JP5000253B2 - Toric metal fluoride polycrystal - Google Patents

Toric metal fluoride polycrystal Download PDF

Info

Publication number
JP5000253B2
JP5000253B2 JP2006269739A JP2006269739A JP5000253B2 JP 5000253 B2 JP5000253 B2 JP 5000253B2 JP 2006269739 A JP2006269739 A JP 2006269739A JP 2006269739 A JP2006269739 A JP 2006269739A JP 5000253 B2 JP5000253 B2 JP 5000253B2
Authority
JP
Japan
Prior art keywords
metal fluoride
crucible
annular
partition plate
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006269739A
Other languages
Japanese (ja)
Other versions
JP2008088010A (en
Inventor
健 安村
輝彦 縄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2006269739A priority Critical patent/JP5000253B2/en
Publication of JP2008088010A publication Critical patent/JP2008088010A/en
Application granted granted Critical
Publication of JP5000253B2 publication Critical patent/JP5000253B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は円環状フッ化金属、円環状フッ化金属の製造方法、および該製造方法に用いる円環状仕切板を底部に備えた円筒状坩堝に関する。   The present invention relates to an annular metal fluoride, a method for producing an annular metal fluoride, and a cylindrical crucible having an annular partition plate used in the production method at the bottom.

フッ化カルシウムやフッ化バリウム等のフッ化金属単結晶体を製造するに際して、坩堝降下法(ブリッジマン法)や単結晶引上げ法(チョクラルスキー法)が汎用されている。
ここで、坩堝降下法とは、坩堝中の単結晶製造原料の溶融液を、坩堝ごと徐々に下降させながら冷却することにより、坩堝中に単結晶を成長させる方法である。一方、単結晶引上げ法とは、坩堝中の単結晶製造原料の溶融液面に、目的とする単結晶からなる種結晶を接触させ、次いで、その種結晶を坩堝の加熱域から徐々に引上げて冷却することにより、該種結晶の下方に単結晶を成長させる方法である。
When producing a metal fluoride single crystal such as calcium fluoride or barium fluoride, a crucible descent method (Bridgeman method) and a single crystal pulling method (Czochralski method) are widely used.
Here, the crucible lowering method is a method for growing a single crystal in the crucible by cooling the molten liquid of the single crystal production raw material in the crucible while gradually lowering the entire crucible. On the other hand, the single crystal pulling method is a method in which a seed crystal made of a target single crystal is brought into contact with the melt surface of the single crystal production raw material in the crucible, and then the seed crystal is gradually pulled from the heating region of the crucible. In this method, a single crystal is grown under the seed crystal by cooling.

従来、二重構造の坩堝を用いて、内坩堝内の溶融液の液量が一定範囲に維持されるように、外坩堝内に収容された溶融液を内坩堝内に補給することを特徴とする単結晶引上げ法(チョクラルスキー法)(例えば、特許文献1参照)によってフッ化金属単結晶体の引上げを行う際には、外坩堝に前処理を行ったフッ化金属(以下、フッ化金属単結晶体製造用フッ化金属多結晶体とも記す。)を導入し、その後溶融し、単結晶の引上げを行っていた。しかし従来の前処理を行ったフッ化金属単結晶体製造用フッ化金属多結晶体は、通常円板状であったため、外坩堝と内坩堝の間に導入する際に、砕く必要があり、砕く手間と充填率の低下が問題となっていた。   Conventionally, using a crucible with a double structure, the melt contained in the outer crucible is replenished into the inner crucible so that the amount of the melt in the inner crucible is maintained within a certain range. When the metal fluoride single crystal is pulled by the single crystal pulling method (Czochralski method) (for example, refer to Patent Document 1), the metal fluoride (hereinafter referred to as fluorination) pretreated in the outer crucible is used. The metal fluoride was also referred to as a metal fluoride polycrystal for producing a metal single crystal.) Was then melted and the single crystal was pulled up. However, since the metal fluoride polycrystal for producing a metal fluoride single crystal that has been subjected to the conventional pretreatment is usually disk-shaped, it must be crushed when introduced between the outer crucible and the inner crucible, The trouble of crushing and the reduction of the filling rate were problems.

特許文献2ではフッ化カルシウムに前処理を施す際のスカベンジャーについての検討を行っており、スカベンジャーとして、フッ化カルシウムよりも沸点の低いフッ化物を用いる前処理法が提案されている。   Patent Document 2 examines a scavenger when pretreating calcium fluoride, and a pretreatment method using a fluoride having a boiling point lower than that of calcium fluoride is proposed as a scavenger.

しかし、フッ化金属に前処理を施すことにより得られるフッ化金属の前処理品の形状については、従来は円板状のフッ化金属の前処理品のみであった。
国際公開第06/068062号パンフレット 特開2001-019586号公報
However, the shape of the metal fluoride pretreatment product obtained by pretreatment of the metal fluoride has heretofore been only a disc-shaped metal fluoride pretreatment product.
International Publication No. 06/068062 Pamphlet JP 2001-019586 A

本発明は二重構造の坩堝を用いた坩堝引上げ法によってフッ化金属単結晶体を製造する際に、外坩堝に導入する前処理を行ったフッ化金属の充填率を向上させるためのフッ化金属を提供することを目的とする。   The present invention is a fluorination for improving the filling rate of a metal fluoride that has been pretreated for introduction into an outer crucible when producing a metal fluoride single crystal by a crucible pulling method using a double-structure crucible. The object is to provide metal.

本発明者らは、上記課題に鑑み鋭意検討を行い特定形状のフッ化金属、その製造方法、および該製造方法に用いる円筒状坩堝を完成させた。
すなわち、本発明のフッ化金属とは円環状フッ化金属である。
The present inventors have intensively studied in view of the above problems, and completed a metal fluoride having a specific shape, a manufacturing method thereof, and a cylindrical crucible used in the manufacturing method.
That is, the metal fluoride of the present invention is an annular metal fluoride.

