JP4999096B2 - Thermoplastic resin foam - Google Patents

Thermoplastic resin foam Download PDF

Info

Publication number
JP4999096B2
JP4999096B2 JP2007295338A JP2007295338A JP4999096B2 JP 4999096 B2 JP4999096 B2 JP 4999096B2 JP 2007295338 A JP2007295338 A JP 2007295338A JP 2007295338 A JP2007295338 A JP 2007295338A JP 4999096 B2 JP4999096 B2 JP 4999096B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
foam
resin
particles
extruder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007295338A
Other languages
Japanese (ja)
Other versions
JP2009120694A (en
Inventor
康次郎 稲森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2007295338A priority Critical patent/JP4999096B2/en
Publication of JP2009120694A publication Critical patent/JP2009120694A/en
Application granted granted Critical
Publication of JP4999096B2 publication Critical patent/JP4999096B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は、熱可塑性樹脂組成物を押出発泡することによって得られる気泡が微細な発泡体に関する。   The present invention relates to a foam having fine bubbles obtained by extrusion foaming a thermoplastic resin composition.

樹脂発泡体の気泡を微細にすると、比強度、断熱性、光反射性の向上など、さまざまな利点が得られるため、気泡を微細化するためのさまざまな研究がなされてきた。気泡を微細化する代表的な方法にバッチ法がある。バッチ法は、特許文献1に示されるように、オートクレーブ中で樹脂にガスを含浸させてから所定の温度に加熱することによって発泡させる方法である。樹脂のガラス転移点以上、融点以下の温度で発泡させるので、樹脂中に結晶が残っており、この結晶が気泡の成長を阻害するため気泡が微細になると考えられている。ただし、オートクレーブで樹脂にガスを含浸させるのに時間がかかるうえ、非連続プロセスなので製造の効率が低いという問題があった。   When the bubbles of the resin foam are made fine, various advantages such as improvement in specific strength, heat insulation, and light reflectivity can be obtained. Therefore, various studies have been made to make the bubbles fine. There is a batch method as a typical method for refining bubbles. As shown in Patent Document 1, the batch method is a method in which a resin is impregnated with a gas in an autoclave and then foamed by heating to a predetermined temperature. Since foaming is performed at a temperature not lower than the glass transition point and not higher than the melting point of the resin, crystals remain in the resin, and it is considered that the bubbles become fine because the crystals inhibit the growth of the bubbles. However, there are problems that it takes time to impregnate the resin with gas in an autoclave and that the production efficiency is low because it is a discontinuous process.

一方、押出発泡法は発泡体を連続的に製造できる効率のよい方法である。しかし、樹脂を溶融状態、すなわち結晶がない状態で発泡させるため、気泡を微細にすることは困難であった。そこで、押出発泡法で気泡を微細にするさまざまな検討がなされてきた(例えば、特許文献2〜6参照)。   On the other hand, the extrusion foaming method is an efficient method capable of continuously producing a foam. However, since the resin is foamed in a molten state, that is, without crystals, it is difficult to make the bubbles fine. Therefore, various studies have been made to make the bubbles fine by the extrusion foaming method (see, for example, Patent Documents 2 to 6).

特開平4−356540号公報(第0005項)JP-A-4-356540 (Section 0005) 特開平10−000675号公報(請求項1)JP 10-000675 A (Claim 1) 特開平12−264993号公報(請求項1)JP-A-12-264993 (Claim 1) 特開平13−150520号公報(第0007項)Japanese Patent Laid-Open No. 13-150520 (No. 0007) 特開平14−501443号公報(請求項1、実施例15)Japanese Patent Laid-Open No. 14-501443 (Claim 1, Example 15) 特開2006−102959号公報(第0014項)Japanese Patent Laying-Open No. 2006-102959 (Section 0014)

特許文献2では、ダイの出口直後に加圧室を設けることで気泡の成長を抑制し、気泡を微細にする方法が開示されている。実施例では、低密度ポリエチレンを二酸化炭素で発泡させることにより、気泡径60〜90μmの発泡体を得ている。しかし、特許文献2の技術では、特殊な構造の加圧室を設計、製作することが必要であるため、コストが上昇するという問題があった。   Patent Document 2 discloses a method of suppressing the growth of bubbles by providing a pressurizing chamber immediately after the exit of the die and making the bubbles fine. In the examples, a foam having a cell diameter of 60 to 90 μm is obtained by foaming low density polyethylene with carbon dioxide. However, the technique of Patent Document 2 has a problem that the cost increases because it is necessary to design and manufacture a pressurizing chamber having a special structure.

特許文献3では、化学発泡剤にクエン酸塩とリチウム化合物を加えることで気泡が微細になることが開示されている。しかし、特許文献2の技術では、発泡剤の成分が複雑であるため、発泡剤のコストが上昇するという問題があった。   Patent Document 3 discloses that bubbles are made fine by adding citrate and a lithium compound to a chemical foaming agent. However, the technique of Patent Document 2 has a problem that the cost of the foaming agent increases because the components of the foaming agent are complex.

特許文献4では、押出発泡の際にシリンダーを通過する樹脂の速度が2m/s以下であれば微細な気泡が得られることが開示されている。実施例では、ポリスチレンを二酸化炭素で発泡させることにより、気泡径0.3〜17.8μmの発泡体を得ている。しかし、0035項を見れば、押出成形の完成には超音波等の外的刺激が必須なので、設備費がかかる。また、樹脂として気泡を微細化しやすいポリスチレンのみを用いているが、本技術をポリオレフィンのような微細化しにくい樹脂に適用可能かどうかは不明であった。   Patent Document 4 discloses that fine bubbles can be obtained if the speed of the resin passing through the cylinder during extrusion foaming is 2 m / s or less. In the examples, polystyrene is foamed with carbon dioxide to obtain a foam having a bubble diameter of 0.3 to 17.8 μm. However, according to item 0035, an external stimulus such as an ultrasonic wave is essential for completion of extrusion molding, so that equipment costs are required. Moreover, although only the polystyrene which is easy to refine | miniaturize a bubble is used as resin, it was unclear whether this technique is applicable to resin which is hard to refine | miniaturize like polyolefin.

特許文献5では、押出機内部に核生成器、すなわち多数の孔があいた流路を設けることで成形材料の流れを分割し(請求項1を参照)、流れが分割する際に高い圧力低下速度で気泡核生成を起こさせることで気泡を微細化している。例えば、実施例15では、ポリプロピレンで平均気泡径20μmの発泡体を得ている。しかし、15GPa/sという高い圧力低下速度を実現するために、直径0.04inch(約1mm)の孔から3.45lbs/hr(約20kg/hr)の吐出量で押し出している。このような条件では、ダイ圧が高すぎて押出が困難になることが想定され、またバックフローや押出不安定性の原因にもなるという問題があった。   In Patent Document 5, a flow of a molding material is divided by providing a nucleator, that is, a flow path having a large number of holes inside an extruder (see claim 1), and a high pressure drop rate is obtained when the flow is divided. Bubbles are refined by causing bubble nucleation. For example, in Example 15, a foam having an average cell diameter of 20 μm is obtained from polypropylene. However, in order to realize a high pressure drop rate of 15 GPa / s, extrusion is performed at a discharge amount of 3.45 lbs / hr (about 20 kg / hr) from a hole having a diameter of 0.04 inch (about 1 mm). Under such conditions, it is assumed that the die pressure is too high and extrusion becomes difficult, and there is a problem that it causes backflow and extrusion instability.

特許文献6では、成形材料を、複数の孔があいたダイ(請求項1)を高い圧力降下速度(0003項)で通過させることで、気泡が微細な発泡体を得ている。しかし、高い圧力降下速度を実現するためには、小さいダイ出口断面積と、それに対して大きな吐出量が必要であり、ダイの圧力が高すぎて安定した運転が困難であるという問題があった。   In Patent Document 6, a foam having fine bubbles is obtained by passing a molding material through a die having a plurality of holes (Claim 1) at a high pressure drop rate (Clause 0003). However, in order to realize a high pressure drop speed, a small die outlet cross-sectional area and a large discharge amount are required, and there is a problem that stable operation is difficult because the die pressure is too high. .

本発明は、前述した事情に鑑みてなされたもので、特殊な装置や外的刺激が不要で、また非常に高い圧力降下速度でなくても、押出発泡法により微細な気泡を有する発泡体を得ることができる技術を提供するものである。   The present invention has been made in view of the above-described circumstances, and does not require a special device or external stimulus, and even if the pressure drop speed is not very high, a foam having fine bubbles by an extrusion foaming method. The technology that can be obtained is provided.

本発明は、前記目的を達成するため、下記(1)〜(8)に示す熱可塑性樹脂発泡体を提供する。
(1)熱可塑性樹脂と、平均一次粒子径30nm以下の粒子と、無機ガスとを含有する発泡性樹脂組成物を押出発泡させて得られる発泡体であって、前記発泡性樹脂組成物中の前記粒子の濃度(質量%)と前記無機ガスの濃度(質量%)との積が60以上であることを特徴とする熱可塑性樹脂発泡体。
(2)前記熱可塑性樹脂がポリオレフィン系樹脂であることを特徴とする(1)の熱可塑性樹脂発泡体。
(3)前記熱可塑性樹脂がポリプロピレン系樹脂であることを特徴とする(1)または(2)の熱可塑性樹脂発泡体。
(4)前記平均一次粒子径30nm以下の粒子が炭酸カルシウムであることを特徴とする(1)〜(3)の熱可塑性樹脂発泡体。
(5)前記炭酸カルシウムの表面が界面活性剤でコーティングされていることを特徴とする(4)の熱可塑性樹脂発泡体。
(6)前記平均一次粒子径30nm以下の粒子がシリカであることを特徴とする(1)〜(3)の熱可塑性樹脂発泡体。
(7)前記無機ガスが二酸化炭素であることを特徴とする(1)〜(6)の熱可塑性樹脂発泡体。
(8)平均気泡径が30μm以下であることを特徴とする(1)〜(7)の熱可塑性樹脂発泡体。
In order to achieve the above object, the present invention provides a thermoplastic resin foam shown in the following (1) to (8).
(1) A foam obtained by extrusion foaming a foamable resin composition containing a thermoplastic resin, particles having an average primary particle diameter of 30 nm or less, and an inorganic gas, wherein the foamable resin composition comprises: A thermoplastic resin foam, wherein a product of the concentration (mass%) of the particles and the concentration (mass%) of the inorganic gas is 60 or more.
(2) The thermoplastic resin foam according to (1), wherein the thermoplastic resin is a polyolefin resin.
(3) The thermoplastic resin foam according to (1) or (2), wherein the thermoplastic resin is a polypropylene resin.
(4) The thermoplastic resin foam according to (1) to (3), wherein the particles having an average primary particle diameter of 30 nm or less are calcium carbonate.
(5) The thermoplastic resin foam according to (4), wherein the surface of the calcium carbonate is coated with a surfactant.
(6) The thermoplastic resin foam according to (1) to (3), wherein the particles having an average primary particle diameter of 30 nm or less are silica.
(7) The thermoplastic resin foam according to any one of (1) to (6), wherein the inorganic gas is carbon dioxide.
(8) The thermoplastic resin foam according to (1) to (7), wherein an average cell diameter is 30 μm or less.

本発明によれば、熱可塑性樹脂と、平均一次粒子径30nm以下の粒子と、無機ガスとを含有する発泡性樹脂組成物を特定の条件、すなわち発泡性樹脂組成物中の粒子の濃度(質量%)と無機ガスの濃度(質量%)との積が60以上となるような条件で押出発泡させることにより、特殊な装置や外的刺激を要することなく、また非常に高い圧力降下速度を要することなく、押出発泡法により微細な気泡を有する発泡体を得ることができる。   According to the present invention, a foamable resin composition containing a thermoplastic resin, particles having an average primary particle diameter of 30 nm or less, and an inorganic gas is subjected to specific conditions, that is, the concentration (mass of particles in the foamable resin composition). %) And the concentration of inorganic gas (mass%) by extrusion foaming under conditions where the product is 60 or more, no special equipment or external stimulation is required, and a very high pressure drop rate is required. The foam having fine bubbles can be obtained by the extrusion foaming method.

以下、本発明につきさらに詳しく説明する。本発明では、熱可塑性樹脂と、平均一次粒子径30nm以下の粒子と、無機ガスとを含有する発泡性樹脂組成物を特定の条件で押出発泡させると、平均気泡径30μm以下の微細な気泡をもつ発泡体が得られることを見出した。ここでいう特定の条件とは、発泡性樹脂組成物中の平均一次粒子径30nm以下の粒子の濃度(質量%)と、発泡性樹脂組成物中の無機ガスの濃度(質量%)との積が60以上となる条件である。その詳細なメカニズムは不明であるが、おそらく粒子の濃度も無機ガスの濃度も気泡核生成数に影響しており、双方が一定の条件を満たしたときのみ微細な気泡が得られるものと考えられる。上記積のより好ましい値は80〜300、特に100〜300である。上限を300としたのは、この値が300を超えると、粒子の量に対してガス量が多すぎるので、ダイから押し出された直後のガス抜けが多くなり、結果として微細な気泡が得られなくなるからである。   Hereinafter, the present invention will be described in more detail. In the present invention, when a foamable resin composition containing a thermoplastic resin, particles having an average primary particle diameter of 30 nm or less, and an inorganic gas is extruded and foamed under specific conditions, fine bubbles having an average cell diameter of 30 μm or less are formed. It has been found that a foam having the same properties can be obtained. The specific condition here is the product of the concentration (mass%) of particles having an average primary particle diameter of 30 nm or less in the foamable resin composition and the concentration (mass%) of inorganic gas in the foamable resin composition. Is a condition of 60 or more. Although the detailed mechanism is unknown, it is probable that both the concentration of particles and the concentration of inorganic gas influence the number of bubble nucleation, and fine bubbles can be obtained only when both meet certain conditions. . A more preferable value of the product is 80 to 300, particularly 100 to 300. The upper limit is set to 300. If this value exceeds 300, the amount of gas is too much with respect to the amount of particles, resulting in more gas escape immediately after being pushed out of the die, resulting in fine bubbles. Because it disappears.

本発明において、熱可塑性樹脂としてポリオレフィン系樹脂を用いると、樹脂価格が比較的安価な上に、加工性が良好であるという利点を得ることができる。ポリオレフィン系樹脂としては、例えば、低密度ポリエチレン、直鎖低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、エチレンプロピレンゴム、エチレンプロピレンジエン三元共重合体、スチレンブタジエンゴム、エチレン酢酸ビニル共重合体、エチレンビニルアルコール樹脂、エチレンエチルアクリレート樹脂、エチレンアクリル酸樹脂等が挙げられるが、これらに限られるものではない。さらに、上記各樹脂のシラン変性体、カルボン酸変性体等の変性体なども用いることができ、また、これらの樹脂は単独または2踵以上の混合物として使用することができる。   In the present invention, when a polyolefin resin is used as the thermoplastic resin, it is possible to obtain an advantage that the resin price is relatively low and the processability is good. Examples of polyolefin resins include low density polyethylene, linear low density polyethylene, high density polyethylene, polypropylene, ethylene propylene rubber, ethylene propylene diene terpolymer, styrene butadiene rubber, ethylene vinyl acetate copolymer, ethylene vinyl. Alcohol resin, ethylene ethyl acrylate resin, ethylene acrylic acid resin and the like can be mentioned, but are not limited thereto. Furthermore, modified products such as silane-modified products and carboxylic acid-modified products of the above resins can be used, and these resins can be used alone or as a mixture of two or more.

本発明において、熱可塑性樹脂としてポリプロピレン系樹脂を用いると、前記ポリオレフィン系樹脂の利点に加えて、高い剛性と耐熱性を得ることができる。ポリプロピレン系樹脂としては、ポリプロピレンホモポリマーをはじめ、プロピレン−エチレンブロック共重合体、プロピレン−エチレンランダム共重合体、およびそれらの混合物等が挙げられるが、これらに限られるものではない。   In the present invention, when a polypropylene resin is used as the thermoplastic resin, high rigidity and heat resistance can be obtained in addition to the advantages of the polyolefin resin. Examples of polypropylene resins include, but are not limited to, polypropylene homopolymers, propylene-ethylene block copolymers, propylene-ethylene random copolymers, and mixtures thereof.

前記熱可塑性樹脂、ポリオレフィン系樹脂、ポリプロピレン系樹脂には、必要に応じて熱安定剤、加工助剤、滑剤、衝撃改質剤、充填剤、酸化防止剤、紫外線吸収剤、光安定剤、顔料等が適宜添加されていてもよい。   The thermoplastic resin, polyolefin resin, and polypropylene resin may include a heat stabilizer, a processing aid, a lubricant, an impact modifier, a filler, an antioxidant, an ultraviolet absorber, a light stabilizer, and a pigment as necessary. Etc. may be added as appropriate.

本発明に用いる熱可塑性樹脂のメルトフローレート(MFR)(230℃、2.16kgf)は、0.1〜10g/10minの範囲にあることが望ましい。MFRが高すぎると、ダイ圧が低下するので樹脂中にガスを溶解させることが困難になり、MFRが低すぎると、押出成形性が著しく損なわれるからである。ダイ圧と成形性とのバランスを考慮すると、MFRの範囲は0.5〜7g/10minであればより好ましく、1.0〜3g/10minであればさらに好ましい。   The melt flow rate (MFR) (230 ° C., 2.16 kgf) of the thermoplastic resin used in the present invention is desirably in the range of 0.1 to 10 g / 10 min. This is because if the MFR is too high, the die pressure decreases, so that it is difficult to dissolve the gas in the resin. If the MFR is too low, the extrusion moldability is significantly impaired. Considering the balance between the die pressure and moldability, the MFR range is more preferably 0.5 to 7 g / 10 min, and further preferably 1.0 to 3 g / 10 min.

本発明に用いる粒子の平均一次粒子径は30nm以下である。平均一次粒子径が30nmを超えると、気泡核剤としての効果が弱まり、発生する気泡核数が減少し、結果として気泡が粗大になるからである。気泡核生成効果を高めるために、粒子の平均一次粒子径は20nm以下であればさらに好ましい。   The average primary particle diameter of the particles used in the present invention is 30 nm or less. When the average primary particle diameter exceeds 30 nm, the effect as a bubble nucleating agent is weakened, the number of generated bubble nuclei is reduced, and as a result, the bubbles become coarse. In order to enhance the bubble nucleation effect, the average primary particle size of the particles is more preferably 20 nm or less.

本発明に用いる粒子としては、炭酸カルシウムやシリカが挙げられるが、これらに限られるものではない。炭酸カルシウムを用いると、成形加工時の樹脂吐出量が増加するという利点が得られる。また、表面を界面活性剤でコーティングした炭酸カルシウムを使用すると、一次粒子が凝集しにくくなるため気泡核生成効果が増し、気泡がより微細になるという利点が得られる。上記界面活性剤としてはシランカップリング剤が挙げられるが、これに限られるものではない。粒子としてシリカを用いると、微細な気泡を比較的安価に実現できるという利点が得られる。粒子としては、2種以上を混合して用いてもよい。   Examples of the particles used in the present invention include, but are not limited to, calcium carbonate and silica. When calcium carbonate is used, there is an advantage that the amount of resin discharged during molding is increased. In addition, when calcium carbonate whose surface is coated with a surfactant is used, the primary particles are less likely to agglomerate, so that the bubble nucleation effect is increased and the bubbles become finer. Examples of the surfactant include, but are not limited to, a silane coupling agent. When silica is used as the particles, there is an advantage that fine bubbles can be realized relatively inexpensively. As particles, two or more kinds may be mixed and used.

無機ガスとしては二酸化炭素、窒素、ヘリウム、アルゴン等が挙げられるが、これらに限られるものではない。無機ガスとして二酸化炭素を用いると、比較的低いガス供給圧力で高いガス濃度が得られるという利点が得られる。   Examples of the inorganic gas include, but are not limited to, carbon dioxide, nitrogen, helium, and argon. When carbon dioxide is used as the inorganic gas, there is an advantage that a high gas concentration can be obtained at a relatively low gas supply pressure.

ここで、本発明に係る熱可塑性樹脂発泡体の製造装置の一例を示すが、本発明発泡体の製造装置は下記装置に限られるものではない。図1は上記製造装置の概略図である。図中1は押出機を示す。押出機1には、ホッパー2、ガス供給ポート3、ダイ4が設置されている。また、図中5はガス供給ポート3に接続されたガス供給管、6はガス供給管5に接続された二酸化炭素ボンベ、7はガス供給管5に介装されたガス流量制御装置を示す。押出機1には、樹脂を完全に溶融させるとともに、ガスを樹脂中に均一に分散させる役割がある。押出機1には、単軸押出機単体を用いてもよいが、ダイ出口において樹脂を十分に冷却するために、押出機を二台直列につないだタンデム押出機を用いた方が望ましい。押出機(タンデム押出機の場合は1段目の押出機)のL/D(押し出しスクリューの長さ/径)は30以上であることが望ましい。   Here, although an example of the manufacturing apparatus of the thermoplastic resin foam concerning this invention is shown, the manufacturing apparatus of this invention foam is not restricted to the following apparatus. FIG. 1 is a schematic view of the manufacturing apparatus. In the figure, 1 indicates an extruder. In the extruder 1, a hopper 2, a gas supply port 3, and a die 4 are installed. In the figure, reference numeral 5 denotes a gas supply pipe connected to the gas supply port 3, 6 denotes a carbon dioxide cylinder connected to the gas supply pipe 5, and 7 denotes a gas flow rate control device interposed in the gas supply pipe 5. The extruder 1 has a role of completely melting the resin and uniformly dispersing the gas in the resin. The extruder 1 may be a single-screw extruder alone, but in order to sufficiently cool the resin at the die outlet, it is desirable to use a tandem extruder in which two extruders are connected in series. The L / D (length / diameter of the extrusion screw) of the extruder (first-stage extruder in the case of a tandem extruder) is desirably 30 or more.

次に、図1を参照して、本発明に係る熱可塑性樹脂発泡体の製造方法の一例を示すが、本発明発泡体の製造方法は下記方法に限られるものではない。まず、ドライブレンドした樹脂および添加剤の混合物(以下、単に樹脂という)を押出機1のホッパー2に供給する。樹脂は押出機1内のスクリューの回転に伴い押出機1のバレル内を溶融しながら前進していく。一方、押出機1のバレルの中程に設置されたガス供給ポート3において、ガス流量制御装置7で制御された所定量の二酸化炭素がガス供給管5から押出機1に供給される。溶融した樹脂とガスはガス供給ポートで接触し、押出機1内の高い圧力によりガスは樹脂中に溶解していく。押出機1内で均質に混合された樹脂とガスの混合物は、ダイ4から押し出されると同時に発泡する。こうして発泡体8を得ることができる。   Next, an example of a method for producing a thermoplastic resin foam according to the present invention will be described with reference to FIG. 1, but the method for producing the foam of the present invention is not limited to the following method. First, a dry blended resin and additive mixture (hereinafter simply referred to as resin) is supplied to the hopper 2 of the extruder 1. The resin advances while melting in the barrel of the extruder 1 as the screw in the extruder 1 rotates. On the other hand, a predetermined amount of carbon dioxide controlled by the gas flow rate control device 7 is supplied from the gas supply pipe 5 to the extruder 1 at the gas supply port 3 installed in the middle of the barrel of the extruder 1. The molten resin and gas come into contact with each other at the gas supply port, and the gas is dissolved in the resin by the high pressure in the extruder 1. The mixture of resin and gas that is homogeneously mixed in the extruder 1 is extruded from the die 4 and foamed at the same time. In this way, the foam 8 can be obtained.

以下、本発明を実施例および比較例に基づいてさらに詳細に説明するが、本発明は下記実施例に限定されるものでない。まず、実施例、比較例における測定項目について説明する。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example and a comparative example, this invention is not limited to the following Example. First, measurement items in Examples and Comparative Examples will be described.

(発泡倍率)
発泡倍率は、発泡前の樹脂の比重を、水中置換法(JIS K 7112)にて測定した発泡体の比重で割った値である。発泡体の比重の測定には、メトラードレド社製の電子天秤AG204を使用した。
(Foaming ratio)
The expansion ratio is a value obtained by dividing the specific gravity of the resin before foaming by the specific gravity of the foam measured by an underwater substitution method (JIS K 7112). For measurement of the specific gravity of the foam, an electronic balance AG204 manufactured by Metradred was used.

(樹脂温度)
樹脂温度は、押出機のダイの出口から上流側50mmの地点に設けられた熱電対で測定された温度である。熱電対には、Dynisco社製のオートプローブ2を使用した。
(Resin temperature)
The resin temperature is a temperature measured with a thermocouple provided at a point 50 mm upstream from the exit of the die of the extruder. An auto probe 2 manufactured by Dynasco was used as the thermocouple.

(ガス濃度)
ガス濃度は、マスフローメータ(Oval社製D006H−SS−200)で測定したガス流量[g/min]を吐出量[g/min]で割って100を乗じた値として算出した。吐出量は、ダイから吐出された樹脂の質量を1分間測定する作業を2回行い、その平均値として算出した。
(Gas concentration)
The gas concentration was calculated as a value obtained by dividing the gas flow rate [g / min] measured by a mass flow meter (D006H-SS-200 manufactured by Oval) by the discharge amount [g / min] and multiplying by 100. The discharge amount was calculated as an average value by performing the work of measuring the mass of the resin discharged from the die for 1 minute twice.

次に、実施例、比較例を示す。実施例、比較例における樹脂PP1としては、MFR(230℃、2.16kgf)が1.8g/10minのブロックポリプロピレンを用いた。   Next, examples and comparative examples are shown. As resin PP1 in an Example and a comparative example, the block polypropylene whose MFR (230 degreeC, 2.16kgf) is 1.8g / 10min was used.

(実施例1)
PP1と炭酸カルシウム(白石カルシウム社製アクチフォート700:商品名、平均一次粒子径20nm)とを70:30の割合で混合したマスターバッチを、40mm単軸押出機(池貝株式会社製FSM−40、L/D=34)のホッパーに供給し、押出機のバレルの中間に設けられたガス供給口から二酸化炭素を供給した。二酸化炭素の供給圧力は8MPaで一定とし、そのときのガス濃度は前述の方法で測定した。押出機の温度は、ホッパーから押出機の中心部にかけて170〜190℃に設定し、その後段階的に温度を下げ、ダイ出口における樹脂温度が158〜170℃になるように設定した。ダイは直径1.5mm、ランド長2mmのストランドダイを用いた。スクリュー回転数20rpm、吐出量約40g/minにて押出発泡を行った。このとき、ダイ出口における圧力降下速度は約0.3GPa/sであった。
Example 1
A master batch in which PP1 and calcium carbonate (Activity 700 manufactured by Shiraishi Calcium Co., Ltd .: trade name, average primary particle size 20 nm) were mixed at a ratio of 70:30 was mixed with a 40 mm single screw extruder (FSM-40 manufactured by Ikegai Co., L / D = 34), and carbon dioxide was supplied from a gas supply port provided in the middle of the barrel of the extruder. The supply pressure of carbon dioxide was constant at 8 MPa, and the gas concentration at that time was measured by the method described above. The temperature of the extruder was set to 170 to 190 ° C. from the hopper to the center of the extruder, and thereafter the temperature was lowered stepwise so that the resin temperature at the die outlet was 158 to 170 ° C. As the die, a strand die having a diameter of 1.5 mm and a land length of 2 mm was used. Extrusion foaming was performed at a screw speed of 20 rpm and a discharge rate of about 40 g / min. At this time, the pressure drop rate at the die outlet was about 0.3 GPa / s.

得られた発泡体の発泡倍率を前述の方法で測定、記録した。発泡体の平均気泡径については、まず発泡体を液体窒素で冷却したのち二本のペンチで折り、露出した断面を走査型電子顕微鏡(日本電子株式会社製JSM−6390−W)で観察し、ランダムに選んだ気泡30個の直径の平均値を平均気泡径として算出した。   The foaming ratio of the obtained foam was measured and recorded by the method described above. Regarding the average cell diameter of the foam, first, the foam was cooled with liquid nitrogen, then folded with two pliers, and the exposed cross section was observed with a scanning electron microscope (JSM-6390-W, manufactured by JEOL Ltd.). The average value of the diameters of 30 randomly selected bubbles was calculated as the average bubble size.

(実施例2)
実施例1で使用した炭酸カルシウムマスターバッチとPPlとを33:67の比率で混合した組成物(炭酸カルシウム濃度は10質量%)を単軸押出機に供給したこと以外は、実施例1と同様な条件で押出発泡および発泡体の調査を行った。
(Example 2)
Except that the composition (calcium carbonate concentration is 10% by mass) obtained by mixing the calcium carbonate master batch and PPl used in Example 1 in a ratio of 33:67 was supplied to the single screw extruder, the same as in Example 1. Extruded foam and foam were investigated under various conditions.

(実施例3)
二酸化炭素の供給圧力を4MPaに変更したこと以外は、実施例1と同様な条件で押出発泡および発泡体の調査を行った。
(Example 3)
Extruded foam and foam were investigated under the same conditions as in Example 1 except that the supply pressure of carbon dioxide was changed to 4 MPa.

(実施例4)
製造条件を表1のように変更したこと以外は、実施例1と同様な条件で押出発泡および発泡体の調査を行った。
Example 4
Extruded foam and foam were investigated under the same conditions as in Example 1 except that the production conditions were changed as shown in Table 1.

(比較例1)
PPlを単独で単軸押出機に供給したこと以外は、実施例1と同様な条件で押出発泡および発泡体の調査を行った。
(Comparative Example 1)
Extruded foam and foam were investigated under the same conditions as in Example 1 except that PPl was supplied to a single screw extruder alone.

(比較例2)
実施例1で使用した炭酸カルシウムマスターバッチとPPlとを3.3:96.7の比率で混合した組成物(炭酸カルシウム濃度は1質量%)を単軸押出機に供給したこと以外は、実施例1と同様な条件で押出発泡および発泡体の調査を行った。
(Comparative Example 2)
Except that the composition (calcium carbonate concentration is 1% by mass) obtained by mixing the calcium carbonate master batch and PPl used in Example 1 in a ratio of 3.3: 96.7 was supplied to a single screw extruder. Extruded foam and foam were investigated under the same conditions as in Example 1.

(比較例3)
実施例1で使用した炭酸カルシウムマスターバッチとPPlとを16.6:83.4の比率で混合した組成物(炭酸カルシウム濃度は5質量%)を単軸押出機に供給したこと以外は、実施例1と同様な条件で押出発泡および発泡体の調査を行った。
(Comparative Example 3)
Except that the composition (calcium carbonate concentration is 5% by mass) obtained by mixing the calcium carbonate masterbatch and PPl used in Example 1 in a ratio of 16.6: 83.4 was supplied to the single screw extruder. Extruded foam and foam were investigated under the same conditions as in Example 1.

(比較例4)
PPlを単独で使用し、二酸化炭素の供給圧力を4MPaに変更したこと以外は、実施例1と同様な条件で押出発泡および発泡体の調査を行った。
(Comparative Example 4)
Extruded foam and foam were investigated under the same conditions as in Example 1 except that PPl was used alone and the carbon dioxide supply pressure was changed to 4 MPa.

(比厳例5)
実施例1で使用した炭酸カルシウムマスターバッチとPPlとを3.3:96.7比率で混合した組成物(炭鞄カルシウム濃度は1質量%)を単軸押出機に供給したこと以外は、比較例4と同様な条件で押出発泡および発泡体の調査を行った。
(Rage example 5)
A comparison was made except that the calcium carbonate master batch used in Example 1 and PPl were mixed at a ratio of 3.3: 96.7 (the calcium carbonate concentration was 1% by mass) was supplied to the single screw extruder. Extruded foam and foam were investigated under the same conditions as in Example 4.

(比較例6)
実施例1で使用した炭酸カルシウムマスターバッチとPPlとを16.6:83.4の比率で混合した組成物(炭酸カルシウム濃度は5質量%)を単軸押出機に供給したこと以外は、比較例4と同様な条件で押出発泡および発泡体の調査を行った。
(Comparative Example 6)
A comparison was made except that a composition (calcium carbonate concentration of 5% by mass) obtained by mixing the calcium carbonate masterbatch used in Example 1 and PPl in a ratio of 16.6: 83.4 was supplied to the single screw extruder. Extruded foam and foam were investigated under the same conditions as in Example 4.

(比較例7)
実施例1で使用した炭酸カルシウムマスターバッチとPPlとを33:67の比率で混合した組成物(炭酸カルシウム濃度は10質量%)を単軸押出機に供給したこと以外は、比較例4と同様な条件で押出発泡および発泡体の調査を行った。
(Comparative Example 7)
The same as Comparative Example 4 except that the composition (calcium carbonate concentration is 10% by mass) obtained by mixing the calcium carbonate masterbatch and PPl used in Example 1 in a ratio of 33:67 was supplied to the single screw extruder. Extruded foam and foam were investigated under various conditions.

(比較例8)
製造条件を表2のように変更したこと以外は、実施例1と同様な条件で押出発泡および発泡体の調査を行った。
(Comparative Example 8)
Extruded foam and foam were investigated under the same conditions as in Example 1 except that the production conditions were changed as shown in Table 2.

(比較例9)
製造条件を表2のように変更したこと以外は、実施例1と同様な条件で押出発泡および発泡体の調査を行った。
(Comparative Example 9)
Extruded foam and foam were investigated under the same conditions as in Example 1 except that the production conditions were changed as shown in Table 2.

樹脂の物性および発泡倍率、平均気泡径の測定結果を表1および表2に示す。表1および表2より、平均一次粒子径が30nm以下で、発泡性樹脂組成物中の炭酸カルシウム濃度(質量%)と二酸化炭素濃度(質量%)との積が60以上の熱可塑性樹脂組成物によれば、平均気泡径が30μm以下の微細な気泡を有する発泡体が得られることがわかる。これに対し、上記積が60未満の熱可塑性樹脂組成物は、平均気泡径が30μm以下の微細な気泡を有する発泡体が得られないものであった。   Tables 1 and 2 show the measurement results of physical properties, expansion ratio, and average cell diameter of the resin. From Tables 1 and 2, a thermoplastic resin composition having an average primary particle size of 30 nm or less and a product of calcium carbonate concentration (mass%) and carbon dioxide concentration (mass%) in the foamable resin composition of 60 or more. According to this, it is understood that a foam having fine bubbles with an average cell diameter of 30 μm or less can be obtained. On the other hand, the thermoplastic resin composition having the above product of less than 60 cannot obtain a foam having fine bubbles having an average cell diameter of 30 μm or less.

Figure 0004999096
Figure 0004999096

Figure 0004999096
Figure 0004999096

本発明に係る熱可塑性樹脂発泡体の製造装置の一例を示す概略図である。It is the schematic which shows an example of the manufacturing apparatus of the thermoplastic resin foam which concerns on this invention.

符号の説明Explanation of symbols

1 押出機
2 ホッパー
3 ガス供給ポート
4 ダイ
5 ガス供給管
6 二酸化炭素ボンベ
7 ガス流量制御装置
8 発泡体
1 Extruder 2 Hopper 3 Gas Supply Port 4 Die 5 Gas Supply Pipe 6 Carbon Dioxide Cylinder 7 Gas Flow Control Device 8 Foam

Claims (8)

熱可塑性樹脂と、平均一次粒子径30nm以下の粒子と、無機ガスとを含有する発泡性樹脂組成物を押出発泡させて得られる発泡体であって、前記発泡性樹脂組成物中の前記粒子の濃度(質量%)と前記無機ガスの濃度(質量%)との積が60以上であることを特徴とする熱可塑性樹脂発泡体。   A foam obtained by extruding and foaming a foamable resin composition containing a thermoplastic resin, particles having an average primary particle diameter of 30 nm or less, and an inorganic gas, wherein the particles in the foamable resin composition A thermoplastic resin foam, wherein a product of a concentration (mass%) and a concentration (mass%) of the inorganic gas is 60 or more. 前記熱可塑性樹脂がポリオレフィン系樹脂であることを特徴とする請求項1に記載の熱可塑性樹脂発泡体。   The thermoplastic resin foam according to claim 1, wherein the thermoplastic resin is a polyolefin resin. 前記熱可塑性樹脂がポリプロピレン系樹脂であることを特徴とする請求項2に記載の熱可塑性樹脂発泡体。   The thermoplastic resin foam according to claim 2, wherein the thermoplastic resin is a polypropylene resin. 前記平均一次粒子径30nm以下の粒子が炭酸カルシウムであることを特徴とする請求項1〜3のいずれか1項に記載の熱可塑性樹脂発泡体。   The thermoplastic resin foam according to any one of claims 1 to 3, wherein the particles having an average primary particle diameter of 30 nm or less are calcium carbonate. 前記炭酸カルシウムの表面が界面活性剤でコーティングされていることを特徴とする請求項4に記載の熱可塑性樹脂発泡体。   The thermoplastic resin foam according to claim 4, wherein a surface of the calcium carbonate is coated with a surfactant. 前記平均一次粒子径30nm以下の粒子がシリカであることを特徴とする請求項1〜3のいずれか1項に記載の熱可塑性樹脂発泡体。   The thermoplastic resin foam according to any one of claims 1 to 3, wherein the particles having an average primary particle diameter of 30 nm or less are silica. 前記無機ガスが二酸化炭素であることを特徴とする請求項1〜6のいずれか1項に記載の熱可塑性樹脂発泡体。   The thermoplastic resin foam according to any one of claims 1 to 6, wherein the inorganic gas is carbon dioxide. 平均気泡径が30μm以下であることを特徴とする請求項1〜7のいずれか1項に記載の熱可塑性樹脂発泡体。   The thermoplastic cell foam according to any one of claims 1 to 7, wherein an average cell diameter is 30 µm or less.
JP2007295338A 2007-11-14 2007-11-14 Thermoplastic resin foam Active JP4999096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007295338A JP4999096B2 (en) 2007-11-14 2007-11-14 Thermoplastic resin foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007295338A JP4999096B2 (en) 2007-11-14 2007-11-14 Thermoplastic resin foam

Publications (2)

Publication Number Publication Date
JP2009120694A JP2009120694A (en) 2009-06-04
JP4999096B2 true JP4999096B2 (en) 2012-08-15

Family

ID=40813211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007295338A Active JP4999096B2 (en) 2007-11-14 2007-11-14 Thermoplastic resin foam

Country Status (1)

Country Link
JP (1) JP4999096B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6087931B2 (en) * 2011-09-29 2017-03-01 ダウ グローバル テクノロジーズ エルエルシー Continuous process for extruding nanoporous foam
KR102202059B1 (en) * 2018-05-11 2021-01-12 주식회사 엘지화학 Preparation method for super absorbent polymer sheet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1024476A (en) * 1996-07-10 1998-01-27 Mitsui Petrochem Ind Ltd Thermoplastic resin foam and its production
JP4379947B2 (en) * 1998-05-29 2009-12-09 住友電気工業株式会社 Flame-retardant resin composition and its insulated wires, tubes, heat-shrinkable tubes, flat cables, and high-voltage wires for direct current
JP4072360B2 (en) * 2002-02-28 2008-04-09 出光興産株式会社 Thermoplastic resin composition for foam and foam thereof
US8568632B2 (en) * 2003-11-26 2013-10-29 Owens Corning Intellectual Capital, Llc Method of forming thermoplastic foams using nano-particles to control cell morphology

Also Published As

Publication number Publication date
JP2009120694A (en) 2009-06-04

Similar Documents

Publication Publication Date Title
JP5497410B2 (en) Foam and production method thereof
JP4436435B1 (en) Molding material for extrusion foam molding and method for manufacturing the same, wood foam molded body manufactured using the molding material, method for manufacturing the wood foam molded body, and manufacturing apparatus
JP4011962B2 (en) Method for producing polypropylene resin extruded foam sheet, produced extruded foam sheet, and molded article comprising the foamed sheet
JP2003504502A (en) Method for forming an article comprising closed cell microfoam from a thermoplastic resin
KR20080021581A (en) Method for producing expanding styrene polymer granules
CN101687361A (en) Foam board of polyolefin resin, and method for production thereof
US8398904B2 (en) Microcellular foam of thermoplastic resin prepared with die having improved cooling property and method for preparing the same
JP4999096B2 (en) Thermoplastic resin foam
JP5707048B2 (en) Resin foam sheet and method for producing resin foam sheet
JP5290733B2 (en) Light reflecting sheet and manufacturing method thereof
JP3581025B2 (en) Method for producing non-crosslinked polypropylene resin foam sheet and non-crosslinked polypropylene resin foam sheet
JPH1024436A (en) Thermoplastic resin foam and its manufacture
JPH1076560A (en) Thermoplastic resin foamed body and its manufacture
JP5171238B2 (en) Foaming agent masterbatch
JPH1024476A (en) Thermoplastic resin foam and its production
JP2009154441A (en) Manufacturing method of polypropylene-based resin foam
JP5670816B2 (en) Method for producing polyolefin resin expanded particles
JP5089436B2 (en) Light reflecting sheet and manufacturing method thereof
JP5568350B2 (en) Method for producing polypropylene-based modified resin
JP2006089637A (en) Production process of polyproylene resin foamed sheet
WO2023127914A1 (en) Method for producing polypropylene resin extruded foam particles
JP2002530497A (en) Microporous polyvinyl chloride foam
JP2007276245A (en) Method for producing foamed resin-extruded body
JP4966087B2 (en) Light reflector
JP2006002055A (en) Method for producing polymer alloy molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120501

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120511

R151 Written notification of patent or utility model registration

Ref document number: 4999096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350