JP2008303304A - Method for producing crystalline polyamide fine particle - Google Patents
Method for producing crystalline polyamide fine particle Download PDFInfo
- Publication number
- JP2008303304A JP2008303304A JP2007152070A JP2007152070A JP2008303304A JP 2008303304 A JP2008303304 A JP 2008303304A JP 2007152070 A JP2007152070 A JP 2007152070A JP 2007152070 A JP2007152070 A JP 2007152070A JP 2008303304 A JP2008303304 A JP 2008303304A
- Authority
- JP
- Japan
- Prior art keywords
- polyamide
- fine particles
- solvent
- phase separation
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
Description
本発明は、結晶性ポリアミド微粒子の製造方法に関する。 The present invention relates to a method for producing crystalline polyamide fine particles.
結晶性ポリアミドの微粒子は、粉体塗料用材料、成型用焼結剤、塗料用配合剤、潤滑油添加剤、化粧品用基材、吸着剤、接着剤用配合剤、樹脂改質剤、複合粒子基材等として有用である。 Fine particles of crystalline polyamide are powder coating materials, molding sintering agents, coating compounding agents, lubricant additives, cosmetic base materials, adsorbents, adhesive compounding agents, resin modifiers, composite particles Useful as a substrate.
従来、結晶性ポリアミド粉末の製造方法として、結晶性ポリアミドのブロックやペレットをボールミル等により機械的に破砕する方法;結晶性ポリアミドの重合工程で製造する方法;結晶性ポリアミドを溶剤に溶解し、その溶液に非溶媒を加える方法、あるいは、温度によって結晶性ポリアミドの溶解性が変化する溶剤を用いて、その溶液に混合した結晶性ポリアミドを加熱して溶解し、その溶液を冷却する方法等が知られている。 Conventionally, as a method for producing crystalline polyamide powder, a method in which crystalline polyamide blocks and pellets are mechanically crushed by a ball mill or the like; a method in which a crystalline polyamide is polymerized; a method in which crystalline polyamide is dissolved in a solvent; Known methods include adding a non-solvent to the solution, or using a solvent in which the solubility of the crystalline polyamide varies with temperature, heating and dissolving the crystalline polyamide mixed in the solution, and cooling the solution. It has been.
結晶性ポリアミドの重合工程で製造する方法、または、溶液から非溶媒等を用いて析出させて製造する方法を用いた場合、結晶性ポリアミドは丸みを帯びた粒子として得られる。しかし、結晶性ポリアミドのペレットなどをボールミル等により機械的に粉砕する方法では角を持った粉体しか得られない。 In the case of using a method of manufacturing in a polymerization step of crystalline polyamide or a method of manufacturing by precipitation from a solution using a non-solvent or the like, the crystalline polyamide is obtained as rounded particles. However, a method of mechanically pulverizing crystalline polyamide pellets or the like with a ball mill or the like can obtain only powder with corners.
一方、ポリアミドを溶解した溶液から析出させる方法として、ポリアミドと、ポリアミドに対して高温(溶解温度以上)では溶媒として作用し、低温(相分離温度以下)では非溶媒として作用する溶剤とを混合し、その後、加熱することによって均一溶液を生成し、この均一溶液を冷却することによりポリアミドの微粒子を析出する方法(以下、溶媒法という)が知られている(特許文献1〜6参照)。 On the other hand, as a method for precipitating from a solution in which polyamide is dissolved, polyamide is mixed with a solvent that acts as a solvent at a high temperature (above the melting temperature) and acts as a non-solvent at a low temperature (below the phase separation temperature). Then, there is known a method (hereinafter referred to as a solvent method) in which a uniform solution is produced by heating and the polyamide solution is precipitated by cooling the uniform solution (hereinafter referred to as solvent method).
特許文献1には、ポリアミドを含水低級アルコールに高温高圧で溶解し、その均一溶液を冷却してポリアミドを析出させるポリアミド微粒子の製造方法が開示されている。ここで含水低級アルコールとして、メタノール、エタノール、イソプロパノール、プロパノール、ブタノール、ペンタノール等が挙げられている。 Patent Document 1 discloses a method for producing polyamide fine particles in which polyamide is dissolved in hydrous lower alcohol at high temperature and high pressure, and the homogeneous solution is cooled to precipitate polyamide. Examples of the hydrous lower alcohol include methanol, ethanol, isopropanol, propanol, butanol, pentanol and the like.
特許文献2には、ナイロン6、ナイロン12を低級アルコール溶媒に加熱溶解したのち、その均一溶液を徐冷してポリアミドを析出させるポリアミド微粒子の製造方法が開示されている。 Patent Document 2 discloses a method for producing polyamide fine particles in which nylon 6 and nylon 12 are dissolved by heating in a lower alcohol solvent, and then the homogeneous solution is gradually cooled to precipitate polyamide.
特許文献3には、非結晶性ポリアミドをエチレングリコールとモルフォリンまたはジメチルアミドの混合溶剤中に加熱溶解させ、その均一溶液を上層から冷却して効率良くポリアミドを析出させ、槽底部へのナイロン樹脂膜が生成するのを防止するポリアミド微粒子の製造方法が開示されている。 In Patent Document 3, amorphous polyamide is heated and dissolved in a mixed solvent of ethylene glycol and morpholine or dimethylamide, and the homogeneous solution is cooled from the upper layer to efficiently precipitate the polyamide, and the nylon resin on the bottom of the tank A method for producing polyamide microparticles that prevents the formation of a film is disclosed.
特許文献4には、結晶性ポリアミドを相分離用溶媒に高温で溶解し、その均一溶液を相分離させながら冷却し、ポリアミドを単球晶状粒子として相分離された溶液を形成させ、溶媒のみを除去してポリアミド微粒子を得る、結晶性ポリアミド微粒子の製造方法が開示されている。 In Patent Document 4, crystalline polyamide is dissolved in a phase separation solvent at a high temperature, and the homogeneous solution is cooled while phase separation is performed to form a phase-separated solution of the polyamide as monospherical particles. There is disclosed a method for producing crystalline polyamide fine particles in which polyamide fine particles are obtained by removing the slag.
また本出願人の出願に係る特許文献5には、ナイロン12をジプロピレングリコールに加熱溶解させ、この均一溶液を5℃/分以下で冷却することにより、ナイロン12の微粒子を析出させるポリアミド微粒子の製造方法が記載されている。 Further, in Patent Document 5 relating to the application of the present applicant, a polyamide fine particle that precipitates nylon 12 fine particles by heating and dissolving nylon 12 in dipropylene glycol and cooling the uniform solution at 5 ° C./min or less. A manufacturing method is described.
これらの溶媒法を用いてポリアミド微粒子を量産する場合、ポリアミドと溶媒とを大容量の溶解槽で混合加熱し、その溶解槽を相分離槽としてその槽内で冷却するか、または別に設けた相分離槽へ移送した後、冷却することになる。このとき槽内の中心部と器壁に近い部分との間で温度差等が生じ、槽内の全域を一定に保持しながら冷却することは困難である。そのため、粒子の粒度分布幅が広くなったり、粒子同士がブドウの房状にくっついた塊になったりする問題があった。 When mass-producing polyamide fine particles using these solvent methods, the polyamide and the solvent are mixed and heated in a large-capacity dissolution tank, and the dissolution tank is cooled in the tank as a phase separation tank, or a phase provided separately. After being transferred to the separation tank, it is cooled. At this time, a temperature difference or the like occurs between the central portion in the tank and a portion close to the vessel wall, and it is difficult to cool while keeping the entire area in the tank constant. For this reason, there have been problems that the particle size distribution width of the particles becomes wide, or that the particles become a lump that is attached to a bunch of grapes.
さらに、均一溶液を溶解槽内で冷却する手段として熱交換器を用いることも考えられるが、その場合、熱交換器上にポリアミドの凝集物が形成され、連続的な生産には適していない。 Further, it is conceivable to use a heat exchanger as a means for cooling the homogeneous solution in the dissolution tank, but in that case, polyamide aggregates are formed on the heat exchanger, which is not suitable for continuous production.
このような問題点を解決すべく、本出願人は、特許文献6に示すように、ポリアミドと、溶解温度でそのポリアミドを溶解し、かつ相分離温度以上でそのポリアミドに対して溶媒として作用し、相分離温度以下では非溶媒として作用する溶剤とを混合加熱して生成した均一溶液を、一定温度で保持された平面状素材あるいは線状素材の表面上で塗膜を形成させて冷却することによって球状粒子を析出させる方法を提示した。これにより、素材上の均一溶液全体の冷却速度を一定に保つことができ、また、均一溶液を静止の状態または層流の状態(乱流が形成しない状態)で冷却することができ、平均粒径が数μmから数十μmのポリアミド微粒子をバラツキ無く簡便に、そして再現性良く生産することができた。 In order to solve such problems, the present applicant, as shown in Patent Document 6, dissolves the polyamide at the dissolution temperature and acts as a solvent for the polyamide at the phase separation temperature or higher. A uniform solution formed by mixing and heating a solvent that acts as a non-solvent below the phase separation temperature is cooled by forming a coating film on the surface of a planar or linear material held at a constant temperature. A method for depositing spherical particles was presented. As a result, the cooling rate of the entire uniform solution on the material can be kept constant, and the uniform solution can be cooled in a static state or a laminar flow state (a state where no turbulent flow is formed). Polyamide fine particles having a diameter of several μm to several tens of μm could be produced easily and with good reproducibility without variation.
特許文献6の方法は、溶解混合は多量にできるが、その後の析出工程では浅いパレット状の容量の小さい容器で行う必要がある。また量産するためには多数の前記パレットが必要である。
本発明は、特許文献6とは異なる方法で、結晶性ポリアミドの微粒子を大きな容量の槽内で製造することが可能であり、従って溶解槽内で析出させることも可能で、簡便で再現性良く、粒径のばらつきが小さく、不規則な形状の粒子が発生しにくいポリアミド微粒子の製造方法を提供することを目的としている。
In the method of Patent Document 6, a large amount of dissolution and mixing can be performed, but in the subsequent precipitation step, it is necessary to carry out in a shallow pallet-like container having a small capacity. In addition, many pallets are required for mass production.
In the present invention, crystalline polyamide fine particles can be produced in a large-capacity tank by a method different from that of Patent Document 6, and thus can be precipitated in a dissolution tank, which is simple and highly reproducible. Another object of the present invention is to provide a method for producing polyamide fine particles in which variation in particle size is small and particles having irregular shapes are hardly generated.
本発明の結晶性ポリアミド微粒子の製造方法は、結晶性ポリアミドと、そのポリアミドに対し相分離温度以上では溶媒として作用し、相分離温度以下では非溶媒として作用する溶剤とを混合し、その混合物を加熱することによってポリアミド溶液を生成し、このポリアミド溶液を、相分離槽の器壁にポリアミドが析出しないように攪拌しながら相分離温度以下まで冷却することを特徴としている。 The method for producing crystalline polyamide fine particles of the present invention comprises mixing a crystalline polyamide and a solvent that acts as a solvent at a temperature above the phase separation temperature and acts as a non-solvent at a temperature below the phase separation temperature. A polyamide solution is produced by heating, and the polyamide solution is cooled to a phase separation temperature or lower with stirring so that the polyamide does not precipitate on the wall of the phase separation tank.
ここで「相分離槽の器壁にポリアミドが析出しないように攪拌する」とは、相分離槽の器壁や攪拌機の表面などにポリアミドが析出し、堆積しないように、かつ、相分離温度以下でポリアミド微粒子が相分離槽内全体でポリアミド微粒子が一様に生成するように攪拌することをいう。 Here, “stirring so that the polyamide does not precipitate on the wall of the phase separation tank” means that the polyamide does not deposit and deposit on the wall of the phase separation tank or the surface of the stirrer, and the phase separation temperature or lower. And stirring so that the polyamide fine particles are uniformly formed in the entire phase separation tank.
このような製造方法であって、ポリアミドの相分離温度近辺において、ポリアミド溶液を放冷により冷却するのが好ましい。 In such a production method, it is preferable that the polyamide solution is cooled by cooling in the vicinity of the phase separation temperature of the polyamide.
本発明の結晶性ポリアミド微粒子の製造方法は、結晶性ポリアミドと、そのポリアミドに対し相分離温度以上では溶媒として作用し、相分離温度以下では非溶媒として作用する溶剤とを混合し、その混合物を加熱することによってポリアミド溶液を生成し、このポリアミド溶液を相分離槽の槽内で器壁にポリアミドが析出しないように攪拌しながら冷却するため、ポリアミド溶液が相分離温度以下になったとき、槽内全体において相分離が均一におこり、ポリアミド微粒子の均一な分散体が生成し、かつ、器壁等においてポリアミドの堆積が起こらない。そのため、粒径のばらつきが小さい微粒子が製造される。 The method for producing crystalline polyamide fine particles of the present invention comprises mixing a crystalline polyamide and a solvent that acts as a solvent at a temperature above the phase separation temperature and acts as a non-solvent at a temperature below the phase separation temperature. A polyamide solution is produced by heating, and this polyamide solution is cooled in the tank of the phase separation tank with stirring so that the polyamide does not precipitate on the wall of the tank. When the polyamide solution falls below the phase separation temperature, the tank Phase separation occurs uniformly in the whole, a uniform dispersion of polyamide fine particles is generated, and polyamide deposition does not occur on the vessel wall or the like. Therefore, fine particles having a small variation in particle size are produced.
このような製造方法であって、ポリアミドの相分離温度近辺において、ポリアミド溶液を放冷する場合、相分離槽全体において温度差ができにくく、一層粒径のばらつきが小さい微粒子が製造される。 In such a production method, when the polyamide solution is allowed to cool in the vicinity of the phase separation temperature of the polyamide, it is difficult to produce a temperature difference in the entire phase separation tank, and fine particles having a smaller variation in particle diameter are produced.
本発明の方法では、ポリアミドと、そのポリアミドに対し相分離温度以上では溶媒として作用し、相分離温度以下では非溶媒として作用する溶剤とを混合し、その後、その混合物をポリアミドが完全に溶解するまで加熱する。得られたポリアミド溶液を相分離槽の器壁近辺にポリアミドの堆積が生じないように攪拌しながら冷却する。このとき、液面が激しく動揺したり、撥ねたりする現象が発生しない範囲で強力な攪拌を続けながら冷却する。そして、溶液が相分離温度以下に冷却されると相分離によって分散体となり、ポリアミド微粒子が生成する。
なお、攪拌速度が充分に大きくない場合は、相分離槽の器壁や攪拌翼の表面などにポリアミドの結晶が堆積して、均一な微粒子が得られない。また、攪拌速度が、液面が激しく揺れたり、液撥ねが起こるほど激しい場合には、相分離が均一に行われず、従って均一な微粒子が得られない。
In the method of the present invention, a polyamide and a solvent that acts as a solvent above the phase separation temperature and acts as a non-solvent below the phase separation temperature are mixed with the polyamide, and then the polyamide is completely dissolved in the mixture. Until heated. The obtained polyamide solution is cooled with stirring so that no polyamide is deposited near the wall of the phase separation tank. At this time, the liquid level is cooled while continuing strong stirring as long as the liquid level does not violently shake or repel. When the solution is cooled below the phase separation temperature, it becomes a dispersion by phase separation, and polyamide fine particles are generated.
If the stirring speed is not sufficiently high, polyamide crystals are deposited on the wall of the phase separation tank, the surface of the stirring blade, etc., and uniform fine particles cannot be obtained. In addition, when the stirring speed is so intense that the liquid surface shakes vigorously or liquid repelling occurs, the phase separation is not performed uniformly, and thus uniform fine particles cannot be obtained.
攪拌に用いる攪拌装置は、従来から使用されているものでよく、攪拌方法は、樹脂の析出温度付近で溶解槽の器壁に樹脂が析出して付着せず、かつ、溶液の液面状態が安定である限り、特に限定されるものではない。 The stirring device used for stirring may be a conventionally used stirring method, and the stirring method is such that the resin does not deposit and adhere to the wall of the dissolution tank near the resin precipitation temperature, and the liquid level of the solution is As long as it is stable, it is not particularly limited.
攪拌機の羽根として、タービン型、プロペラ型、溶解型、平板型、パドル型、いかり型等の一般的なものでよい。
冷却は、相分離温度よりいくらか高い温度までは強制冷却してもよいが、相分離が完了するまでは放冷あるいはさらに遅い冷却速度で冷却を行うのが好ましい。相分離が完了した後は、適時強制冷却して作業効率を上げても良い。
The blades of the agitator may be general ones such as a turbine type, a propeller type, a melting type, a flat plate type, a paddle type, and an anchor type.
The cooling may be forcibly cooled to a temperature somewhat higher than the phase separation temperature, but it is preferable to cool by cooling or at a slower cooling rate until the phase separation is completed. After the phase separation is completed, the work efficiency may be increased by timely forced cooling.
樹脂濃度は、低いほど生成するポリアミド微粒子の平均粒子径が小さくなるので、目的とする粒子径によって任意に設定すればよい。ただし、高濃度では相分離が不安定で溶液が凝集しやすくなり、またあまり低濃度では生産効率が低くなる。 The lower the resin concentration, the smaller the average particle size of the polyamide fine particles that are produced. However, when the concentration is high, the phase separation is unstable and the solution tends to aggregate, and when the concentration is too low, the production efficiency is low.
本発明の製造方法を使用することができるポリアミドとしては、ポリマー主鎖に酸アミド結合(−CONH−)を有するもの、例えば、ナイロン6、ナイロン11、ナイロン12、ナイロン66、ナイロン610等が挙げられる。しかし、これらは特に限定されるものではない。 Polyamides that can be used in the production method of the present invention include those having an acid amide bond (—CONH—) in the polymer main chain, such as nylon 6, nylon 11, nylon 12, nylon 66, nylon 610, and the like. It is done. However, these are not particularly limited.
また、そのポリアミドに対し相分離温度以上では溶媒として作用し、相分離温度以下では非溶媒として作用する溶剤としては、それぞれポリアミドの種類によっても異なるが一般的に一種以上のアルコール類からなる溶剤系が適当である。例えば、エチレングリコール、プロピレングリコール、グリセリン、ジエチレングリコール、ジプロピレングリコール、1,3−ブチレングリコール、ヘキシレングリコール等の一種以上の多価アルコール類が挙げられる。また溶解槽ないし相分離槽が耐圧装置である場合には、低沸点の一価アルコール類、例えばメタノール、エタノール、イソプロパノール、ブタノールの他、水や液化炭酸ガス等も選択が可能である。混合溶剤として使用する場合は、その混合比はポリアミドによって随時決めることができる。 In addition, the solvent which acts as a solvent above the phase separation temperature and acts as a non-solvent below the phase separation temperature for the polyamide is generally a solvent system consisting of one or more alcohols, although it varies depending on the type of polyamide. Is appropriate. Examples thereof include one or more polyhydric alcohols such as ethylene glycol, propylene glycol, glycerin, diethylene glycol, dipropylene glycol, 1,3-butylene glycol, hexylene glycol and the like. When the dissolution tank or the phase separation tank is a pressure-resistant device, low boiling point monohydric alcohols such as methanol, ethanol, isopropanol, and butanol, water, liquefied carbon dioxide, and the like can be selected. When used as a mixed solvent, the mixing ratio can be determined at any time depending on the polyamide.
そして、ポリアミドとしてナイロン6を用いる場合、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコールが好ましく挙げられ、特に、エチレングリコールが好ましい。また、ポリアミドとしてナイロン12を用いる場合、ジプロピレングリコールが好ましく挙げられる。 And when using nylon 6 as polyamide, ethylene glycol, diethylene glycol, propylene glycol, and dipropylene glycol are mentioned preferably, and ethylene glycol is particularly preferable. Moreover, when using nylon 12 as a polyamide, a dipropylene glycol is mentioned preferably.
[実施例1]
溶剤としてジプロピレングリコールを用いたナイロン12微粒子の製造(1)
ジプロピレングリコールにナイロン12のペレットを10重量%混ぜて得た混合物を、溶解型攪拌翼を備えた攪拌機がついた溶解槽に投入し、空間を窒素置換した後、190℃に昇温し、60分間、300rpmで攪拌して透明な溶液を得た。得られた溶液をそのまま、1200rpmで攪拌しながら放冷した。そして、130℃で相分離が起こり不透明な分散体が生成した。槽内を点検したが器壁や攪拌翼等にポリアミドの堆積は見られなかった。
[Example 1]
Production of nylon 12 fine particles using dipropylene glycol as solvent (1)
A mixture obtained by mixing 10% by weight of nylon 12 pellets with dipropylene glycol was put into a dissolution tank equipped with a stirrer equipped with a dissolution type stirring blade, and after the space was purged with nitrogen, the temperature was raised to 190 ° C., A clear solution was obtained by stirring at 300 rpm for 60 minutes. The resulting solution was allowed to cool with stirring at 1200 rpm. Then, phase separation occurred at 130 ° C., and an opaque dispersion was formed. The inside of the tank was inspected, but no polyamide was found on the vessel wall or stirring blade.
相分離した不透明な分散液は、流動性は良好で、取り扱いの容易な液体であった。この分散液を、遠心分離によって、溶媒を粗分離後、水洗浄、濾過を繰り返して微粒子を分離し、乾燥してナイロン12微粒子を得た。得られた微粒子の平均粒径は、46μmであった。また形状が不規則な微粒子は見られなかった。 The phase-separated opaque dispersion had good fluidity and was easy to handle. This dispersion was centrifuged to roughly separate the solvent, then washed with water and filtered repeatedly to separate the fine particles and dried to obtain nylon 12 fine particles. The average particle diameter of the obtained fine particles was 46 μm. In addition, fine particles with irregular shapes were not observed.
[実施例2]
溶剤としてジプロピレングリコールを用いたナイロン12微粒子の製造(2)
実施例1において攪拌機の羽根をプロペラ型に変更して、回転速度1400rpmと変更した以外は全く同じ方法でナイロン12微粒子を得た。
この場合も、溶解槽内の器壁や攪拌翼等に樹脂の堆積は見られなかった。さらに、分散液も流動性が良好で、以後の分離作業等も容易であった。
得られたナイロン12の微粒子の平均粒径は48μmであり、形状が不規則なものは見られなかった。
[Example 2]
Production of nylon 12 fine particles using dipropylene glycol as solvent (2)
Nylon 12 fine particles were obtained in exactly the same manner as in Example 1, except that the blade of the stirrer was changed to a propeller type and the rotation speed was changed to 1400 rpm.
Also in this case, no resin deposition was observed on the vessel wall, stirring blade, etc. in the dissolution tank. Further, the dispersion also had good fluidity, and subsequent separation work was easy.
The average particle size of the obtained nylon 12 fine particles was 48 μm, and no irregular shape was found.
[比較例1]
溶剤としてジプロピレングリコールを用いたナイロン12微粒子の製造(3)
実施例1において、溶液の放冷時の攪拌速度を300rpmと低くした以外は全く同様にして、ナイロン12微粒子を得た。しかし、その微粒子は、粒径のバラツキが大きく、かつ不規則な形状であった。また、溶解槽の液界面付近に樹脂が塊状に付着していた。
[Comparative Example 1]
Production of nylon 12 fine particles using dipropylene glycol as solvent (3)
In Example 1, nylon 12 fine particles were obtained in exactly the same manner except that the stirring speed during cooling of the solution was lowered to 300 rpm. However, the fine particles had a large variation in particle size and an irregular shape. Further, the resin adhered in the vicinity of the liquid interface of the dissolution tank.
[実施例3]
溶剤としてエチレングリコールを用いたナイロン6微粒子の製造(1)
実施例1と同一の装置を使用して、エチレングリコールにナイロン6の微粒子のペレットを10重量%混合した混合物を、同様に処理した。ただし、ナイロン6の溶解は185℃で1時間を要した。得られた溶液は1400rpmで攪拌しながら放冷した。相分離温度は130℃であった。槽内の器壁や攪拌翼等に樹脂の堆積は見られなかった。得られた分散液の処理も実施例1と同様に行いナイロン6微粒子を得た。その微粒子の平均粒径は28μmであり、形状が不規則なものはなかった。
[Example 3]
Production of nylon 6 fine particles using ethylene glycol as solvent (1)
Using the same apparatus as in Example 1, a mixture of ethylene glycol and 10% by weight of nylon 6 fine particle pellets was treated in the same manner. However, the dissolution of nylon 6 took 1 hour at 185 ° C. The resulting solution was allowed to cool with stirring at 1400 rpm. The phase separation temperature was 130 ° C. No resin accumulation was observed on the vessel wall or stirring blade in the tank. The obtained dispersion was treated in the same manner as in Example 1 to obtain nylon 6 fine particles. The average particle diameter of the fine particles was 28 μm, and there was no irregular shape.
[比較例2]
溶剤としてエチレングリコールを用いたナイロン6微粒子の製造
実施例3において、ナイロン6のエチレングリコール溶液の放冷工程における攪拌速度を500rpmとし、攪拌機としてプロペラ型を使用した以外は全く同様にしてナイロン6微粒子を得た。
しかし、この方法では溶解槽の器壁の液面付近に樹脂の堆積が見られ、得られたナイロン6微粒子は形状が不規則であった。
[Comparative Example 2]
Production of nylon 6 fine particles using ethylene glycol as a solvent Nylon 6 fine particles were produced in the same manner as in Example 3, except that the stirring speed in the cooling process of the ethylene glycol solution of nylon 6 was 500 rpm and a propeller type was used as the stirrer. Got.
However, in this method, resin deposition was observed in the vicinity of the liquid surface of the vessel wall of the dissolution tank, and the resulting nylon 6 fine particles were irregular in shape.
Claims (2)
その混合物を加熱することによってポリアミド溶液を生成し、
このポリアミド溶液を、相分離槽の槽内で器壁にポリアミドが析出しないように攪拌しながら冷却する、結晶性ポリアミド微粒子の製造方法。 Mixing a crystalline polyamide and a solvent that acts as a solvent above the phase separation temperature, and acts as a non-solvent below the phase separation temperature,
Producing a polyamide solution by heating the mixture;
A method for producing crystalline polyamide fine particles, wherein the polyamide solution is cooled in a phase separation tank while stirring so that polyamide does not precipitate on the vessel wall.
The method for producing crystalline polyamide fine particles according to claim 1, wherein the polyamide solution is allowed to cool in the vicinity of the phase separation temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007152070A JP2008303304A (en) | 2007-06-07 | 2007-06-07 | Method for producing crystalline polyamide fine particle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007152070A JP2008303304A (en) | 2007-06-07 | 2007-06-07 | Method for producing crystalline polyamide fine particle |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008303304A true JP2008303304A (en) | 2008-12-18 |
Family
ID=40232306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007152070A Pending JP2008303304A (en) | 2007-06-07 | 2007-06-07 | Method for producing crystalline polyamide fine particle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008303304A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011132680A1 (en) * | 2010-04-20 | 2011-10-27 | 宇部興産株式会社 | Polyamide microparticles, manufacturing method therefor, optical film using said polyamide microparticles, and liquid-crystal display device |
JP2014227471A (en) * | 2013-05-23 | 2014-12-08 | 宇部興産株式会社 | Method for manufacturing polyamide fine particle |
CN104385608A (en) * | 2014-09-30 | 2015-03-04 | 湖南华曙高科技有限责任公司 | Polyamide powder for laser sintering and preparation method thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5010846A (en) * | 1973-06-04 | 1975-02-04 | ||
JPS5339355A (en) * | 1976-09-24 | 1978-04-11 | Maruki Shokai | Process for producing fine powder polyamide resin |
JPS55115468A (en) * | 1979-02-21 | 1980-09-05 | Huels Chemische Werke Ag | Production of coating powder based on polyamide having at least ten aliphatic bound carbon atom per carbon amide group |
JPS61221273A (en) * | 1985-03-23 | 1986-10-01 | ヒユールス・アクチエンゲゼルシヤフト | Production of powdery coating agent based on polyamide having at least 10 aliphatic bonded carbon atoms per one carbonamide group |
JPH0467912A (en) * | 1990-07-09 | 1992-03-03 | Nippon Petrochem Co Ltd | Manufacture of spherical fine powder of thermoplastic resin |
JPH0532795A (en) * | 1991-07-30 | 1993-02-09 | Seishin Kigyo:Kk | Production of globular fine powder of amorphous nylon resin |
JPH09316206A (en) * | 1996-05-28 | 1997-12-09 | Asahi Chem Ind Co Ltd | Production of polyamide particle |
JP2006169373A (en) * | 2004-12-15 | 2006-06-29 | Metal Color:Kk | Method for producing nylon 12 spherical particle powder |
-
2007
- 2007-06-07 JP JP2007152070A patent/JP2008303304A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5010846A (en) * | 1973-06-04 | 1975-02-04 | ||
JPS5339355A (en) * | 1976-09-24 | 1978-04-11 | Maruki Shokai | Process for producing fine powder polyamide resin |
JPS55115468A (en) * | 1979-02-21 | 1980-09-05 | Huels Chemische Werke Ag | Production of coating powder based on polyamide having at least ten aliphatic bound carbon atom per carbon amide group |
JPS61221273A (en) * | 1985-03-23 | 1986-10-01 | ヒユールス・アクチエンゲゼルシヤフト | Production of powdery coating agent based on polyamide having at least 10 aliphatic bonded carbon atoms per one carbonamide group |
JPH0467912A (en) * | 1990-07-09 | 1992-03-03 | Nippon Petrochem Co Ltd | Manufacture of spherical fine powder of thermoplastic resin |
JPH0532795A (en) * | 1991-07-30 | 1993-02-09 | Seishin Kigyo:Kk | Production of globular fine powder of amorphous nylon resin |
JPH09316206A (en) * | 1996-05-28 | 1997-12-09 | Asahi Chem Ind Co Ltd | Production of polyamide particle |
JP2006169373A (en) * | 2004-12-15 | 2006-06-29 | Metal Color:Kk | Method for producing nylon 12 spherical particle powder |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011132680A1 (en) * | 2010-04-20 | 2011-10-27 | 宇部興産株式会社 | Polyamide microparticles, manufacturing method therefor, optical film using said polyamide microparticles, and liquid-crystal display device |
JP2014227471A (en) * | 2013-05-23 | 2014-12-08 | 宇部興産株式会社 | Method for manufacturing polyamide fine particle |
CN104385608A (en) * | 2014-09-30 | 2015-03-04 | 湖南华曙高科技有限责任公司 | Polyamide powder for laser sintering and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107108906B (en) | Polyamide microparticles | |
EP2352636B1 (en) | Producing an item by the selective fusion of polymer powder layers | |
JP4886991B2 (en) | Method for producing high melting point polyamide 12 powder | |
JP3601284B2 (en) | Method for producing spherical polyamide | |
Beck et al. | Spherulitic growth of calcium carbonate | |
JP2021053887A (en) | Resin powder granule for 3d printer by powder bed melt bonding method and manufacturing method thereof, and manufacturing method of three-dimensional molded product using resin powder granule | |
FR2968664A1 (en) | REALIZATION OF ARTICLE BY SELECTIVE FUSION OF POLYMER POWDER LAYERS | |
WO2006082908A1 (en) | Process for producing porous spherical polyamide particle | |
CN108355588A (en) | A method of synthesizing microballoon on super-double-hydrophobic surface | |
TWI623556B (en) | Ethylene-vinyl alcohol copolymer microparticles, and dispersion liquid and resin composition therewith, and method for producing the microparticles | |
JP2008303304A (en) | Method for producing crystalline polyamide fine particle | |
Wang et al. | Hydrothermal synthesis of ZnSe hollow micropheres | |
CN106589418A (en) | Polypropylene resin powder for selective laser sintering as well as preparation method and application thereof | |
US10287404B2 (en) | Polymer particle, manufacturing method thereof, and separator for battery comprising the same | |
JP5072897B2 (en) | Method for producing granulated powder | |
JP2008133186A (en) | Method for producing inorganic fine particles | |
Dreyer et al. | From Nanoscale Liquid Spheres to Anisotropic Crystalline Particles of Tin: Decomposition of Decamethylstannocene in Organic Solvents | |
JP2010018684A (en) | Production method of composite type microparticle | |
JP4553717B2 (en) | Method for producing nylon 12 spherical particle powder | |
CN109957120A (en) | A kind of polylactic acid micro mist, composite material and its method of the preparation of high pressure homogenization method auxiliary | |
CN118385569B (en) | Multicomponent metal nano composite powder and powder preparation process | |
JP7255755B1 (en) | Resin powder mixture, method for producing same, and method for producing three-dimensional model | |
KR100796218B1 (en) | Manufacturing method of laser sinter powders with uniform size and high bulk density | |
KR100783310B1 (en) | Laser sinter powders with uniform size and high bulk density | |
JP2010248539A (en) | Method for producing silver nanoparticle suitable for fine wiring, and powder obtained thereby and dispersion liquid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100419 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120524 |
|
A131 | Notification of reasons for refusal |
Effective date: 20120619 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Effective date: 20121030 Free format text: JAPANESE INTERMEDIATE CODE: A02 |