本発明のフッ化金属とはフッ化金属単結晶体製造用円環状フッ化金属多結晶体である。
本発明には円環状仕切板を底部に備えた円筒状坩堝を含む。
前記円筒状坩堝は前記仕切板の下部に溶融液流通孔を備えていることが好ましい。
The metal fluoride of the present invention is an annular metal fluoride polycrystal for producing a metal fluoride single crystal.
The present invention includes a cylindrical crucible having an annular partition plate at the bottom.
The cylindrical crucible is preferably provided with a melt flow hole in the lower part of the partition plate.

本発明には前記円筒状坩堝を用いる円環状フッ化金属の製造方法を含む。   The present invention includes a method for producing an annular metal fluoride using the cylindrical crucible.

本発明の円環状仕切板を底部に備えた円筒状坩堝を用いて製造したフッ化金属単結晶体製造用円環状フッ化金属多結晶体原材料を用いることにより二重構造の坩堝を用いたチョクラルスキー法によりフッ化金属単結晶体を製造する際の原材料の充填率を向上させることができる。   A choke using a crucible having a double structure by using an annular metal fluoride polycrystal raw material for producing a metal fluoride single crystal produced using a cylindrical crucible having an annular partition plate at the bottom of the present invention It is possible to improve the filling rate of raw materials when producing a metal fluoride single crystal by the Larski method.

次に本発明について具体的に説明する。
〔円環状フッ化金属、フッ化金属単結晶体製造用円環状フッ化金属多結晶体〕
本発明の円環状フッ化金属は後述する円環状仕切板を底部に備えた円筒状坩堝を用いて製造することができる。本発明の円環状フッ化金属の上面図を図1に示す。円環状フッ化金属の大きさは、その用途に合せて適宜設定すればよいが、二重構造坩堝を用いてチョクラルスキー法により単結晶を引上げる際の原材料として用いる場合には、通常は直径(2)φが100〜1000mm、好ましくは250〜500mmであり、内孔径(4)が0.1〜0.9φ、好ましくは0.2〜0.8φである。
Next, the present invention will be specifically described.
[Annular Fluoride Metals, Annular Metal Fluoride Polycrystals for Fluoride Metal Single Crystal Production]
The annular metal fluoride of the present invention can be produced using a cylindrical crucible having an annular partition plate described below at the bottom. A top view of the annular metal fluoride of the present invention is shown in FIG. The size of the annular metal fluoride may be appropriately set according to the application, but when used as a raw material when pulling a single crystal by the Czochralski method using a double structure crucible, The diameter (2) φ is 100 to 1000 mm, preferably 250 to 500 mm, and the inner diameter (4) is 0.1 to 0.9φ, preferably 0.2 to 0.8φ.

また、円環状フッ化金属の径方向幅(6)は通常は5〜450mmであり、好ましくは10〜400mm、より好ましくは12.5〜225mm、特に25〜200mmであり、厚みは通常は5〜200mmであり、好ましくは10〜50mmである。   Further, the radial width (6) of the annular metal fluoride is usually 5 to 450 mm, preferably 10 to 400 mm, more preferably 12.5 to 225 mm, particularly 25 to 200 mm, and the thickness is usually 5 ˜200 mm, preferably 10˜50 mm.

フッ化金属としては、特に制限されるものではないが、その具体例としては、フッ化カルシウム、フッ化マグネシウム、フッ化ストロンチウム、フッ化バリウム等のフッ化アルカリ土類金属、フッ化リチウム、フッ化ナトリウム、フッ化カリウム等のフッ化アルカリ金属、あるいはフッ化アルミニウム、フッ化セリウム、さらにはBaLiF3、KMgF3、LiCaALF6等の2種類以上のカチオン元素を含むフッ化金属等が挙げられる。な
かでも、フッ化アルカリ土類金属又はフッ化アルカリ金属であることが好ましく、フッ化アルカリ土類金属であることが特に好ましい。
The metal fluoride is not particularly limited, but specific examples thereof include alkaline earth metals such as calcium fluoride, magnesium fluoride, strontium fluoride and barium fluoride, lithium fluoride and fluorine. Examples thereof include alkali metal fluorides such as sodium fluoride and potassium fluoride, or metal fluorides containing two or more kinds of cation elements such as aluminum fluoride, cerium fluoride, and BaLiF 3 , KMgF 3 , and LiCaALF 6 . Among these, an alkaline earth metal fluoride or an alkali metal fluoride is preferable, and an alkaline earth metal fluoride is particularly preferable.

本発明の円環状フッ化金属としては、フッ化金属単結晶体、特に真空紫外光用の光学材料として用いるフッ化金属単結晶体を得るためのフッ化金属単結晶体製造用円環状フッ化金属多結晶体であることが好ましい。   As the annular metal fluoride of the present invention, a metal fluoride single crystal, particularly an annular fluoride for producing a metal fluoride single crystal for obtaining a metal fluoride single crystal used as an optical material for vacuum ultraviolet light is used. It is preferably a metal polycrystal.

すなわち、図2(a)に示すような二重構造の坩堝を用いて、チョクラルスキー法によりフッ化金属単結晶体を製造する際には、原料(10)を内坩堝(12)と外坩堝(14)との間に充填するが、従来用いられてきた、円板状のフッ化金属を充填する場合には、図2(b)に示すように、円板状のフッ化金属を砕いた後に充填していた。一方、本発明の円環状フッ化金属を用いた場合には、図2(c)に示すように、砕く必要が無く、そのままの形態で内坩堝(12)と外坩堝(14)との間に充填することが可能である。   That is, when producing a metal fluoride single crystal by the Czochralski method using a crucible having a double structure as shown in FIG. 2A, the raw material (10) is separated from the inner crucible (12). When filling the crucible (14) with a disc-shaped metal fluoride, which has been conventionally used, as shown in FIG. 2 (b), a disc-shaped metal fluoride is used. It was filled after being crushed. On the other hand, when the annular metal fluoride of the present invention is used, as shown in FIG. 2 (c), it is not necessary to crush and between the inner crucible (12) and the outer crucible (14) as it is. Can be filled.

本発明の円環状フッ化金属を用いることにより、従来必要であった、円板状のフッ化金属を砕く工程が必要なくなるため、生産性に優れ、また充填率も向上させることが可能である。   By using the annular metal fluoride of the present invention, the step of crushing the disk-shaped metal fluoride, which has been necessary in the past, is no longer necessary, so that the productivity is excellent and the filling rate can be improved. .

