JP4993661B2 - Pneumatic vibration test equipment - Google Patents

Pneumatic vibration test equipment Download PDF

Info

Publication number
JP4993661B2
JP4993661B2 JP2006085580A JP2006085580A JP4993661B2 JP 4993661 B2 JP4993661 B2 JP 4993661B2 JP 2006085580 A JP2006085580 A JP 2006085580A JP 2006085580 A JP2006085580 A JP 2006085580A JP 4993661 B2 JP4993661 B2 JP 4993661B2
Authority
JP
Japan
Prior art keywords
side cover
rotating disk
pneumatic
compressed air
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006085580A
Other languages
Japanese (ja)
Other versions
JP2007263590A (en
Inventor
晃 前川
道明 鈴木
Original Assignee
株式会社原子力安全システム研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社原子力安全システム研究所 filed Critical 株式会社原子力安全システム研究所
Priority to JP2006085580A priority Critical patent/JP4993661B2/en
Publication of JP2007263590A publication Critical patent/JP2007263590A/en
Application granted granted Critical
Publication of JP4993661B2 publication Critical patent/JP4993661B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

本発明は、空気圧式振動試験装置に関するものであり、振動試験装置の構造の簡素化と小型化を図ることにより、試験体の形態や材質に制約されることなく、試験体への付加的な質量を必要としない精密な振動試験を簡単且つ迅速に行えるようにした空気圧式加振装置に関するものである。   The present invention relates to a pneumatic vibration test apparatus, and by simplifying the structure of the vibration test apparatus and reducing the size thereof, the present invention is not limited by the form and material of the test body, and can be added to the test body. The present invention relates to a pneumatic vibration device that can easily and quickly perform a precise vibration test that does not require mass.

各種材料の機械的定数を求めたり、或いは設計製作された機器や装置の固有振動数を確認したりする場合には、所謂振動試験を行う必要があり、一般には、試験体(対象物)を設置する支持部と、試験体に振動を与える加振部と、試験体の応答を検出する検出部と、検出信号に基づいて固有振動数等を演算する演算処理部とを備えた振動試験装置が用いられている。   When obtaining the mechanical constants of various materials or checking the natural frequencies of designed and manufactured equipment or devices, it is necessary to perform a so-called vibration test. A vibration test apparatus comprising: a support unit to be installed; a vibration unit that applies vibration to the test body; a detection unit that detects a response of the test body; and an arithmetic processing unit that calculates a natural frequency based on the detection signal. Is used.

また、前記加振部には、試験体の振動特性に影響を与えないと云う観点から非接触式の加振装置が多く利用されており、放電加振装置、磁気加振装置、音波加振装置、空気加振装置等の各種の加振装置が開発されている。
その中でも、空気加振装置は、試験体が非磁性材製であっても、或いは試験体の形態が複雑な形態の場合であっても、比較的容易に適用することができ、高い実用性を具備している。
In addition, a non-contact type vibration device is often used for the vibration unit from the viewpoint that it does not affect the vibration characteristics of the specimen, and a discharge vibration device, a magnetic vibration device, a sound wave vibration device, Various vibration devices such as a device and an air vibration device have been developed.
Among them, the air vibration device can be applied relatively easily even when the test body is made of a non-magnetic material or the test body has a complicated form, and has high practicality. It has.

図5は、振動試験装置の一種である物体の変形特性測定装置の一例を示すものであり(特開2004−69668号)、コンプレッサ41からの加圧空気を、レギュレータ42、電磁弁43、チューブ23及び空気ノズル24を通して試験体25へ噴出すると共に、前記電磁弁43を所定の周期T1で連続開閉することにより、パルス状の空気圧を試験体25に与え、試験体25を加振する。また、振動測定センサ26により、前記パルス状空気圧による加振の結果試験体に生じた加速度、速度又は変位の内の少なくとも一つが検出され、その検出信号は圧力センサ27の検出信号と共にコンピュータ28へ入力される。 FIG. 5 shows an example of an object deformation characteristic measuring apparatus which is a kind of vibration test apparatus (Japanese Patent Laid-Open No. 2004-69668). The pressurized air from the compressor 41 is supplied to the regulator 42, the electromagnetic valve 43, and the tube. 23 and thereby ejected to the specimen 25 through the air nozzle 24, by continuously opening and closing the electromagnetic valve 43 at a predetermined period T 1, the pulsed air pressure applied to the test body 25 to vibrate the specimen 25. The vibration measurement sensor 26 detects at least one of acceleration, velocity or displacement generated in the test body as a result of the excitation by the pulsed air pressure, and the detection signal is sent to the computer 28 together with the detection signal of the pressure sensor 27. Entered.

前記コンピュータ28では、空気ノズル24から噴出したパルス状空気により試験体25に与えられた加振力と、振動センサ26により検出した前記加速度、速度又は変位の内の何れか一つとの間の伝達特性及びこれを用いた物体の変形特性が演算されると共に、コントロールボックス29へ電磁弁43の作動周期(空気圧パルスの周期T1)等の制御信号が送られ、コントロールボックス29を介して電磁弁43の作動制御等が行われる。 In the computer 28, transmission between the excitation force applied to the test body 25 by the pulsed air ejected from the air nozzle 24 and any one of the acceleration, velocity or displacement detected by the vibration sensor 26. The characteristic and the deformation characteristic of the object using the same are calculated, and a control signal such as an operation period (pneumatic pulse period T 1 ) of the electromagnetic valve 43 is sent to the control box 29, and the electromagnetic valve is transmitted via the control box 29. 43 operation control etc. are performed.

上記図5の振動試験装置に於ける空気加振装置は、イ.試験体の形状に影響されることなく加振用圧力を均一に付与することができ、如何なる形状の試験体であって容易に振動試験を行えること、ロ.試験体に加わる衝撃が比較的少なく、損傷を与えることがない等の高い実用的効用を有するものである。
しかし、電磁弁43の開閉によりパルス状の空気流を発生する構成としているため高い加振周波数を得ることが基本的に困難であり、高速型電磁弁を使用したとしても、50サイクル程度が上限であり、更に、高速電磁弁使用は、空気圧及び空気流量の点で制約を受けることになり、結果として振動周波数及び加振力の選定範囲が極めて狭いものになると云う問題がある。
The air vibration device in the vibration test apparatus shown in FIG. A vibration pressure can be uniformly applied without being affected by the shape of the test body, and any shape of the test body can be easily subjected to a vibration test; It has a high practical utility such that the impact applied to the specimen is relatively small and does not cause damage.
However, since it is configured to generate a pulsed air flow by opening and closing the solenoid valve 43, it is basically difficult to obtain a high excitation frequency, and even if a high-speed solenoid valve is used, the upper limit is about 50 cycles. Furthermore, the use of a high-speed solenoid valve is restricted in terms of air pressure and air flow rate, and as a result, there is a problem that the selection range of vibration frequency and excitation force becomes extremely narrow.

一方、材料の疲労試験装置等の分野に於いては、図6に示すような構造のエア式非接触加振装置を用いることにより、270〜5300HZ程度の高周波空気圧パルス流を得られるようにした技術が開示されている(特開2004−77163号)。 On the other hand, at the fields of fatigue testing device of the material, by using an air non-contact vibration device having a structure as shown in FIG. 6, so as to obtain a 270~5300H Z a high frequency of approximately pneumatic pulse stream Have been disclosed (Japanese Patent Laid-Open No. 2004-77163).

即ち、図6に於いて、30は疲労試験の対象である試験体、31は保持架台、32は伸縮自在な中空管、33はパルス発生器本体胴部、34はモータ、35はシャフト、36は圧力センサ、37は空気噴出ノズル体、38は固定側孔あき円盤、39は回転側孔あき円盤である。   That is, in FIG. 6, 30 is a specimen to be subjected to a fatigue test, 31 is a holding frame, 32 is a telescopic hollow tube, 33 is a pulse generator main body, 34 is a motor, 35 is a shaft, 36 is a pressure sensor, 37 is an air ejection nozzle body, 38 is a fixed side perforated disk, and 39 is a rotation side perforated disk.

前記固定側孔あき円盤38は、外周縁部に複数個(4〜8)の小孔が所定の角度間隔で同一円周上に穿設されたものであり、ノズル体37の入口側に固定されている。また、回転側孔あき円盤39は、モータシャフト35の先端にこれと同芯状に固定されており、且つ回転側孔あき円盤39の外周縁部には、前記固定側孔あき円盤38と同数の小孔が同角度間隔で同一円周上に穿設されている。更に、前記固定側孔あき円盤38と回転側孔あき円盤39とは、同芯軸で対向状に且つ気密性を保持した状態で摺動回転可能に配設されており、入口40から流入した空気は、両円盤38、39の各小孔が合致したときに、両小孔を通して本体胴部33から空気噴出ノズル体37側へ流通する。   The fixed-side perforated disk 38 has a plurality of (4 to 8) small holes formed on the outer peripheral edge thereof at predetermined angular intervals on the same circumference, and is fixed to the inlet side of the nozzle body 37. Has been. The rotation side perforated disk 39 is fixed concentrically to the tip of the motor shaft 35, and the same number as the fixed side perforated disk 38 is provided on the outer peripheral edge of the rotation side perforated disk 39. Are formed at the same angular interval on the same circumference. Further, the fixed-side perforated disk 38 and the rotary-side perforated disk 39 are arranged so as to be slidable and rotatable in a state of being concentric with each other and maintaining airtightness. When the small holes of both disks 38 and 39 match, the air flows from the main body body 33 to the air ejection nozzle body 37 side through the small holes.

尚、前記両円盤38、39の各小孔を通して空気噴出ノズル体37側へ流通する空気流の単位時間当りの数(即ち、パルス状空気流の周波数)は、両円盤38、39の外周部分に穿設した小孔の数と回転側円盤の回転数とから決定され、モータ34の回転数を制御することにより、前述の如く270〜5300Hzの高周波パルス状空気流が得られる構成となっている。又、大きい加振力を得るためにノズルの長さを調整して共鳴させることから、ノズルの長さを周波数を変更する度に調整する構成としており、更に、音の共鳴減少を利用することから、前記270〜5000Hzの高周波数領域の加振に対応したものとしている。   The number of airflows per unit time (that is, the frequency of the pulsed airflow) flowing through the small holes of the disks 38 and 39 to the side of the air ejection nozzle body 37 is the outer peripheral portion of the disks 38 and 39. As described above, a high-frequency pulsed air flow of 270 to 5300 Hz can be obtained by controlling the number of rotations of the motor 34. Yes. Also, since the nozzle length is adjusted to resonate in order to obtain a large excitation force, the nozzle length is adjusted every time the frequency is changed, and furthermore, the resonance reduction of sound is used. Therefore, it corresponds to the excitation in the high frequency region of 270 to 5000 Hz.

上記図6に示した疲労試験装置用のエア式非接触加振装置は、5000Hzを超える高周波のパルス状空気流を容易に得ることができるうえ、加振周波数の調整も簡単に行えると云う優れた実用的効用を有するものである。   The air-type non-contact vibration exciter for the fatigue test apparatus shown in FIG. 6 is excellent in that it can easily obtain a high-frequency pulsed air flow exceeding 5000 Hz and can easily adjust the vibration frequency. It has a practical utility.

しかし、この図6に示した疲労試験装置は、エア式非接触加振装置が疲労試験装置用のものであるため大型で、取扱い性に欠けると云う難点がある。
また、複数個の小孔38a、39aを有する固定側孔あき円盤38と回転側孔あき円盤39とを気密状に面接触させた状態で、回転側孔あき円盤39を高速回転させる必要があるため、図7に示す如く、両孔あき円盤38、39の摺動面のみならず、回転側孔あき円盤39のモータ側の側面39bの全面をシールされた構造とする必要がある。その結果、回転孔あき側円盤39が高速回転することも相俟って、両孔あき円盤38、39間の気密性の保持や孔あき円盤39のモータ側面39bの気密性の保持が極めて困難となり、加振装置の点検、補修に手数がかかると云う難点がある。
However, the fatigue test apparatus shown in FIG. 6 has a disadvantage that it is large and lacks in handling because the pneumatic non-contact vibration apparatus is for a fatigue test apparatus.
Further, it is necessary to rotate the rotating side perforated disk 39 at a high speed in a state where the fixed side perforated disk 38 having a plurality of small holes 38a and 39a and the rotating side perforated disk 39 are in airtight surface contact. Therefore, as shown in FIG. 7, it is necessary to have a structure in which not only the sliding surfaces of the two-holed disks 38 and 39 but also the entire surface 39b on the motor side of the rotary-side holey disk 39 is sealed. As a result, it is extremely difficult to maintain the airtightness between the two perforated disks 38 and 39 and to maintain the airtightness of the motor side surface 39b of the perforated disk 39 due to the fact that the rotating perforated disk 39 rotates at a high speed. Therefore, there is a problem that it takes time to check and repair the vibration device.

特開2003−98031号JP 2003-98031 A 特開平10−253490号JP-A-10-253490 特開2004−117323JP 2004-117323 A 特開2004−69668JP2004-69668 特開2004−77163JP 2004-77163 A

本発明は、従前の空気圧式振動試験装置における上述の如き問題、即ちイ.電磁弁の開閉作動によりパルス状空気圧流を得る構造の加振装置では、電磁弁の作動特性上の制約から発生可能なパルス状空気圧流の周波数の上限が50〜100Hz程度であり、振動試験体の種類によっては必要とする振動周波数が得られないこと、ロ.疲労試験装置で用いられている複数の小孔を穿設した固定側円盤と回転側円盤との組合せから成るパルス状空気圧流の発生機構を用いた加振装置においては、パルス状空気圧流の発生部の気密性の保持が難しく、その点検、補修に多くの手数を必要とすること、ハ.疲労試験装置用の空気圧式加振装置は極めて大型であって取扱性に欠け、これをそのままプラスチック製構造体等の振動試験用の加振装置に適用することは困難であること等の問題を解決せんとするものであり、試験体の材質や形態等に関係なく適用できると共に、振動試験に必要とする周波数範囲の振動数が容易に得られ、しかも小型軽量であって取扱性に優れ、補修や点検の頻度の低減を可能とした空気圧式振動試験装置を提供することを発明の主目的とするものである。   The present invention relates to the above-mentioned problems in the conventional pneumatic vibration test apparatus, namely, i. In the vibration exciter having a structure in which a pulsed pneumatic flow is obtained by opening and closing the solenoid valve, the upper limit of the frequency of the pulsed pneumatic flow that can be generated due to restrictions on the operating characteristics of the solenoid valve is about 50 to 100 Hz. The required vibration frequency cannot be obtained depending on the type of b. Generation of a pulsed pneumatic flow in a vibration device using a mechanism for generating a pulsed pneumatic flow consisting of a combination of a stationary disk and a rotating disk with a plurality of small holes used in a fatigue testing device It is difficult to maintain the airtightness of the parts, and a lot of work is required for inspection and repair. The pneumatic exciter for fatigue testing equipment is extremely large and lacks handleability, and it is difficult to apply it directly to an exciter for vibration testing of plastic structures. It can be applied regardless of the material and form of the test specimen, and can easily obtain the frequency in the frequency range required for the vibration test. The main object of the present invention is to provide a pneumatic vibration testing apparatus capable of reducing the frequency of repairs and inspections.

上記発明の課題を解決するため、本願請求項1の発明は、圧縮空気を高速で開閉を繰り返す弁装置を通過させ、定盤に固定した試験体に間歇的に吹き付けることにより試験体に振動的加振力を与える空気圧式振動試験装置において、前記弁装置を、外周縁部に一つの小孔を穿設した回転円盤と、当該回転円板を回転駆動するモータと、回転円盤の外周縁部の前記小孔を穿設した部分の両側面に当該回転円盤の側面と気密状に且つ摺動可能に配設した入口側カバ及び噴出側カバと、から形成し、回転円盤の回転により入口側カバ内から小孔を通して前記噴出側カバ内へ流入したパルス状空気圧流を、噴出ノズルから噴射する構成としたものである。 In order to solve the above-mentioned problems, the invention of claim 1 of the present application is such that compressed air is passed through a valve device that repeatedly opens and closes at high speed, and is intermittently blown onto a test body fixed to a surface plate to vibrate the test body. In the pneumatic vibration test apparatus for applying an excitation force, the valve device includes a rotating disk having a small hole formed in the outer peripheral edge, a motor for rotating the rotating disk, and an outer peripheral edge of the rotating disk. An inlet side cover and an ejection side cover, which are arranged in airtight and slidable manner on the both sides of the portion where the small hole is formed, and are formed on the inlet side by the rotation of the rotating disk. A pulsed airflow that has flowed into the ejection side cover through a small hole from the inside of the cover is ejected from the ejection nozzle.

請求項2の発明は、圧縮空気を高速で開閉を繰り返す弁装置を通過させ、定盤に固定した試験体に間歇的に吹き付けることにより試験体に振動的加振力を与える空気圧式振動試験装置において、前記弁装置を、外周縁部に複数の小孔を所定の一定角度ピッチ又はランダムな角度ピッチで穿設した回転円盤と、当該回転円盤を回転駆動するモータと、回転円盤の前記モータと対向する側の側面に当該側面と気密状に且つ摺動可能に配設した入口側カバと、回転円盤の他方の側面に当該側面と気密状に且つ摺動可能に配設した噴出側カバと、から形成し、回転円盤の回転により入口側カバ内から複数の小孔を通して前記噴出側カバ内へ流入したパルス状空気圧流を、噴出ノズルから噴出する構成としたものである。 The invention according to claim 2 is a pneumatic vibration test apparatus that applies a vibrational excitation force to a test body by allowing compressed air to pass through a valve device that repeatedly opens and closes at high speed and intermittently sprays it onto the test body fixed to a surface plate. In the present invention, the valve device includes a rotating disk having a plurality of small holes formed at an outer peripheral edge at a predetermined constant angle pitch or a random angle pitch, a motor for rotating the rotating disk, and the motor of the rotating disk; An inlet-side cover disposed on the opposite side surface so as to be airtight and slidable with the side surface; and an ejection-side cover disposed on the other side surface of the rotating disk so as to be airtight and slidable with the side surface. , And a pulsed pneumatic flow that flows into the ejection side cover through a plurality of small holes from the entrance side cover by the rotation of the rotating disk is ejected from the ejection nozzle.

請求項3の発明は、圧縮空気を高速で開閉を繰り返す弁装置を通過させ、定盤に固定した試験体に間歇的に吹き付けることにより試験体に振動的加振力を与える空気圧式振動試験装置において、前記弁装置を、形態の異なる複数の小孔を所望のピッチで穿設した帯状の金属フイルムと、当該金属フイルムをエンドレス状に回動可能に支持するローラと、前記金属フイルムを回動させるモータと、回動する金属フイルムの一側の側面に当該側面と気密状に且つ摺動可能に配設した入口側カバと、前記金属フイルムの他方の側面に当該側面と気密状に且つ摺動可能に配設した噴出側カバと、から形成し、金属フイルムの回動により入口側カバ内から小孔を通して前記噴出側カバ内へ流入したパルス状空気圧流を、噴出ノズルから噴出する構成としたものである。 According to a third aspect of the present invention, a pneumatic vibration test apparatus for applying a vibration excitation force to a test body by allowing compressed air to pass through a valve device that repeatedly opens and closes at high speed and intermittently blows the test air to a test body fixed to a surface plate. The valve device includes a belt-like metal film in which a plurality of small holes having different shapes are formed at a desired pitch, a roller that rotatably supports the metal film in an endless manner, and the metal film is rotated. A motor to be moved, an inlet-side cover disposed on one side surface of the rotating metal film so as to be airtight and slidable with the side surface, and the other side surface of the metal film being airtightly slid with the side surface. A pulsating air flow that flows from the inlet side cover through the small hole into the ejection side cover by the rotation of the metal film and is ejected from the ejection nozzle. It is intended.

請求項4の発明は、圧縮空気を高速で開閉を繰り返す弁装置を通過させ、定盤に固定した試験体に間歇的に吹き付けることにより試験体に振動的加振力を与える空気圧式振動試験装置において、前記弁装置を、形態の異なる複数の小孔を胴壁に所望のピッチで穿設した回転ドラム体と、当該回転ドラム体を回転させるモータと、回転ドラム体の内面側に当該内壁面と気密状に且つ摺動可能に配設した入口側カバと、前記回転ドラム体の外壁面側に当該外壁面と気密状に且つ摺動可能に配設した噴出側カバと、から形成し、回転ドラム体の回転により入口側カバ内から小孔を通して前記噴出側カバ内へ流入したパルス状空気圧流を、噴出ノズルから噴出する構成としたものである。 The invention according to claim 4 is a pneumatic vibration test apparatus for applying a vibration excitation force to a test body by allowing compressed air to pass through a valve device that repeatedly opens and closes at high speed and intermittently sprays the test body fixed to a surface plate. The valve device includes a rotating drum body having a plurality of small holes having different forms formed in the body wall at a desired pitch, a motor for rotating the rotating drum body, and the inner wall surface on the inner surface side of the rotating drum body. And an inlet side cover disposed in an airtight and slidable manner, and an ejection side cover disposed in an airtight and slidable manner on the outer wall surface of the rotating drum body, A pulsed pneumatic flow that flows into the ejection side cover through a small hole from the entrance side cover by the rotation of the rotating drum body is ejected from the ejection nozzle.

請求項5の発明は、請求項1から請求項4の何れかの発明において、圧縮空気として、高圧容器に充填した圧縮空気を用いるようにしたものである。 According to a fifth aspect of the present invention, in any one of the first to fourth aspects of the present invention, the compressed air filled in the high-pressure vessel is used as the compressed air.

本発明の空気圧式振動試験装置では、圧縮空気流を高速で開閉を繰り返す弁装置を通過させ、間歇的に試験体へ吹き付ける構成としているため、試験体の材質やその形態が如何なるものであっても、容易に必要な振動手数の加振力を与えることができる。
また、本発明の空気圧式振動試験装置では、空気圧式加振装置が小型軽量化されているため、その取扱いが容易であり、試験体に対する噴射方向を変更することにより、容易に試験体の振動方向を変化させることができる。
更に、弁装置を一つの小孔を有する回転円盤で形成した場合には、弁装置の構造の大幅な簡素化が可能となり、気密漏れ等のトラブルの大幅な削減が可能となる。
更に複数の小孔を設けた回転円盤を用いることにより、高周波の振動加振力を容易に得ることが出来ると共に、従前の2組の回転円盤を組み合わせて使用する構造の空気圧式加振装置に比較して、気密性に係るトラブルを大幅に削減することが可能となる。
加えて、複数の小孔をランダムな角度ピッチで回転円盤に穿設したり、複数の形態の異なる小孔を所望のピッチで形成した穿設した金属フイルム若しくはドラム体を用いることにより、擬似ランダム波等による試験も容易に実施することができる。
In the pneumatic vibration testing device of the present invention, the compressed air flow is passed through a valve device that repeatedly opens and closes at high speed, and is intermittently sprayed onto the test body. In addition, it is possible to easily apply an excitation force having a necessary number of vibrations.
In the pneumatic vibration testing apparatus of the present invention, since the pneumatic vibration apparatus is reduced in size and weight, the handling is easy, and the vibration of the test object can be easily changed by changing the injection direction with respect to the test object. The direction can be changed.
Further, when the valve device is formed of a rotating disk having one small hole, the structure of the valve device can be greatly simplified, and troubles such as airtight leakage can be greatly reduced.
Furthermore, by using a rotating disk provided with a plurality of small holes, a high-frequency vibration excitation force can be easily obtained, and a pneumatic exciter having a structure in which two conventional rotating disks are used in combination is used. In comparison, trouble related to airtightness can be greatly reduced.
In addition, by using a metal film or drum body in which a plurality of small holes are drilled in a rotating disk at a random angular pitch or a plurality of small holes having different forms are formed at a desired pitch, pseudo-randomness is achieved. A test using waves or the like can be easily performed.

以下、図面に基づいて本発明の実施形態を説明する。
図1は、本発明に係る空気圧式振動試験装置の構成を示す系統図であり、図2は空気圧式振動試験装置を用いた振動試験の実施形態を示す針面図である。また、図3は弁装置の要部を示す断面概要図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a system diagram showing a configuration of a pneumatic vibration test apparatus according to the present invention, and FIG. 2 is a needle surface view showing an embodiment of a vibration test using the pneumatic vibration test apparatus. FIG. 3 is a schematic sectional view showing the main part of the valve device.

図1及び図2において、1は試験体、2は弁装置、3は空気圧縮機、4は流量制御装置、5は変位計、6はコンピュータ(演算・制御装置)、7はパルス状空気圧流噴射ノズル、8はサーボモータ、9はモータ制御装置、10は回転円盤、11はシャフト、12・13は摺動カバ、14は配管、15は定盤、16は弁装置用サポート、17はノズルサポートである。   1 and 2, 1 is a test body, 2 is a valve device, 3 is an air compressor, 4 is a flow control device, 5 is a displacement meter, 6 is a computer (calculation / control device), and 7 is a pulsed pneumatic flow. Injection nozzle, 8 is a servo motor, 9 is a motor controller, 10 is a rotating disk, 11 is a shaft, 12 and 13 are sliding covers, 14 is a pipe, 15 is a surface plate, 16 is a valve device support, and 17 is a nozzle. Support.

本発明に係る空気圧式振動試験装置は、図1に示す如く弁装置2、空気圧縮機3、流量制御装置4、サーボモータ8及びモータ制御装置9等から構成されており、空気圧縮機3から流量調整装置4によって所望の圧力及び流量に設定された空気流Aが、配管14を通して弁装置2の摺動カバー12内へ供給され、当該弁装置2に於いて所定の周波数のパルス空気圧流に変換されたあと、パルス状空気圧流噴射ノズル7から試験体1の外表面へ噴射されることにより、試験体1に所定摺動周波数の加振力が付与される。   As shown in FIG. 1, the pneumatic vibration testing apparatus according to the present invention includes a valve device 2, an air compressor 3, a flow rate control device 4, a servo motor 8, a motor control device 9, and the like. An air flow A set to a desired pressure and flow rate by the flow rate adjusting device 4 is supplied into the sliding cover 12 of the valve device 2 through the pipe 14, and in the valve device 2, a pulsed pneumatic flow having a predetermined frequency is obtained. After the conversion, the excitation force having a predetermined sliding frequency is applied to the test body 1 by being sprayed from the pulsed pneumatic flow spray nozzle 7 onto the outer surface of the test body 1.

また、前記加振力の付与により試験体1に生じた振動変位等は、レーザ変位計5等によって検出され、コンピュータ6において、試験体1の固有振動周波数等が演算される。
更に、前記パルス状空気圧流の周波数は、後述するようにモータ制御装置9を介してサーボモータ8の回転数を変えることにより所望周波数に制御され、また、試験体1に加わるパルス状空気圧流による加振力は、流量制御装置4による空気流の流量及び又は圧力調整により制御される。
The vibration displacement or the like generated in the test body 1 by the application of the excitation force is detected by the laser displacement meter 5 or the like, and the natural vibration frequency or the like of the test body 1 is calculated by the computer 6.
Further, the frequency of the pulsed pneumatic flow is controlled to a desired frequency by changing the number of revolutions of the servo motor 8 via the motor control device 9 as will be described later, and also depends on the pulsed pneumatic flow applied to the test body 1. The excitation force is controlled by adjusting the flow rate and / or pressure of the air flow by the flow rate control device 4.

前記試験体1は、その材質及び形状(形態)が如何なるものであってもよく、本実施形態においては、後述するように、直径300mm、高さ400mm、厚さ1mmのアクリル製円筒形タンクであって且つその内部に深さ380mmまで水を充填したものを試験体1としている。   The specimen 1 may be of any material and shape (form). In this embodiment, as will be described later, the specimen 1 is an acrylic cylindrical tank having a diameter of 300 mm, a height of 400 mm, and a thickness of 1 mm. The specimen 1 was filled with water up to a depth of 380 mm.

また、前記弁装置2は、図3に示すようにモータ8の回転軸(シャフト11)の先端に固定され且つ外周縁部に1個の小孔18を穿設して成る回転円盤10と、当該回転円盤10の外周縁部の両側に設けた入口側摺動カバ13及び噴出側摺動カバ12と、噴出側カバ12の出口側に設けた噴射ノズル7と、両摺動カバ12、13を回転円盤10側へ押圧するスプリング19と、両摺動カバ12、13鍔部12a、13aと回転円盤10との間に介挿したシールリング20等から構成されている。   Further, as shown in FIG. 3, the valve device 2 is fixed to the tip of the rotating shaft (shaft 11) of the motor 8, and has a rotating disk 10 having a small hole 18 formed in the outer peripheral edge portion; The inlet side sliding cover 13 and the ejection side sliding cover 12 provided on both sides of the outer peripheral edge of the rotating disk 10, the injection nozzle 7 provided on the outlet side of the ejection side cover 12, and both sliding covers 12, 13. And the seal ring 20 interposed between the sliding covers 12 and 13 and the flanges 12 a and 13 a and the rotating disk 10.

配管14を通して入口側摺動カバ13内へ流入した空気流は、回転円盤10が1回転する毎にその小孔18を通して噴出側摺動カバ12内へ流通し、噴出ノズル7から所謂パルス状の空気圧流が噴射されることになり、回転円盤10の回転数を制御することにより、噴出するパルス状空気圧流の周波数、即ち加振振動数が制御されることになる。
尚、圧縮空気流Aの供給源は、コンプレッサ以外の例えば高圧容器に充填した圧縮空気や液体空気からの気化空気であってもよいことは勿論である。
The air flow flowing into the inlet side sliding cover 13 through the pipe 14 flows into the ejection side sliding cover 12 through the small hole 18 every time the rotating disk 10 makes one rotation, and is so-called pulsed from the ejection nozzle 7. A pneumatic flow is injected, and the frequency of the pulsating pneumatic flow to be ejected, that is, the vibration frequency is controlled by controlling the rotational speed of the rotating disk 10.
Of course, the supply source of the compressed air flow A may be, for example, compressed air filled in a high pressure vessel other than the compressor or vaporized air from liquid air.

尚、本実施形態に於いては、回転円盤10に穿設した小孔18を1個として、回転円盤10と摺動カバ12、13とのシール面を可能な限り小面積としているため、所謂摺動面からの空気漏れ等のトラブルが有効に防止されることになる。しかし、空気圧流の周波数が、回転円盤10の回転数によって制限を受けることになるため、加振周波数は200Hz(回転円盤回転数12,000rpm)までが限度となる。   In the present embodiment, since one small hole 18 formed in the rotating disk 10 is used and the sealing surface of the rotating disk 10 and the sliding covers 12 and 13 is made as small as possible, so-called so-called Troubles such as air leakage from the sliding surface are effectively prevented. However, since the frequency of the pneumatic flow is limited by the rotational speed of the rotating disk 10, the excitation frequency is limited to 200 Hz (rotating disk rotational speed 12,000 rpm).

そのため、回転円盤10に複数個の小孔18(例えば2〜10個)を所定の角度ピッチで設け、小孔18の数を増すことにより、モータ8のより低い回転数でもって高い加振周波数を得るようにしてもよい。
尚、モータ8の変速機構の変速比を変えて、回転円盤10の回転数を増速していることは勿論である。また、図2の弁装置2では、回転円盤10に小孔18を所定の角度ピッチで同一円周上に穿設するようにしているが、角度ピッチ等をランダムに選定して、所謂擬似ランダム波による振動試験を行えるようにすることも可能である。
Therefore, a plurality of small holes 18 (for example, 2 to 10) are provided in the rotating disk 10 at a predetermined angular pitch, and the number of small holes 18 is increased to increase the excitation frequency at a lower rotational speed of the motor 8. May be obtained.
Of course, the rotational speed of the rotating disk 10 is increased by changing the speed ratio of the speed change mechanism of the motor 8. Further, in the valve device 2 of FIG. 2, the small holes 18 are formed in the rotary disk 10 on the same circumference at a predetermined angular pitch. It is also possible to perform a vibration test using waves.

図4は本発明で使用される弁装置2の他の例の要部を示す斜面図である。当該図4の弁装置2では、前記回転円盤10に替えて帯状の金属フイルム21が使用されており、この金属フイルム21に、大きさや形状の異なる小孔18が所望のピッチで穿設されている。   FIG. 4 is a perspective view showing a main part of another example of the valve device 2 used in the present invention. In the valve device 2 of FIG. 4, a band-shaped metal film 21 is used instead of the rotating disk 10, and small holes 18 having different sizes and shapes are formed in the metal film 21 at a desired pitch. Yes.

前記金属フイルム21は、モータ8によりローラ22を回転駆動させることにより、所望の速度で矢印方向へエンドレス状に回動されることになり、入口側摺動カバー12から空気が小孔18を通って出口側摺動カバー13内へ噴出されることになる。
尚、図4に於いて、7は噴射ノズル、8はモータ、12及び13は摺動カバー、22はローラである。
The metal film 21 is rotated endlessly in the arrow direction at a desired speed by rotating the roller 22 by the motor 8, and air passes through the small hole 18 from the inlet side sliding cover 12. Then, it is ejected into the outlet side sliding cover 13.
In FIG. 4, 7 is an injection nozzle, 8 is a motor, 12 and 13 are sliding covers, and 22 is a roller.

上記図4の弁装置2では、小孔18の大きさやその形態、ピッチ等を適宜に選定することにより、任意の加振波形、加振力及び加振振動数を得ることができ、地震波加振等の振動試験に用いることが出来る。
また、図4の弁装置2では、金属フイルム21をローラ21を介してエンドレス状に回動させるようにしているが、金属フイルム21に替えて回転ドラム体(図示省略)を使用し、この回転ドラム体の胴壁に小孔18を所定のピッチで穿設すると共に、ドラム体の内、外両壁面に両摺動カバー12、13を気密状に且つ摺動可能に配設する構成のものとしても良い。
In the valve device 2 shown in FIG. 4, by appropriately selecting the size, form, pitch, and the like of the small holes 18, an arbitrary excitation waveform, excitation force, and excitation frequency can be obtained. It can be used for vibration tests such as vibration.
In the valve device 2 shown in FIG. 4, the metal film 21 is rotated endlessly via the roller 21, but a rotating drum body (not shown) is used in place of the metal film 21, and this rotation is performed. A structure in which small holes 18 are formed at a predetermined pitch in the drum body wall, and both sliding covers 12 and 13 are slidably disposed on both inner and outer wall surfaces of the drum body. It is also good.

前記弁装置2は、振動的な加振力を有効に発生させるため、可能な限り噴射ノズル7に近い位置に置くことが好ましい。同じ理由で、流量制御装置4は弁装置2の上流側に置くことが好ましい。
また、振動的な加振力を有効に発生させるためには、噴射したパルス状の空気圧流が所謂ジェット流にならないように、噴射ノズル7を比較的大きめの口径にすることが好ましい。
The valve device 2 is preferably placed as close to the injection nozzle 7 as possible in order to effectively generate a vibrational excitation force. For the same reason, the flow control device 4 is preferably placed upstream of the valve device 2.
In order to effectively generate the vibrational excitation force, it is preferable that the injection nozzle 7 has a relatively large diameter so that the injected pulsed pneumatic flow does not become a so-called jet flow.

図2を参照して、1000mm(横幅)×700mm(奥行)×500mm(高さ)の定盤15の上面に、直径300mm、高さ400mm、厚さ1mmのアクリル製の円筒形タンクの内部に高さ380mmまで水を充填して成る試験体1を設置し、ノズルサポート17に固定した噴射ノズル7から試験体1の上端より50mm下方の側壁面へ向って、0〜200Hzのパルス状空気圧流を噴射した。 Referring to FIG. 2, an acrylic cylindrical tank having a diameter of 300 mm, a height of 400 mm, and a thickness of 1 mm is formed on the upper surface of a platen 15 having a width of 1000 mm (width) × 700 mm (depth) × 500 mm (height). A test body 1 filled with water up to a height of 380 mm is installed inside, and a pulse of 0 to 200 Hz is directed from the injection nozzle 7 fixed to the nozzle support 17 toward the side wall surface 50 mm below the upper end of the test body 1. A pneumatic pressure flow was injected.

尚、この実施例においては、小孔18の内径30mm、噴射ノズル7の口径を20mm、空気圧縮機の空気圧0.95MPa、パルス状空気圧流の周波数50Hz(モータ回転数750rpm)、小孔18の数4個、空気の平均流速10m/secに夫々設定している。
また、変位計5により検出した試験体1の50Hz振動時の、上端より50mm下方位置における平均振幅は0.02mm程度であった。
In this embodiment, the small hole 18 has an inner diameter of 30 mm, the diameter of the injection nozzle 7 is 20 mm, the air pressure of the air compressor is 0.95 MPa, the frequency of the pulsed air flow is 50 Hz (motor rotation speed 750 rpm), Several 4 are set to an average air velocity of 10 m / sec.
The average amplitude at a position 50 mm below the upper end of the test body 1 detected by the displacement meter 5 at 50 Hz vibration was about 0.02 mm.

上記実施例に係る試験結果から、本発明に係る空気圧式振動試験装置の加振周波数は0Hzから200Hzまで可能であり、加振力は空気圧縮機の容量に依存するが、相当程度の大きさまで可能であることが判明した。
また、試験体1がアクリル製の薄肉であることから、鉄片等を貼り付ける必要のある電磁石等による加振装置を用いた場合には試験体の振動特性が変化してしまうが、本発明の空気圧式振動試験装置であれば、容易に正確な振動特性が得られることが判明した。
更に、サーボモータの回転数を一定に制御することで一定振動数の試験、少しずつ回転数を上昇するように制御することで振動数挿引試験を夫々実施することが可能である。
加えて、回転円板の穴を複数個としてその相互間隔をランダムにすることで、擬似ランダム波の試験を実施することも可能である。
From the test results according to the above examples, the vibration frequency of the pneumatic vibration test apparatus according to the present invention can be from 0 Hz to 200 Hz, and the vibration force depends on the capacity of the air compressor, but to a considerable level. It turned out to be possible.
In addition, since the specimen 1 is a thin wall made of acrylic, the vibration characteristics of the specimen will change when an excitation device such as an electromagnet that needs to be attached with an iron piece or the like is used. It was found that accurate vibration characteristics can be easily obtained with a pneumatic vibration test apparatus.
Furthermore, a constant frequency test can be performed by controlling the rotation speed of the servo motor to be constant, and a frequency insertion test can be performed by controlling the rotation speed to gradually increase.
In addition, it is also possible to perform a pseudo random wave test by making a plurality of holes in the rotating disk and randomizing the mutual intervals.

本発明の空気圧式振動試験装置は、振動試験以外に、材料の疲労試験等にも適用できるものである。   The pneumatic vibration test apparatus of the present invention can be applied to a material fatigue test and the like in addition to the vibration test.

本発明に係る空気圧式振動試験装置の基本構成を示す系統図。1 is a system diagram showing a basic configuration of a pneumatic vibration testing apparatus according to the present invention. 空気圧式振動試験装置を用いた振動試験の実施状態を示す斜面図である。It is a perspective view which shows the implementation state of the vibration test using a pneumatic vibration testing apparatus. 本発明に係る空気圧式振動試験装置の弁装置の要部を示す部分断面概要図である。It is a fragmentary sectional schematic diagram which shows the principal part of the valve apparatus of the pneumatic vibration testing apparatus which concerns on this invention. 弁装置の他の例の要部を示す斜面図である。It is a perspective view which shows the principal part of the other example of a valve apparatus. 従前の物体の変形特性測定装置に用いられている空気加振装置の構成を示す系統図である。It is a systematic diagram which shows the structure of the air vibration apparatus used for the deformation characteristic measuring apparatus of the former object. 従前の疲労試験装置に用いられているエア式非接触加振装置の断面概要図である。It is a cross-sectional schematic diagram of the air-type non-contact vibration apparatus used for the conventional fatigue test apparatus. 図6の疲労試験装置に於けるエア式非接触加振装置のパルス波発生部の要部を示す部分断面概要図である。FIG. 7 is a partial cross-sectional schematic view showing a main part of a pulse wave generating part of the pneumatic non-contact vibration exciter in the fatigue test apparatus of FIG. 6.

符号の説明Explanation of symbols

1は試験体
2は弁装置
3は空気圧縮機
4は流量制御装置
5は変位計
6はコンピュータ
7はパルス状空気圧流の噴射ノズル
8はモータ
9はモータ制御装置
10は回転円盤
11はシャフト
12、13は摺動カバ
14は配管
15は定盤
16は弁装置用サポート
17はノズルサポート
18は小孔
19は押圧用スプリング
20はシールリング
21は金属フイルム
1 is a test body 2 is a valve device 3 is an air compressor 4 is a flow control device 5 is a displacement meter 6 is a computer 7 is a pulsed pneumatic flow injection nozzle 8 is a motor 9 is a motor control device 10 is a rotating disk 11 is a shaft 12 , 13 is a sliding cover 14, a pipe 15, a surface plate 16, a valve device support 17, a nozzle support 18, a small hole 19, a pressing spring 20, a seal ring 21, a metal film.

Claims (5)

圧縮空気を高速で開閉を繰り返す弁装置を通過させ、定盤に固定した試験体に間歇的に吹き付けることにより試験体に振動的加振力を与える空気圧式振動試験装置において、前記弁装置を、外周縁部に一つの小孔を穿設した回転円盤と、当該回転円板を回転駆動するモータと、回転円盤の外周縁部の前記小孔を穿設した部分の両側面に当該回転円盤の側面と気密状に且つ摺動可能に配設した入口側カバ及び噴出側カバと、から形成し、回転円盤の回転により入口側カバ内から小孔を通して前記噴出側カバ内へ流入したパルス状空気圧流を、噴出ノズルから噴射する構成とした空気圧式振動試験装置。 In a pneumatic vibration test apparatus for passing a compressed air through a valve apparatus that repeatedly opens and closes at high speed and intermittently blowing the compressed air to a test body fixed to a surface plate to give a vibrational excitation force to the test body, the valve device includes: A rotating disk having one small hole formed in the outer peripheral edge, a motor for rotating the rotating disk, and the rotating disk on both sides of the outer peripheral edge of the rotating disk where the small hole is formed. A pulsed air pressure formed from an inlet-side cover and a jet-side cover that is airtightly and slidably disposed on the side surface, and flows into the jet-side cover through a small hole from the inlet-side cover by the rotation of the rotating disk. Pneumatic vibration test device configured to inject a flow from an ejection nozzle. 圧縮空気を高速で開閉を繰り返す弁装置を通過させ、定盤に固定した試験体に間歇的に吹き付けることにより試験体に振動的加振力を与える空気圧式振動試験装置において、前記弁装置を、外周縁部に複数の小孔を所定の一定角度ピッチ又はランダムな角度ピッチで穿設した回転円盤と、当該回転円盤を回転駆動するモータと、回転円盤の前記モータと対向する側の側面に当該側面と気密状に且つ摺動可能に配設した入口側カバと、回転円盤の他方の側面に当該側面と気密状に且つ摺動可能に配設した噴出側カバと、から形成し、回転円盤の回転により入口側カバ内から複数の小孔を通して前記噴出側カバ内へ流入したパルス状空気圧流を、噴出ノズルから噴出する構成とした空気圧式振動試験装置。 In a pneumatic vibration test apparatus for passing a compressed air through a valve apparatus that repeatedly opens and closes at high speed and intermittently blowing the compressed air to a test body fixed to a surface plate to give a vibrational excitation force to the test body, the valve device includes: A rotating disk in which a plurality of small holes are formed in the outer peripheral edge portion at a predetermined constant angle pitch or a random angle pitch, a motor that rotates the rotating disk, and a side surface of the rotating disk that faces the motor. An inlet-side cover that is air-tightly and slidably disposed on the side surface, and an ejection-side cover that is air-tightly and slidably disposed on the other side surface of the rotating disk. A pneumatic vibration test apparatus configured to eject from the ejection nozzle a pulsed pneumatic flow that has flowed into the ejection side cover through a plurality of small holes from the inside of the entrance side cover. 圧縮空気を高速で開閉を繰り返す弁装置を通過させ、定盤に固定した試験体に間歇的に吹き付けることにより試験体に振動的加振力を与える空気圧式振動試験装置において、前記弁装置を、形態の異なる複数の小孔を所望のピッチで穿設した帯状の金属フイルムと、当該金属フイルムをエンドレス状に回動可能に支持するローラと、前記金属フイルムを回動させるモータと、回動する金属フイルムの一側の側面に当該側面と気密状に且つ摺動可能に配設した入口側カバと、前記金属フイルムの他方の側面に当該側面と気密状に且つ摺動可能に配設した噴出側カバと、から形成し、金属フイルムの回動により入口側カバ内から小孔を通して前記噴出側カバ内へ流入したパルス状空気圧流を、噴出ノズルから噴出する構成とした空気圧式振動試験装置。 In a pneumatic vibration test apparatus for passing a compressed air through a valve apparatus that repeatedly opens and closes at high speed and intermittently blowing the compressed air to a test body fixed to a surface plate to give a vibrational excitation force to the test body, the valve device includes: A belt-shaped metal film in which a plurality of small holes having different forms are formed at a desired pitch, a roller that rotatably supports the metal film in an endless manner, and a motor that rotates the metal film rotate. An inlet-side cover disposed on one side surface of the metal film so as to be airtight and slidable with the side surface, and a jet disposed on the other side surface of the metal film so as to be airtight and slidable with the side surface. A pneumatic vibration test in which a pulse-like pneumatic flow that is formed from the side cover and flows into the ejection side cover through a small hole from the entrance side cover by the rotation of the metal film is ejected from the ejection nozzle. Location. 圧縮空気を高速で開閉を繰り返す弁装置を通過させ、定盤に固定した試験体に間歇的に吹き付けることにより試験体に振動的加振力を与える空気圧式振動試験装置において、前記弁装置を、形態の異なる複数の小孔を胴壁に所望のピッチで穿設した回転ドラム体と、当該回転ドラム体を回転させるモータと、回転ドラム体の内面側に当該内壁面と気密状に且つ摺動可能に配設した入口側カバと、前記回転ドラム体の外壁面側に当該外壁面と気密状に且つ摺動可能に配設した噴出側カバと、から形成し、回転ドラム体の回転により入口側カバ内から小孔を通して前記噴出側カバ内へ流入したパルス状空気圧流を、噴出ノズルから噴出する構成とした空気圧式振動試験装置。 In a pneumatic vibration test apparatus for passing a compressed air through a valve apparatus that repeatedly opens and closes at high speed and intermittently blowing the compressed air to a test body fixed to a surface plate to give a vibrational excitation force to the test body, the valve device includes: A rotating drum body in which a plurality of small holes having different forms are formed in the body wall at a desired pitch, a motor that rotates the rotating drum body, and an inner surface of the rotating drum body that slides in an airtight manner on the inner wall surface An inlet-side cover arranged in a slidable manner, and an ejection-side cover arranged on the outer wall surface side of the rotating drum body so as to be airtight and slidable. A pneumatic vibration testing apparatus configured to eject a pulsed pneumatic flow flowing into the ejection side cover from the side cover through a small hole from the ejection nozzle. 圧縮空気として、高圧容器に充填した圧縮空気を用いるようにした請求項1から請求項4の何れかに記載の空気圧式振動試験装置。 The pneumatic vibration testing apparatus according to any one of claims 1 to 4, wherein compressed air filled in a high-pressure vessel is used as the compressed air.
JP2006085580A 2006-03-27 2006-03-27 Pneumatic vibration test equipment Expired - Fee Related JP4993661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006085580A JP4993661B2 (en) 2006-03-27 2006-03-27 Pneumatic vibration test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006085580A JP4993661B2 (en) 2006-03-27 2006-03-27 Pneumatic vibration test equipment

