JP4994611B2 - Composite oxide particles and method for producing the same - Google Patents

Composite oxide particles and method for producing the same Download PDF

Info

Publication number
JP4994611B2
JP4994611B2 JP2005204662A JP2005204662A JP4994611B2 JP 4994611 B2 JP4994611 B2 JP 4994611B2 JP 2005204662 A JP2005204662 A JP 2005204662A JP 2005204662 A JP2005204662 A JP 2005204662A JP 4994611 B2 JP4994611 B2 JP 4994611B2
Authority
JP
Japan
Prior art keywords
particles
oxide particles
composite oxide
core
metal alkoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005204662A
Other languages
Japanese (ja)
Other versions
JP2007022827A (en
Inventor
土岐元幸
孫仁徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP2005204662A priority Critical patent/JP4994611B2/en
Publication of JP2007022827A publication Critical patent/JP2007022827A/en
Application granted granted Critical
Publication of JP4994611B2 publication Critical patent/JP4994611B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Silicon Compounds (AREA)

Description

本発明は、無機酸化物膜で被覆された複合酸化物粒子およびその作製方法に関するものである。より詳細には、コア粒子として均一粒径の酸化物粒子を用いることで、形状が球形でかつ粒径が揃った複合酸化物粒子(複合化された無機酸化物粒子)およびその作製方法に関するものである。   The present invention relates to composite oxide particles coated with an inorganic oxide film and a method for producing the same. More specifically, the present invention relates to composite oxide particles (composite inorganic oxide particles) having a spherical shape and uniform particle size by using oxide particles having a uniform particle size as core particles, and a method for producing the same. It is.

従来の粒子表面を金属酸化物で被覆する方法としては、特許文献1に記載のように、単分散シリカ微粒子(球状微粒子)を極性溶媒であるアルコール溶媒に添加し、超音波処理を行って分散させのち、pHを2に調整した水を添加、混合してシリカ微粒子の分散液とし、Ti(Oi−C374のメタノール溶液を、30℃に保ったシリカ微粒子の分散液に撹拌しながら滴下混合する方法がある。 As a conventional method for coating the particle surface with a metal oxide, as described in Patent Document 1, monodispersed silica fine particles (spherical fine particles) are added to an alcohol solvent, which is a polar solvent, and subjected to ultrasonic treatment for dispersion. Then, water adjusted to pH 2 is added and mixed to form a dispersion of silica fine particles, and a methanol solution of Ti (Oi-C 3 H 7 ) 4 is stirred into a dispersion of silica fine particles maintained at 30 ° C. There is a method of mixing while dropping.

また、特許文献2に記載のように、アルコールやケトンなどの極性溶媒に溶解した金属アルコキシドに、コアとなる粒子を加え分散し、その後に水を加え金属アルコキシドを加水分解し、粒子表面に金属酸化物の皮膜を形成する方法も知られている。   Further, as described in Patent Document 2, a core particle is added to and dispersed in a metal alkoxide dissolved in a polar solvent such as alcohol or ketone, and then water is added to hydrolyze the metal alkoxide so that the metal surface has a metal surface. A method of forming an oxide film is also known.

一方、特許文献3に記載のように、チタンあるいはジルコニウムなどの金属塩である硫酸チタン、硫酸ジルコニウム等を原料とし、これら金属塩の水溶液を反応系に緩やかに滴下し、生成する金属水酸化物あるいは金属酸化物を基体粒子のまわりに析出させる方法も知られている。   On the other hand, as described in Patent Document 3, titanium sulfate, zirconium sulfate or the like, which is a metal salt such as titanium or zirconium, is used as a raw material, and an aqueous solution of these metal salts is slowly dropped into the reaction system to form a metal hydroxide Alternatively, a method of depositing metal oxide around the base particles is also known.

さらに、特許文献4、特許文献5に記載のように、酸化チタン膜を被覆する方法としては、塩化チタン(IV)溶液を使用したものも知られている。
特開平5−257150号公報 特開平6−228604号公報 特開2000−345072号公報 特開2004−123801号公報 特開2002−241644号公報
Further, as described in Patent Document 4 and Patent Document 5, as a method of coating a titanium oxide film, a method using a titanium (IV) chloride solution is also known.
JP-A-5-257150 JP-A-6-228604 JP 2000-345072 A JP 2004-123801 A JP 2002-241644 A

しかしながら、金属アルコキシドの極性溶媒溶液での反応による、粒子表面への無機酸化物薄膜の被覆方法では、金属アルコキシドを加水分解させる水が反応系内のどこにでも存在することになり、コアとなる酸化物粒子の表面を被覆しないで、その単独の組成で存在する酸化物粒子が副生するという問題点を有している。   However, in the method of coating an inorganic oxide thin film on the particle surface by reaction with a metal alkoxide in a polar solvent solution, water that hydrolyzes the metal alkoxide is present everywhere in the reaction system, and the core oxidation. There is a problem in that oxide particles present in a single composition are by-produced without covering the surface of the product particles.

一方、チタンあるいはジルコニウムなどの金属塩である硫酸チタン、硫酸ジルコニウム等を原料にする場合では、水溶媒が使用できるという、コストや環境への低負荷のメリットがあるものの、硫酸チタニルの反応速度が遅いために製膜操作に時間がかかることや、1回の製膜操作で被覆できる酸化チタン膜の厚さに限界があり、酸化チタン膜を厚くする必要がある場合には酸化チタン被膜操作を複数回に分ける必要があるという問題があった。   On the other hand, when titanium sulfate, zirconium sulfate or the like, which is a metal salt such as titanium or zirconium, is used as a raw material, although there is a merit of low load on cost and environment that an aqueous solvent can be used, the reaction rate of titanyl sulfate is high. The film formation operation takes time because it is slow, and there is a limit to the thickness of the titanium oxide film that can be coated by one film formation operation. There was a problem that it was necessary to divide into multiple times.

さらに、皮膜形成原料として塩化チタン溶液を使用する場合には、その溶液化の反応が激しく、危険が伴い、さらに、塩素や塩酸ガスの発生が伴う問題がある。また、その皮膜形成用液の調整段階で、過酸化物を加えているが、過酸化物は場合によっては爆発の危険があり、安全のためには本試薬は使用しない方が良いと考えられる。 過酸化物の代わりにカルボン酸を加えて安定化する方法も試みられているが、そのpH値の制御のためアルカリ金属を含むアルカリの添加が必要であり、高純度な皮膜を形成する目的には使用できない。   Further, when a titanium chloride solution is used as a film forming raw material, the solution reaction is severe and dangerous, and there is a problem that chlorine and hydrochloric acid gas is generated. In addition, peroxide is added at the stage of preparing the film-forming solution. However, peroxide may be explosive in some cases, and it is better not to use this reagent for safety. . Although attempts have been made to stabilize by adding carboxylic acid instead of peroxide, it is necessary to add an alkali containing an alkali metal to control the pH value, and for the purpose of forming a high-purity film. Cannot be used.

さらに、上記した全ての合成方法は、酸化物皮膜の厚み制御が困難であり、望みの厚みに合成することができない問題点を有する。さらにまた、皮膜形成のための原料が皮膜形成に使用される収率が低いという問題点もある。   Furthermore, all the synthesis methods described above have problems in that it is difficult to control the thickness of the oxide film, and it is impossible to synthesize the desired thickness. Furthermore, there is a problem that the yield of the raw material for forming the film is low.

本発明は以上のような事情に鑑みてなされたものであり、その目的は、<1>皮膜組成物の単独粒子の副生を抑え、<2>皮膜の厚みの制御性に優れ、<3>皮膜形成の原料の金属アルコキシドのプロセス中のロスが少ない、つまり原料皮膜収率の高い複合酸化物粒子の作製方法及びこれにより得られる複合酸化物粒子を提供することにある。   The present invention has been made in view of the circumstances as described above. The purpose of the present invention is to <1> suppress by-product formation of single particles of the coating composition, <2> excellent controllability of the thickness of the coating, <3 The object of the present invention is to provide a method for producing composite oxide particles with little loss during the process of the metal alkoxide as a raw material for film formation, that is, high yield of the raw material film, and composite oxide particles obtained thereby.

本願発明者等は、上記目的を達成するために鋭意検討した。その結果、コアとなる酸化物粒子を非極性有機溶媒に分散し、その後、水を添加し、続けて非極性有機溶媒に溶解した皮膜形成原料の金属アルコキシドを滴下することにより、上記目的を達成できることを見出し、本発明を完成するに至った。
請求項1に記載の方法により作製された無機酸化物膜で被覆されてなる複合酸化物粒子は、上記の課題を解決するために、以下の工程(1)〜(3)により作製されることを特徴としている。
The inventors of the present application have made extensive studies in order to achieve the above object. As a result, the core oxide particles are dispersed in a nonpolar organic solvent, then water is added, and then the metal alkoxide of the film forming raw material dissolved in the nonpolar organic solvent is added dropwise to achieve the above object. The present inventors have found that this can be done and have completed the present invention.
The composite oxide particles coated with the inorganic oxide film produced by the method according to claim 1 are produced by the following steps (1) to (3) in order to solve the above problems. It is characterized by.

(1)コアとなる無機酸化物粒子を非極性有機溶媒に加え分散させて分散液を調製する工程
(2)該分散液に水を加えコア粒子表面に水分子を吸着させる工程
(3)非極性有機溶媒に溶解した金属アルコキシドを前記分散液に添加する工程

上記の構成によれば、皮膜厚みの制御性が高く、皮膜形成金属酸化物の反応収率が高く、皮膜組成の単独酸化物粒子の副生を少なくすることができる。

請求項2に記載の複合酸化物粒子の作製方法は、上記の課題を解決するために、コアとなる無機酸化物粒子が、ゾル−ゲル法によって得られる均一粒径の酸化物粒子であって、シリカ、チタニア、ジルコニア、アルミナ、酸化タンタルからなる群より選ばれる少なくともいずれか1種の酸化物粒子であることを特徴としている。
(1) Step of preparing a dispersion by adding inorganic oxide particles as a core to a non-polar organic solvent and dispersing (2) Step of adding water to the dispersion to adsorb water molecules on the surface of the core particles (3) Adding a metal alkoxide dissolved in a polar organic solvent to the dispersion

According to said structure, the controllability of film | membrane thickness is high, the reaction yield of a film formation metal oxide is high, and the byproduct of the single oxide particle of a film | membrane composition can be decreased.

In order to solve the above problem, the method for producing the composite oxide particles according to claim 2 is characterized in that the inorganic oxide particles serving as the core are oxide particles having a uniform particle size obtained by a sol-gel method. And at least one oxide particle selected from the group consisting of silica, titania, zirconia, alumina, and tantalum oxide.

本構成によれば、コアとなる無機酸化物粒子がソ゛ルーケ゛ル法の湿式法で作製されるため、粒度分布がCVD法や他法による粒子に比較し粒度分布が狭く、粒子表面の残留水酸基量が多いため、本願発明における重要な点である無機酸化物粒子表面に水を優先的に吸着させることに優れた表面性能となる。   According to this configuration, since the inorganic oxide particles as the core are produced by the wet method of the diesel method, the particle size distribution is narrower than the particles by the CVD method and other methods, and the residual hydroxyl amount on the particle surface is reduced. Therefore, the surface performance is excellent in preferentially adsorbing water on the surface of the inorganic oxide particles, which is an important point in the present invention.

請求項3に記載の複合酸化物粒子の作製方法は、上記の課題を解決するために、非極性有機溶媒に溶解した金属アルコキシドが、以下の構造であることを特徴としている。
Mn(OR)x
(ただし、Mは金属アルコキシドを作り得る金属元素であり、Oは酸素原子、Rは炭素数が1から12の直鎖あるいは分枝鎖型のアルキル基、nとxは整数である。)
本金属アルコキシドを使用すると、非極性溶媒に溶解させることがより容易となるため、水と反応性が高いために起こるコア粒子表面以外で起こる副反応を抑制することが可能となり、コアとなる酸化物粒子表面での反応を支配的にすることが可能となる。このため、皮膜厚みの制御が容易になるとともに、皮膜形成に使われる金属アルコキシドの反応収率を高くすることができる。
In order to solve the above problems, the method for producing composite oxide particles according to claim 3 is characterized in that the metal alkoxide dissolved in the nonpolar organic solvent has the following structure.
M n (OR) x
(However, M is a metal element capable of forming a metal alkoxide, O is an oxygen atom, R is a linear or branched alkyl group having 1 to 12 carbon atoms, and n and x are integers.)
When this metal alkoxide is used, it becomes easier to dissolve in a non-polar solvent, so it is possible to suppress side reactions that occur outside the surface of the core particle due to high reactivity with water, and the core oxidation It becomes possible to make the reaction on the surface of the object particle dominant. For this reason, control of the film thickness is facilitated, and the reaction yield of the metal alkoxide used for film formation can be increased.

請求項4に記載の複合酸化物粒子の作製方法は、上記の課題を解決するために、非極性有機溶媒に溶解した金属アルコキシドのMが、Li, Na, Mg, Ti, Al, Si, P,B, Zr, In, Sn, Zn, V, Nb, W, Taからなる群より選ばれる少なくともいずれか1種の金属元素を含むことを特徴としている。   In order to solve the above problems, the method for producing composite oxide particles according to claim 4 is such that M of the metal alkoxide dissolved in the nonpolar organic solvent is Li, Na, Mg, Ti, Al, Si, P , B, Zr, In, Sn, Zn, V, Nb, W, and Ta, at least any one metal element selected from the group consisting of Ta is included.

上記の金属元素の金属アルコキシドを原料に使用すると、工業的に容易に入手可能であり、酸化物膜の皮膜性が良く、良好な膜を形成できる。   When a metal alkoxide of the above metal element is used as a raw material, it can be easily obtained industrially, the film property of the oxide film is good, and a good film can be formed.