本発明の円環状フッ化金属がこのようなフッ化金属単結晶体製造のための原料として用いるフッ化金属単結晶体製造用円環状フッ化金属多結晶体である場合、製造されるフッ化金属単結晶体の物性を優れたものとするために金属不純物濃度が低い方が好ましく、具体的には不純物濃度が、Liが0.01ppm以下、Naが0.1ppm以下、Kが0.01ppm以下、Mgが2ppm以下、Srが20ppm以下、Baが0.1ppm以下、
Alが0.1ppm以下、Siが10ppm以下、Crが0.1ppm以下、Mnが0.01ppm以下、Feが0.1ppm以下、Coが0.1ppm以下、Niが0.1ppm以下、Cuが0.1ppm以下、Znが0.1ppm以下、Gaが0.01ppm以下、Yが0.01ppm以下、Moが0.01ppm以下、Cdが0.01ppm以下、Pbが0.1ppm以下、Biが0.01ppm以下、Tlが0.01ppm以下、Laが0.01ppm以下、Ceが0.01ppm以下、Euが0.01ppm以下、Tbが0.01ppm以下であることが好ましい。
When the annular metal fluoride of the present invention is an annular metal fluoride polycrystal for producing a metal fluoride single crystal used as a raw material for producing such a metal fluoride single crystal, the produced fluoride In order to improve the physical properties of the metal single crystal, the metal impurity concentration is preferably low. Specifically, the impurity concentration is 0.01 ppm or less for Li, 0.1 ppm or less for Na, and 0.01 ppm for K. Hereinafter, Mg is 2 ppm or less, Sr is 20 ppm or less, Ba is 0.1 ppm or less,
Al is 0.1 ppm or less, Si is 10 ppm or less, Cr is 0.1 ppm or less, Mn is 0.01 ppm or less, Fe is 0.1 ppm or less, Co is 0.1 ppm or less, Ni is 0.1 ppm or less, and Cu is 0 0.1 ppm or less, Zn is 0.1 ppm or less, Ga is 0.01 ppm or less, Y is 0.01 ppm or less, Mo is 0.01 ppm or less, Cd is 0.01 ppm or less, Pb is 0.1 ppm or less, and Bi is 0.00. It is preferable that 01 ppm or less, Tl is 0.01 ppm or less, La is 0.01 ppm or less, Ce is 0.01 ppm or less, Eu is 0.01 ppm or less, and Tb is 0.01 ppm or less.

より好ましくはLiが0.001ppm以下、Naが0.01ppm以下、Kが0.01ppm以下、Mgが0.05ppm以下、Srが20ppm以下、Baが0.01ppm以下、Alが0.01ppm以下、Siが1ppm以下、Crが0.01ppm以下、Mnが0.01ppm以下、Feが0.01ppm以下、Coが0.01ppm以下、Niが0.01ppm以下、Cuが0.01ppm以下、Znが0.01ppm以下、Gaが0.01ppm以下、Yが0.01ppm以下、Moが0.01ppm以下、Cdが0.01ppm以下、Pbが0.01ppm以下、Biが0.01ppm以下、Tlが0.01ppm以下、Laが0.01ppm以下、Ceが0.01ppm以下、Euが0.01ppm以下、Tbが0.01ppm以下である。   More preferably, Li is 0.001 ppm or less, Na is 0.01 ppm or less, K is 0.01 ppm or less, Mg is 0.05 ppm or less, Sr is 20 ppm or less, Ba is 0.01 ppm or less, Al is 0.01 ppm or less, Si is 1 ppm or less, Cr is 0.01 ppm or less, Mn is 0.01 ppm or less, Fe is 0.01 ppm or less, Co is 0.01 ppm or less, Ni is 0.01 ppm or less, Cu is 0.01 ppm or less, and Zn is 0 0.01 ppm or less, Ga is 0.01 ppm or less, Y is 0.01 ppm or less, Mo is 0.01 ppm or less, Cd is 0.01 ppm or less, Pb is 0.01 ppm or less, Bi is 0.01 ppm or less, and Tl is 0.00. 01 ppm or less, La 0.01 ppm or less, Ce 0.01 ppm or less, Eu 0.01 ppm or less, Tb 0.01 pm is less than or equal to.

本発明の円環状フッ化金属を製造する方法は特に限定されず、例えば、塊状のフッ化金属から削出したり、円板状のフッ化金属に孔を開けるなどして製造してもよいが、好適には後述する円環状仕切板を底部に備えた円筒状坩堝を用いることを除いては従来からフッ化金属単結晶体を製造する際に行われていたフッ化金属の前処理と同様な方法で製造することができる。   The method for producing the annular metal fluoride of the present invention is not particularly limited. For example, it may be produced by cutting out from a massive metal fluoride or by making a hole in a disk-like metal fluoride. Preferably, the same as the metal fluoride pretreatment conventionally performed when producing a metal fluoride single crystal, except that a cylindrical crucible having an annular partition plate described below is used at the bottom. Can be manufactured by a simple method.

〔円環状仕切板を底部に備えた円筒状坩堝〕
以下、本発明の円環状仕切板を底部に備えた円筒状坩堝を実施例を示しながら説明する。
[Cylindrical crucible with annular partition plate at the bottom]
Hereinafter, a cylindrical crucible provided with an annular partition plate of the present invention at the bottom will be described with reference to examples.

[実施例1]
図3は本発明の実施例1の円環状仕切板を底部に備えた円筒状坩堝R1を示したものである。
[Example 1]
FIG. 3 shows a cylindrical crucible R1 having an annular partition plate according to the first embodiment of the present invention at the bottom.

この円環状仕切板を底部に備えた円筒状坩堝R1は、底部(20)に大径筒部(以下、側壁とも記す。)(22)と小径筒部(以下、円環状仕切板とも記す。)(24)とが同心円状に二重の筒状構造で配置されており、内側壁の高さTは円環状仕切板の高さtより高く形成されている。   The cylindrical crucible R1 provided with the annular partition plate at the bottom portion is also referred to as a large diameter cylindrical portion (hereinafter also referred to as a side wall) (22) and a small diameter cylindrical portion (hereinafter also referred to as an annular partition plate) at the bottom portion (20). ) And (24) are concentrically arranged in a double cylindrical structure, and the height T of the inner wall is formed higher than the height t of the annular partition plate.

