JP5000095B2 - Method for producing organic crystal particles - Google Patents

Method for producing organic crystal particles Download PDF

Info

Publication number
JP5000095B2
JP5000095B2 JP2005068457A JP2005068457A JP5000095B2 JP 5000095 B2 JP5000095 B2 JP 5000095B2 JP 2005068457 A JP2005068457 A JP 2005068457A JP 2005068457 A JP2005068457 A JP 2005068457A JP 5000095 B2 JP5000095 B2 JP 5000095B2
Authority
JP
Japan
Prior art keywords
pressure
organic
crystal particles
organic compound
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005068457A
Other languages
Japanese (ja)
Other versions
JP2006249003A (en
Inventor
卓弥 今木
尚材 野尻
英明 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2005068457A priority Critical patent/JP5000095B2/en
Publication of JP2006249003A publication Critical patent/JP2006249003A/en
Application granted granted Critical
Publication of JP5000095B2 publication Critical patent/JP5000095B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Description

本発明は、有機結晶粒子の製造方法に関する。更に詳しくは、化粧品をはじめ、シャンプーやリンス、石鹸等の日用品、更に塗料やインクの原料として好適に用いられる有機結晶粒子の製造方法に関する。   The present invention relates to a method for producing organic crystal particles. More specifically, the present invention relates to a method for producing organic crystal particles suitably used as a raw material for cosmetics, daily necessaries such as shampoos, rinses and soaps, and paints and inks.

有機結晶粒子はその粒径や形状を変えることにより様々な色や光沢を発現するため、化粧品をはじめ、シャンプーやリンス、石鹸等の日用品、さらに塗料やインクの原料としても使用される。   Organic crystal particles exhibit various colors and gloss by changing their particle size and shape, so they are used as cosmetics, daily necessaries such as shampoos, rinses and soaps, as well as paints and inks.

ここで、有機結晶粒子を化粧品等に配合するには、衛生上、有機溶剤等ができるだけ低減されていることが求められる。よって、有機溶剤等を使用しない製造方法が好ましい。   Here, in order to mix organic crystal particles into cosmetics and the like, it is required that the organic solvent and the like be reduced as much as possible for hygiene purposes. Therefore, the manufacturing method which does not use an organic solvent etc. is preferable.

有機溶剤等を使用せずに、有機化合物の粒子を得る方法としては、超臨界二酸化炭素に溶解し、結晶化させる方法が知られている(例えば、特許文献1参照)。
特開平6−247887号
As a method for obtaining particles of an organic compound without using an organic solvent or the like, a method of dissolving and crystallizing in supercritical carbon dioxide is known (for example, see Patent Document 1).
JP-A-6-24787

前記特許文献1では、超臨界二酸化炭素を使用し、4-イソプロピル-5-メチルフェノールの晶析を行う方法が記載されている。しかしながら、該方法では有機化合物を超臨界二酸化炭素に溶解させるため、処理できる有機化合物の種類や処理量は、有機化合物の溶解度により制限される。前記特許文献1でも得られた晶析量は0.01(結晶g/溶解槽mL)未満である。   Patent Document 1 describes a method of crystallizing 4-isopropyl-5-methylphenol using supercritical carbon dioxide. However, in this method, since the organic compound is dissolved in supercritical carbon dioxide, the type and amount of the organic compound that can be treated are limited by the solubility of the organic compound. The amount of crystallization obtained also in Patent Document 1 is less than 0.01 (g crystals / dissolution tank mL).

したがって、本発明は、微細で、滑り性、感触等に優れた有機結晶粒子を幅広い有機化合物にわたって効率よく製造することができる、実質的に有機溶媒が不要である、有機結晶粒子の製造方法を提供することを課題とする。   Therefore, the present invention provides a method for producing organic crystal particles that can efficiently produce organic crystal particles that are fine, excellent in slipperiness, touch, etc. over a wide range of organic compounds, and that substantially does not require an organic solvent. The issue is to provide.

すなわち、本発明の要旨は、
(1)極性基を有する低分子の結晶性有機化合物を耐圧容器内に充填する工程、
(2)耐圧容器内に流体を注入して、該流体を亜臨界または超臨界状態にし、工程(1)で充填された有機化合物を溶融させる工程、および
(3)耐圧容器内を冷却および/または減圧し、工程(2)で溶融した有機化合物を固化させて、有機結晶粒子を形成する工程
を含む、有機結晶粒子の製造方法
に関する。
That is, the gist of the present invention is as follows.
(1) filling a pressure-resistant container with a low-molecular crystalline organic compound having a polar group;
(2) injecting a fluid into the pressure vessel to bring the fluid into a subcritical or supercritical state and melting the organic compound filled in step (1); and (3) cooling and / or cooling the inside of the pressure vessel. Alternatively, the present invention relates to a method for producing organic crystal particles, including a step of solidifying the organic compound melted in step (2) to form organic crystal particles under reduced pressure.

本発明の有機結晶粒子の製造方法によれば、化粧品をはじめ、シャンプーやリンス、石鹸等の日用品、更に塗料やインクの原料として好適に用いられる、滑り性、感触等に優れる乾燥した有機結晶粒子を効率的に製造することができる。   According to the method for producing organic crystal particles of the present invention, dry organic crystal particles excellent in slipperiness, touch, etc., which are suitably used as a raw material for cosmetics, daily necessaries such as shampoos, rinses, soaps, and paints and inks. Can be efficiently manufactured.

本発明の有機結晶粒子の製造方法は、
(1)極性基を有する低分子の結晶性有機化合物を耐圧容器内に充填する工程、
(2)耐圧容器内に流体を注入して、該流体を亜臨界または超臨界状態にし、工程(1)で充填された有機化合物を溶融させる工程、および
(3)耐圧容器を冷却および/または減圧し、工程(2)で溶融した有機化合物を固化させて、有機結晶粒子を形成する工程
を含むものであり、亜臨界または超臨界状態の流体中で所定の有機化合物を溶融させるという操作を行うことを一つの特徴とする。
The method for producing organic crystal particles of the present invention comprises:
(1) filling a pressure-resistant container with a low-molecular crystalline organic compound having a polar group;
(2) injecting a fluid into the pressure vessel to bring the fluid into a subcritical or supercritical state and melting the organic compound filled in step (1); and (3) cooling and / or cooling the pressure vessel. The process includes the step of solidifying the organic compound melted in step (2) to form organic crystal particles under reduced pressure, and the operation of melting a predetermined organic compound in a subcritical or supercritical fluid. One feature is to do.

かかる操作において、所定の有機化合物は、所定の流体中で溶融状態、すなわち、所定の流体中に溶解させるのではなく、該化合物の一部が溶けた状態で所定の流体中に存在させる。   In this operation, the predetermined organic compound is not dissolved in the predetermined fluid, that is, not dissolved in the predetermined fluid, but is present in the predetermined fluid in a state where a part of the compound is dissolved.

本発明において使用される有機化合物は、極性基を有する低分子の結晶性有機化合物である。本明細書において、結晶性有機化合物とは、結晶構造をとる有機化合物をいう。本明細書において、極性基とは、有極性液体、すなわち分子が電気双極子をもっている液体に対して親和性の高い置換基をいう。極性基としては、例えば、-OH、-COOH、-COO-、-CO-、-O-、-NH2、-NH-、-CON-等が挙げられるが、これらに限定されない。本明細書において、低分子とは、高分子未満、すなわち重量平均分子量が10000未満の分子をいい、好ましくは50〜5000の分子、より好ましくは100〜1000の分子をいう。ここで、重量平均分子量は、ゲル濾過クロマトグラフィーにより測定することができる。該有機化合物としては、例えば、1-オクタデカノール等のアルコール類、ジステアリルエーテル等のエーテル類、エチレングリコールジステアレート等のエステル類等の両親媒性の化合物、スフィンゴリピッドE(薬事名:N-(ヘキサデシロキシヒドロキシプロピル)-N-ヒドロキシエチルヘキサデカナミド)等のスフィンゴ脂質等が挙げられる。これらの有機化合物は単独でまたは2種以上を混合して使用することができる。なお、当該有機化合物を原料として使用する際の、その形状としては、例えば、塊状、粒状、溶融した液状等が挙げられ、中でも粒状が好ましい。 The organic compound used in the present invention is a low-molecular crystalline organic compound having a polar group. In this specification, a crystalline organic compound refers to an organic compound having a crystal structure. In the present specification, the polar group means a substituent having a high affinity for a polar liquid, that is, a liquid in which a molecule has an electric dipole. Examples of polar groups include, but are not limited to, —OH, —COOH, —COO—, —CO—, —O—, —NH 2 , —NH—, —CON— and the like. In the present specification, a low molecule means a molecule less than a polymer, that is, a molecule having a weight average molecular weight of less than 10,000, preferably a molecule of 50 to 5000, more preferably a molecule of 100 to 1000. Here, the weight average molecular weight can be measured by gel filtration chromatography. Examples of the organic compound include amphiphilic compounds such as alcohols such as 1-octadecanol, ethers such as distearyl ether, esters such as ethylene glycol distearate, sphingolipid E (pharmaceutical name: And sphingolipids such as N- (hexadecyloxyhydroxypropyl) -N-hydroxyethylhexadecanamide). These organic compounds can be used alone or in admixture of two or more. In addition, as the shape at the time of using the said organic compound as a raw material, a lump shape, a granule, the melted liquid etc. are mentioned, for example, A granule is especially preferable.

《充填工程》
工程(1)においては、極性基を有する低分子の結晶性有機化合物が耐圧容器内に充填される。
《Filling process》
In the step (1), a low molecular crystalline organic compound having a polar group is filled in a pressure resistant container.

本発明において使用される耐圧容器としては、密閉系であり、使用する温度および圧力に耐えることができ、減圧操作を行う排気機構を有するものであれば特に限定されない。例えば、ステンレス製等の公知の容器が使用される。また、内容物の攪拌のための攪拌機構を備えたものが好ましい。   The pressure vessel used in the present invention is not particularly limited as long as it is a closed system, can withstand the temperature and pressure to be used, and has an exhaust mechanism for performing a decompression operation. For example, a known container made of stainless steel or the like is used. Moreover, what was equipped with the stirring mechanism for stirring the contents is preferable.

耐圧容器への該有機化合物の充填量は、工程(3)で超臨界状態または亜臨界状態にした流体への溶解度より多ければよいが、その上限は、凝集抑制の観点から、溶解度の10000倍以下が好ましく、1000倍以下がより好ましく、100倍以下がさらに好ましい。   The filling amount of the organic compound in the pressure vessel may be larger than the solubility in the fluid that has been changed to the supercritical state or the subcritical state in the step (3), but the upper limit is 10,000 times the solubility from the viewpoint of suppressing aggregation. The following is preferable, 1000 times or less is more preferable, and 100 times or less is more preferable.

また、流体中での有機化合物の分散性を向上させる観点から、分散助剤を用いてもよい。分散助剤としては、例えば、高分子分散剤等が挙げられる。これらの分散助剤は単独でまたは2種以上を混合して使用することができる。耐圧容器への分散助剤の充填量は、有機化合物の分散性を向上できる量であれば特に限定されないが、好ましくは有機化合物100重量部に対して50部以下、より好ましくは20重量部以下、さらに好ましくは10重量部以下である。   Further, from the viewpoint of improving the dispersibility of the organic compound in the fluid, a dispersion aid may be used. Examples of the dispersion aid include a polymer dispersant. These dispersing aids can be used alone or in admixture of two or more. The filling amount of the dispersion aid into the pressure vessel is not particularly limited as long as it can improve the dispersibility of the organic compound, but is preferably 50 parts by weight or less, more preferably 20 parts by weight or less with respect to 100 parts by weight of the organic compound. More preferably, it is 10 parts by weight or less.

所定量の有機化合物を耐圧容器内に充填し終えた時点で耐圧容器を密閉する。   When the predetermined amount of the organic compound is filled in the pressure vessel, the pressure vessel is sealed.

《溶融工程》
工程(2)においては、耐圧容器内に流体を注入し、該流体を亜臨界または超臨界状態にし、前記有機化合物を溶融させる。ここで、亜臨界状態とは、温度が流体の臨界温度以上であるか、または圧力が流体の臨界圧力以上である状態をいい、超臨界状態とは、温度と圧力が共に流体の臨界温度および臨界圧力以上である状態をいう。例えば、流体が二酸化炭素である場合、亜臨界状態とは、温度が31.1℃以上で圧力が7.38MPa未満であるか、または温度が31.1℃未満で圧力が7.38MPa以上である状態をいい、超臨界状態とは、温度が31.1℃以上で圧力が7.38MPa以上である状態をいう。亜臨界または超臨界状態における流体の温度および圧力の範囲は、使用される流体により異なるため特に限定されない。なお、上記のように二酸化炭素を流体として使用する場合、亜臨界または超臨界状態とするための条件設定については、二酸化炭素の相図(温度−圧力曲線)を参照して行えばよい(例えば、「熱計算ハンドブック」(日本能率協会)第Db14頁の表22参照)。
<Melting process>
In the step (2), a fluid is injected into the pressure vessel, the fluid is brought into a subcritical or supercritical state, and the organic compound is melted. Here, the subcritical state refers to a state where the temperature is equal to or higher than the critical temperature of the fluid, or the pressure is equal to or higher than the critical pressure of the fluid, and the supercritical state refers to the critical temperature of the fluid and both the temperature and the pressure. A state that is above the critical pressure. For example, when the fluid is carbon dioxide, the subcritical state means a state where the temperature is 31.1 ° C. or higher and the pressure is less than 7.38 MPa, or the temperature is lower than 31.1 ° C. and the pressure is 7.38 MPa or higher. The critical state is a state where the temperature is 31.1 ° C. or higher and the pressure is 7.38 MPa or higher. The range of the temperature and pressure of the fluid in the subcritical or supercritical state is not particularly limited because it varies depending on the fluid used. In the case where carbon dioxide is used as a fluid as described above, the condition setting for setting the subcritical or supercritical state may be performed with reference to a phase diagram (temperature-pressure curve) of carbon dioxide (for example, , "Thermal Calculation Handbook" (Japan Management Association), page Db14, Table 22).

本発明に使用される流体としては、工程(2)において超臨界または亜臨界状態となる流体であれば特に限定されないが、二酸化炭素、水、窒素、メタン、エタン、メタノール、エタノール等が挙げられ、中でも、臨界条件が穏やかであり、不燃性であり、毒性がなく、安価である観点から、二酸化炭素が好ましい。   The fluid used in the present invention is not particularly limited as long as it is a fluid that becomes a supercritical or subcritical state in the step (2), and examples thereof include carbon dioxide, water, nitrogen, methane, ethane, methanol, and ethanol. Among these, carbon dioxide is preferable from the viewpoints that the critical conditions are mild, nonflammable, nontoxic and inexpensive.

流体を亜臨界または超臨界状態にするための方法としては、例えば、耐圧容器を所定温度に昇温し、続いて流体を高圧ポンプ等を用いて該容器に注入して容器内の圧力を上昇させる方法、流体を高圧ポンプ等を用いて耐圧容器に注入して容器内の圧力を上昇させ、続いて該容器を所定温度に昇温する方法、流体を高圧ポンプ等を用いて耐圧容器に注入して容器内の圧力を上昇させると同時に、該容器を所定温度に昇温する方法等が挙げられる。   As a method for bringing the fluid into a subcritical or supercritical state, for example, the pressure vessel is heated to a predetermined temperature, and then the fluid is injected into the vessel using a high pressure pump or the like to increase the pressure in the vessel. A method of injecting a fluid into a pressure vessel using a high-pressure pump or the like to increase the pressure in the vessel, and subsequently raising the temperature of the vessel to a predetermined temperature, or injecting a fluid into the pressure-resistant vessel using a high-pressure pump or the like And raising the pressure in the container and simultaneously raising the temperature of the container to a predetermined temperature.

本明細書において、溶融とは、亜臨界または超臨界状態の流体の温度が、亜臨界または超臨界状態の圧力における前記有機化合物の融点以上である場合に該有機化合物に生じる状態をいう。なお、有機化合物の溶融は、例えば、観察窓付き高圧セルを用いた溶融性試験により目視で確認することができる。   In this specification, the term “melting” refers to a state that occurs in an organic compound when the temperature of a subcritical or supercritical fluid is equal to or higher than the melting point of the organic compound at a subcritical or supercritical pressure. The melting of the organic compound can be visually confirmed by, for example, a meltability test using a high-pressure cell with an observation window.

工程(2)において、流体中で溶融している前記有機化合物の量と流体中に溶解している前記有機化合物の量の重量比(溶融量/溶解量)は、溶融物からの晶析を優先させる観点から、好ましくは0.1以上、より好ましくは0.1〜100000、さらに好ましくは1〜10000、さらにより好ましくは10〜1000である。   In the step (2), the weight ratio of the amount of the organic compound melted in the fluid to the amount of the organic compound dissolved in the fluid (melting amount / dissolving amount) is determined by crystallization from the melt. From the viewpoint of giving priority, it is preferably 0.1 or more, more preferably 0.1 to 100000, still more preferably 1 to 10000, and even more preferably 10 to 1000.

工程(2)においては、凝集抑制および粒径制御の目的から、溶融した有機化合物を分散させることが好ましい。本明細書において、分散とは、亜臨界または超臨界状態の流体中で、溶融した有機化合物が粒子化して散在している状態をいう。有機化合物の分散は、例えば、観察窓付き高圧セルを用いた分散性試験により目視で確認することができる。分散の方法としては、攪拌等の機械的分散力の適用、前記分散助剤の添加等が挙げられる。また、攪拌により分散を行う場合は、攪拌の回転数、攪拌翼の形状等を変更することにより、分散助剤を用いる場合は、分散助剤の種類または量を変更することにより、分散滴径を制御することが可能である。分散の時期は、前記のように温度および圧力を所定条件に調整した直後でもよく、調整中に行ってもよい。   In the step (2), it is preferable to disperse the molten organic compound for the purpose of suppressing aggregation and controlling the particle size. In this specification, dispersion refers to a state in which molten organic compounds are dispersed as particles in a subcritical or supercritical fluid. The dispersion of the organic compound can be visually confirmed by, for example, a dispersibility test using a high-pressure cell with an observation window. Examples of the dispersion method include application of mechanical dispersion force such as stirring, addition of the dispersion aid, and the like. In addition, when dispersing by stirring, by changing the rotation speed of stirring, the shape of the stirring blade, etc., when using a dispersion aid, by changing the type or amount of the dispersion aid, Can be controlled. The time of dispersion may be immediately after adjusting the temperature and pressure to predetermined conditions as described above, or may be performed during the adjustment.

《固化工程》
工程(3)においては、耐圧容器を冷却および/または減圧することにより、溶融した有機化合物を固化させて、有機結晶粒子を形成する。
《Solidification process》
In the step (3), the pressure resistant vessel is cooled and / or decompressed to solidify the molten organic compound to form organic crystal particles.

冷却後の温度は前記有機化合物の大気圧における融点未満である。冷却方法および冷却時間は特に限定されない。なお、冷却は、容器内の内容物を攪拌しながら行うのが好ましい。攪拌を行うことで、得られる有機結晶粒子の大きさを小さくでき、均一な粒度分布の粒子を製造しやすくなる。攪拌羽根の形状、回転数等は、使用する容器等に応じて適宜決定することが可能である。   The temperature after cooling is less than the melting point of the organic compound at atmospheric pressure. The cooling method and the cooling time are not particularly limited. In addition, it is preferable to perform cooling, stirring the contents in a container. By stirring, the size of the obtained organic crystal particles can be reduced, and it becomes easy to produce particles having a uniform particle size distribution. The shape, rotation speed, and the like of the stirring blade can be appropriately determined according to the container to be used.

減圧は、耐圧容器から流体を排出することにより行うことができる。なお、減圧も冷却同様に耐圧容器内の内容物を攪拌しながら行うことが好ましい。また、減圧は冷却と同時に行ってもよい。また、減圧は一段階で行っても、多段階で行っても、後述するように流体と共に有機結晶粒子を排出して行ってもよい。   The decompression can be performed by discharging the fluid from the pressure vessel. In addition, it is preferable to carry out pressure reduction, stirring the contents in a pressure vessel like cooling. Moreover, you may perform pressure reduction simultaneously with cooling. Further, the decompression may be performed in one stage, in multiple stages, or may be performed by discharging organic crystal particles together with the fluid as will be described later.

有機結晶粒子の回収は、耐圧容器内を大気圧まで減圧した後に耐圧容器を開放し、該容器内より有機結晶粒子を回収してもよく、耐圧容器からの流体の排出速度を調整し、流体の排出と共に有機結晶粒子を耐圧容器外に排出して回収してもよい。耐圧容器外で回収する方法においては、凝集を低減することができ、また、容器外へ排出する際の容器内の温度および圧力の条件によって、粒子径を変更することができる。さらに、耐圧容器外への流体および有機結晶粒子の排出と同時に、流体を該容器に導入することにより、連続して内容物を排出することができる。なお、回収した有機結晶粒子は、さらに解砕して使用することが可能である。   The organic crystal particles may be recovered by reducing the pressure inside the pressure vessel to atmospheric pressure, then opening the pressure vessel and collecting the organic crystal particles from within the vessel, adjusting the fluid discharge rate from the pressure vessel, The organic crystal particles may be discharged to the outside of the pressure vessel and recovered together with the discharge of. In the method of collecting outside the pressure vessel, aggregation can be reduced, and the particle size can be changed depending on the temperature and pressure conditions in the vessel when discharging outside the vessel. Furthermore, the contents can be continuously discharged by introducing the fluid into the container simultaneously with the discharge of the fluid and the organic crystal particles to the outside of the pressure resistant container. The recovered organic crystal particles can be further crushed and used.

以上により所望の有機結晶粒子が得られる。有機結晶粒子の形状は、特に限定されないが板状粒子が好ましい。なお、「板状粒子」とは、その厚さに対する短径の比(短径/厚さ)が2以上のものをいう。当該比としては、好ましくは3以上、より好ましくは5以上、さらに好ましくは10以上である。上限としては、通常、1000程度である。   Thus, desired organic crystal particles can be obtained. The shape of the organic crystal particles is not particularly limited, but plate-like particles are preferable. “Plate-like particles” refers to those having a ratio of the minor axis to the thickness (minor axis / thickness) of 2 or more. The ratio is preferably 3 or more, more preferably 5 or more, and still more preferably 10 or more. The upper limit is usually about 1000.

有機板状粒子の短径は特に限定されないが、好ましくは0.1〜2000μm、より好ましくは0.1〜400μm、さらに好ましくは0.1〜80μmである。一方、長径は特に限定しないが、好ましくは0.1〜3000μm、より好ましくは0.1〜500μm、さらに好ましくは0.1〜100μmである。短径および長径は、例えば、有機板状粒子の走査型電子顕微鏡(SEM)写真に基づいて測定することができる。なお、本明細書において、短径とは、SEM写真における有機板状粒子の像を2本の平行線ではさんだ場合、その平行線の間隔が最小となる時の該間隔をいい、一方、長径とは、短径を定義した際の平行線に直角な方向の2本の平行線で有機板状粒子の像をはさんだ時の当該平行線の間隔をいう。   The short diameter of the organic plate-like particles is not particularly limited, but is preferably 0.1 to 2000 μm, more preferably 0.1 to 400 μm, and still more preferably 0.1 to 80 μm. On the other hand, the major axis is not particularly limited, but is preferably 0.1 to 3000 μm, more preferably 0.1 to 500 μm, and still more preferably 0.1 to 100 μm. The minor axis and the major axis can be measured based on, for example, a scanning electron microscope (SEM) photograph of organic plate-like particles. In the present specification, the minor axis means the interval when the interval between the parallel lines is minimized when the image of the organic plate-like particles in the SEM photograph is sandwiched between two parallel lines, while the major axis is Means the interval between the parallel lines when the organic plate-like particle image is sandwiched between two parallel lines in a direction perpendicular to the parallel lines when the minor axis is defined.

本発明の製造方法により得られた有機結晶粒子は、例えば、化粧品をはじめ、シャンプーやリンス、石鹸等の日用品、さらに塗料やインクの原料として好適に用いることができる。   The organic crystal particles obtained by the production method of the present invention can be suitably used as a raw material for cosmetics, daily necessities such as shampoos, rinses and soaps, and paints and inks.

以下の実施例1〜3および比較例1〜2において使用した装置の一例を図1に示す。該装置は、ボンベ1、フィルター2、冷却ユニット3、供給ポンプ4、逆止弁5、ヒーター6、攪拌翼7、耐圧容器8、モーターM、バルブV−1、排気弁V−2、および圧力計P−1を備えてなる。該装置の各構成単位は、図1に示されるような位置関係で配設されており、それぞれの配管を介して連結されている。   An example of the apparatus used in the following Examples 1-3 and Comparative Examples 1-2 is shown in FIG. The apparatus includes a cylinder 1, a filter 2, a cooling unit 3, a supply pump 4, a check valve 5, a heater 6, a stirring blade 7, a pressure vessel 8, a motor M, a valve V-1, an exhaust valve V-2, and a pressure. A total P-1 is provided. The structural units of the apparatus are arranged in a positional relationship as shown in FIG. 1 and are connected via respective pipes.

実施例1
スフィンゴリピッドE(花王社製、N-(ヘキサデシロキシヒドロキシプロピル)-N-ヒドロキシエチルヘキサデカナミド)(10g)を耐圧容器(100mL)8に充填し密封した。この耐圧容器8に二酸化炭素ボンベ1より二酸化炭素を供給し、さらに昇温することにより、槽内を85℃、30MPaに調整し、120分間保持した。充填したスフィンゴリピッドEの量は、この条件におけるスフィンゴリピッドEの溶解度の約170倍に相当する。
Example 1
Sphingolipid E (manufactured by Kao Corporation, N- (hexadecyloxyhydroxypropyl) -N-hydroxyethylhexadecanamide) (10 g) was filled in a pressure vessel (100 mL) 8 and sealed. Carbon dioxide was supplied from the carbon dioxide cylinder 1 to the pressure vessel 8 and further heated to adjust the inside of the tank to 85 ° C. and 30 MPa, and held for 120 minutes. The amount of sphingolipid E filled corresponds to about 170 times the solubility of sphingolipid E under these conditions.

つづいて、耐圧容器8内を50℃まで冷却した。冷却後の圧力は16MPaであった。その後、排気弁V−2より二酸化炭素を徐々に排出し、耐圧容器8内の圧力を16MPaから大気圧まで減圧した。減圧工程の間、耐圧容器8内の温度は45℃を維持した。大気圧まで減圧したのち、耐圧容器8を開放し、容器内より有機結晶粒子を回収した。   Subsequently, the inside of the pressure vessel 8 was cooled to 50 ° C. The pressure after cooling was 16 MPa. Thereafter, carbon dioxide was gradually discharged from the exhaust valve V-2, and the pressure in the pressure vessel 8 was reduced from 16 MPa to atmospheric pressure. During the decompression step, the temperature in the pressure vessel 8 was maintained at 45 ° C. After reducing the pressure to atmospheric pressure, the pressure vessel 8 was opened, and organic crystal particles were collected from the inside of the vessel.

得られた有機結晶粒子をSEM(キーエンス社製)で観察し、視野中で最も大きいものの顕微鏡写真(倍率:2000倍)を図2に示す。図2に示された写真から、得られた有機結晶粒子は、長径60μmおよび短径10μmの板状粒子であることがわかる。かかる有機結晶粒子は乾燥しており、滑り性、感触に優れたものであった。   The obtained organic crystal particles were observed by SEM (manufactured by Keyence Corporation), and a micrograph (magnification: 2000 times) of the largest one in the visual field is shown in FIG. It can be seen from the photograph shown in FIG. 2 that the obtained organic crystal particles are plate-like particles having a major axis of 60 μm and a minor axis of 10 μm. The organic crystal particles were dried and excellent in slipperiness and feel.

実施例2
1-オクタデカノール(シグマアルドリッチ ジャパン社製)(5.0g)を耐圧容器(100mL)8に充填し密封した。この耐圧容器8に二酸化炭素ボンベ1より二酸化炭素を供給し、さらに昇温することにより、槽内を60℃、30MPaに調整し、攪拌翼7により1200rpmで内容物を攪拌しながら10分間保持した。この際、1-オクタデカノールが分散し白濁する様子が観察できた。充填した1-オクタデカノールの量は、この条件における1-オクタデカノールの溶解度の約25倍に相当する。
Example 2
1-octadecanol (manufactured by Sigma-Aldrich Japan) (5.0 g) was filled in a pressure vessel (100 mL) 8 and sealed. By supplying carbon dioxide from the carbon dioxide cylinder 1 to the pressure vessel 8 and further raising the temperature, the inside of the tank is adjusted to 60 ° C. and 30 MPa, and the contents are held for 10 minutes while stirring the contents at 1200 rpm by the stirring blade 7. . At this time, it was observed that 1-octadecanol was dispersed and clouded. The amount of 1-octadecanol charged corresponds to about 25 times the solubility of 1-octadecanol under these conditions.

つづいて、攪拌を1200rpmに維持した状態で耐圧容器8内を45℃まで冷却した。冷却後の圧力は23MPaであった。その後、攪拌を1200rpmに維持した状態で排気弁V−2より二酸化炭素を徐々に排出し、耐圧容器8内の圧力を23MPaから大気圧まで減圧した。減圧工程の間、耐圧容器8内の温度は45℃を維持した。大気圧まで減圧したのち、耐圧容器8を開放し、容器内より有機結晶粒子を回収した。   Subsequently, the pressure vessel 8 was cooled to 45 ° C. while stirring was maintained at 1200 rpm. The pressure after cooling was 23 MPa. Thereafter, carbon dioxide was gradually discharged from the exhaust valve V-2 while stirring was maintained at 1200 rpm, and the pressure in the pressure vessel 8 was reduced from 23 MPa to atmospheric pressure. During the decompression step, the temperature in the pressure vessel 8 was maintained at 45 ° C. After reducing the pressure to atmospheric pressure, the pressure vessel 8 was opened, and organic crystal particles were collected from the inside of the vessel.

得られた有機結晶粒子をSEM(キーエンス社製)で観察し、視野中で最も大きいものの顕微鏡写真(倍率:2000倍)を図3に示す。図3に示された写真から、得られた有機結晶粒子は、長径35μmおよび短径30μmの板状粒子であることがわかる。かかる有機結晶粒子は乾燥しており、滑り性、感触に優れたものであった。   The obtained organic crystal particles were observed with SEM (manufactured by Keyence Corporation), and a photomicrograph (magnification: 2000 times) of the largest in the field of view is shown in FIG. From the photograph shown in FIG. 3, it can be seen that the obtained organic crystal particles are plate-like particles having a major axis of 35 μm and a minor axis of 30 μm. The organic crystal particles were dried and excellent in slipperiness and feel.

実施例3
スフィンゴリピッドE(花王社製、N-(ヘキサデシロキシヒドロキシプロピル)-N-ヒドロキシエチルヘキサデカナミド)(3.0g)を耐圧容器(100mL)8に充填し密封した。この耐圧容器8に二酸化炭素ボンベ1より二酸化炭素を供給し、さらに昇温することにより、槽内を85℃、27MPaに調整し、攪拌翼7により1400rpmで内容物を攪拌しながら10分間保持した。この際、スフィンゴリピッドEが分散し白濁する様子が観察できた。充填したスフィンゴリピッドEの量は、この条件におけるスフィンゴリピッドEの溶解度の約50倍に相当する。
Example 3
Sphingolipid E (manufactured by Kao Corporation, N- (hexadecyloxyhydroxypropyl) -N-hydroxyethylhexadecanamide) (3.0 g) was filled in a pressure vessel (100 mL) 8 and sealed. By supplying carbon dioxide from the carbon dioxide cylinder 1 to the pressure vessel 8 and further raising the temperature, the inside of the tank is adjusted to 85 ° C. and 27 MPa, and the contents are held for 10 minutes while being stirred at 1400 rpm by the stirring blade 7. . At this time, it was observed that the sphingolipid E was dispersed and clouded. The amount of sphingolipid E filled corresponds to about 50 times the solubility of sphingolipid E under these conditions.

つづいて、攪拌を1400rpmに維持した状態で耐圧容器8内を55℃まで冷却した。冷却後の圧力は23MPaであった。その後、攪拌を1400rpmに維持した状態で排気弁V−2より二酸化炭素を徐々に排出し、耐圧容器8内の圧力を23MPaから大気圧まで減圧した。減圧工程の間、耐圧容器8内の温度は45℃を維持した。大気圧まで減圧したのち、耐圧容器8を開放し、容器内より有機結晶粒子を回収した。   Subsequently, the pressure vessel 8 was cooled to 55 ° C. while stirring was maintained at 1400 rpm. The pressure after cooling was 23 MPa. Thereafter, carbon dioxide was gradually discharged from the exhaust valve V-2 while maintaining stirring at 1400 rpm, and the pressure in the pressure-resistant vessel 8 was reduced from 23 MPa to atmospheric pressure. During the decompression step, the temperature in the pressure vessel 8 was maintained at 45 ° C. After reducing the pressure to atmospheric pressure, the pressure vessel 8 was opened, and organic crystal particles were collected from the inside of the vessel.

得られた有機結晶粒子をSEM(キーエンス社製)で観察し、視野中で最も大きいものの顕微鏡写真(倍率:2000倍)を図4に示す。図4に示された写真から、得られた有機結晶粒子は、長径20μmおよび短径5μmの板状粒子であることがわかる。かかる有機結晶粒子は乾燥しており、滑り性、感触に優れたものであった。   The obtained organic crystal particles were observed with SEM (manufactured by Keyence Corporation), and a photomicrograph (magnification: 2000 times) of the largest one in the field of view is shown in FIG. From the photograph shown in FIG. 4, it can be seen that the obtained organic crystal particles are plate-like particles having a major axis of 20 μm and a minor axis of 5 μm. The organic crystal particles were dried and excellent in slipperiness and feel.

実施例4
スフィンゴリピッドE(花王社製、N-(ヘキサデシロキシヒドロキシプロピル)-N-ヒドロキシエチルヘキサデカナミド)(15g)を耐圧容器(100mL)8に充填し密封した。この耐圧容器8に二酸化炭素ボンベ1より二酸化炭素を供給し、さらに昇温することにより、槽内を85℃、7MPaに調整し、攪拌翼7により110rpmで内容物を攪拌しながら60分間保持した。この際、スフィンゴリピッドEが分散し白濁する様子が観察できた。充填したスフィンゴリピッドEの量は、この条件におけるスフィンゴリピッドEの溶解度の約250倍に相当する。
Example 4
Sphingolipid E (manufactured by Kao Corporation, N- (hexadecyloxyhydroxypropyl) -N-hydroxyethylhexadecanamide) (15 g) was filled in a pressure vessel (100 mL) 8 and sealed. By supplying carbon dioxide from the carbon dioxide cylinder 1 to the pressure vessel 8 and further raising the temperature, the inside of the tank is adjusted to 85 ° C. and 7 MPa, and the contents are held for 60 minutes while being stirred at 110 rpm by the stirring blade 7. . At this time, it was observed that the sphingolipid E was dispersed and clouded. The amount of sphingolipid E filled corresponds to about 250 times the solubility of sphingolipid E under these conditions.

つづいて、攪拌を停止し、耐圧容器8内を50℃まで冷却した。冷却後の圧力は5.8MPaであった。その後、排気弁V−2より二酸化炭素を徐々に排出し、耐圧容器8内の圧力を5.8MPaから大気圧まで減圧した。減圧工程の間、耐圧容器8内の温度は45℃を維持した。大気圧まで減圧したのち、耐圧容器8を開放し、容器内より有機結晶粒子を回収した。   Subsequently, stirring was stopped and the inside of the pressure vessel 8 was cooled to 50 ° C. The pressure after cooling was 5.8 MPa. Thereafter, carbon dioxide was gradually discharged from the exhaust valve V-2, and the pressure in the pressure vessel 8 was reduced from 5.8 MPa to atmospheric pressure. During the decompression step, the temperature in the pressure vessel 8 was maintained at 45 ° C. After reducing the pressure to atmospheric pressure, the pressure vessel 8 was opened, and organic crystal particles were collected from the inside of the vessel.

得られた有機結晶粒子をSEM(キーエンス社製)で観察し、その顕微鏡写真(倍率:2000倍)を図5に示す。図5に示された写真から、得られた有機結晶粒子は、視野中で最も大きいもので長径15μmおよび短径8μmの板状粒子であることがわかる。かかる有機結晶粒子は乾燥しており、滑り性、感触に優れたものであった。   The obtained organic crystal particles were observed with SEM (manufactured by Keyence Corporation), and a photomicrograph (magnification: 2000 times) is shown in FIG. From the photograph shown in FIG. 5, it can be seen that the obtained organic crystal particles are the largest in the field of view and are plate-like particles having a major axis of 15 μm and a minor axis of 8 μm. The organic crystal particles were dried and excellent in slipperiness and feel.

比較例1
1-オクタデカノール(シグマアルドリッチ ジャパン社製)(5.0g)とイオン交換水(80g)をガラス容器(100mL)に充填し密封した。マグネチックスターラーで内容物を攪拌しながら、65℃まで昇温し、10分間保持した。攪拌中、1-オクタデカノールが分散し白濁する様子が観察できた。
Comparative Example 1
1-Octadecanol (manufactured by Sigma-Aldrich Japan) (5.0 g) and ion-exchanged water (80 g) were filled in a glass container (100 mL) and sealed. While stirring the contents with a magnetic stirrer, the temperature was raised to 65 ° C. and held for 10 minutes. During stirring, it was observed that 1-octadecanol was dispersed and clouded.

つづいて、攪拌を維持した状態でガラス容器を20℃の水槽にいれて冷却した。冷却後、1-オクタデカノールは凝集して塊となり、結晶粒子は得られなかった。   Subsequently, the glass container was cooled in a 20 ° C. water bath while stirring was maintained. After cooling, 1-octadecanol aggregated into a lump and crystal particles could not be obtained.

比較例2
スフィンゴリピッドE(3.0g)とイオン交換水(80g)をガラス容器(100mL)に充填し密封した。マグネチックスターラーで内容物を攪拌しながら、85℃まで昇温し、10分間保持した。攪拌中、スフィンゴリピッドEが分散し白濁する様子が観察できた。
Comparative Example 2
Sphingolipid E (3.0 g) and ion-exchanged water (80 g) were filled in a glass container (100 mL) and sealed. While stirring the contents with a magnetic stirrer, the temperature was raised to 85 ° C. and held for 10 minutes. During stirring, sphingolipid E was dispersed and clouded.

つづいて、攪拌を維持した状態でガラス容器を20℃の水槽にいれて冷却した。冷却後、スフィンゴリピッドEは凝集して塊となり、結晶粒子は得られなかった。   Subsequently, the glass container was cooled in a 20 ° C. water bath while stirring was maintained. After cooling, sphingolipid E aggregated into a lump and crystal particles could not be obtained.

本発明によれば、例えば、化粧品、香粧品、塗料、インク等に好適に使用しうる高品質の有機結晶粒子を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the high quality organic crystal particle which can be used conveniently for cosmetics, cosmetics, a coating material, ink etc. can be provided, for example.

本発明において使用され得る装置の一例を示す概略説明図である。It is a schematic explanatory drawing which shows an example of the apparatus which can be used in this invention. 実施例1で得られた有機結晶粒子の顕微鏡写真(2000倍)である。2 is a photomicrograph (2000 magnifications) of organic crystal particles obtained in Example 1. 実施例2で得られた有機結晶粒子の顕微鏡写真(2000倍)である。2 is a photomicrograph (2000 magnifications) of organic crystal particles obtained in Example 2. 実施例3で得られた有機結晶粒子の顕微鏡写真(2000倍)である。2 is a photomicrograph (2000 magnifications) of organic crystal particles obtained in Example 3. 実施例4で得られた有機結晶粒子の顕微鏡写真(2000倍)である。2 is a photomicrograph (2000 magnifications) of organic crystal particles obtained in Example 4.

符号の説明Explanation of symbols

1 ボンベ
2 フィルター
3 冷却ユニット
4 供給ポンプ
5 逆止弁
6 ヒーター
7 攪拌翼
8 耐圧容器
M モーター
V−1 バルブ
V−2 排気弁
P−1 圧力計
1 cylinder 2 filter 3 cooling unit 4 supply pump 5 check valve 6 heater 7 stirring blade 8 pressure vessel M motor V-1 valve V-2 exhaust valve P-1 pressure gauge

Claims (4)

(1)極性基を有する低分子の結晶性有機化合物を耐圧容器内に充填する工程、
(2)耐圧容器内に二酸化炭素からなる流体を注入して、該流体を亜臨界または超臨界状態にし、工程(1)で充填された有機化合物の融点以上の温度に加熱して該有機化合物を溶融させる工程、および
(3)耐圧容器内を冷却し、工程(2)で溶融した有機化合物を固化させて、有機結晶粒子を形成する工程
を含む、有機結晶粒子の製造方法であって、前記極性基を有する低分子の結晶性有機化合物が、1-オクタデカノール又はN-(ヘキサデシロキシヒドロキシプロピル)-N-ヒドロキシエチルヘキサデカナミドである、有機結晶粒子の製造方法。
(1) filling a pressure-resistant container with a low-molecular crystalline organic compound having a polar group;
(2) A fluid made of carbon dioxide is injected into the pressure vessel to bring the fluid into a subcritical or supercritical state, and heated to a temperature equal to or higher than the melting point of the organic compound filled in step (1). And (3) cooling the inside of the pressure vessel and solidifying the molten organic compound in step (2) to form organic crystal particles, The method for producing organic crystal particles, wherein the low-molecular crystalline organic compound having a polar group is 1-octadecanol or N- (hexadecyloxyhydroxypropyl) -N-hydroxyethylhexadecanamide .
工程(2)において、流体中で溶融している有機化合物の量と流体に溶解している有機化合物の量の重量比(溶融量/溶解量)が、10〜1000である、請求項1記載の製造方法。 In step (2), the weight ratio of the amount of the organic compound dissolved in the amount and the fluid of an organic compound which is melted in a fluid (molten amount / amount dissolved) is 10 to 1000, according to claim 1 Symbol The manufacturing method described. 有機結晶粒子が有機板状粒子である、請求項1又は2記載の製造方法。The production method according to claim 1, wherein the organic crystal particles are organic plate-like particles. 有機板状粒子の短径が0.1〜400μmであり、長径が0.1〜500μmである、請求項3記載の製造方法。The production method according to claim 3, wherein the organic plate-like particles have a minor axis of 0.1 to 400 μm and a major axis of 0.1 to 500 μm.
JP2005068457A 2005-03-11 2005-03-11 Method for producing organic crystal particles Active JP5000095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005068457A JP5000095B2 (en) 2005-03-11 2005-03-11 Method for producing organic crystal particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005068457A JP5000095B2 (en) 2005-03-11 2005-03-11 Method for producing organic crystal particles

Publications (2)

Publication Number Publication Date
JP2006249003A JP2006249003A (en) 2006-09-21
JP5000095B2 true JP5000095B2 (en) 2012-08-15

Family

ID=37089868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005068457A Active JP5000095B2 (en) 2005-03-11 2005-03-11 Method for producing organic crystal particles

Country Status (1)

Country Link
JP (1) JP5000095B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5004333B2 (en) * 2006-12-08 2012-08-22 日機装株式会社 Nano-order particle manufacturing equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2774349B2 (en) * 1990-03-17 1998-07-09 株式会社神戸製鋼所 Manufacturing method of fine particles
JPH06126102A (en) * 1992-10-20 1994-05-10 Kobe Steel Ltd Production of fine particle
JP3270562B2 (en) * 1993-02-23 2002-04-02 日本炭酸株式会社 Method for producing acicular isopropylmethylphenol
DE69827794T2 (en) * 1997-06-20 2005-12-22 Smithkline Beecham P.L.C., Brentford Treatment of a substance with a compressed fluid (eg with a supercritical fluid)
SE9804000D0 (en) * 1998-11-23 1998-11-23 Astra Ab New composition of matter
JP2003003192A (en) * 2001-06-20 2003-01-08 Unitika Ltd Method for extracting sphingolipid or sphingoglycolipid
JP4206317B2 (en) * 2003-09-10 2009-01-07 花王株式会社 Method for producing organic plate-like particles

Also Published As

Publication number Publication date
JP2006249003A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
CN110143586B (en) Preparation method of single-layer or few-layer graphene
KR101596529B1 (en) Process for producing fine particles of polyphenylene sulfide resin, fine particles of polyphenylene sulfide resin, and dispersion thereof
JPH034926A (en) Preparation of suspension of finely divided crystal
CN107377993B (en) A kind of metal nanometer line, dispersion liquid and preparation method thereof
CN110467178B (en) Method for preparing graphene
EP3006488B1 (en) Ethylene-vinyl alcohol copolymer microparticles, dispersion liquid and resin composition including same, and method for producing said microparticles
WO2022021518A1 (en) Method for preparing γ-ga 2o 3 nanomaterial
WO2015163291A1 (en) Method for manufacturing cellulose solution
JP5000095B2 (en) Method for producing organic crystal particles
CN113943458A (en) Polycarbonate/polypropylene alloy material and preparation method thereof
JP5143371B2 (en) Method for producing organic crystalline particles
US11498980B2 (en) Method for producing cellulose nanofiber and apparatus for producing cellulose nanofiber
JP4206317B2 (en) Method for producing organic plate-like particles
JP7100550B2 (en) Composition for spray
JP5589373B2 (en) Polyphenylene sulfide resin fine particle dispersion and method for producing the same
CN108102502B (en) Preparation method of water-soluble polyether-ether-ketone coating
CN110625076A (en) Method for preparing semi-solid metal or alloy
JP2010106232A (en) Process for producing fine particle of polyphenylene sulfide resin, fine particle of polyphenylene sulfide resin, and dispersion thereof
KR20150143157A (en) manufacturing method of polymer particle
CN105086835B (en) The method and apparatus of low temperature active pressurized thermal water synthesis nano cerium oxide polishing slurry
JP2014005409A (en) Coagulation method of polyphenylene sulfide resin fine particle dispersion
CN106395806B (en) A kind of hydrophilic graphene and preparation method thereof
JP4443279B2 (en) Method for producing organic plate-like particles
JP4509770B2 (en) Method for producing organic plate-like particles
JP2008303304A (en) Method for producing crystalline polyamide fine particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120516

R151 Written notification of patent or utility model registration

Ref document number: 5000095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250