請求項5に記載の複合酸化物粒子の作製方法は、上記の課題を解決するために、反応完結処理工程として、(4)未反応の金属アルコキシドの反応を終了させる工程をさらに含み、少なくとも下記(4−A)(4−B)の何れかの処理を行なうことを特徴とする請求項1〜4のいずれか1項記載の複合酸化物粒子の作製方法。
(4−A)室温、加熱下、又は加圧下で熟成する工程
(4−B)過剰の水を多量に加える工程
上記の構成によれば、反応を完結することで、未反応の金属アルコキシドが無くなり、目的とする酸化物被覆粒子以外の単独組成の酸化物粒子の副生を防ぎ、また反応を停止するタイミングを調整すると、皮膜の厚みを制御することも可能となる。
In order to solve the above-mentioned problem, the method for producing composite oxide particles according to claim 5 further includes (4) a step of terminating the reaction of unreacted metal alkoxide as a reaction completion treatment step, The method for producing composite oxide particles according to any one of claims 1 to 4, wherein any one of (4-A) and (4-B) is performed.
(4-A) Step of aging under room temperature, heating, or pressure (4-B) Step of adding a large amount of excess water According to the above configuration, unreacted metal alkoxide is obtained by completing the reaction. By eliminating the by-product of oxide particles having a single composition other than the target oxide-coated particles and adjusting the timing to stop the reaction, the thickness of the film can be controlled.

本発明の複合酸化物粒子の作製方法は、まず、コアとなる無機酸化物粒子を非極性有機溶媒に分散させることで、皮膜を形成させる金属アルコキシドの加水分解反応を水分の存在するコアとなる無機酸化物粒子表面のみに限定させることができる。また、非極性有機溶媒に分散した無機酸化物粒子に、水を金属アルコキシドの添加前に加えると、水は残留水酸基の多いコア粒子表面に集まり、コア粒子表面に吸着され、反応系内の水分の存在場所がコア粒子表面に限定される。このため、皮膜の形成に必要な金属アルコキシドの加水分解反応と重縮合反応とがコア粒子表面でのみ進み、結果として、皮膜成分の無機酸化物粒子の副生が抑制できることになる。また、皮膜形成のための金属アルコキシドの加水分解重縮合反応は、副反応が少なく、反応収率も高いため、皮膜の膜厚の制御が、反応に使用する水の量と、金属アルコキシドの量を適当に決めることで可能となる。また、コア粒子がソ゛ルーケ゛ル法による粒子であるため表面残留水酸基が多いため、他の製造法による粒子よりも上記の効果が大きい。さらにソ゛ルーケ゛ル法による粒子は粒径分布が他方に比べて狭い特徴もある。   In the method for producing the composite oxide particles of the present invention, first, the inorganic oxide particles serving as the core are dispersed in a nonpolar organic solvent, whereby the hydrolysis reaction of the metal alkoxide that forms the film becomes the core having moisture. It can be limited only to the surface of the inorganic oxide particles. In addition, if water is added to the inorganic oxide particles dispersed in the nonpolar organic solvent before the addition of the metal alkoxide, the water collects on the surface of the core particles having many residual hydroxyl groups and is adsorbed on the surface of the core particles, and the water in the reaction system Is limited to the core particle surface. For this reason, the hydrolysis reaction and polycondensation reaction of the metal alkoxide necessary for the formation of the coating proceeds only on the surface of the core particle, and as a result, the by-product of the inorganic oxide particles of the coating component can be suppressed. In addition, the hydrolysis polycondensation reaction of metal alkoxide for film formation has few side reactions and high reaction yield, so the film thickness of the film is controlled by the amount of water used in the reaction and the amount of metal alkoxide. It becomes possible by appropriately deciding. In addition, since the core particles are particles by the diesel method, and there are many residual hydroxyl groups on the surface, the above effect is greater than the particles by other manufacturing methods. Furthermore, the particles by the diesel method have a feature that the particle size distribution is narrower than the other.

それゆえ、粒径分布が狭い単分散無機酸化物粒子の表面に、他組成の無機酸化物皮膜を形成でき、皮膜厚みの制御が可能で、副生成粒子の少ない製造方法を提供できるという効果を奏する。   Therefore, it is possible to form an inorganic oxide film of another composition on the surface of monodisperse inorganic oxide particles having a narrow particle size distribution, control the film thickness, and provide a production method with few by-product particles. Play.

本発明の一実施形態について、以下に説明する。
〔コアとなる無機酸化物粒子〕
コアとなる無機酸化物粒子(コア粒子)の合成方法としては一般的に、以下の方法が挙げられる。
1)四塩化ケイ素や四塩化チタンのような塩化物をCVDプロセスで酸化ケイ素や酸化チタンのような酸化物微粒子とする方法。この方法によれば、粒径は小さく球状となるが、細粒径分布が広くなる傾向がある。
2)硝酸アルミニウムのような金属塩の水溶液のpH値を酸性から塩基性に調整し、塩析することで、金属酸化物とする方法。この方法によれば、粒子形状は不定形で粒径も大きく、粒径分布が広くなる傾向がある。
One embodiment of the present invention will be described below.
[Inorganic oxide particles as core]
As a synthesis method of the inorganic oxide particles (core particles) serving as the core, the following methods are generally mentioned.
1) A method of converting chlorides such as silicon tetrachloride and titanium tetrachloride into oxide fine particles such as silicon oxide and titanium oxide by a CVD process. According to this method, the particle size is small and spherical, but the fine particle size distribution tends to be wide.
2) A method of preparing a metal oxide by adjusting the pH value of an aqueous solution of a metal salt such as aluminum nitrate from acidic to basic and salting out. According to this method, the particle shape is indefinite, the particle size is large, and the particle size distribution tends to be wide.

上記のような一般的な方法で調製される無機酸化物粒子の表面に金属酸化物を本願発明の作製方法で形成することは可能であるので、本願発明の対象とするコア粒子から必ずしも除外されるものではない。
3)一方、金属アルコキシドを原料として、金属酸化物粒子を塩基性下で作製し無機酸化物粒子とする方法がゾルーゲル法としてよく知られている。
Since it is possible to form a metal oxide on the surface of inorganic oxide particles prepared by the general method as described above by the production method of the present invention, it is not necessarily excluded from the core particles targeted by the present invention. It is not something.
3) On the other hand, a method of using metal alkoxide as a raw material to produce metal oxide particles under basicity to form inorganic oxide particles is well known as a sol-gel method.

ゾルーゲル法は粒径の制御性が高く、粒径分布が狭い球状粒子が簡単に得られる特徴があり、本願発明に係るコア粒子として最適である。ただし、本方法で作製できるコア粒子は、特に組成を限定するものではないが、一般的に合成が容易なシリカ、チタニア、ジルコニア、アルミナ、酸化タンタルのいずれかが好適である。
上記のようにして得たコア粒子の粒子径は特に限定されず、ナノメータサイズからミクロンオーダーサイズの範囲内のものが、より好適に用いられる。
The sol-gel method is characterized by high controllability of particle size, and easily obtains spherical particles with a narrow particle size distribution, and is optimal as the core particle according to the present invention. However, the core particles that can be produced by this method are not particularly limited in composition, but silica, titania, zirconia, alumina, and tantalum oxide, which are generally easy to synthesize, are suitable.
The particle diameter of the core particles obtained as described above is not particularly limited, and those in the range of nanometer size to micron order size are more preferably used.

本発明のコア粒子表面を金属酸化物で被覆する方法は以下の通りである。   The method for coating the surface of the core particle of the present invention with a metal oxide is as follows.

前記したコア粒子を非極性溶媒に分散させる。非極性溶媒としては、一般的に入手しやすいヘキサンなどの脂肪族溶媒、シクロヘキサンなどの脂環式溶媒、トルエン、キシレンなどの芳香族溶媒などが好適である。また、エポキシモノマーや、スチレンやメタクリル酸エステルなどのビニルモノマーを場合によっては該非極性溶媒として選ぶことは可能である。   The aforementioned core particles are dispersed in a nonpolar solvent. As the nonpolar solvent, an aliphatic solvent such as hexane which is generally easily available, an alicyclic solvent such as cyclohexane, an aromatic solvent such as toluene and xylene, and the like are preferable. In addition, an epoxy monomer or a vinyl monomer such as styrene or methacrylic acid ester can be selected as the nonpolar solvent depending on the case.

コア粒子を非極性溶媒に分散させる方法としては、撹拌羽根や撹拌子を使った撹拌だけでなく、超音波振動、ホモミキサー、ボールミルあるいは遊星ミルなどの使用も分散度合いを高めるのに有効である。   As a method of dispersing the core particles in the nonpolar solvent, not only stirring using a stirring blade and a stirring bar, but also the use of ultrasonic vibration, a homomixer, a ball mill or a planetary mill is effective for increasing the degree of dispersion. .

続いて上記コア粒子の分散液に、水を添加し、水がコア粒子表面に集まるまで1分から1時間程度の時間の間、放置する。この間に撹拌等の処理をすることは時間を短縮するのに有効である。加える水は通常は中性であるが、シリカで被覆する場合は酸性や塩基性である必要がある。従って、加える水のpH値は特に限定するものでは無い。
水の添加量は通常は、金属アルコキシドの2倍モル量から100倍モル量が好適である。ただし、水の添加量によって被覆される金属酸化物膜の厚みが変わるため、予め望まれる皮膜厚みに対して金属アルコキシドと水の添加量の関係を実験的に決めておく必要がある。
Subsequently, water is added to the core particle dispersion, and the mixture is allowed to stand for about 1 minute to 1 hour until the water collects on the surface of the core particles. It is effective to shorten the time to perform a process such as stirring during this period. The water to be added is usually neutral, but it needs to be acidic or basic when coated with silica. Therefore, the pH value of the added water is not particularly limited.
Usually, the amount of water added is preferably 2 to 100 times the amount of metal alkoxide. However, since the thickness of the metal oxide film to be coated varies depending on the amount of water added, it is necessary to experimentally determine the relationship between the metal alkoxide and the amount of water added to the desired film thickness in advance.

続いて、皮膜を形成するための金属アルコキシドとしては、以下のものが市販で入手できるため好適である。もちろん、以下の金属アルコキシドに限られるわけではなく、他種の金属や、アルコキシドのアルコールとして異なる種類のものも使用可能である。
Li関連のアルコキシド:Li(OCH3), Li(OC2H5), Li(OC3H7), Li(OC4H9)
Na関連のアルコキシド:Na(OCH3), Na(OC2H5), Na(OC3H7), Na(OC4H9)
Mg関連のアルコキシド:Mg(OCH3)2, Mg(OC2H5)2, Mg(OC3H7)2, Mg(OC4H9)2
Ti関連のアルコキシド:Ti(OCH3)4, Ti(OC2H5)4, Ti(OC3H7)4, Ti(OC4H9)4
Al関連のアルコキシド:Al(OCH3)3, Al(OC2H5)3, Al(OC3H7)3, Al(OC4H9)3
Si関連のアルコキシド:Si(OCH3)4, Si(OC2H5)4, Si(OC3H7)4, Si(OC4H9)4
P関連のアルコキシド:P(OCH3)3, P(OC2H5)3, P(OC3H7)3, P(OC4H9)3, P(OCH3)5, P(OC2H5)5, P(OC3H7)5, P(OC4H9)5
B 関連のアルコキシド:B(OCH3)3, B(OC2H5)3, B(OC3H7)3, B(OC4H9)3
Zr関連のアルコキシド:Zr(OCH3)4, Zr(OC2H5)4, Zr(OC3H7)4, Zr(OC4H9)4
In関連のアルコキシド:In(OCH3)3, In(OC2H5)3, In(OC3H7)3, In(OC4H9)3
Sn関連のアルコキシド:Sn(OCH3)4, Sn(OC2H5)4, Sn(OC3H7)4, Sn(OC4H9)4
Zn関連のアルコキシド:Zn(OCH3)2, Zn(OC2H5)2, Zn(OC3H7)2, Zn(OC4H9)2
V関連のアルコキシド:VO(OCH3)3, VO(OC2H5)3, VO(OC3H7)3, VO(OC4H9)3, V(OCH3)5, V(OC2H5)5, V(OC3H7)5, V(OC4H9)5
Nb関連のアルコキシド:NbO(OCH3)3, NbO(OC2H5)3, NbO(OC3H7)3, NbO(OC4H9)3, Nb(OCH3)5, Nb(OC2H5)5, Nb(OC3H7)5, Nb(OC4H9)5
W関連のアルコキシド:W(OCH3)5, W(OC2H5)5, W(OC3H7)5, W(OC4H9)5
Ta関連のアルコキシド:Ta(OCH3)5, Ta(OC2H5)5, Ta(OC3H7)5, Ta(OC4H9)5
また、これらの金属アルコキシドは反応性が高いものが多いので、反応性を制御する目的で、酢酸や蟻酸、シュウ酸などのカルボン酸類や、アセチルアセトナトなどのβジケトン類を金属アルコキシドに対して1から10倍モルを加えても良い。
以上の金属アルコキシドは非極性溶媒に可溶であるので、コア粒子への皮膜形成反応には、非極性溶液として用いる。
Subsequently, as the metal alkoxide for forming a film, the following are available because they are commercially available. Of course, the present invention is not limited to the following metal alkoxides, and other types of metals or different kinds of alkoxide alcohols can be used.
Li-related alkoxides: Li (OCH3), Li (OC2H5), Li (OC3H7), Li (OC4H9)
Na-related alkoxides: Na (OCH3), Na (OC2H5), Na (OC3H7), Na (OC4H9)
Mg-related alkoxides: Mg (OCH3) 2, Mg (OC2H5) 2, Mg (OC3H7) 2, Mg (OC4H9) 2
Ti-related alkoxides: Ti (OCH3) 4, Ti (OC2H5) 4, Ti (OC3H7) 4, Ti (OC4H9) 4
Al-related alkoxides: Al (OCH3) 3, Al (OC2H5) 3, Al (OC3H7) 3, Al (OC4H9) 3
Si-related alkoxides: Si (OCH3) 4, Si (OC2H5) 4, Si (OC3H7) 4, Si (OC4H9) 4
P-related alkoxides: P (OCH3) 3, P (OC2H5) 3, P (OC3H7) 3, P (OC4H9) 3, P (OCH3) 5, P (OC2H5) 5, P (OC3H7) 5, P (OC4H9 )Five
B-related alkoxides: B (OCH3) 3, B (OC2H5) 3, B (OC3H7) 3, B (OC4H9) 3
Zr-related alkoxides: Zr (OCH3) 4, Zr (OC2H5) 4, Zr (OC3H7) 4, Zr (OC4H9) 4
In-related alkoxides: In (OCH3) 3, In (OC2H5) 3, In (OC3H7) 3, In (OC4H9) 3
Sn-related alkoxides: Sn (OCH3) 4, Sn (OC2H5) 4, Sn (OC3H7) 4, Sn (OC4H9) 4
Zn-related alkoxides: Zn (OCH3) 2, Zn (OC2H5) 2, Zn (OC3H7) 2, Zn (OC4H9) 2
V-related alkoxides: VO (OCH3) 3, VO (OC2H5) 3, VO (OC3H7) 3, VO (OC4H9) 3, V (OCH3) 5, V (OC2H5) 5, V (OC3H7) 5, V (OC4H9 )Five
Nb-related alkoxides: NbO (OCH3) 3, NbO (OC2H5) 3, NbO (OC3H7) 3, NbO (OC4H9) 3, Nb (OCH3) 5, Nb (OC2H5) 5, Nb (OC3H7) 5, Nb (OC4H9 )Five
W-related alkoxides: W (OCH3) 5, W (OC2H5) 5, W (OC3H7) 5, W (OC4H9) 5
Ta-related alkoxides: Ta (OCH3) 5, Ta (OC2H5) 5, Ta (OC3H7) 5, Ta (OC4H9) 5
In addition, since many of these metal alkoxides are highly reactive, carboxylic acids such as acetic acid, formic acid and oxalic acid, and β-diketones such as acetylacetonato are used to control the reactivity. 1 to 10 times mol may be added.
Since the above metal alkoxide is soluble in a nonpolar solvent, it is used as a nonpolar solution for the film formation reaction on the core particles.

前記した水を添加したコア粒子の非極性溶液に金属アルコキシド溶液を滴下する。
金属アルコキシドは水と接するとすぐに加水分解反応を起こし、続けて重縮合反応も起こすため、ほとんどの場合で数時間から10時間程度の撹拌放置で、反応系内の金属アルコキシドあるいは水のいずれかが消費され、反応が終了する。
A metal alkoxide solution is added dropwise to the non-polar solution of core particles to which water has been added.
Since the metal alkoxide undergoes a hydrolysis reaction as soon as it comes into contact with water, and subsequently causes a polycondensation reaction, in most cases, either a metal alkoxide or water in the reaction system is left to stand for several hours to 10 hours. Is consumed and the reaction ends.

ほとんどの場合では室温反応で上記皮膜形成反応は終了するが、金属アルコキシドの金属がSi, Ta, V, W, Bの場合のように加水分解反応が若干遅い場合は、反応を完結させるために、反応温度を50℃から100℃程度まで上昇させると効率よく反応を完結できる。あるいは反応の完結のために水を加えることも有効である。   In most cases, the film formation reaction is completed at room temperature, but if the metal alkoxide is a slightly slow hydrolysis reaction such as Si, Ta, V, W, B, The reaction can be completed efficiently by raising the reaction temperature from 50 ° C to about 100 ° C. Alternatively, it is also effective to add water for the completion of the reaction.

以上の反応で皮膜を形成された粒子は、濾過や、遠心分離などの方法によって回収することが可能である。回収された複合化粒子は必要に応じて加熱処理をしても良い。例えば、チタニアで皮膜をした場合、皮膜層をアナターゼやルチルのような結晶にする必要が有る場合は、その結晶化温度以上に加熱することが有効である。   The particles having a film formed by the above reaction can be collected by a method such as filtration or centrifugation. The recovered composite particles may be heat-treated as necessary. For example, when a film is formed with titania, it is effective to heat the film layer to a temperature higher than its crystallization temperature when it is necessary to make the film layer into crystals such as anatase or rutile.

本発明に係る無機酸化物膜の被膜厚みは特に限定されず、ナノメータサイズの範囲内が特に好適に用いられる。   The thickness of the inorganic oxide film according to the present invention is not particularly limited, and a nanometer size range is particularly preferably used.

本発明の複合化された粒子の用途としては、例えば、導電性フィラー、紫外線カットフィルム、赤外線カットフィルム、燃料電池などに使用されるプロトン伝導体等が挙げられる。   Applications of the composite particles of the present invention include, for example, conductive fillers, ultraviolet cut films, infrared cut films, proton conductors used in fuel cells, and the like.

〔実施例1〕
シリカ粒子は以下のゾルーゲル法で作製した。
市販の28%アンモニア水60gに水300gを加えエタノール300mlを加えアンモニア溶液を作製しA液とした。続いて、テトラエトキシシラン67gをエタノール300mlに溶解しB液とした。B液を室温でA液にゆっくり滴下した。一晩放置した後、遠心分離で粒子を回収し、50℃で24時間真空乾燥をした。粒径が350nmの均一粒径のシリカ粒子が得られた。そのSEM像を図1に示す。
[Example 1]
Silica particles were prepared by the following sol-gel method.
300 g of water was added to 60 g of commercially available 28% aqueous ammonia, and 300 ml of ethanol was added to prepare an ammonia solution, which was designated as solution A. Subsequently, 67 g of tetraethoxysilane was dissolved in 300 ml of ethanol to obtain a solution B. Liquid B was slowly added dropwise to liquid A at room temperature. After standing overnight, the particles were collected by centrifugation and vacuum dried at 50 ° C. for 24 hours. Silica particles having a uniform particle diameter of 350 nm were obtained. The SEM image is shown in FIG.

ところで、シリカ粒子の粒径は、前記A液の28%アンモニア水の使用量を変えることで制御でき、28%アンモニア水の使用量を12gにした場合は、粒径は50nmになり、28%アンモニア水の使用量を20gにした場合は、粒径は100nmになり、28%アンモニア水の使用量を30gにした場合は、粒径は170nmになり、28%アンモニア水の使用量を120gにした場合は、粒径は500nmになった。従って、望みの粒径のシリカ粒子がえられるので、このようにして得られたシリカ粒子を以下の実施例で使用した。   By the way, the particle size of the silica particles can be controlled by changing the amount of 28% ammonia water used in the liquid A. When the amount of 28% ammonia water used is 12 g, the particle size becomes 50 nm and 28% When the amount of ammonia water used is 20 g, the particle size becomes 100 nm, and when the amount of 28% ammonia water used is 30 g, the particle size becomes 170 nm and the amount of 28% ammonia water used is 120 g. In this case, the particle size was 500 nm. Accordingly, silica particles having a desired particle diameter can be obtained, and the silica particles thus obtained were used in the following examples.

上記で得られた粒径370nmのシリカ粒子60gをトルエン2400mlに分散した。分散度を上げるために超音波振動器で分散処理をした。この溶液に水を18g加えよく撹拌し、水をシリカ粒子の表面に吸着させた。これを水吸着分散液とする。続いて、チタンテトライソプロポキシド(Ti(Oi-C3H7)4)284gをトルエン1650mlに溶解しアルコキシド溶液とした。このアルコキシド溶液を前記水吸着分散液に加え、48時間撹拌をした。この反応液を遠心分離し、上澄み液を除いた後に新しいトルエンを足し再度遠心分離で上澄みを除去すること洗浄した。この洗浄操作を3回繰り返した。
以上の操作でチタニアを被覆したシリカ粒子が得られた。チタニア被覆シリカ粒子は図2に示す。このSEM写真から分かるように、粒子表面に均一にチタニアが被覆され、恐れていたチタニア単独粒子の副生は見られなかった。このSEM像からチタニア被覆シリカ粒子の直径を測定したところ、385nmであった。従って、チタニア被覆厚みは凡そ、7nm程度と見積もることができた。
60 g of the silica particles having a particle diameter of 370 nm obtained above were dispersed in 2400 ml of toluene. In order to increase the degree of dispersion, dispersion treatment was performed with an ultrasonic vibrator. 18 g of water was added to this solution and stirred well to adsorb water onto the surface of the silica particles. This is a water adsorption dispersion. Subsequently, 284 g of titanium tetraisopropoxide (Ti (Oi-C3H7) 4) was dissolved in 1650 ml of toluene to obtain an alkoxide solution. This alkoxide solution was added to the water adsorption dispersion and stirred for 48 hours. This reaction solution was centrifuged, and after removing the supernatant, fresh toluene was added, and the supernatant was removed again by centrifugation, followed by washing. This washing operation was repeated three times.
Through the above operation, silica particles coated with titania were obtained. The titania-coated silica particles are shown in FIG. As can be seen from this SEM photograph, the surface of the particles was uniformly coated with titania, and no feared by-product of titania single particles was observed. When the diameter of the titania-coated silica particles was measured from this SEM image, it was 385 nm. Therefore, the thickness of the titania coating could be estimated to be about 7 nm.

〔実施例2〕
実施例1で行なったチタニア被覆反応において、シリカ粒子に吸着させるために添加した水の量を実施例1の条件の2倍及び5倍にしただけで、他の処理は全く同じに反応させたところ、回収されたチタニア被覆シリカ粒子は図3に示したように、チタニア被覆厚みを厚くできた。水の添加量が2倍の場合はチタニア被覆厚みは凡そ、15nmと見積もることができた。さらに、水の添加量が5倍の場合はチタニア被覆厚みを凡そ、25nmと見積もることができた。
以上から、チタニア被覆厚みは水の添加量で制御できることが分かった。
[Example 2]
In the titania coating reaction performed in Example 1, the amount of water added to adsorb on the silica particles was simply doubled and doubled that of Example 1, and the other treatments were reacted in exactly the same manner. However, as shown in FIG. 3, the recovered titania-coated silica particles were able to increase the thickness of the titania coating. When the amount of water added was twice, the titania coating thickness could be estimated to be about 15 nm. Further, when the amount of water added was 5 times, the titania coating thickness could be estimated to be about 25 nm.
From the above, it was found that the titania coating thickness can be controlled by the amount of water added.

〔実施例3〕
実施例1で行なった被覆反応において、用いたシリカ粒子は粒径が350nmのものを使用し、被覆させる金属酸化物の種類をアルミニウムにするため、用いた金属酸化物の種類をアルミニウムトリイソプロポキシド(Al(Oi-C3H7)3)とし、その添加量など他の全ての条件を同じにした。アルミナ被覆反応から回収されたアルミナ被覆シリカ粒子は図4に示したように、粒子表面に均一にアルミナが被覆された。また、恐れていたアルミナ単独粒子の副生は見られなかった。このSEM像からアルミナ被覆シリカ粒子の直径を測定したところ、365nmであった。従って、アルミナ被覆厚みは凡そ、7nm程度と見積もることができた。
Example 3
In the coating reaction performed in Example 1, the silica particles used had a particle diameter of 350 nm, and the type of metal oxide to be coated was aluminum, so that the type of metal oxide used was aluminum triisopropoxy. (Al (Oi-C3H7) 3), and all other conditions such as the amount added were the same. As shown in FIG. 4, the alumina-coated silica particles recovered from the alumina coating reaction were uniformly coated with alumina on the particle surface. Moreover, the byproduct of the alumina single particle which was afraid was not seen. When the diameter of the alumina-coated silica particles was measured from this SEM image, it was 365 nm. Therefore, the thickness of the alumina coating could be estimated to be about 7 nm.

〔実施例4〕
実施例3で行なったアルミナ被覆反応において、粒径が300nmのシリカ粒子を用い、吸着させるために添加した水の量を実施例3の条件の2倍及び5倍にし、さらにアルミニウムトリイソプロポキシドの使用量をそれぞれ、実施例3の2倍及び5倍にし、他の処理は全く同じに反応させたところ、回収されたアルミナ被覆シリカ粒子は図5に示したように、アルミナ被覆厚みを厚くできた。水の添加量が2倍の場合(この時、アルミニウムトリイソプロポキシドも2倍)では、アルミナ被覆厚みは凡そ、10nmと見積もることができた。さらに、水の添加量が5倍の場合(この時、アルミニウムトリイソプロポキシドも5倍)では、アルミナ被覆厚みを凡そ、15nmと見積もることができた。
以上から、アルミナ被覆厚みは水の添加量と金属アルコキシドの添加量を制御することで、望みの厚みにできることが分かった。
ただし、この場合は、水の添加量が2倍以上になると、アルミナの単独粒子が副生していることが分かる。
Example 4
In the alumina coating reaction performed in Example 3, silica particles having a particle size of 300 nm were used, and the amount of water added for adsorption was doubled and five times that of Example 3 , and aluminum triisopropoxide was further added. The amount used was 2 times and 5 times that of Example 3 and the other treatments were reacted in exactly the same manner. As shown in FIG. 5, the recovered alumina-coated silica particles were thickened as shown in FIG. did it. When the amount of water added was double (at this time, aluminum triisopropoxide was doubled), the alumina coating thickness could be estimated to be about 10 nm. Furthermore, when the amount of water added was 5 times (at this time, aluminum triisopropoxide was also 5 times), the alumina coating thickness could be estimated to be about 15 nm.
From the above, it was found that the alumina coating thickness can be set to a desired thickness by controlling the amount of water and the amount of metal alkoxide added.
In this case, however, it can be seen that when the amount of water added is twice or more, single particles of alumina are by-produced.

〔実施例5〕
実施例1で行なった被覆反応において、粒径が320nmのシリカ粒子を使用し、被服させる金属酸化物の種類を酸化リンにするため、用いた金属酸化物の種類をフォスフォラスオキシトリエトキシド(PO(OC2H5)3)とし、その添加量など他の全ての条件を同じにした。リン被覆反応から回収されたリン被覆シリカ粒子は図6に示したように、粒子表面に均一に酸化リンが被覆された。ただし、この場合は回収されたリン被覆粒子の洗浄過程で、酸化リンの被覆層が一部除去されており、被覆厚みは非常に薄いものになった。ただ、この場合も、恐れていた酸化リン単独粒子の副生は見られず、均一は被覆層が形成できた。このSEM像から酸化リン被覆シリカ粒子の直径を測定したところ、ほとんどコアのシリカ粒子と違わなかったので、被覆厚みの測定はできなかった。
Example 5
In the coating reaction performed in Example 1, silica particles having a particle size of 320 nm were used, and the type of metal oxide to be coated was phosphorous oxide. Therefore, the type of metal oxide used was phosphorous oxytriethoxide ( PO (OC2H5) 3) and all other conditions such as the amount added were the same. The phosphorus-coated silica particles recovered from the phosphorus-coating reaction were uniformly coated with phosphorus oxide as shown in FIG. However, in this case, a part of the phosphorus oxide coating layer was removed during the cleaning of the recovered phosphorus-coated particles, and the coating thickness was very thin. However, in this case as well, the by-product of the feared phosphorus oxide single particles was not seen, and a coating layer could be formed uniformly. When the diameter of the phosphorus oxide-coated silica particles was measured from this SEM image, the coating thickness could not be measured because it was hardly different from the core silica particles.

〔実施例6〕
実施例1で行なった被覆反応において、粒径が320nmのシリカ粒子を使用し、被服させる金属酸化物の種類を酸化リチウムにするため、用いた金属酸化物の種類をリチウムエトキシド(Li(OC2H5))とし、その添加量など他の全ての条件を同じにした。この場合も、粒子表面に均一に酸化リチウムが被覆された。ただし、この場合は回収された被覆粒子の洗浄過程で、酸化リチウムの被覆層が一部除去されており、被覆厚みは非常に薄いものになった。ただ、この場合も、恐れていた酸化リチウム単独粒子の副生は見られず、均一は被覆層が形成できた。このSEM像から酸化リチウム被覆シリカ粒子の直径を測定したところ、ほとんどコアのシリカ粒子と違わなかったので、被覆厚みの測定はできなかった。
Example 6
In the coating reaction carried out in Example 1, silica particles having a particle size of 320 nm were used, and the type of metal oxide to be applied was lithium oxide, so that the type of metal oxide used was lithium ethoxide (Li (OC2H5 )), And all other conditions such as the amount added were the same. Also in this case, the surface of the particles was uniformly coated with lithium oxide. However, in this case, a part of the lithium oxide coating layer was removed during the cleaning of the recovered coated particles, and the coating thickness was very thin. However, in this case as well, the by-product of the lithium oxide single particles that had been afraid was not seen, and a coating layer could be formed uniformly. When the diameter of the lithium oxide-coated silica particles was measured from this SEM image, the coating thickness could not be measured because it was almost the same as the core silica particles.

以上の実施例から、シリカ粒子の表面に均一な金属酸化物の被覆が可能であることが分かった。また、被覆厚みは添加する水や金属アルコキシドの量比で制御できることも分かった。また、被覆層の金属酸化物の単独組成の副生粒子もたいへん少ないことが分かった。これらの特徴は本発明の大きな特徴であり、従来の方法では得られない効果である。   From the above examples, it was found that the surface of the silica particles can be coated with a uniform metal oxide. It was also found that the coating thickness can be controlled by the amount ratio of water and metal alkoxide to be added. It was also found that the amount of by-product particles having a single composition of the metal oxide in the coating layer was very small. These features are major features of the present invention, and are effects that cannot be obtained by conventional methods.

本発明の金属酸化物被覆酸化物粒子は、従来の単独組成の酸化物粒子の機能を上げ、様々な応用分野に展開されえる。例えば、屈折率の高い金属酸化物で、屈折率の低い金属酸化物を被覆すると、屈折率の制御された複合粒子が得られ、ディスプレイの光学フィルムへの応用が考えられる。同様に誘電率の大きなものと小さなものと組み合わせると、望みの誘電率の複合粒子が得られ、半導体の誘電絶縁膜への応用が考えられる。さらに、被覆層に酸性度の高い酸化物を被覆するとプロトン伝導体への応用や、また、リチウム酸化物を被覆するとリチウムイオン伝導体への応用も挙げられる。     The metal oxide-coated oxide particles of the present invention enhance the function of conventional oxide particles having a single composition and can be developed in various application fields. For example, when a metal oxide having a high refractive index and a metal oxide having a low refractive index are coated, composite particles having a controlled refractive index can be obtained, and application to an optical film of a display can be considered. Similarly, when particles having a large dielectric constant and those having a small dielectric constant are combined, composite particles having a desired dielectric constant can be obtained, and application to a semiconductor dielectric insulating film can be considered. Furthermore, when the coating layer is coated with an oxide having high acidity, it can be applied to a proton conductor, and when it is coated with lithium oxide, it can be applied to a lithium ion conductor.

本発明の一実施の形態に係るシリカ粒子のSEM像である。It is a SEM image of the silica particle which concerns on one embodiment of this invention. チタニアで被覆前後のシリカ粒子のSEM像である。It is a SEM image of the silica particle before and behind coating with titania. チタンアルコキシドと添加水とのモル比の、チタニア被覆厚みへの影響を示すSEM像である。It is a SEM image which shows the influence on the titania coating thickness of the molar ratio of a titanium alkoxide and addition water. アルミナで被覆前後のシリカ粒子のSEM像である。It is a SEM image of the silica particle before and behind coating with alumina. Al/Si比の皮膜厚みへの影響を示すSEM像である。It is a SEM image which shows the influence on the film thickness of Al / Si ratio. P2O5で被覆前後のシリカ粒子のSEM像である。Is an SEM image of silica particles before and after coated with P 2 O 5.

Claims (5)

無機酸化物膜で被覆されてなる複合酸化物粒子の作製方法であって、以下の工程(1)〜(3)により作製されることを特徴とする複合酸化物粒子の作製方法。
(1)コアとなる無機酸化物粒子を非極性有機溶媒に加え分散させて分散液を調製する工程
(2)該分散液に水を加えコア粒子表面に水分子を吸着させる工程
(3)非極性有機溶媒に溶解させた金属アルコキシドを前記分散液に添加する工程
A method for producing composite oxide particles coated with an inorganic oxide film, which is produced by the following steps (1) to (3).
(1) Step of preparing a dispersion by adding inorganic oxide particles as a core to a non-polar organic solvent and dispersing (2) Step of adding water to the dispersion to adsorb water molecules on the surface of the core particles (3) Adding a metal alkoxide dissolved in a polar organic solvent to the dispersion
コアとなる無機酸化物粒子が、ゾル−ゲル法によって得られる均一粒径の酸化物粒子であって、シリカ、チタニア、ジルコニア、アルミナ、酸化タンタルからなる群より選ばれる少なくともいずれか1種の酸化物粒子であることを特徴とする請求項1記載の複合酸化物粒子の作製方法。   The core inorganic oxide particles are oxide particles having a uniform particle diameter obtained by a sol-gel method, and at least one oxidation selected from the group consisting of silica, titania, zirconia, alumina, and tantalum oxide. The method for producing composite oxide particles according to claim 1, wherein the composite oxide particles are product particles. 非極性有機溶媒に溶解した金属アルコキシドが、以下の構造であることを特徴とする請求項1又は2記載の複合酸化物粒子の作製方法。
Mn(OR)x
(ただし、Mは金属アルコキシドを作り得る金属元素であり、Oは酸素原子、Rは炭素数が1から12の直鎖あるいは分枝鎖型のアルキル基、nとxは整数である。)
The method for producing composite oxide particles according to claim 1 or 2, wherein the metal alkoxide dissolved in the nonpolar organic solvent has the following structure.
M n (OR) x
(However, M is a metal element capable of forming a metal alkoxide, O is an oxygen atom, R is a linear or branched alkyl group having 1 to 12 carbon atoms, and n and x are integers.)
Mが、Li,Na,Mg,Ti,Al,Si,P,B,Zr,In,Sn,Zn,V,Nb,W,Taからなる群より選ばれる少なくともいずれか1種の金属元素を含むことを特徴とする請求項3記載の複合酸化物粒子の作製方法。   M includes at least one metal element selected from the group consisting of Li, Na, Mg, Ti, Al, Si, P, B, Zr, In, Sn, Zn, V, Nb, W, and Ta The method for producing composite oxide particles according to claim 3. 反応完結処理工程として、(4)未反応の金属アルコキシドの反応を終了させる工程をさらに含み、少なくとも下記(4−A)(4−B)の何れかの処理を行なうことを特徴とする請求項1〜4のいずれか1項記載の複合酸化物粒子の作製方法。
(4−A)室温、加熱下、又は加圧下で熟成する工程
(4−B)過剰の水を多量に加える工程
The reaction completion treatment step further includes (4) a step of terminating the reaction of the unreacted metal alkoxide, and at least one of the following treatments (4-A) and (4-B) is performed: The method for producing a composite oxide particle according to any one of 1 to 4.
(4-A) Step of aging under room temperature, heating, or pressure (4-B) Step of adding a large amount of excess water
JP2005204662A 2005-07-13 2005-07-13 Composite oxide particles and method for producing the same Expired - Fee Related JP4994611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005204662A JP4994611B2 (en) 2005-07-13 2005-07-13 Composite oxide particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005204662A JP4994611B2 (en) 2005-07-13 2005-07-13 Composite oxide particles and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007022827A JP2007022827A (en) 2007-02-01
JP4994611B2 true JP4994611B2 (en) 2012-08-08

Family

ID=37784087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005204662A Expired - Fee Related JP4994611B2 (en) 2005-07-13 2005-07-13 Composite oxide particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP4994611B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7947125B1 (en) * 2009-10-30 2011-05-24 Canon Kabushiki Kaisha Fine particle dispersion liquid containing tantalum oxide fine particles, tantalum oxide fine particle-resin composite, and method of producing fine particle dispersion liquid
JP5477192B2 (en) * 2010-06-23 2014-04-23 富士ゼロックス株式会社 Method for producing silica particles
JP5477193B2 (en) 2010-06-24 2014-04-23 富士ゼロックス株式会社 Silica particles and method for producing the same
JP5488255B2 (en) * 2010-06-25 2014-05-14 富士ゼロックス株式会社 Silica particles and method for producing the same
JP5741005B2 (en) 2011-01-20 2015-07-01 富士ゼロックス株式会社 Resin particles and method for producing the same
JP5724401B2 (en) 2011-01-19 2015-05-27 富士ゼロックス株式会社 Resin particles and method for producing the same
JP5831378B2 (en) 2011-12-01 2015-12-09 富士ゼロックス株式会社 Silica composite particles and method for producing the same
JP5862467B2 (en) 2012-06-08 2016-02-16 富士ゼロックス株式会社 Method for producing silica composite particles
JP2014091658A (en) * 2012-11-06 2014-05-19 Nippon Steel Sumikin Materials Co Ltd Spherical particle and method of producing spherical particle
JP5915555B2 (en) 2013-01-28 2016-05-11 富士ゼロックス株式会社 Silica composite particles and method for producing the same
JP6347653B2 (en) * 2014-04-21 2018-06-27 新日鉄住金マテリアルズ株式会社 Method for producing spherical particles

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0628719B2 (en) * 1990-06-13 1994-04-20 工業技術院長 Method of coating fine particle surface
JPH04160006A (en) * 1990-10-23 1992-06-03 Teijin Ltd Production of metal oxide plate particles
JPH04175219A (en) * 1990-11-08 1992-06-23 Ube Nitto Kasei Co Ltd Fine silica particle coated with zirconia and its production
JP4033620B2 (en) * 2000-09-13 2008-01-16 触媒化成工業株式会社 Spacer particles and liquid crystal display device using the spacer particles
JP4773626B2 (en) * 2001-03-28 2011-09-14 株式会社トクヤマ Spherical inorganic oxide particles
JP4139090B2 (en) * 2001-06-28 2008-08-27 触媒化成工業株式会社 Method for producing spherical particles with crystalline titanium oxide coating layer
JP2003327869A (en) * 2002-05-13 2003-11-19 Yoshiyuki Nagae Coating, paint and method for producing coating
JP4279206B2 (en) * 2003-06-25 2009-06-17 株式会社トクヤマ External toner additive

Also Published As

Publication number Publication date
JP2007022827A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
JP4994611B2 (en) Composite oxide particles and method for producing the same
JP5881394B2 (en) Silica-based composite particles and method for producing the same
KR101396803B1 (en) Low temperature process for producing nano-sized titanium dioxide particles
JP4550753B2 (en) Method for producing surface-treated titanium oxide sol
JP5034264B2 (en) Oxide composite and method for producing the same
AU2006350519B2 (en) Iron oxide containing precipitated crystalline titanium dioxide and process for the manufacture thereof
TW201138943A (en) Silane-surface treated metal oxide fine particles and production method thereof
CN108295836B (en) Preparation method of ATO/silicon dioxide/titanium dioxide composite material with core-shell structure
WO2000035811A1 (en) Perovskite type composite oxide containing titanium
JP5787745B2 (en) Method for producing silica-based composite particles
JPH06207118A (en) White conductive titanium dioxide powder and its production
JP2009298614A (en) Titanium oxide-based particles and its producing method
JP4933941B2 (en) Method for producing titanic acid nanosheet
JP2024518777A (en) Nano titanate, nano titanic acid, nano TiO2 manufacturing method, and uses thereof
JP4851685B2 (en) Method for producing rutile type titanium oxide ultrafine particles
JP2024515312A (en) Nanotitanate with embedded nanoparticles, nanotitanic acid, method for producing nano-TiO2, and method for producing metal nanoparticles
JP4922038B2 (en) Metal oxide fine particle dispersion and method for producing the same
WO2013062491A1 (en) Synthesis method for obtaining anatase nanoparticles of high specific surface area and spherical morphology
JP2008239464A (en) Metal oxide fine particle dispersion and method for producing the same
JP3490013B2 (en) Method for producing titanium oxide forming solution
JP2008239461A (en) Metal oxide fine particle dispersion material and method for manufacturing the same
JP2003012324A (en) Spherical particles with titanium oxide coating layer and their producing method
JP2000247638A (en) Production of liquid dispersion of crystalline titanium dioxide grains
JP2013180901A (en) Granular composite particle and method for producing the same
JP4973050B2 (en) Manufacturing method of crystalline oxide film of composite oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080711

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20081015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees