered ore is 10 mm. For this reason, in order to ensure both the spatial resolution and sensitivity of the CT value, from FIG. 7, the F value obtained by the above equation (1) is 0.89 or more, and the thickness of the copper filter is 1 mm or more, In addition, it is necessary to irradiate high energy X-rays having sufficient transmission ability under the condition that the tube voltage is 150 kV or higher.

以上のように、本発明は、X線の長波長(低エネルギー)成分を除去することで、鉱物組織を正確に定量するために十分なCT値の空間分解能を確保し、かつ、高密度の鉄鉱石試料を十分に貫通できるX線の貫通能力を確保するために、X線源の管電圧を150kV以上とし、かつ、上記(1)式で定義するフィルター指数Fが0.89以上となる密度ρと厚みLを有するフィルターを用いることを特徴的な要件とする。   As described above, the present invention eliminates the long-wavelength (low energy) component of X-rays, thereby ensuring a sufficient spatial resolution of CT values for accurately quantifying mineral texture, and having a high density. In order to ensure the X-ray penetration ability that can sufficiently penetrate the iron ore sample, the tube voltage of the X-ray source is set to 150 kV or more, and the filter index F defined by the above formula (1) is 0.89 or more. It is a characteristic requirement to use a filter having a density ρ and a thickness L.

これにより、鉄鉱石試料のX線CT断面撮像において、鉄鉱石試料中の平均密度差Xが約7%と、近接関係にある鉱物組織同士を、95.4%の信頼度で区別できるCT値の空間分解能を確保することができるとともに、最大10mmの高密度の鉄鉱石に対しても、良好なCT値の感度を確保することができる。   As a result, in X-ray CT cross-sectional imaging of iron ore samples, the average density difference X in the iron ore samples is about 7%, and the CT values that can distinguish mineral structures that are in a close relationship with a reliability of 95.4%. Can be ensured, and good CT value sensitivity can be ensured even for high-density iron ore of 10 mm at the maximum.

本発明では、上記のX線CTによる鉄鉱石の鉱物組織評価方法を用いて、焼結用原料を構成する鉄鉱石の鉱物組織を高精度で定量することが可能となる。一般に、鉄鉱石の鉱物組織によって、焼結用原料の造粒する際の造粒のし易さ(造粒性)、および、造粒物の強度は大きく作用され、これに起因して、焼結機で焼結原料を焼成する際の通気性、生産性、成品歩留が左右されることが知られている。   In this invention, it becomes possible to quantify the mineral structure of the iron ore constituting the raw material for sintering with high accuracy using the above-described method for evaluating the structure of iron ore by X-ray CT. In general, the mineral structure of iron ore greatly affects the ease of granulation (granulating property) and the strength of the granulated product when the raw material for sintering is granulated. It is known that the air permeability, productivity, and product yield at the time of firing a sintered raw material with a kneading machine are affected.

また、焼結鉱のプロセスにおける造粒物である、擬似粒子(1mm以上の核粒子の周囲に、1mm未満の微粉粒子が付着した造粒物)の造粒性と造粒物の強度は、擬似粒子を構成する核粒子と微粉粒子とで、その鉄鉱石の鉱物組織が与える影響度は、大きく異なる。   In addition, the granulation property and the strength of the granulated product, which is a granulated product in the sintered ore process, is a pseudo particle (a granulated product in which fine particles of less than 1 mm are attached around a core particle of 1 mm or more). The degree of influence of the mineral structure of the iron ore differs greatly between the core particles and the fine particles constituting the pseudo particles.

一般に、擬似粒子を構成する核粒子に相当する粒径1mm以上の粗粒の鉄鉱石の鉱物組織が、緻密質のヘマタイトの場合には、造粒性と造粒物の強度は向上し、結晶水が多いゲーサイトの場合には、造粒性と造粒物の強度は低下する。   In general, when the mineral structure of coarse iron ore with a particle size of 1 mm or more corresponding to the core particles constituting the pseudo particles is dense hematite, the granulation property and the strength of the granulated material are improved. In the case of goethite with a lot of water, the granulation property and the strength of the granulated product are lowered.