この円環状仕切板で囲まれた空間を、小径空間Aとし、側壁(22)と円環状仕切板(24)とで囲まれた空間を円環空間Bとする。
坩堝の内径Dは通常は100〜1000mm、好ましくは250〜500mmであり、坩堝内壁の高さTは通常は10〜400mmであり、好ましくは20〜100mmである。
A space surrounded by the annular partition plate is referred to as a small-diameter space A, and a space surrounded by the side wall (22) and the annular partition plate (24) is referred to as an annular space B.
The inner diameter D of the crucible is usually 100 to 1000 mm, preferably 250 to 500 mm, and the height T of the inner wall of the crucible is usually 10 to 400 mm, preferably 20 to 100 mm.

坩堝の内径をDとすると円環状仕切板(24)の直径dは通常は0.1〜0.9D、好ましくは0.2〜0.8Dである。すなわち坩堝の内径Dが100〜1000mmの場合は直径dは通常は10〜900mm、好ましくは20〜800mmであり、坩堝の内径Dが250〜500mmの場合は、通常は25〜450mm、好ましくは50〜400mmである。
また円環状仕切板(24)の高さtは、小径空間Aと円環空間Bとの間で雰囲気ガスの流通が可能となるようにTよりも低くする。これら空間でガスの流通ができるようにしてお
くことにより、小径空間Aからの不純物ガス等を坩堝外へ排出できるとともに、小径空間Aと円環空間Bとに生じる溶融固化物を均一なものとできる。
When the inner diameter of the crucible is D, the diameter d of the annular partition plate (24) is usually 0.1 to 0.9D, preferably 0.2 to 0.8D. That is, when the inner diameter D of the crucible is 100 to 1000 mm, the diameter d is usually 10 to 900 mm, preferably 20 to 800 mm. When the inner diameter D of the crucible is 250 to 500 mm, it is usually 25 to 450 mm, preferably 50 ~ 400 mm.
The height t of the annular partition plate (24) is set lower than T so that the atmospheric gas can be circulated between the small-diameter space A and the annular space B. By allowing the gas to flow in these spaces, the impurity gas from the small-diameter space A can be discharged out of the crucible, and the molten and solidified product generated in the small-diameter space A and the annular space B can be made uniform. it can.

該tとしては(T−t)が1mm以上であればよいが、よりガスの流通が容易となるよう5mm以上が好ましい。
一方、tの下限は当該坩堝で製造する円環状フッ化金属の厚さ以上であれば良い。通常、原料を溶融・固化すると体積が減少するので、該体積減少率に合せてtを設定すればよいが、一般的には、0.2T以上、好ましくは0.4T以上である。すなわち坩堝内壁の高さTが10〜400mmの場合、高さtは通常は2mm以上、好ましくは4mm以上であり、坩堝内壁の高さTが20〜100mmの場合、高さtは通常は4mm、好ましくは8mmである。
The t may be (T−t) of 1 mm or more, but is preferably 5 mm or more so as to facilitate the gas flow.
On the other hand, the lower limit of t may be equal to or greater than the thickness of the annular metal fluoride produced by the crucible. Usually, when the raw material is melted and solidified, the volume decreases. Therefore, t may be set in accordance with the volume reduction rate, but is generally 0.2 T or more, preferably 0.4 T or more. That is, when the height T of the crucible inner wall is 10 to 400 mm, the height t is usually 2 mm or more, preferably 4 mm or more. When the height T of the crucible inner wall is 20 to 100 mm, the height t is usually 4 mm. , Preferably 8 mm.

本発明の円環状仕切板を底部に備えた円筒状坩堝を用いて、前処理を行うと円環空間Bには円環状フッ化金属が製造され、小径空間Aには円盤状のフッ化金属が製造される。
図4は円環状仕切板(24)の別の態様を示す斜視図である。図3に示す円環状仕切板にはその下部に溶融液流通孔(26)を設けている。溶融液流通孔(26)を設けることにより、本発明の円環状仕切板を底部に備えた円筒状坩堝を用いてフッ化金属の前処理を行う際にフッ化金属溶融液が円環空間Bと小径空間Aとを自由に流通することにより、溶融液の温度のむらや組成のむらが減少し、得られる円環状フッ化金属の組成が安定化する。
When the pretreatment is performed using the cylindrical crucible having the annular partition plate of the present invention at the bottom, an annular metal fluoride is produced in the annular space B, and a disk-like metal fluoride is produced in the small-diameter space A. Is manufactured.
FIG. 4 is a perspective view showing another embodiment of the annular partition plate (24). The annular partition plate shown in FIG. 3 is provided with a melt flow hole (26) in the lower part thereof. By providing the melt flow hole (26), when the metal fluoride pretreatment is performed using the cylindrical crucible having the annular partition plate of the present invention at the bottom, the metal fluoride melt is in the annular space B. And the small-diameter space A freely circulate, the uneven temperature of the melt and the uneven composition are reduced, and the composition of the obtained annular metal fluoride is stabilized.

溶融液流通孔(26)を設けた円環状仕切板(24)を底部に供えた円筒状坩堝を用いて前処理を行う場合には、溶融固化した際に溶融液流通孔(26)を解して円環状フッ化金属と円盤状フッ化金属とが接合されている。この接合部を切り離すことにより、円環状フッ化金属と円盤状フッ化金属を得ることができる。溶融液流通孔(26)のサイズが大きいほど、また溶融液流通孔(26)を多く設けるほど、溶融液の流通性が増加するが、溶融固化した際に円環状フッ化金属と円盤状フッ化金属との接合が強固になり切り離し性が悪化する。よって溶融液流通孔のサイズと数を適宜設定することが好ましい。   When pretreatment is performed using a cylindrical crucible provided with an annular partition plate (24) provided with a melt flow hole (26) at the bottom, the melt flow hole (26) is opened when melted and solidified. Thus, the annular metal fluoride and the disk-like metal fluoride are joined. By separating this joint, an annular metal fluoride and a disk-like metal fluoride can be obtained. The larger the size of the melt flow hole (26) and the larger the number of the melt flow holes (26), the greater the flowability of the melt. Bonding with metallized metal becomes strong and the separation property deteriorates. Therefore, it is preferable to appropriately set the size and number of the melt flow holes.

具体的には溶融液流通孔(26)のサイズとしては、溶融液の流通のし易さ及び、円環空間Bと小径空間Aとに形成された固化物の切り離し性を考慮すると、通常は、各々の孔の開口面積が5〜200mm2、好ましくは20〜100mm2の範囲であることが好ましい。また溶融液流通孔(26)は円環状仕切板(24)に通常は1〜32個であり、2〜8個であることが好ましい。 Specifically, as the size of the melt flow hole (26), considering the ease of the flow of the melt and the separability of the solidified material formed in the annular space B and the small-diameter space A, usually , each opening area of the hole is 5 to 200 mm 2, it is preferable preferably in the range of 20 to 100 mm 2. The number of melt flow holes (26) is usually 1 to 32, preferably 2 to 8, in the annular partition plate (24).

溶融液流通孔(26)のサイズおよび数が上記範囲にある場合には、得られる円環状フッ化金属と円盤状フッ化金属とが組成むらが無く、また切り離しを容易に行えるため好ましい。   When the size and number of the melt flow holes (26) are in the above ranges, the obtained annular metal fluoride and discoid metal fluoride have no composition unevenness and can be easily separated.

上記円環状仕切板(24)は坩堝と一体で成形されていても、別部材であっても良い。本実施例に限られないが、円環状仕切板(24)が坩堝と別部材であれば、製造する円環状フッ化金属の直径及び内孔径に合せて、適宜坩堝本体及び円環状仕切板(24)を組み合わせて用いればよく、直径及び内孔径の異なる極めて多数の坩堝を用意する必要がないため、工業的に極めて有利である。   The annular partition plate (24) may be formed integrally with the crucible or may be a separate member. Although it is not restricted to a present Example, if an annular partition plate (24) is a member different from a crucible, according to the diameter and inner-hole diameter of the annular metal fluoride to manufacture, a crucible main body and an annular partition plate ( 24) may be used in combination, and since it is not necessary to prepare an extremely large number of crucibles having different diameters and inner diameters, it is extremely advantageous industrially.

円環状仕切板(24)と坩堝とが一体で成形されている場合には、円筒状坩堝R1の素材としては原材料の前処理を行えるものであれば特に限定は無いが、通常は黒鉛、アルミナ、ジルコニウム、白金、モリブデンなどを用いる。   In the case where the annular partition plate (24) and the crucible are integrally formed, the material of the cylindrical crucible R1 is not particularly limited as long as the raw material can be pretreated, but usually graphite, alumina Zirconium, platinum, molybdenum and the like are used.

円環状仕切板(24)が別部材である場合には、坩堝の素材としては、原材料の前処理
を行えるものであれば特に限定は無いが、通常は黒鉛、アルミナ、ジルコニウム、白金、モリブデンなどを用いる。一方、円環状仕切板(24)の素材も同様の素材を用いることができる。対象とするフッ化金属の溶融液よりも比重が軽い材質であっても、融液より上方の体積が十分に大きければ浮力に打ち勝ち、仕切板の底部が坩堝底壁と接触した状態とできる。
When the annular partition plate (24) is a separate member, the crucible material is not particularly limited as long as the raw material can be pretreated, but usually graphite, alumina, zirconium, platinum, molybdenum, etc. Is used. On the other hand, the same material can be used for the material of the annular partition plate (24). Even if the specific gravity of the material is lower than that of the target metal fluoride melt, if the volume above the melt is sufficiently large, the buoyancy can be overcome and the bottom of the partition plate can be in contact with the crucible bottom wall.

また図示はしていないが、側壁(22)の上方に不純物ガス等を坩堝外へ排出するためのガス流通孔を設けることも好ましい。
[実施例2]
図5は本発明の実施例2の円環状仕切板を底部に備えた円筒状坩堝R2を示したものである。
Although not shown, it is also preferable to provide a gas flow hole for discharging impurity gas or the like to the outside of the crucible above the side wall (22).
[Example 2]
FIG. 5 shows a cylindrical crucible R2 having an annular partition plate at the bottom according to the second embodiment of the present invention.

この円環状仕切板を底部に備えた円筒状坩堝R2は、底部(20)に大径筒部(以下、側壁とも記す。)(22)と小径筒部(以下、円環状仕切板とも記す。)(24)とが同心円状に二重の筒状構造で配置されており、側壁の高さTは円環状仕切板(24)の高さtより高く形成されている。円環状仕切板(24)は坩堝本体とは別部材で形成されており、円環状仕切板(24)の上部には浮き防止板(28)が接続されている。本実施例の円筒状坩堝R2は、当該浮き防止部材(28)を有する以外は、実施例1の円筒状坩堝R1と形状、材質等は同様である。   The cylindrical crucible R2 provided with the annular partition plate at the bottom portion is also referred to as a large diameter cylindrical portion (hereinafter also referred to as a side wall) (22) and a small diameter cylindrical portion (hereinafter also referred to as an annular partition plate) at the bottom portion (20). ) And (24) are concentrically arranged in a double cylindrical structure, and the height T of the side wall is formed higher than the height t of the annular partition plate (24). The annular partition plate (24) is formed as a separate member from the crucible body, and a floating prevention plate (28) is connected to the upper portion of the annular partition plate (24). The cylindrical crucible R2 of this example is the same in shape, material, etc. as the cylindrical crucible R1 of Example 1, except that it has the anti-floating member (28).

実施例2の円環状仕切板を底部に備えた円筒状坩堝R2では浮き防止板(28)の上端部の高さと側壁の上端部の高さが一致しており、該円筒状坩堝R2を重ねて前処理を行うことにより、円環状仕切板(24)の位置が固定され、好適に円環状フッ化金属の製造ができる。浮き防止(28)の素材としては、特に限定は無いが、通常は黒鉛、アルミナ、ジルコニウム、白金、モリブデン等である。浮き防止版板(28)は円環状仕切板(24)に通常は3〜8枚設けることが好ましい。   In the cylindrical crucible R2 having the annular partition plate of Example 2 at the bottom, the height of the upper end of the anti-floating plate (28) and the height of the upper end of the side wall are the same, and the cylindrical crucible R2 is overlapped. By performing the pretreatment, the position of the annular partition plate (24) is fixed, and the annular metal fluoride can be suitably manufactured. The material for preventing the float (28) is not particularly limited, but is usually graphite, alumina, zirconium, platinum, molybdenum or the like. Usually, it is preferable to provide 3 to 8 anti-floating plate (28) on the annular partition plate (24).

また、実施例2においても、実施例1と同様に円環状仕切板(24)には溶融液流通孔(26)を設けてもよい。
[実施例3]
図6は本発明の実施例3の円環状仕切板を底部に備えた円筒状坩堝R3を示したものであり、図7はR3の円筒状坩堝の円環状仕切板(24)の一部を拡大した図である。
Also in the second embodiment, similarly to the first embodiment, the annular partition plate (24) may be provided with a melt flow hole (26).
[Example 3]
FIG. 6 shows a cylindrical crucible R3 provided with an annular partition plate at the bottom of Example 3 of the present invention, and FIG. 7 shows a part of the annular partition plate (24) of the cylindrical crucible of R3. FIG.

この円環状仕切板を底部に備えた円筒状坩堝R3は、底部(20)に大径筒部(以下、側壁とも記す。)(22)と小径筒部(以下、円環状仕切板とも記す。)(24)とが同心円状に二重の筒状構造で配置されており、側壁の高さTは円環状仕切板(24)の高さtと同一に形成されている。円環状仕切板は別部材で形成されており、円環状仕切板(24)の上部にはガス孔(30)が設けられている。また、実施例3においても、実施例1と同様に円環状仕切板(24)には溶融液流通孔(26)を設けてもよい。   The cylindrical crucible R3 provided with the annular partition plate at the bottom portion is also referred to as a large diameter cylindrical portion (hereinafter also referred to as a side wall) (22) and a small diameter cylindrical portion (hereinafter also referred to as an annular partition plate) at the bottom portion (20). ) And (24) are concentrically arranged in a double cylindrical structure, and the height T of the side wall is formed to be the same as the height t of the annular partition plate (24). The annular partition plate is formed of a separate member, and a gas hole (30) is provided in the upper portion of the annular partition plate (24). Also in the third embodiment, similarly to the first embodiment, the annular partition plate (24) may be provided with a melt flow hole (26).

この円環状仕切板(24)で囲まれた空間を、小径空間Aとし、側壁(22)と円環状仕切板(24)とで囲まれた空間を円環空間Bとする。
実施例3の円環状仕切板を底部に備えた円筒状坩堝R3では円環状仕切板(24)の上端部の高さと側壁の上端部の高さが一致しており、該円筒状坩堝R3を重ねて前処理を行うことにより、円環状仕切板(24)の位置が固定され、好適に円環状フッ化金属の製造ができる。円環状仕切板(24)の素材としては特に限定は無いが、通常は黒鉛、アルミナ、ジルコニウム、白金、モリブデン等である。
A space surrounded by the annular partition plate (24) is referred to as a small-diameter space A, and a space surrounded by the side wall (22) and the annular partition plate (24) is referred to as an annular space B.
In the cylindrical crucible R3 having the annular partition plate of Example 3 at the bottom, the height of the upper end portion of the annular partition plate (24) and the height of the upper end portion of the side wall are the same. By carrying out the pretreatment repeatedly, the position of the annular partition plate (24) is fixed, and the annular metal fluoride can be preferably produced. The material of the annular partition plate (24) is not particularly limited, but is usually graphite, alumina, zirconium, platinum, molybdenum or the like.

円筒状坩堝R3における円環状仕切板(24)の上部には小径空間Aと円環空間Bとを連結するガス孔(30)が開けられている点に特徴を有する。当該ガス孔(30)により
、小径空間Aと円環空間Bとの間で雰囲気ガスの流通が可能となっている。
The cylindrical crucible R3 is characterized in that a gas hole (30) for connecting the small-diameter space A and the annular space B is formed in the upper part of the annular partition plate (24). The gas hole (30) allows the atmospheric gas to flow between the small-diameter space A and the annular space B.

図7に示す円環状仕切板(24)に形成されているガス孔(30)は円形をしているが、ガスが流通する形状であれば特に限定されず、三角形や四角形等の他の形状でもよい。さらに、ガス孔(30)は仕切板(24)の上端からの切れ込みとなっているような形態でも構わない。換言すれば、本実施例3は、実施例2において円環状仕切板(24)と浮き防止部材(28)とが一つの部材として形成された態様とも言える。   The gas holes (30) formed in the annular partition plate (24) shown in FIG. 7 have a circular shape, but are not particularly limited as long as the gas flows, and other shapes such as a triangle and a quadrangle But you can. Further, the gas hole (30) may be cut from the upper end of the partition plate (24). In other words, the third embodiment can be said to be an embodiment in which the annular partition plate (24) and the floating prevention member (28) are formed as one member in the second embodiment.

〔円環状フッ化金属の製造方法〕
本発明の円環状フッ化金属の製造方法によって、上述した円環状フッ化金属や、フッ化金属単結晶体製造用フッ化金属多結晶体を得ることができ、上述した円環状仕切板を底部に備えた円筒状坩堝を用いることを特徴とする。
[Method for producing annular metal fluoride]
By the method for producing an annular metal fluoride according to the present invention, the above-mentioned annular metal fluoride or the metal fluoride polycrystal for producing a metal fluoride single crystal can be obtained. A cylindrical crucible provided in the above is used.

即ち、円環状フッ化金属の製造方法は、原料となるフッ化金属を上述した円環状仕切板を底部に備えた円筒状坩堝に充填し、溶融、固化することにより円環状フッ化金属を得る、公知の方法と同様である。必要に応じて、フッ化鉛等のスカベンジャーとなる物質をフッ化金属の原料によく混合した混合粉末を用いる。   That is, in the method for producing an annular metal fluoride, an annular metal fluoride is obtained by filling the above-described annular metal plate into a cylindrical crucible provided with the above-mentioned annular partition plate, and melting and solidifying it. This is the same as a known method. If necessary, a mixed powder in which a substance serving as a scavenger such as lead fluoride is mixed well with a raw material of metal fluoride is used.

本発明の円環状フッ化金属の製造方法に用いる原料としては粉末状、粒状、または多孔質バルク体のフッ化金属を用いることができる。
上述した原料は通常は嵩密度の小さい粉末、粒、および多孔質バルク体で市販されているため原材料と原材料前処理品とは体積が大きく異なる。例えばフッ化カルシウムの場合、市販品の嵩密度は通常0.7〜2g/ccであり、原材料前処理品(溶融後に固化したもの)の密度は約3.2g/ccであるため体積が約1/4.6〜1/1.6程度に減少する。
As a raw material used in the method for producing an annular metal fluoride according to the present invention, powdered, granular, or porous bulk metal fluoride can be used.
Since the above-mentioned raw materials are usually marketed as powders, granules, and porous bulk bodies having a small bulk density, the volume of the raw material and the raw material pretreated product are greatly different. For example, in the case of calcium fluoride, the bulk density of a commercial product is usually 0.7 to 2 g / cc, and the density of the raw material pretreated product (solidified after melting) is about 3.2 g / cc, so the volume is about It decreases to about 1/4 to 1 / 1.6.

円環状フッ化金属の中でもフッ化金属単結晶体製造用円環状フッ化金属多結晶体を製造する場合には、原料となるフッ化金属とスカベンジャーとを混合して該円筒状坩堝に充填することが好ましい。例えば、スカベンジャーとしては、テフロン(登録商標)、フッ化鉛、フッ化コバルト、フッ化マンガン等を用いることができる。   When manufacturing an annular metal fluoride polycrystal for producing a metal fluoride single crystal among the annular metal fluorides, a metal fluoride as a raw material and a scavenger are mixed and filled into the cylindrical crucible. It is preferable. For example, as a scavenger, Teflon (registered trademark), lead fluoride, cobalt fluoride, manganese fluoride, or the like can be used.

このような原料となるフッ化金属(及びスカベンジャー)の充填量は、バッチ収量を考慮し、可能な限り多量に充填することが好ましい。
以下、フッ化金属がフッ化カルシウムである場合を例にとり、代表的な方法を簡単に述べる。
The amount of the metal fluoride (and scavenger) used as the raw material is preferably as large as possible in consideration of the batch yield.
Hereinafter, a typical method will be briefly described by taking the case where the metal fluoride is calcium fluoride as an example.

また坩堝は多段に積み重ねて使用することができる。多段に積み重ねて使用した場合、上段の坩堝の底壁が下段の坩堝の蓋として作用する。特に原料のフッ化金属が小さい粉末である場合、当該粉末が溶融する前に飛散することを防止できる。多段に積み重ねた場合の最上段の坩堝や、積み重ねない場合などには、別途蓋部材を使用することができる。   The crucibles can be stacked and used in multiple stages. When stacked and used in multiple stages, the bottom wall of the upper crucible acts as a lid for the lower crucible. In particular, when the raw material metal fluoride is a small powder, the powder can be prevented from being scattered before melting. A lid member can be used separately when the uppermost crucible is stacked in multiple stages or when not stacked.

原料のフッ化カルシウムを坩堝中に充填した後、続いて前処理用の加熱炉に坩堝を設置し、真空排気を行う。150〜350℃程度まで加熱することにより、フッ化カルシウムに吸着していた水分が脱離し、最終的には炉外へと排出されはじめるので、その温度でしばらく(通常1〜10時間程度)保持する。   After filling the raw material calcium fluoride into the crucible, the crucible is then placed in a pretreatment heating furnace and evacuated. By heating to about 150 to 350 ° C., moisture adsorbed on calcium fluoride is desorbed and finally begins to be discharged out of the furnace, so the temperature is maintained for a while (usually about 1 to 10 hours). To do.

吸着水の除去が十分に完了したら、さらに温度を上昇させてフッ化カルシウムが不純物として含む酸化カルシウムとスカベンジャーとが反応する温度まで上昇させる。用いるスカベンジャーにもよるが、フッ化鉛を用いた場合には700〜900℃程度である。反応により生じた酸化鉛は、さらに坩堝構成材等の炭素と反応して金属鉛や一酸化炭素等を生
じ、これらはガスとして坩堝外、次いで炉外へと排気される。
When the removal of the adsorbed water is sufficiently completed, the temperature is further raised to a temperature at which the calcium oxide contained in the calcium fluoride as an impurity reacts with the scavenger. Although depending on the scavenger used, the temperature is about 700 to 900 ° C. when lead fluoride is used. The lead oxide generated by the reaction further reacts with carbon such as the crucible constituent material to produce metallic lead, carbon monoxide and the like, and these are exhausted as gas outside the crucible and then outside the furnace.

十分にスカベンジャーの反応が進行した後、さらに温度を上昇させて上記生成物や未反応のスカベンジャー等を排出させると共に、フッ化カルシウムを溶融させる。溶融したフッ化カルシウムは、重力の作用により底部へと集まり、冷却により固化し、円環状仕切板の内部及び外部、即ち、小径空間Aと円環空間Bとの双方で、各々の空間形状と同様の形状のフッ化金属(固化物)を生じる。坩堝から固化したフッ化金属を取り出し、溶融液流通孔(26)を設けた場合にはその部分を切り離せば、円環空間Bで固化した部分から本発明の円環状フッ化金属を得ることができる。   After the scavenger reaction has sufficiently progressed, the temperature is further raised to discharge the product, unreacted scavenger, and the like, and the calcium fluoride is melted. The molten calcium fluoride gathers to the bottom due to the action of gravity, solidifies by cooling, and forms the space shape inside and outside the annular partition plate, that is, both in the small-diameter space A and the annular space B. The same shape of metal fluoride (solidified product) is produced. When the solidified metal fluoride is taken out from the crucible and the melt flow hole (26) is provided, the annular metal fluoride of the present invention can be obtained from the solidified part in the annular space B by separating the part. it can.

なお、小径空間Aから得られた小口径のフッ化金属は、図2の(a)に示すような底部径の小さな坩堝を用いて単結晶を製造する場合、該坩堝底付近に投入する原料として使用すること等ができる。   Note that the small-diameter metal fluoride obtained from the small-diameter space A is a raw material to be introduced near the bottom of the crucible when a single crystal is produced using a crucible having a small bottom diameter as shown in FIG. Can be used as

円環状フッ化金属の上面図である。It is a top view of an annular metal fluoride. 二重構造の坩堝を用いて、チョクラルスキー法によりフッ化金属単結晶体を製造する際の、(a)二重構造の坩堝への原料の充填状況、(b)原料として、円板状のフッ化金属を砕いて充填する際の上面図、(c)原料として円環状フッ化金属を充填する際の上面図である。(A) Filling state of the raw material into the double structure crucible when producing the metal fluoride single crystal by the Czochralski method using the double structure crucible, (b) Disc shape as the raw material It is a top view at the time of crushing and filling the metal fluoride of (c), and a top view at the time of filling the annular | circular shaped metal fluoride as a raw material. 実施例1の円筒状坩堝R1の概略図である。1 is a schematic view of a cylindrical crucible R1 of Example 1. FIG. 円筒状坩堝R1に用いる円環状仕切板(24)の別の態様を示す斜視図である。It is a perspective view which shows another aspect of the annular partition plate (24) used for cylindrical crucible R1. 実施例2の円筒状坩堝R2の概略図である。3 is a schematic view of a cylindrical crucible R2 of Example 2. FIG. 実施例3の円筒状坩堝R3の概略図である。6 is a schematic view of a cylindrical crucible R3 of Example 3. FIG. 円筒状坩堝R3に用いる円環状仕切板(24)の一部を拡大した図である。It is the figure which expanded a part of annular | circular shaped partition plate (24) used for cylindrical crucible R3.

符号の説明Explanation of symbols

2・・・直径
4・・・内孔径
6・・・径方向幅
10・・・原料
12・・・内坩堝
14・・・外坩堝
20・・・底部
22・・・側部
24・・・円環状仕切板
26・・・溶融液流通孔
28・・・浮き防止板
30・・・ガス孔
2 ... Diameter 4 ... Inner hole diameter 6 ... Radial width 10 ... Raw material 12 ... Inner crucible 14 ... Outer crucible 20 ... Bottom 22 ... Side 24 ... Annular partition plate 26 ... melt flow hole 28 ... floating prevention plate 30 ... gas hole

Claims (1)

フッ化金属単結晶体製造用円環状フッ化金属多結晶体。   An annular metal fluoride polycrystal for producing a metal fluoride single crystal.
JP2006269739A 2006-09-29 2006-09-29 Toric metal fluoride polycrystal Expired - Fee Related JP5000253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006269739A JP5000253B2 (en) 2006-09-29 2006-09-29 Toric metal fluoride polycrystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006269739A JP5000253B2 (en) 2006-09-29 2006-09-29 Toric metal fluoride polycrystal

Publications (2)

Publication Number Publication Date
JP2008088010A JP2008088010A (en) 2008-04-17
JP5000253B2 true JP5000253B2 (en) 2012-08-15

Family

ID=39372535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006269739A Expired - Fee Related JP5000253B2 (en) 2006-09-29 2006-09-29 Toric metal fluoride polycrystal

Country Status (1)

Country Link
JP (1) JP5000253B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62278188A (en) * 1986-05-24 1987-12-03 Mitsubishi Metal Corp Crucible for single crystal production
JPH02116676A (en) * 1988-10-24 1990-05-01 Nippon Seratetsuku:Kk Production of molded silicon carbide body
JP4154744B2 (en) * 1997-12-01 2008-09-24 株式会社ニコン Calcium fluoride crystal production method and raw material treatment method
JP3689717B2 (en) * 1997-12-26 2005-08-31 日本結晶光学株式会社 Single crystal manufacturing method and crystal growing crucible
JP2001192294A (en) * 1999-10-29 2001-07-17 Optron Inc Method and device for producing crystal article
JP2002203974A (en) * 2001-01-05 2002-07-19 Canon Inc Semiconductor wafer and micromechanical device comprising it
JP2005213585A (en) * 2004-01-29 2005-08-11 Konica Minolta Opto Inc Magnetron sputtering apparatus

Also Published As

Publication number Publication date
JP2008088010A (en) 2008-04-17

Similar Documents

Publication Publication Date Title
JP5296023B2 (en) High pressure vessel for growing group III nitride crystals, and method for growing group III nitride crystals using high pressure vessels and group III nitride crystals
NO20110755A1 (en) Methods for Preparing a Melt of Silicon Powder for Silicon Crystal Growth
US20140060422A1 (en) Method of loading a charge of polysilicon into a crucible
KR100876460B1 (en) Quartz glass crucible manufacturing method
WO1990007021A1 (en) Process for producing single crystal
WO1987005287A1 (en) Process for manufacturing glass
WO2009122936A1 (en) Quartz glass crucible and process for producing the same
JP5000253B2 (en) Toric metal fluoride polycrystal
US20190078231A1 (en) Hybrid crucible assembly for czochralski crystal growth
JP4804348B2 (en) Cooled lump of molten silicon and method for producing the same
JP4806251B2 (en) Oxidation catalyst, ionic conductor and method for producing the same
JP6708173B2 (en) Recharge tube and method for manufacturing single crystal
JP2007091532A (en) Silica glass crucible
JP4694447B2 (en) Raw material pretreatment crucible
WO2002014587A1 (en) Quartz crucible and method for producing single crystal using the same
EP2655705B1 (en) Crucibles
FR2479276A1 (en) Growth of monocrystalline semiconductor rods - from melt continuously supplied with semiconductor material
RU2681331C1 (en) Method of metal uranium production
JP4459519B2 (en) Compound raw material and method for producing compound single crystal
CN112921197A (en) Smelting process of die-casting aluminum alloy for automobile parts
JP5645252B2 (en) Method and apparatus for exhausting gas between crucible and susceptor
JP2007254162A (en) Single crystal manufacturing device and recharge method
JP5034103B2 (en) Pellet or granular material for aluminum recovery, method for producing the pellet or granular material, and method for recovering aluminum
JPH068237B2 (en) Quartz crucible for pulling silicon single crystal
WO1988010329A1 (en) Method for growing single crystal from molten liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101022

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120516

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees