JP4999530B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4999530B2
JP4999530B2 JP2007113349A JP2007113349A JP4999530B2 JP 4999530 B2 JP4999530 B2 JP 4999530B2 JP 2007113349 A JP2007113349 A JP 2007113349A JP 2007113349 A JP2007113349 A JP 2007113349A JP 4999530 B2 JP4999530 B2 JP 4999530B2
Authority
JP
Japan
Prior art keywords
supercooling
refrigerant
refrigerant circuit
generation
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007113349A
Other languages
Japanese (ja)
Other versions
JP2008267729A (en
Inventor
修 大塚
嘉裕 隅田
史武 畝崎
正毅 池内
仁宏 氏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2007113349A priority Critical patent/JP4999530B2/en
Publication of JP2008267729A publication Critical patent/JP2008267729A/en
Application granted granted Critical
Publication of JP4999530B2 publication Critical patent/JP4999530B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、空気調和装置に係り、特に、凝縮液冷媒の過冷却を促進させて冷房性能の改善を行う過冷却促進のための冷媒回路構成に関するものである。   The present invention relates to an air conditioner, and more particularly, to a refrigerant circuit configuration for promoting supercooling for improving cooling performance by promoting supercooling of a condensate refrigerant.

図2は、過冷却生成冷媒回路を利用して過冷却促進を行う空気調和装置の冷媒回路構成を示す冷媒回路図であり、主冷媒回路の凝縮液冷媒の過冷却増加を過冷却生成冷媒回路を用いることによって冷却効果の改善を図っている。なお、この冷媒回路構成は、一般の空気調和装置だけでなく冷凍装置についても同様に適用することができる。   FIG. 2 is a refrigerant circuit diagram illustrating a refrigerant circuit configuration of an air conditioner that performs supercooling promotion using a supercooling generation refrigerant circuit, and an increase in supercooling of the condensate refrigerant in the main refrigerant circuit is represented by a supercooling generation refrigerant circuit. Is used to improve the cooling effect. Note that this refrigerant circuit configuration can be applied not only to a general air conditioner but also to a refrigeration apparatus.

図2の空気調和装置の冷媒回路は、本発明の背景となった冷媒回路の例であり、2つの主冷媒回路1、2と過冷却生成冷媒回路3を有するシステムにおいて、第1主冷媒回路1の第1主冷媒回路用凝縮器5出口冷媒を過冷却する過冷却生成冷媒回路3の第1過冷却生成用蒸発器6と、第2主冷媒回路2の第2主冷媒回路用凝縮器9出口冷媒を過冷却する過冷却生成冷媒回路3の第2過冷却生成用蒸発器10とを並列に接続し、各過冷却生成用蒸発器6、10の出口の過熱度をセンサー151、152で検知して各過冷却生成用膨張弁141、142の容量制御を行う。   The refrigerant circuit of the air conditioner in FIG. 2 is an example of the refrigerant circuit that is the background of the present invention. In the system having two main refrigerant circuits 1 and 2 and the supercooling generation refrigerant circuit 3, the first main refrigerant circuit is shown. 1 first main refrigerant circuit condenser 5 first subcooling generation evaporator 6 of the supercooling generation refrigerant circuit 3 for supercooling the outlet refrigerant, and second main refrigerant circuit condenser of the second main refrigerant circuit 2 9 The supercooling generation refrigerant circuit 3 for supercooling the outlet refrigerant is connected in parallel with the second supercooling generation evaporator 10, and the superheat degree at the outlet of each of the supercooling generation evaporators 6 and 10 is measured by sensors 151 and 152. And the capacity of each of the supercooling generation expansion valves 141 and 142 is controlled.

図2の2つの主冷媒回路1、2は、主冷媒回路用圧縮機4、8、主冷媒回路用凝縮器5、9と主冷媒回路用蒸発器7、11に冷媒を減圧して供給する主冷媒回路用膨張弁191、192が冷媒配管によってそれぞれの主冷媒回路ごとに直列に環状となって接続されている。   The two main refrigerant circuits 1 and 2 in FIG. 2 decompress and supply the refrigerant to the main refrigerant circuit compressors 4 and 8, the main refrigerant circuit condensers 5 and 9, and the main refrigerant circuit evaporators 7 and 11. The main refrigerant circuit expansion valves 191 and 192 are connected in a ring shape in series for each main refrigerant circuit by refrigerant piping.

また、過冷却生成冷媒回路3は、過冷却生成回路用圧縮機12、過冷却生成回路用凝縮器13、並列に接続された複数の過冷却生成用蒸発器6、10に冷媒を減圧して供給する過冷却生成用膨張弁141、142及び過冷却生成回路用開閉弁181、182が冷媒配管によって環状に接続されている。   The supercooling generation refrigerant circuit 3 decompresses the refrigerant to the supercooling generation circuit compressor 12, the supercooling generation circuit condenser 13, and the plurality of supercooling generation evaporators 6 and 10 connected in parallel. The supercooling generation expansion valves 141 and 142 and the supercooling generation circuit on-off valves 181 and 182 to be supplied are connected in an annular shape by a refrigerant pipe.

次に動作について説明する。
図2の2つの主冷媒回路1、2では、それぞれの主冷媒回路用圧縮機4、8により圧縮された高温高圧の冷媒は、主冷媒回路用凝縮器5、9に行き、ここで送風機20により送られてきた外気との熱交換で冷却され凝縮液化された後、過冷却生成冷媒回路3の過冷却生成用蒸発器6、10により過冷却用熱交換器211、212で更に熱交換で冷却されて過冷却度を増大させる。
Next, the operation will be described.
In the two main refrigerant circuits 1 and 2 of FIG. 2, the high-temperature and high-pressure refrigerant compressed by the main refrigerant circuit compressors 4 and 8 goes to the main refrigerant circuit condensers 5 and 9 where the blower 20 After being cooled and condensed into liquid by heat exchange with the outside air sent by the subcooling, the supercooling generation evaporators 6 and 10 of the supercooling generation refrigerant circuit 3 further exchange heat with the supercooling heat exchangers 211 and 212. Cooled to increase the degree of supercooling.

凝縮液化し、過冷却度が増大した冷媒は、主冷媒回路用膨張弁191、192を通って低温低圧になり、主冷媒回路用蒸発器7、11に行き冷凍効果を発揮し、蒸発し、ガスとなって主冷媒回路用圧縮機4、8に戻る運転となる。このとき冷媒は過冷却用熱交換器211、212によって過冷却度が大きくなっているため、これが無い場合に比べ、主冷媒回路用蒸発器7、11では大きな冷凍効果が得られ、性能改善が図られる。   The refrigerant that is condensed and liquefied and has an increased degree of supercooling passes through the main refrigerant circuit expansion valves 191 and 192, becomes low-temperature and low-pressure, goes to the main refrigerant circuit evaporators 7 and 11, and exhibits a refrigeration effect, evaporates, The operation returns to the main refrigerant circuit compressors 4 and 8 as gas. At this time, since the degree of supercooling of the refrigerant is increased by the supercooling heat exchangers 211 and 212, the main refrigerant circuit evaporators 7 and 11 have a large refrigeration effect and performance improvement compared to the case without this. Figured.

なお、過冷却生成冷媒回路3において過冷却生成運転が行われているときは、過冷却生成回路用開閉弁181、182を開としている。   When the supercooling generation refrigerant circuit 3 is performing supercooling generation operation, the supercooling generation circuit on-off valves 181 and 182 are opened.

この時、過冷却生成回路用圧縮機12によって圧縮され、高温高圧となった冷媒は、過冷却生成回路用凝縮器13に行き、ここで送風機20によって送られてきた外気と熱交換され、冷却されて凝縮液化する。このあと、過冷却生成用膨張弁141、142を通って低温低圧となり、過冷却生成回路用開閉弁181、182から過冷却生成用蒸発器6、10に行き、主冷媒回路1、2の過冷却用熱交換器211、212を流れる冷媒を冷却して自らは蒸発し、ガスとなって過冷却生成回路用圧縮機12へ戻る運転となる。   At this time, the refrigerant that has been compressed by the supercooling generation circuit compressor 12 and has become high temperature and high pressure goes to the supercooling generation circuit condenser 13 where heat is exchanged with the outside air sent by the blower 20 to cool the refrigerant. It is condensed and liquefied. Thereafter, the temperature becomes low temperature and low pressure through the supercooling generation expansion valves 141 and 142, the supercooling generation circuit on-off valves 181 and 182 go to the supercooling generation evaporators 6 and 10, and the main refrigerant circuits 1 and 2 are overheated. The refrigerant flowing through the cooling heat exchangers 211 and 212 is cooled and evaporated by itself to return to the supercooling generation circuit compressor 12 as a gas.

また、過冷却生成用膨張弁141、142の容量制御は、過冷却生成用蒸発器6、10の出口温度をセンサー151、152で検知して行っているが、外気条件や空調負荷条件によって最適な過冷却生成運転を行うために過冷却生成回路用開閉弁181、182を主冷媒回路のオン・オフに伴い過冷却生成冷媒回路3の各主冷媒回路1、2に対応した各過冷却生成用蒸発器6、10への冷媒供給をそれぞれオン・オフさせる機構を必要としている。   In addition, the capacity control of the supercooling generation expansion valves 141 and 142 is performed by detecting the outlet temperature of the supercooling generation evaporators 6 and 10 with the sensors 151 and 152, but it is optimal depending on the outside air condition and the air conditioning load condition. In order to perform a supercooling generation operation, the supercooling generation circuit on-off valves 181 and 182 correspond to the main refrigerant circuits 1 and 2 of the supercooling generation refrigerant circuit 3 as the main refrigerant circuit is turned on / off. A mechanism for turning on and off the refrigerant supply to the evaporators 6 and 10 is required.

この場合の空気調和装置では、主冷媒回路1、2は2回路であるため、過冷却生成冷媒回路3の過冷却生成用蒸発器6、10の2つが並列に接続されているが、主冷媒回路が更に多くなると、過冷却生成用蒸発器と同じ数量の過冷却生成用膨張弁及び過冷却生成回路用開閉弁が必要となり、空調運転制御が複雑になり、コストが高くなるとともに機器寸法も大きくなってくる。   In the air conditioner in this case, since the main refrigerant circuits 1 and 2 are two circuits, two of the supercooling generation evaporators 6 and 10 of the supercooling generation refrigerant circuit 3 are connected in parallel. As the number of circuits increases, the same number of supercooling generation expansion valves and supercooling generation circuit opening / closing valves as the number of supercooling generation evaporators are required, which complicates air-conditioning operation control, increases costs, and increases the equipment dimensions. It gets bigger.

前述した空気調和装置では、主冷媒回路の空調性能を改善させる効果はあるが、主冷媒回路が複数必要な場合には、主冷媒回路と同じ数量の過冷却生成用膨張弁及び過冷却生成回路用開閉弁が必要となり、更に空調運転制御が複雑になり、コストが高いため生産性やコンパクト性が十分でないといった課題があった。   In the air conditioner described above, there is an effect of improving the air conditioning performance of the main refrigerant circuit, but when a plurality of main refrigerant circuits are required, the same number of supercooling expansion expansion valves and supercooling generation circuits as the main refrigerant circuit are required. On-off valves are required, and air-conditioning operation control becomes more complicated, and the cost is high, so that productivity and compactness are not sufficient.

本発明は、このような課題を解決するためになされたものであり、主冷媒回路が複数必要な場合であっても、主冷媒回路と同じ数量の過冷却生成用膨張弁及び過冷却生成回路用開閉弁を必要とせずに、空調運転が簡単で、且つコンパクトで生産性の良い空気調和装置を提供することを目的とする。   The present invention has been made to solve such a problem, and even when a plurality of main refrigerant circuits are required, the same number of supercooling expansion expansion valves and supercooling generation circuits as the main refrigerant circuits are provided. It is an object of the present invention to provide an air conditioner that is simple in air-conditioning operation, compact, and has good productivity without requiring an on-off valve.

本発明に係る空気調和装置は、少なくとも圧縮機、凝縮器、過冷却熱交換器、主膨張弁及び蒸発器がそれぞれ環状に接続されて構成される複数の主冷媒回路と、前記複数の過冷却熱交換器をそれぞれ冷却するための複数の過冷却生成用蒸発器、過冷却生成回路用圧縮機、過冷却生成回路用凝縮器及び過冷却生成用膨張弁を備えた過冷却生成冷媒回路とを有する空気調和装置において、前記複数の主冷媒回路の各蒸発器に対応して設けられ、当該蒸発器から冷熱を取り出す複数の主冷媒回路用熱交換器を備え、前記複数の主冷媒回路用熱交換器は配管を介して直列に接続されて冷水を直列に通水し、前記複数の過冷却生成用蒸発器直列に接続され、最終段の過冷却生成用蒸発器出口の冷媒の過熱度により過冷却生成用膨張弁の容量制御を行なうものである。
また、本発明に係る空気調和装置は、前記複数の主冷媒回路の各過冷却熱交換器から蒸発器へ流れる冷媒の方向と、前記過冷却生成冷媒回路の過冷却生成用蒸発器から過冷却生成回路用圧縮機へ流れる冷媒の方向とを同じ方向とする。
An air conditioner according to the present invention includes a plurality of main refrigerant circuits configured such that at least a compressor, a condenser, a supercooling heat exchanger, a main expansion valve, and an evaporator are connected in an annular shape, and the plurality of supercooling circuits. A plurality of supercooling generation evaporators for cooling each of the heat exchangers, a supercooling generation circuit compressor, a supercooling generation circuit condenser, and a supercooling generation refrigerant circuit including an expansion valve for supercooling generation The air conditioner has a plurality of main refrigerant circuit heat exchangers provided corresponding to each of the evaporators of the plurality of main refrigerant circuits, and including a plurality of main refrigerant circuit heat exchangers that extract cold heat from the evaporators. exchanger is passed through the cold water in series are connected in series through a pipe, the plurality of supercooling generating evaporator are connected in series, the last stage of the supercooling generating evaporator superheat of the refrigerant at the outlet To control the capacity of the expansion valve for generating the supercooling. It is intended.
Further, the air conditioner according to the present invention includes a supercooling direction from a supercooling heat exchanger of each of the plurality of main refrigerant circuits to the evaporator, and a supercooling generation evaporator of the supercooling generation refrigerant circuit. The direction of the refrigerant flowing to the generator circuit compressor is the same direction.

本発明においては、複数の主冷媒回路を有する各凝縮器出口の液冷媒を本体と別回路で過冷却を増大させ、高効率化する過冷却生成冷媒回路をもつ空気調和装置において、複数の過冷却生成用蒸発器を直列に接続し、最終段の過冷却生成用蒸発器出口の冷媒の過熱度により過冷却生成用膨張弁の容量制御を行うようにしており、複数の主冷媒回路の内、運転停止する主冷媒回路が発生しても、これに対応する過冷却生成用蒸発器では過冷却生成冷媒回路の冷媒は通過するのみであり、また、過冷却生成回路用開閉弁が不要で過冷却生成用膨張弁は1台で構成可能となるため、空調運転制御が簡単で、且つコンパクトで生産性の良い空気調和装置とすることができる。
また、本発明においては、複数の主冷媒回路用熱交換器が配管を介して直列に接続されて冷水を直列に通水し、冷水温度に応じ主冷媒回路の各蒸発器の蒸発温度を上昇させ、効率良く熱交換させることができ、それぞれの主冷媒回路用熱交換器の熱交換をまとめて制御する制御器も1台の構成で可能であるため、コンパクトな空気調和装置とすることができる。
また、本発明においては、複数の主冷媒回路において、各過冷却熱交換器から蒸発器へ流れる冷媒の方向と、過冷却生成冷媒回路において過冷却生成用蒸発器から過冷却生成回路用圧縮機へ流れる冷媒の方向とを同じ方向とすることにより過冷却生成用蒸発器に流れる冷媒を効率良く蒸発させ、主冷媒回路の過冷却用熱交換器においてそこに流れる冷媒を更に冷却することで、過冷却度を増大させることができる。
According to the present invention, in an air conditioner having a supercooling generation refrigerant circuit that increases the supercooling of the liquid refrigerant at the outlet of each condenser having a plurality of main refrigerant circuits in a circuit separate from the main body and increases the efficiency, The cooling generator evaporators are connected in series, and the capacity of the expansion valve for supercooling generation is controlled by the degree of superheat of the refrigerant at the outlet of the final stage supercooling generator evaporator. Even if a main refrigerant circuit that stops operation is generated, the refrigerant for the supercooling generation refrigerant circuit only passes through the corresponding supercooling generation evaporator, and the on / off valve for the supercooling generation circuit is not required. Since the supercooling generation expansion valve can be configured as a single unit, air conditioning operation control is simple, and a compact and highly productive air conditioner can be obtained.
In the present invention, and passed through cold water in series heat exchangers for a plurality of main refrigerant circuit are connected in series through a pipe, the evaporation temperature of the evaporator of the main refrigerant circuit in accordance with the cold water temperature raised, it can be efficiently heat exchanger, since it is possible in even a single configuration controller for controlling collectively heat exchange in each of the heat exchanger main refrigerant circuit, a compact air conditioner be able to.
Further, in the present invention, in the plurality of main refrigerant circuits, the direction of the refrigerant flowing from each supercooling heat exchanger to the evaporator, and in the supercooling generation refrigerant circuit, from the supercooling generation evaporator to the supercooling generation circuit compressor By making the direction of the refrigerant flowing to the same direction efficiently evaporate the refrigerant flowing to the supercooling generation evaporator, and further cooling the refrigerant flowing there in the supercooling heat exchanger of the main refrigerant circuit, The degree of supercooling can be increased.

図1は本発明の一実施の形態に係る空気調和装置の冷媒回路構成の冷媒回路図である。ここでは基本的なシステム構成を示しており、2つの主冷媒回路で構成される例が示されている。   FIG. 1 is a refrigerant circuit diagram of a refrigerant circuit configuration of an air conditioner according to an embodiment of the present invention. Here, a basic system configuration is shown, and an example composed of two main refrigerant circuits is shown.

本実施の形態に係る空気調和装置の冷媒回路構成は、2つの主冷媒回路1、2と過冷却生成冷媒回路3を有するシステムから構成されており、第1主冷媒回路1の第1主冷媒回路用凝縮器5出口冷媒を過冷却する過冷却生成冷媒回路3の第1過冷却生成用蒸発器6と、第2主冷媒回路2の第2主冷媒回路用凝縮器9出口冷媒を過冷却する過冷却生成冷媒回路3の第2過冷却生成用蒸発器10とを直列に接続し、第2過冷却生成用蒸発器10出口の冷媒の過熱度をセンサー15で検知して過冷却生成用膨張弁14の容量制御を行う。なお、この過冷却生成用膨張弁14の制御を含めて各部の制御は図示しない制御装置(例えばマイコンにより構成される)によってなされる。   The refrigerant circuit configuration of the air conditioner according to the present embodiment is composed of a system having two main refrigerant circuits 1 and 2 and a supercooling generation refrigerant circuit 3, and the first main refrigerant of the first main refrigerant circuit 1. The first subcooling generating evaporator 6 of the subcooling generating refrigerant circuit 3 that supercools the refrigerant at the outlet of the circuit condenser 5 and the refrigerant of the second main refrigerant circuit condenser 9 outlet of the second main refrigerant circuit 2 are supercooled. The second supercooling generation evaporator 10 of the supercooling generation refrigerant circuit 3 to be connected is connected in series, and the degree of superheat of the refrigerant at the outlet of the second supercooling generation evaporator 10 is detected by the sensor 15 to generate supercooling. The capacity of the expansion valve 14 is controlled. In addition, control of each part including control of this expansion valve 14 for supercooling production | generation is made | formed by the control apparatus (for example, comprised with a microcomputer) which is not shown in figure.

本実施の形態の2つの主冷媒回路1、2は、アキュムレータ4a、8a、主冷媒回路用圧縮機4、8、四方切替弁16、17(ここでは冷却側に切り替えられている)、主冷媒回路用凝縮器5、9、主冷媒回路用蒸発器7、11に冷媒を減圧して供給する主冷媒回路用膨張弁191、192が、冷媒配管によってそれぞれの主冷媒回路1、2ごとに直列に環状となって接続されている。   The two main refrigerant circuits 1 and 2 of this embodiment include accumulators 4a and 8a, main refrigerant circuit compressors 4 and 8, four-way switching valves 16 and 17 (here, switched to the cooling side), main refrigerant The main refrigerant circuit expansion valves 191 and 192 for supplying the refrigerant to the circuit condensers 5 and 9 and the main refrigerant circuit evaporators 7 and 11 by decompressing the refrigerant are serially connected to each main refrigerant circuit 1 and 2 by a refrigerant pipe. Are connected in a ring.

過冷却生成冷媒回路3は、過冷却生成回路用圧縮機12、過冷却生成回路用凝縮器13と、直列に接続された過冷却生成用蒸発器6、及び過冷却生成用蒸発器10に冷媒を減圧して供給する過冷却生成用膨張弁14が冷媒配管によって全て直列に環状に接続されている。   The supercooling generation refrigerant circuit 3 includes a supercooling generation circuit compressor 12, a supercooling generation circuit condenser 13, a supercooling generation evaporator 6 connected in series, and a supercooling generation evaporator 10. All of the expansion valves 14 for generating supercooling supplied under reduced pressure are connected in series with a refrigerant pipe.

次に動作について説明する。
本実施の形態の2つの主冷媒回路1、2では、それぞれの主冷媒回路用圧縮機4、8により圧縮された高温高圧の冷媒は主冷媒回路用凝縮器5、9に行き、ここで送風機20により送られてきた外気との熱交換で冷却され凝縮液化したあと、過冷却生成冷媒回路3の過冷却生成用蒸発器6、10により過冷却用熱交換器211、212で更に熱交換で冷却されて過冷却度を増大させる。
Next, the operation will be described.
In the two main refrigerant circuits 1 and 2 of the present embodiment, the high-temperature and high-pressure refrigerant compressed by the main refrigerant circuit compressors 4 and 8 goes to the main refrigerant circuit condensers 5 and 9, where the blower After being cooled and condensed into liquid by heat exchange with the outside air sent by 20, further heat exchange is performed by the supercooling heat exchangers 211 and 212 by the supercooling production evaporators 6 and 10 of the supercooling production refrigerant circuit 3. Cooled to increase the degree of supercooling.

凝縮液化し、過冷却度が増大した主冷媒回路1、2の冷媒は、主冷媒回路用膨張弁191、192を通って低温低圧状態になり、主冷媒回路用蒸発器7、11に行き冷凍効果を発揮し、蒸発し、ガスとなってアキュムレータ4a、8aを介して主冷媒回路用圧縮機4、8に戻る運転となる。このとき、冷媒は過冷却用熱交換器211、212によって過冷却度が大きくなっているため、これが無い場合に比べ、主冷媒回路用蒸発器7、11では大きな冷凍効果が得られ、性能改善が図られる。   The refrigerants in the main refrigerant circuits 1 and 2 that have been condensed and liquefied and have increased the degree of supercooling pass through the main refrigerant circuit expansion valves 191 and 192, enter a low-temperature and low-pressure state, go to the main refrigerant circuit evaporators 7 and 11 and are frozen. The operation becomes effective, evaporates, becomes gas, and returns to the main refrigerant circuit compressors 4 and 8 via the accumulators 4a and 8a. At this time, since the degree of supercooling of the refrigerant is increased by the supercooling heat exchangers 211 and 212, the main refrigerant circuit evaporators 7 and 11 can obtain a large refrigeration effect and improve performance compared to the case without this. Is planned.

過冷却生成冷媒回路3において過冷却生成運転が行われているときは、過冷却生成用膨張弁14で冷媒流量を制御している。この時、過冷却生成回路用圧縮機12によって圧縮され、高温高圧となった冷媒は、過冷却生成回路用凝縮器13に行き、ここで送風機20によって送られてきた外気と熱交換され、冷却されて凝縮液化する。   When the supercooling generation refrigerant circuit 3 is performing supercooling generation operation, the supercooling generation expansion valve 14 controls the refrigerant flow rate. At this time, the refrigerant that has been compressed by the supercooling generation circuit compressor 12 and has become high temperature and high pressure goes to the supercooling generation circuit condenser 13 where heat is exchanged with the outside air sent by the blower 20 to cool the refrigerant. It is condensed and liquefied.

このあと、冷媒は過冷却生成用膨張弁14を通って低温低圧状態となり、直列に接続された過冷却生成用蒸発器6及び過冷却生成用蒸発器10に行き、主冷媒回路1、2の過冷却用熱交換器211、212を流れる冷媒を冷却して自らは蒸発し、ガスとなって過冷却生成回路用圧縮機12へ戻る運転となる。   Thereafter, the refrigerant passes through the supercooling generation expansion valve 14 to be in a low temperature and low pressure state, and goes to the supercooling generation evaporator 6 and the supercooling generation evaporator 10 connected in series. The refrigerant flowing through the supercooling heat exchangers 211 and 212 is cooled and evaporated by itself to return to the supercooling generation circuit compressor 12 as a gas.

また、過冷却生成用膨張弁14を流れる冷媒の流量制御は、過冷却生成用蒸発器10の出口温度をセンサー15で検知して行っている。   The flow rate control of the refrigerant flowing through the supercooling generation expansion valve 14 is performed by detecting the outlet temperature of the supercooling generation evaporator 10 with the sensor 15.

これら運転中に、例えば第2主冷媒回路2の負荷が小さくなり、この主冷媒回路2を流れる冷媒流量が減少したり、或いはこれを停止したりするときには、第2主冷媒回路用蒸発器11を流れる冷媒流量も減少したり、或いは停止する。このとき、過冷却生成冷媒回路3の第2過冷却生成用蒸発器10では、第2過冷却用熱交換器212との熱交換量が小さくなるか、或いは熱交換しない状態となって、第2過冷却生成用蒸発器10の出口での冷媒は液状態となるが、この第2過冷却生成用蒸発器10の出口に取り付けられたセンサー15によって液状態であることを検知し、過冷却生成用膨張弁14を絞って、このような運転状態に対して適切な冷媒流量にする制御が行われる。   During these operations, for example, when the load on the second main refrigerant circuit 2 is reduced and the flow rate of the refrigerant flowing through the main refrigerant circuit 2 is reduced or stopped, the second main refrigerant circuit evaporator 11 is used. The flow rate of the refrigerant flowing through is also reduced or stopped. At this time, in the second subcooling generation evaporator 10 of the subcooling generation refrigerant circuit 3, the amount of heat exchange with the second subcooling heat exchanger 212 is reduced or no heat exchange occurs, 2 The refrigerant at the outlet of the supercooling generation evaporator 10 is in a liquid state. However, the sensor 15 attached to the outlet of the second supercooling generation evaporator 10 detects that the refrigerant is in the liquid state, and the supercooling is performed. The production expansion valve 14 is throttled to control the refrigerant flow rate to be appropriate for such an operation state.

なお、冷熱を取り出す第1主冷媒回路用熱交換器221と第2主冷媒回路用熱交換器222の両者に対して上記の図2の例では、冷水は並列に流れる構成となっているが、これを負荷側から戻ってくる冷水をまず第1主冷媒回路用熱交換器221に導入し、その後、第2主冷媒回路用熱交換器222に流す直列の構成としてもよい。このように直列に水を流す構成とすることによって、図2のように並列に水を流す場合に比べて、第1主冷媒回路用熱交換器221を流れる水の温度は高くなり、このため第1主冷媒回路用熱交換器221の冷媒蒸発温度も図2の場合より高くなって第1主冷媒回路1における効率の改善が図られる。   In the example of FIG. 2 described above, cold water flows in parallel with respect to both the first main refrigerant circuit heat exchanger 221 and the second main refrigerant circuit heat exchanger 222 that extract cold heat. Alternatively, it is possible to adopt a series configuration in which cold water returning from the load side is first introduced into the first main refrigerant circuit heat exchanger 221 and then flowed to the second main refrigerant circuit heat exchanger 222. By adopting such a configuration that allows water to flow in series, the temperature of the water flowing through the first main refrigerant circuit heat exchanger 221 is higher than that in the case of flowing water in parallel as shown in FIG. The refrigerant evaporating temperature of the first main refrigerant circuit heat exchanger 221 is also higher than in the case of FIG. 2, and the efficiency in the first main refrigerant circuit 1 is improved.

また、各主冷媒回路1、2において、各過冷却用熱交換器211、212へ流れる冷媒の方向と、過冷却生成冷媒回路3において直列に接続された各過冷却生成用蒸発器6、10へ流れる冷媒の方向とを同じ方向とする構成としてもよい。   Further, in each main refrigerant circuit 1, 2, the direction of the refrigerant flowing to each supercooling heat exchanger 211, 212 and each supercooling generation evaporator 6, 10 connected in series in the supercooling generation refrigerant circuit 3. It is good also as a structure which makes the direction of the refrigerant | coolant which flows into the same direction.

このように各過冷却生成用蒸発器6、10においては、蒸発中の圧力損失による冷媒の温度降下も考慮した蒸発器となるため、過冷却生成冷媒回路3において効率よく運転させることができる。   In this way, each of the supercooling generation evaporators 6 and 10 is an evaporator that takes into account the temperature drop of the refrigerant due to pressure loss during evaporation, and therefore can be operated efficiently in the supercooling generation refrigerant circuit 3.

以上のように本実施の形態では、複数の主冷媒回路を有するシステムに対して、主冷媒回路1、2のオン・オフに伴い過冷却生成冷媒回路3の各主冷媒回路1、2に対応した各過冷却生成用蒸発器6、7への冷媒供給をオン・オフさせる機構を必要とすることなく安定した運転を実現できる。   As described above, in the present embodiment, for a system having a plurality of main refrigerant circuits, the main refrigerant circuits 1 and 2 of the supercooling generation refrigerant circuit 3 correspond to the on / off of the main refrigerant circuits 1 and 2. Thus, stable operation can be realized without requiring a mechanism for turning on / off the refrigerant supply to each of the supercooling generation evaporators 6, 7.

また、図2の冷媒回路のように過冷却生成用蒸発器6、7と同じ数量の過冷却生成用膨張弁(141、142)及び過冷却生成回路用開閉弁(181、182)が必要となる空気調和装置に比べ、本実施の形態においては、空調運転制御が簡素になり、コストも抑制できるとともに機器寸法もコンパクトにできる。   Further, as in the refrigerant circuit of FIG. 2, the same number of supercooling generation expansion valves (141, 142) and supercooling generation circuit opening / closing valves (181, 182) as the supercooling generation evaporators 6, 7 are required. Compared to the air conditioner, the air conditioning operation control is simplified in the present embodiment, the cost can be suppressed, and the equipment dimensions can be made compact.

なお、主冷媒回路1、2の主冷媒回路用蒸発器7、11は、冷媒対水熱交換器あるいは冷媒対空気熱交換器でもよく、主冷媒回路1、2は図示の回路に限定されることなく油分離器、受液器、ドライアやストレーナなど他のものを設置してもよいことは言うまでもない。   The main refrigerant circuit evaporators 7 and 11 of the main refrigerant circuits 1 and 2 may be refrigerant-to-water heat exchangers or refrigerant-to-air heat exchangers, and the main refrigerant circuits 1 and 2 are limited to the illustrated circuits. Needless to say, other devices such as an oil separator, a liquid receiver, a dryer, and a strainer may be installed.

また、過冷却生成冷媒回路3においても図示の回路に限定されることなく油分離器、受液器、ドライアやストレーナなど他のものを設置してもよいことは言うまでもない。   In addition, the supercooling generation refrigerant circuit 3 is not limited to the illustrated circuit, and it is needless to say that other components such as an oil separator, a liquid receiver, a dryer, and a strainer may be installed.

また、図1の例では主冷媒回路を2つ、過冷却生成用蒸発器を2つ設置した例を図示しているが、これに限定されることなく、それぞれの必要とする主冷媒回路及び過冷却生成冷媒回路に応じて、過冷却生成用蒸発器の数を変えてもよいことは言うまでもない。   In addition, in the example of FIG. 1, an example in which two main refrigerant circuits and two supercooling generation evaporators are installed is illustrated, but the present invention is not limited thereto, It goes without saying that the number of supercooling generating evaporators may be changed according to the supercooling generating refrigerant circuit.

本発明の一実施形態に係る空気調和装置の冷媒回路構成を示す冷媒回路図である。It is a refrigerant circuit figure which shows the refrigerant circuit structure of the air conditioning apparatus which concerns on one Embodiment of this invention. 本発明の背景となった空気調和装置の冷媒回路構成を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the refrigerant circuit structure of the air conditioning apparatus used as the background of this invention.

符号の説明Explanation of symbols

1:第1主冷媒回路、2:第2主冷媒回路、3:過冷却生成冷媒回路、4:第1主冷媒回路用圧縮機、5:第1主冷媒回路用凝縮器、6:第1過冷却生成用蒸発器、7:第1主冷媒回路用蒸発器、8:第2主冷媒回路用圧縮機、9:第2主冷媒回路用凝縮器、10:第2過冷却生成用蒸発器、11:第2主冷媒回路用蒸発器、12:過冷却生成回路用圧縮機、13:過冷却生成回路用凝縮器、14:過冷却生成用膨張弁、141:第1過冷却生成用膨張弁、142:第2過冷却生成用膨張弁、151、152:センサー、16:第1主冷媒回路用四方切替弁、17:第2主冷媒回路用四方切替弁、181:第1過冷却生成回路用開閉弁、182:第2過冷却生成回路用開閉弁、191:第1主冷媒回路用膨張弁、192:第2主冷媒回路用膨張弁、20:送風機、211:第1過冷却用熱交換器、212:第2過冷却用熱交換器、221:第1主冷媒回路用熱交換器、222:第2主冷媒回路用熱交換器。   1: first main refrigerant circuit, 2: second main refrigerant circuit, 3: supercooling generation refrigerant circuit, 4: compressor for first main refrigerant circuit, 5: condenser for first main refrigerant circuit, 6: first Supercooling generator evaporator, 7: First main refrigerant circuit evaporator, 8: Second main refrigerant circuit compressor, 9: Second main refrigerant circuit condenser, 10: Second subcooling generator evaporator 11: evaporator for second main refrigerant circuit, 12: compressor for supercooling generation circuit, 13: condenser for supercooling generation circuit, 14: expansion valve for supercooling generation, 141: expansion for first supercooling generation Valve, 142: second supercooling generation expansion valve, 151, 152: sensor, 16: first main refrigerant circuit four-way switching valve, 17: second main refrigerant circuit four-way switching valve, 181: first subcooling generation On-off valve for circuit, 182: On-off valve for second subcooling generation circuit, 191: Expansion valve for first main refrigerant circuit, 192: Expansion for second main refrigerant circuit Valve: 20: Blower, 211: First heat exchanger for subcooling, 212: Heat exchanger for second subcooling, 221: Heat exchanger for first main refrigerant circuit, 222: Heat exchange for second main refrigerant circuit vessel.

Claims (2)

少なくとも圧縮機、凝縮器、過冷却熱交換器、主膨張弁及び蒸発器がそれぞれ環状に接続されて構成される複数の主冷媒回路と、
前記複数の過冷却熱交換器をそれぞれ冷却するための複数の過冷却生成用蒸発器、過冷却生成回路用圧縮機、過冷却生成回路用凝縮器及び過冷却生成用膨張弁を備えた過冷却生成冷媒回路と
を有する空気調和装置において、
前記複数の主冷媒回路の各蒸発器に対応して設けられ、当該蒸発器から冷熱を取り出す複数の主冷媒回路用熱交換器を備え、
前記複数の主冷媒回路用熱交換器は配管を介して直列に接続されて冷水を直列に通水し、
前記複数の過冷却生成用蒸発器直列に接続され
最終段の過冷却生成用蒸発器出口の冷媒の過熱度により過冷却生成用膨張弁の容量制御を行なうことを特徴とする空気調和装置。
A plurality of main refrigerant circuits configured such that at least a compressor, a condenser, a supercooling heat exchanger, a main expansion valve, and an evaporator are connected in a ring shape;
Subcooling provided with a plurality of supercooling generation evaporators, a supercooling generation circuit compressor, a supercooling generation circuit condenser, and a supercooling generation expansion valve for cooling each of the plurality of subcooling heat exchangers In an air conditioner having a generated refrigerant circuit,
Provided corresponding to each evaporator of the plurality of main refrigerant circuits, comprising a plurality of main refrigerant circuit heat exchangers for taking out cold heat from the evaporator,
The plurality of main refrigerant circuit heat exchangers are connected in series via a pipe to pass cold water in series,
Wherein the plurality of supercooling generating evaporator are connected in series,
An air conditioner that controls the capacity of an expansion valve for supercooling generation according to the degree of superheat of the refrigerant at the outlet of the final stage supercooling generation evaporator.
前記複数の主冷媒回路の各過冷却熱交換器から蒸発器へ流れる冷媒の方向と、前記過冷却生成冷媒回路の過冷却生成用蒸発器から過冷却生成回路用圧縮機へ流れる冷媒の方向とを同じ方向とすることを特徴とする請求項記載の空気調和装置。 The direction of the refrigerant flowing from each supercooling heat exchanger of the plurality of main refrigerant circuits to the evaporator, and the direction of the refrigerant flowing from the supercooling generation evaporator of the supercooling generation refrigerant circuit to the supercooling generation circuit compressor The air conditioner according to claim 1 , wherein the air conditioners are in the same direction.
JP2007113349A 2007-04-23 2007-04-23 Air conditioner Active JP4999530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007113349A JP4999530B2 (en) 2007-04-23 2007-04-23 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007113349A JP4999530B2 (en) 2007-04-23 2007-04-23 Air conditioner

Publications (2)

Publication Number Publication Date
JP2008267729A JP2008267729A (en) 2008-11-06
JP4999530B2 true JP4999530B2 (en) 2012-08-15

Family

ID=40047463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007113349A Active JP4999530B2 (en) 2007-04-23 2007-04-23 Air conditioner

Country Status (1)

Country Link
JP (1) JP4999530B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY188565A (en) * 2009-07-28 2021-12-22 Toshiba Carrier Corp Heat source unit
KR101910658B1 (en) * 2011-07-18 2018-10-23 삼성전자주식회사 Multi type air conditioner
JP5931412B2 (en) * 2011-11-22 2016-06-08 三菱重工業株式会社 Heat pump system
WO2014185525A1 (en) * 2013-05-16 2014-11-20 国立大学法人佐賀大学 Energy conversion system
JP6372778B2 (en) * 2014-05-14 2018-08-15 パナソニックIpマネジメント株式会社 Refrigeration equipment
WO2021106084A1 (en) * 2019-11-26 2021-06-03 三菱電機株式会社 Refrigeration cycle device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949850U (en) * 1982-09-24 1984-04-02 富士電機株式会社 Air-cooled refrigeration equipment with supercooler
JPS59175963U (en) * 1983-05-11 1984-11-24 三洋電機株式会社 Refrigeration equipment
JPS63279061A (en) * 1987-05-12 1988-11-16 ダイキン工業株式会社 Air conditioner
JP3394379B2 (en) * 1996-01-18 2003-04-07 松下エコシステムズ株式会社 Heat exchange unit and multi-room air conditioner
JP2005233559A (en) * 2004-02-20 2005-09-02 Mitsubishi Heavy Ind Ltd Air conditioning/refrigerating/freezing equipment and its operation method

Also Published As

Publication number Publication date
JP2008267729A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
CN107709900B (en) Refrigeration cycle device
WO2012066763A1 (en) Freezer
JP5595245B2 (en) Refrigeration equipment
EP2223021B1 (en) Refrigerating system and method for refrigerating
JP2006112753A (en) Refrigerating air conditioner
WO2007110908A9 (en) Refrigeration air conditioning device
JP2008128565A (en) Air conditioner
WO2008032645A1 (en) Refrigeration device
CN110337570B (en) Air conditioner
KR101176571B1 (en) Hot water generating system using 2 step heat pump cycles
WO2007102463A1 (en) Refrigeration device
JP4999530B2 (en) Air conditioner
JP2008134031A (en) Refrigerating device using zeotropic refrigerant mixture
WO2008032578A1 (en) Refrigeration device
WO2015063846A1 (en) Air conditioning device
JP4273493B2 (en) Refrigeration air conditioner
JPWO2015140994A1 (en) Heat source side unit and air conditioner
JP2006220351A (en) Freezer
JP2012042177A (en) Heat pump type hot water generator
WO2006018746A1 (en) A cooling device
JP4999531B2 (en) Air conditioner
JP2008292122A (en) Heat storage system and heat storage type air conditioner using same
JP2020046157A (en) Refrigeration device
JP2006003023A (en) Refrigerating unit
JP6042037B2 (en) Refrigeration cycle equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120515

R150 Certificate of patent or registration of utility model

Ref document number: 4999530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250