したがって、上記のX線CTによる鉄鉱石の鉱物組織評価方法を用いて、焼結用原料を構成する鉄鉱石のうちで、1mm以上の粗粒鉄鉱石の鉱物組織を定量することにより、焼結原料の造粒性と造粒物の強度を予測し、この予測に基づいて、焼結鉱の生産性と成品歩留を高め、さらには、焼結鉱の冷間強度などの品質を良好に維持することが可能となる。   Therefore, by using the above-mentioned method for evaluating the mineral structure of iron ore by X-ray CT, among the iron ores constituting the raw material for sintering, the mineral structure of coarse iron ore of 1 mm or more is quantified to sinter Predicting the granulation properties of the raw materials and the strength of the granulated material, and based on these predictions, the productivity and product yield of the sintered ore are improved, and the quality of the sintered ore such as cold strength is improved. Can be maintained.

以下に、上記X線CTによる鉄鉱石の鉱物組織評価方法を焼結鉱の製造方法に適用した場合の実施形態の一例を説明する。   Below, an example of embodiment at the time of applying the mineral structure evaluation method of the iron ore by the said X-ray CT to the manufacturing method of a sintered ore is demonstrated.

まず、焼結原料に配合する鉄含有原料(ただし、返鉱および篩下枌を除く)を構成する銘柄iの鉄鉱石から採取した粒度1mm以上の鉄鉱石におけるヘマタイト含有量を測定する。ここで、粒度1mm以上の鉄鉱石は、焼結原料を造粒する際に、擬似粒子(核粒子の周囲に、微粉が付着した造粒物)の核を構成する役割を果たす。   First, the hematite content in an iron ore having a particle size of 1 mm or more collected from the iron ore of the brand i constituting the iron-containing raw material (excluding returning or sieving iron) mixed with the sintered raw material is measured. Here, the iron ore having a particle size of 1 mm or more plays a role of forming a core of pseudo particles (a granulated product in which fine powder adheres around the core particles) when the sintered raw material is granulated.

次に、上記へマタイト含有量の測定値ai、銘柄iの鉄鉱石における粒度1mm以上の鉄鉱石の累積質量%bi、および、銘柄iの鉄鉱石の配合割合Xiから、下記(3)式を用いて、全鉄含有原料中の粒度1mm以上の鉄鉱石におけるヘマタイト含有量WHを求める。   Next, from the measured value ai of the hematite content, the cumulative mass% bi of iron ore having a particle size of 1 mm or more in the iron ore of brand i, and the blending ratio Xi of the iron ore of brand i, the following formula (3) is obtained. The hematite content WH in the iron ore having a particle size of 1 mm or more in the total iron-containing raw material is obtained.

さらに、このヘマタイト含有量WHが35%以上となるように、前記鉄含有原料を構成する銘柄iの鉄鉱石の配合割合Xiを調整し、その後、該配合炭焼結機で焼成する。
WH=Σi=1〜n(ai×bi)×Xi ・・・(3)
ただし、ai:銘柄iの鉄鉱石から採取した粒度1mm以上の鉄鉱石におけるヘマタイ
ト含有量(質量%)
bi:銘柄iの鉄鉱石における粒度1mm以上の鉄鉱石の累積(質量%)
Xi:銘柄iの鉄鉱石の配合割合(質量%)
Σi=1〜n(ai×bi)×Xi:配合割合Xiによる(ai×bi)の重み付
け平均値(i=1〜nの自然数)
Furthermore, the blending ratio Xi of the brand ore iron ore constituting the iron-containing raw material is adjusted so that the hematite content WH is 35% or more, and then fired by the blended carbon sintering machine.
WH = Σ i = 1 to n (ai × bi) × Xi (3)
However, ai: Hematai in iron ore with a particle size of 1mm or more collected from iron ore of brand i
G content (% by mass)
bi: Accumulation (% by mass) of iron ore having a particle size of 1 mm or more in the iron ore of brand i
Xi: Mixing ratio of iron ore of brand i (mass%)
Σ i = 1 to n (ai × bi) × Xi: Weighting of (ai × bi) by blending ratio Xi
Average value (i = 1 to n)

図9に、上記(3)式により求めた全鉄含有原料中の粒度1mm以上の鉄鉱石におけるヘマタイト含有量WHと、この鉄含有原料を配合した焼結原料を焼結する際の生産率との関係を示す。   FIG. 9 shows the hematite content WH in iron ore having a particle size of 1 mm or more in the total iron-containing raw material obtained by the above formula (3), and the production rate when sintering the sintered raw material containing this iron-containing raw material. The relationship is shown.

なお、焼結は、300mmφの焼結試験鍋を用い、層厚を600mmとし、コークス配合量4.5%、吸引負圧1.3kPaの条件で行った。   Sintering was performed using a 300 mmφ sintering test pan, a layer thickness of 600 mm, a coke blending amount of 4.5%, and a suction negative pressure of 1.3 kPa.

図9から、上記(3)式により求めた全鉄含有原料中の粒度1mm以上の鉄鉱石におけるヘマタイト含有量WHを35%以上に管理すると、28t/d/m2以上の高生産率を安定的に維持することができることが解る。 From FIG. 9, when the hematite content WH in the iron ore having a particle size of 1 mm or more in the total iron-containing raw material obtained by the above formula (3) is controlled to 35% or more, a high production rate of 28 t / d / m 2 or more is stable. It can be seen that it can be maintained.

[実施例1]
図1に示するマイクロフォーカスX線CTを用いて、平均粒径が2.8〜3mmのブラジル産ヘマタイト鉱石と豪州産ピソライト鉱石(ゲーサイト鉱石主体)を1:1で混合した混合物試料のCTの空間分布を測定した。このときのX線源の管電圧は210kV、管電流は70μAとし、フィルターは、密度ρ:0.89g/cm3、厚さL:2mmの銅フィルター(前記(1)のF値:1.78g/cm2)を用いた。
[Example 1]
CT of a mixture sample in which Brazilian hematite ore with an average particle size of 2.8 to 3 mm and Australian pisolite ore (mainly goethite ore) are mixed 1: 1 using the microfocus X-ray CT shown in FIG. The spatial distribution of was measured. At this time, the tube voltage of the X-ray source is 210 kV, the tube current is 70 μA, and the filter is a copper filter having a density ρ: 0.89 g / cm 3 and a thickness L: 2 mm (F value of the above (1): 1. 78 g / cm 2 ) was used.

また、この試料の測定前に、予め、測定校正用アルミ二ウム(密度ρc:2.7g/cm3)のCT値CTcと空気(密度ρair:1.3×10-3)のCT値CTairをそれぞれ測定し、これらの値(CTc=1056、CTair=1000)から、上記(2)式により、上記試料のCT値を密度に換算した。 Further, before the measurement of this sample, the CT value CTc of aluminum for measurement calibration (density ρc: 2.7 g / cm 3 ) and the CT value CTair of air (density ρair: 1.3 × 10 −3 ) Were measured, and from these values (CTc = 1056, CTair = 1000), the CT value of the sample was converted to density by the above equation (2).

さらに、得られた見掛密度が4.4g/cm3以上の鉱物組織をヘマタイト、見掛密度が3.5g/cm3以上、4.4g/cm3未満の鉱物組織をゲーサイトとヘマタイトの混合組織とし、見掛密度が2.8g/cm3以上、3.5g/cm3未満の鉱物組織をゲーサイトとし、見掛密度が1.5g/cm3以上、2.8g/cm3未満の鉱物組織を脈石鉱物とし、見掛密度が1.5g/cm3未満を気孔として、試料中の各鉱物組織の含有量(全鉄鉱石断面に対する面積%)を測定した。 Further, the obtained mineral structure having an apparent density of 4.4 g / cm 3 or more is hematite, and the mineral structure having an apparent density of 3.5 g / cm 3 or more and less than 4.4 g / cm 3 is composed of goethite and hematite. A mineral structure having a mixed structure with an apparent density of 2.8 g / cm 3 or more and less than 3.5 g / cm 3 is a goethite, and an apparent density of 1.5 g / cm 3 or more and less than 2.8 g / cm 3. The mineral structure of each sample was gangue mineral, and the apparent density was less than 1.5 g / cm 3, and the content of each mineral structure in the sample (area% with respect to the cross section of the total iron ore) was measured.

図8に、ヘマタイト鉱石とピソライト鉱石(ゲーサイト鉱石主体)の混合試料のマイクロフォーカスX線CTの断面画像を示す。   FIG. 8 shows a cross-sectional image of microfocus X-ray CT of a mixed sample of hematite ore and pisolite ore (mainly goethite ore).

また、表1に、試料中の各鉱物組織の、見掛け密度と含有量(全鉄鉱石断面に対する面積%)を示す。なお、表2には、比較のため同じ試料を用いて化学分析により算出した各鉱物組織の含有量を示す。   Table 1 shows the apparent density and content (area% relative to the cross section of the total iron ore) of each mineral structure in the sample. Table 2 shows the content of each mineral structure calculated by chemical analysis using the same sample for comparison.

図8において、Hがヘマタイト、Gがゲーサイト、H+Gがヘマタイトとゲーサイトの混合組織、Sが脈石、Pが気孔を示す。   In FIG. 8, H is hematite, G is goethite, H + G is a mixed structure of hematite and goethite, S is gangue, and P is a pore.

X線CTの断面画像において、気孔(P)、脈石(S)、ヘマタイト(H)、ヘマタイトとゲーサイトの混合組織(H+G)、ゲーサイト(G)の順にCT値および見掛け密度が高くなり、それに対応して、輝度が明るく(白色)なる画像が得られる。   In the cross-sectional image of X-ray CT, the CT value and the apparent density increase in the order of pore (P), gangue (S), hematite (H), mixed structure of hematite and goethite (H + G), and goethite (G). Correspondingly, an image with bright (white) brightness is obtained.

化学分析では、ヘマタイトとゲーサイトの混在組織と気孔は判別できないため、直接の比較はできないが、表2に示すように、ヘマタイトとゲーサイトの混在組織と気孔を除く割合で比較すると、X線CT値から求められた各鉱物組織の含有量は、同じ試料を用いて化学分析により算出した各鉱物組織の含有量とほぼ同様な測定精度での結果が得られた。   In chemical analysis, the mixed structure and pores of hematite and goethite cannot be discriminated, so a direct comparison is not possible. However, as shown in Table 2, when compared at a ratio excluding the mixed structure and pores of hematite and goethite, As for the content of each mineral structure obtained from the CT value, a result with almost the same measurement accuracy as the content of each mineral structure calculated by chemical analysis using the same sample was obtained.

このように、本発明法によれば、ヘマタイト、ゲーサイト、脈石の含有量を化学分析法と同程度の精度で測定できるとともに、化学分析法では判別できないマタイトとゲーサイトの混在組織と気孔も同時に測定できるものである。   As described above, according to the method of the present invention, the content of hematite, goethite, and gangue can be measured with the same degree of accuracy as chemical analysis, and the mixed structure and pores of matite and goethite that cannot be distinguished by chemical analysis. Can be measured simultaneously.

[実施例2]
表1に示す配合例のように、焼結原料を構成する鉄含有原料(鉱石A〜F)、副原料(石灰石、蛇紋岩、珪石)を所定の割合で配合し、この際、副原料の割合を調整して、焼結鉱のSiO2、CaO/SiO2、MgOの割合が大きく変化させないように調整した。
[Example 2]
Like the compounding example shown in Table 1, the iron-containing raw materials (ores A to F) and the auxiliary raw materials (limestone, serpentine, and silica) constituting the sintered raw materials are mixed at a predetermined ratio. The ratio was adjusted so that the ratio of SiO 2 , CaO / SiO 2 , and MgO in the sintered ore was not significantly changed.

焼結原料は、ドラムミキサーで、水分が7.2%となるように調整しつつ混合、造粒し、その後、焼結した。焼結は、300mmφの焼結試験鍋を用い、層厚を600mmとし、コークス配合量4.4%、吸引負圧15kPaで行った。焼結後の焼結鉱は、その冷間強度を測定し、また、焼結時の成品歩留および生産率を測定した。   The sintered raw material was mixed and granulated with a drum mixer while adjusting the water content to 7.2%, and then sintered. Sintering was performed using a 300 mmφ sintering test pan, a layer thickness of 600 mm, a coke blending amount of 4.4%, and a suction negative pressure of 15 kPa. The sintered ore after sintering was measured for its cold strength, and the product yield and production rate during sintering were measured.

表1に、本発明のX線CTによる鉄鉱石の評価方法を用いて、上記(3)式により上記焼結原料を構成する鉄含有原料(鉱石A〜F)中の粒度1mm以上の鉄鉱石におけるヘマタイト含有量WHを求めた結果と、焼結後の焼結鉱の冷間強度、焼結時の成品歩留および生産率の測定結果も示す。   Table 1 shows the iron ore having a particle size of 1 mm or more in the iron-containing raw materials (ores A to F) constituting the sintered raw material according to the formula (3) using the method for evaluating iron ore by X-ray CT of the present invention. The results of the determination of the hematite content WH in, the cold strength of the sintered ore after sintering, the product yield during sintering, and the measurement results of the production rate are also shown.

表1に示すように、本発明のX線CTによる鉄鉱石の評価方法を用いて、上記(3)式により求めたヘマタイト含有量WHが、本発明の範囲から外れた比較例に比べ、該WHが本発明範囲内にある本発明1および2は、焼結鉱の冷間強度、焼結時の成品歩留および生産率の何れもが良好な結果となっている。   As shown in Table 1, using the iron ore evaluation method by X-ray CT of the present invention, the hematite content WH determined by the above formula (3) is higher than that of the comparative example deviating from the scope of the present invention. In the present inventions 1 and 2 in which the WH is within the scope of the present invention, the cold strength of the sintered ore, the product yield at the time of sintering, and the production rate are all good.

このことから、本発明のX線CTによる鉄鉱石の評価方法に基づいて、焼結原料を構成する鉄含有原料の配合を調整することにより、焼結鉱の冷間強度などの品質と、焼結時の成品歩留および生産率の何れをも、安定して良好に維持することができることが解る。   From this, based on the evaluation method of iron ore by X-ray CT of the present invention, by adjusting the composition of the iron-containing raw material constituting the sintered raw material, the quality such as the cold strength of the sintered ore, It can be seen that both the product yield and the production rate at the time of conjugation can be stably and satisfactorily maintained.

本発明によれば前述したように原料鉱石の種類に関わりなく、焼結鉱を高い生産性で製造することができる。よって、本発明は、鉄鋼産業において利用可能性が大きいものである。   According to the present invention, as described above, a sintered ore can be produced with high productivity regardless of the type of raw ore. Therefore, the present invention has great applicability in the steel industry.

マイクロフォーカスX線CTを用いた本発明の実施形態の一例を示す図である。It is a figure which shows an example of embodiment of this invention using micro focus X-ray CT. 密度とCT値の関係を示す図である。It is a figure which shows the relationship between a density and CT value. フィルターを使用しない条件で撮像した、手均円相当径4.1mmの試薬ヘマタイト焼成体試料のマイクロフォーカスX線CT断面画像を示す図である。It is a figure which shows the micro focus X-ray CT cross-section image of the reagent hematite baking body sample of the hand circle equivalent diameter of 4.1 mm imaged on the conditions which do not use a filter. 銅フィルターを使用して撮像した、上記ヘマタイト焼成体試料(試薬)のマイクロフォーカスX線CT断面画像を示す図である。It is a figure which shows the micro focus X-ray CT cross-sectional image of the said hematite baking body sample (reagent) imaged using the copper filter. マイクロフォーカスX線CTにおいて用いた銅製フィルターの厚みと、上記CTの相対標準偏差RSDとの関係を示す図である。It is a figure which shows the relationship between the thickness of the copper filter used in micro focus X-ray CT, and the relative standard deviation RSD of said CT. 試薬ヘマタイト焼成体と、焼結原料に用いる主な鉄鋼石の平均真密度(g/cm3)を示す図である。It is a figure which shows the average true density (g / cm < 3 >) of the main iron ore used for a reagent hematite sintered body and a sintering raw material. 銅製フィルターの厚みと、管電圧80〜210kVで発生したX線のヘマタイト透過能力の関係を示す図である。It is a figure which shows the relationship between the thickness of a copper filter, and the hematite transmission capability of the X-ray | X_line generate | occur | produced with the tube voltage of 80-210 kV. マイクロフォーカスX線CTの断面画像の一例を示す図である。It is a figure which shows an example of the cross-sectional image of micro focus X-ray CT. ヘマタイト含有量と、焼結時の生産率との関係を示す図である。It is a figure which shows the relationship between hematite content and the production rate at the time of sintering. 平均密度の差がX%の鉱物組織1と鉱物組織2のX線CT値分布を示す図である。(A)は、フィルター指数Fが0.89未満の場合を示し、(B)は、フィルター指数Fが0.89以上の場合を示す。It is a figure which shows X-ray CT value distribution of the mineral structure 1 and the mineral structure 2 whose difference in average density is X%. (A) shows a case where the filter index F is less than 0.89, and (B) shows a case where the filter index F is 0.89 or more. フィルターのF値(=S×L)と、マイクロフォーカスX線CTの相対標準偏差との関係を示す図である。It is a figure which shows the relationship between F value (= SxL) of a filter, and the relative standard deviation of micro focus X-ray CT.

符号の説明Explanation of symbols

1 マイクロフォーカスX線源
2 フィルター
3 鉄鉱石試料
4 試料ステージ
5 X線
6 X線検出器
H ヘマタイト
G ゲーサイト
S 脈石鉱物
P 気孔
R 2つの鉱物組織を区別(分離)できない領域
1 Microfocus X-ray source 2 Filter 3 Iron ore sample 4 Sample stage 5 X-ray 6 X-ray detector H Hematite G Goethite S Venus mineral P Pore R Area where two mineral structures cannot be distinguished (separated)

Claims (4)

マイクロフォーカスX線CTを用いて焼結用鉄鉱石の断面画像を撮像し、該断面画像から前記鉄鉱石の鉱物組織を評価する方法であって、
(i)管電圧が150kV以上の条件で、X線源から発生したX線を、下記(1)式で定義するフィルター指数Fを0.89以上とする密度ρと厚みLを有するフィルターを介して、複数の方向から、前記鉄鉱石に照射し、
(ii)該鉄鉱石の照射X線の強度と透過X線の強度から、鉄鉱石内部のX線吸収係数に対応するCT値の空間分布を求め、さらに、該X線吸収係数CT値の空間分布から、鉄鉱石断面における見掛密度を求め、
(iii)該見掛密度を基に、前記鉄鉱石の鉱物組織を特定するとともに、特定した鉱物組織の全鉄鉱石断面に対する面積率から、該鉱物組織の含有量を求める
ことを特徴とするX線CTによる焼結用鉄鉱石の鉱物組織評価方法。
F=ρ×L ・・・(1)
ただし、ρ:フィルターの密度(g/cm3
L:フィルターの厚み(cm)
A method of capturing a cross-sectional image of a sintered iron ore using microfocus X-ray CT, and evaluating the mineral structure of the iron ore from the cross-sectional image,
(I) Under the condition that the tube voltage is 150 kV or higher, the X-ray generated from the X-ray source is passed through a filter having a density ρ and a thickness L with a filter index F defined by the following formula (1) of 0.89 or higher. Irradiating the iron ore from a plurality of directions,
(Ii) Obtain the spatial distribution of CT values corresponding to the X-ray absorption coefficient inside the iron ore from the intensity of the irradiated X-ray and the transmitted X-ray intensity of the iron ore, and further, the space of the X-ray absorption coefficient CT value From the distribution, find the apparent density in the iron ore section,
(Iii) Based on the apparent density, the mineral structure of the iron ore is specified, and the content of the mineral structure is obtained from the area ratio of the specified mineral structure to the entire iron ore section. Evaluation method of mineral structure of iron ore for sintering by wire CT.
F = ρ × L (1)
Where ρ: filter density (g / cm 3 )
L: Filter thickness (cm)
前記見掛密度ρzを、前記X線吸収係数CTの測定値から、下記(2)式を用いて求めることを特徴とする請求項1に記載のX線CTによる焼結用鉄鉱石の鉱物組織評価方法。
ρz= ρair +(ρc − ρair)/(CTc −CTair)×(CT − CTair)
・・・(2)
ただし、ρz:鉱物組織の見掛密度(g/cm3
ρair:空気の密度(=1.3×10-3)(g/cm3
ρc:校正用試料の密度(g/cm3
CT:鉱物組織のCT値
CTair:空気のCT値
CTc:校正用試料のCT値
2. The mineral structure of iron ore for sintering by X-ray CT according to claim 1, wherein the apparent density ρz is obtained from the measured value of the X-ray absorption coefficient CT using the following equation (2): Evaluation methods.
ρz = ρair + (ρc−ρair) / (CTc−CTair) × (CT−CTair)
... (2)
Where ρz: apparent density of mineral structure (g / cm 3 )
ρair: density of air (= 1.3 × 10 −3 ) (g / cm 3 )
ρc: Density of calibration sample (g / cm 3 )
CT: CT value of mineral structure
CTair: CT value of air
CTc: CT value of the calibration sample
前記見掛密度が4.4g/cm3以上の鉱物組織をヘマタイトとし、前記見掛密度が3.5g/cm3以上、4.4g/cm3未満の鉱物組織をゲーサイトとヘマタイトの混合組織とし、前記見掛密度が2.8g/cm3以上、3.5g/cm3未満の鉱物組織をゲーサイトとし、前記見掛密度が1.5g/cm3以上、2.8g/cm3未満の鉱物組織を脈石鉱物とし、前記見掛密度が1.5g/cm3未満を気孔とすることを特徴とする請求項1または2に記載のX線CTによる焼結用鉄鉱石の鉱物組織評価方法。 The mineral structure having an apparent density of 4.4 g / cm 3 or more is hematite, and the mineral structure having an apparent density of 3.5 g / cm 3 or more and less than 4.4 g / cm 3 is a mixed structure of goethite and hematite. And a mineral structure having an apparent density of 2.8 g / cm 3 or more and less than 3.5 g / cm 3 as a goethite, and an apparent density of 1.5 g / cm 3 or more and less than 2.8 g / cm 3. 3. The mineral structure of iron ore for sintering by X-ray CT according to claim 1, wherein the mineral structure is a gangue mineral and the apparent density is less than 1.5 g / cm 3. Evaluation methods. 焼結鉱の製造方法において、
(i)請求項3に記載のX線CTによる焼結用鉄鉱石の鉱物組織評価方法を用いて、焼結原料に配合する鉄含有原料(ただし、返鉱および篩下枌を除く)を構成する銘柄iの鉄鉱石から採取した粒度1mm以上の鉄鉱石におけるヘマタイト含有量を測定し、
(ii)該へマタイト含有量の測定値ai、銘柄iの鉄鉱石における粒度1mm以上の鉄鉱石の累積質量%bi、および、銘柄iの鉄鉱石の配合割合Xiから、下記(3)式を用いて全鉄含有原料中の粒度1mm以上の鉄鉱石におけるヘマタイト含有量WHを求め、
(iii)WHが35%以上となるように、前記鉄含有原料を構成する銘柄iの鉄鉱石の配合割合Xiを調整した後、該配合炭焼結機で焼成する
ことを特徴とする焼結鉱の製造方法。
WH=Σi=1〜n(ai×bi)×Xi ・・・(3)
ただし、ai:銘柄iの鉄鉱石から採取した粒度1mm以上の鉄鉱石におけるヘマタイ
ト含有量(質量%)
bi:銘柄iの鉄鉱石における粒度1mm以上の鉄鉱石の累積(質量%)
Xi:銘柄iの鉄鉱石の配合割合(質量%)
Σi=1〜n(ai×bi)×Xi:配合割合Xiによる(ai×bi)の重み付
き平均値(i=1〜nの自然数)
In the method for producing sintered ore,
(I) Using the X-ray CT mineral mineral structure evaluation method of sintering iron ore according to claim 3 to constitute iron-containing raw materials (excluding returning ore and under sieve) Measuring the hematite content in iron ore with a particle size of 1 mm or more collected from the iron ore of brand i
(Ii) From the measured value ai of the hematite content, the cumulative mass% bi of iron ore having a particle size of 1 mm or more in the iron ore of brand i, and the blending ratio Xi of the iron ore of brand i, the following formula (3) is obtained. The hematite content WH in the iron ore having a particle size of 1 mm or more in the total iron-containing raw material is used,
(Iii) A sintered ore characterized by adjusting the blending ratio Xi of the iron ore of the brand i constituting the iron-containing raw material so that the WH becomes 35% or more, and then firing the blended coal sintering machine. Manufacturing method.
WH = Σ i = 1 to n (ai × bi) × Xi (3)
However, ai: Hematai in iron ore with a particle size of 1mm or more collected from iron ore of brand i
G content (% by mass)
bi: Accumulation (% by mass) of iron ore having a particle size of 1 mm or more in the iron ore of brand i
Xi: Mixing ratio of iron ore of brand i (mass%)
Σ i = 1 to n (ai × bi) × Xi: Weighting of (ai × bi) by blending ratio Xi
Average value (i = 1 to n)
JP2007194898A 2007-07-26 2007-07-26 Method for evaluating mineral structure of iron ore for sintering by X-ray CT and method for producing sintered ore Active JP5000410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007194898A JP5000410B2 (en) 2007-07-26 2007-07-26 Method for evaluating mineral structure of iron ore for sintering by X-ray CT and method for producing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007194898A JP5000410B2 (en) 2007-07-26 2007-07-26 Method for evaluating mineral structure of iron ore for sintering by X-ray CT and method for producing sintered ore

Publications (2)

Publication Number Publication Date
JP2009030104A JP2009030104A (en) 2009-02-12
JP5000410B2 true JP5000410B2 (en) 2012-08-15

Family

ID=40400925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007194898A Active JP5000410B2 (en) 2007-07-26 2007-07-26 Method for evaluating mineral structure of iron ore for sintering by X-ray CT and method for producing sintered ore

Country Status (1)

Country Link
JP (1) JP5000410B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103674774A (en) * 2013-11-20 2014-03-26 国家电网公司 Basin-type insulator density uniformity testing method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6946935B2 (en) * 2017-10-30 2021-10-13 日本製鉄株式会社 Porosity estimation method and porosity estimation device
JP7099149B2 (en) * 2018-08-02 2022-07-12 日本製鉄株式会社 Reduction method of high-phosphorus iron ore
JP7222379B2 (en) * 2020-05-14 2023-02-15 Jfeスチール株式会社 Sintered ore structure evaluation method and sintered ore production method
CN111537513A (en) * 2020-05-28 2020-08-14 矿冶科技集团有限公司 Statistical method of ore structure and application thereof
CN112694322B (en) * 2021-01-28 2023-11-10 中冶赛迪技术研究中心有限公司 Sintered body, preparation method thereof and characterization method of high-temperature spreading behavior

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126844A (en) * 1984-07-17 1986-02-06 Nippon Steel Corp Measuring method of reduction rate of ore
JPH06934B2 (en) * 1984-11-02 1994-01-05 新日本製鐵株式会社 Sintering degree measuring method
JPS61110729A (en) * 1984-11-05 1986-05-29 Nippon Steel Corp Manufacture of sintered ore
JPH0772310B2 (en) * 1986-09-03 1995-08-02 新日本製鐵株式会社 Sintered ore manufacturing method
JPH06105229B2 (en) * 1986-10-20 1994-12-21 新日本製鐵株式会社 Sintered product manufacturing yield measurement method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103674774A (en) * 2013-11-20 2014-03-26 国家电网公司 Basin-type insulator density uniformity testing method
CN103674774B (en) * 2013-11-20 2016-04-13 国家电网公司 A kind of basin-type insulator density uniformity method of testing

Also Published As

Publication number Publication date
JP2009030104A (en) 2009-02-12

Similar Documents

Publication Publication Date Title
JP5000410B2 (en) Method for evaluating mineral structure of iron ore for sintering by X-ray CT and method for producing sintered ore
Shatokha et al. Iron ore sinter porosity characterisation with application of 3D X-ray tomography
KR101286794B1 (en) Sintering material granulation method using x-ray ct
JP2014137344A (en) Microscopic image analysis method of sintered ore
Sittner et al. Spectral X‐ray computed micro tomography: 3‐dimensional chemical imaging
JP2014215987A (en) Microscopic image analysis method of bound substance, microscopic image analysis device, and computer program
Imashuku et al. Rapid phase mapping in heat‐treated powder mixture of alumina and magnesia utilizing cathodoluminescence
JP6844392B2 (en) Evaluation method for reducing pulverization of sinter
Harvey Influence of mineralogy and pore structure on the reducibility and strength of iron ore sinter
JP6759909B2 (en) Method for correcting the mass ratio of the crystal phase
JP2020091276A (en) Mineral type discrimination method of sintered ore, and organization analysis method of sintered ore
JP4887611B2 (en) Method for producing sintered ore and granulated particles
CN107429310B (en) Magnetite-based sintered ore and its production process
Veldhuijzen ‘Slag_Fun’–a new tool for archaeometallurgy: development of an analytical (P) ED-XRF method for iron-rich materials
JP7381890B2 (en) Sintered ore observation evaluation method and sintered ore reducibility evaluation method
JP6844391B2 (en) Method for evaluating the reducibility of sinter
Gros et al. Visualization of trace-element zoning in fluorapatite using BSE and CL imaging, and EPMA and μPIXE/μPIGE mapping
Mašlejová et al. X–RAY DIFFRACTION ANALYSIS OF IRON SINTER
Shatokha et al. Application of 3D X-ray tomography to investigation of structure of sinter mixture granules
Ignacio et al. Porosity in iron ore sintering
JP7222379B2 (en) Sintered ore structure evaluation method and sintered ore production method
Bam Developing protocols for XCT scanning of dense mineral ore samples with applications to geology and minerals processing
Takeichi et al. Micromechanism of Heterogeneous Reduction of Iron Ore Sinters Investigated by Synchrotron X-Ray Multimodal Analysis
JP6631644B2 (en) Method for inspecting granulated particles inside carbon material and method for manufacturing sintered ore inside carbon material
JP2013096954A (en) Method and device for analyzing inclusion in steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120516

R151 Written notification of patent or utility model registration

Ref document number: 5000410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350