Publications (2)

Publication Number Publication Date
JP2007263590A JP2007263590A (en) 2007-10-11
JP4993661B2 true JP4993661B2 (en) 2012-08-08

Family

ID=38636738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006085580A Expired - Fee Related JP4993661B2 (en) 2006-03-27 2006-03-27 Pneumatic vibration test equipment

Country Status (1)

Country Link
JP (1) JP4993661B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101468337A (en) * 2007-12-27 2009-07-01 同方威视技术股份有限公司 Clearance jetting device
JP5492623B2 (en) * 2010-03-25 2014-05-14 三和パッキング工業株式会社 Inspection apparatus and inspection method
CN104614137B (en) * 2015-01-15 2016-08-31 浙江大学 Three-component standard vibration machine based on static pressure air-bearing decoupling device
CN104776974B (en) * 2015-04-07 2018-07-31 西南交通大学 A kind of non-contact pneumatic exciting device
CN109365428A (en) * 2018-10-11 2019-02-22 九江精密测试技术研究所 A kind of Gas Vibration cleaning device
CN109708835A (en) * 2019-02-21 2019-05-03 哈尔滨汽轮机厂有限责任公司 A kind of steam turbine blade intrinsic frequency measurement excitation system
CN110333140A (en) * 2019-05-27 2019-10-15 贵州航天天马机电科技有限公司 A kind of air-flow Rapid opening experimental rig
CN113267357B (en) * 2021-04-14 2022-03-01 深圳远荣智能制造股份有限公司 Life testing device
CN113432699B (en) * 2021-05-26 2022-04-01 中国科学院高能物理研究所 Amplitude measuring device of ultralight beam

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069668A (en) * 2002-06-13 2004-03-04 Satake Corp Method and instrument for measuring deformation characteristic of object
JP2004077163A (en) * 2002-08-12 2004-03-11 Ishikawajima Harima Heavy Ind Co Ltd Air type non-contact oscillator

Also Published As

Publication number Publication date
JP2007263590A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP4993661B2 (en) Pneumatic vibration test equipment
Baillot et al. Behaviour of an air-assisted jet submitted to a transverse high-frequency acoustic field
Eliahou et al. Laminar–turbulent transition in Poiseuille pipe flow subjected to periodic perturbation emanating from the wall
US10267774B2 (en) External noisemaker for pipe systems
KR20110115445A (en) Apparatus for testing leakage performance of a door using pressure control system
Krothapalli et al. Origin of streamwise vortices in supersonic jets
Ahn et al. Experimental study swirl injector dynamic response using a hydromechanical pulsator
JP2004077163A (en) Air type non-contact oscillator
Karagiozis et al. An experimental study of the nonlinear dynamics of cylindrical shells with clamped ends subjected to axial flow
JP6968009B2 (en) Gas sensor water test equipment and method
Del Vescovo et al. Assessment of fresco detachments through a non-invasive acoustic method
Hamakawa et al. Prediction of acoustic absorption performance of a perforated plate with air jets
WO2001042778A1 (en) Ultrasonic standard
JP6666791B2 (en) Coating agent remaining amount check device, coating device, coating agent remaining amount checking method
Naguib et al. Arrays of MEMS-based actuators for control of supersonic jet screech
JP3391131B2 (en) Measuring method and measuring device for static imbalance of sphere
Ibrahim et al. Spreading enhancement of axisymmetric supersonic jet by the use of micro jets
JP3586561B2 (en) Fluid excitation actuator
Gitan et al. Development of pulsating twin jets mechanism for mixing flow heat transfer analysis
EP2133682B1 (en) Method and equipment for measuring dust formation
JP3595474B2 (en) Fluid excitation actuator
McElrath Experimental Investigation of Suction on the Boundary Layer Flow Over a Rotating Disk
Nakkala Acoustic characteristics of high speed jets with an offset plate
FI118862B (en) Method for damping rotations of a rotating body and dynamic vibration damping
Narayanan et al. Effect of lip-thickness on the acoustic characteristics of Hartmann resonator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120425

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees