JP4992391B2 - Pmモータの磁石渦電流損失解析方法 - Google Patents

Pmモータの磁石渦電流損失解析方法 Download PDF

Info

Publication number
JP4992391B2
JP4992391B2 JP2006303531A JP2006303531A JP4992391B2 JP 4992391 B2 JP4992391 B2 JP 4992391B2 JP 2006303531 A JP2006303531 A JP 2006303531A JP 2006303531 A JP2006303531 A JP 2006303531A JP 4992391 B2 JP4992391 B2 JP 4992391B2
Authority
JP
Japan
Prior art keywords
magnet
eddy current
analysis
dimensional
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006303531A
Other languages
English (en)
Other versions
JP2008123076A (ja
Inventor
隆志 沖津
大器 松橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2006303531A priority Critical patent/JP4992391B2/ja
Publication of JP2008123076A publication Critical patent/JP2008123076A/ja
Application granted granted Critical
Publication of JP4992391B2 publication Critical patent/JP4992391B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/82Elements for improving aerodynamics

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、有限要素法によるPMモータの磁石渦電流損失解析方法に関する。
現在、PMモータの磁石には、モータの高効率化や小型化を図るため、高性能なネオジウム(NdFeB)等の希土類焼結磁石が採用されている。しかしながら、希土類焼結磁石は従来から用いられていたフェライト磁石等に比べ、導電率がはるかに高いため、スロット高調波などによって渦電流が流れ、これによる損失が無視できなくなっている。磁石の渦電流損失が大きくなると、磁石の温度が高くなり、熱減磁する可能性があるため、磁石の損失を事前に評価しておく必要がある。
その評価方法として、有限要素法により渦電流損失を解析する方法がある(例えば、特許文献1参照)。この方法は、非磁性導体に発生する渦電流を計算するために、非磁性導体の物性を空気と仮定した解析対象領域の電磁場を、磁気ベクトルポテンシャルを用いて有限要素法により計算し、この計算で求めた非磁性導体部に垂直に鎖交する磁束密度分布を初期条件として、非磁性導体およびその周辺のみを解析対象領域とした電磁場を電流ベクトルポテンシャルと磁気スカラポテンシャルを用いた有限要素法により、非磁性導体に発生する渦電流を計算し、この渦電流を基に損失を計算する。以上の各計算は、コンピュータ資源とこれに搭載するソフトウェアとの協働で実現される。
特開2000−268061号公報
従来の有限要素法を用いたPMモータの磁石渦電流損失解析は、図3のように、x、y方向の磁場変動に対して磁石の渦電流が軸方向(z方向)にも流れるのを考慮するため、軸方向までモデル化し、3次元解析を行う必要がある。
しかしながら、一例として図4のPMモータモデルを用いて3次元解析を行う場合、モデル分割の要素数は2次元モデルよりも数倍多くなり、渦電流が定常になるまで時間ステップを大きくとらなければならないため、2次元解析と比べて計算時間は約25倍となってしまい、実用的な計算時間で磁石渦電流損失解析を行うことが困難となる場合がある。
また、固定子や回転子の形状、巻線の電流値や電流位相などを変えて複数のモデルの磁石渦電流損失解析を行う場合には、更に計算時間は深刻な問題となり、短期間で磁石渦電流損失を評価することが困難となっている。
本発明の目的は、2次元解析と同等の計算時間で容易に磁石渦電流損失が得られるPMモータの磁石渦電流損失解析方法を提供することにある。
本発明は、前記の課題を解決するため、PMモータの2次元有限要素分割モデルと、磁石のみの3次元有限要素分割モデルを用いて磁石渦電流損失を求めるようにしたもので、以下の方法を特徴とする。
(1)PMモータの磁石渦電流損失を有限要素法によるコンピュータ処理で解析する方法であって、
前記コンピュータ処理は、
PMモータの2次元モデルのデータを作成しておくステップと、
前記2次元モデルのデータを用い、有限要素法による2次元磁場解析により、前記PMモータの磁石の渦電流を考慮することなく、該磁石内部の磁束密度の時間変化のデータを求めるステップと、
前記磁石内部の磁束密度の時間変化のデータを、磁石のみの3次元モデルに与えるステップと、
前記磁石3次元モデルの軸方向に一様な値として前記磁束密度の時間変化のデータを該磁石3次元モデルに与え、有限要素法により、該磁石の渦電流を考慮した3次元解析を行うステップと、
前記3次元解析により求められる磁石の渦電流密度の時間変化から、磁石渦電流損失密度を算出するステップと、
を有することを特徴とする。
(2)前記3次元解析を行うステップは、前記磁石の渦電流による反磁界の影響を無視して該磁石のみの3次元解析を行うことを特徴とする。
(3)前記3次元解析を行うステップは、前記磁石の渦電流による反磁界の影響を考慮して該磁石のみの3次元解析を行うことを特徴とする。
(4)前記3次元解析を行うステップは、前記磁石のみの3次元モデルの境界面に境界要素法を用いることで、境界条件に制限されない無限遠の解析を行うことを特徴とする。
以上のとおり、本発明によれば、PMモータの2次元有限要素分割モデルと、磁石のみの3次元有限要素分割モデルを用いて磁石渦電流損失を求めるようにしたため、2次元解析と同等の計算時間で容易に磁石渦電流損失が得られる。具体的には以下の効果がある。
(1)従来のPMモータの3次元解析により、磁石渦電流損失を求める手法では、実用的な計算時間で磁石渦電流損失を求めることが困難となる場合があるのに対し、本発明ではPMモータの2次元解析により得られる磁石内の磁東密度の時間的変化から、別途、磁石のみの3次元解析を行うことにより、磁石渦電流損失を求めることができる。
(2)磁石の渦電流による反磁界の影響を無視した磁石のみの3次元解析を行うこともできる。
(3)磁石の渦電流による反磁界の影響を考慮した磁石のみの3次元解析を行うことで、解析精度が向上する。
(4)磁石のみの3次元モデルの境界面に境界要素法を用いれば、境界条件に制限されない無限遠の解析ができ、解析精度は一層向上する。
(5)磁石の3次元モデルは要素数が少なく、作成が容易であるため、従来の3次元のPMモータ分割モデルを作成する場合と比べて、分割モデル作成が容易となる。
(6)磁石のみの3次元解析は要素数が少なく計算時間はPMモータの2次元解析よりも短いため、従来の磁石渦電流損失算出方法と比べて計算時間を大幅に短縮することが可能である。
本実施形態は、図4(a)のPMモータの2次元有限要素分割モデルと、図4(b)の磁石のみの3次元有限要素分割モデルを用いて、2次元解析と同等の計算時間で磁石渦電流損失を求める方法を提案する。なお、本実施形態は、コンピュータ資源(メモリ、ディスプレイ、CPUなど)を利用したソフトウェア構成で実現される。
磁石の渦電流は、磁石内部の磁場変動によって発生するため、以下の手順のように後処理で磁石渦電流損失を求めることとする。また、従来手法と本実施形態のフローチャートを図1に示す。
従来手法では、図1(a)に示すように、PMモータの3次元モデルを用いて、有限要素法による3次元解析を行い、磁石渦電流損失を算出している。これに対して、本実施形態では、図1(b)に示すように、以下の処理ステップによって磁石渦電流損失を求める。
(S1)PMモータの2次元モデルを作成する。
(S2)PMモータの2次元モデルを用い、有限要素法による2次元磁場解析により、磁石の渦電流を考慮することなく、図2のような磁石内部の磁束密度B(T)の時間変化を求める。
(S3)上記の(S2)で求まった磁石内部の磁束密度の時間変化を、磁石のみの3次元モデルに与える。
(S4)上記の(S3)による磁石3次元モデルと磁束密度の時間変化から、有限要素法により、磁石の渦電流を考慮した3次元解析を行う。このとき、磁石3次元モデルに与える磁束密度は、軸方向に一様な値とする。
(S5)上記の(S4)で求まる磁石の渦電流密度の時間変化から、磁石渦電流損失密度を算出する。
以上までの磁石渦電流損失解析方法において、磁石3次元解析を行う場合、磁石渦電流による反磁界の考慮の有無が問題となるが、まず、磁石渦電流による反磁界の影響を無視した場合の解析は以下の式を用いればよい。
Figure 0004992391
ここで、T,Bおよびσは、電流ベクトルポテンシャル、磁束密度および導電率である。
上記の(1)式が基礎方程式であり、これを離散化し、PMモータの2次元解析で求まった磁石内部の磁束密度Bを与えて、電流ベクトルポテンシャルTを未知数として有限要素法により電流ベクトルポテンシャルTを求めれば、渦電流密度Jeを得ることができる。
また、磁石の3次元解析を行う際の境界条件は、磁石内で発生した渦電流が外部に漏れないと仮定して図4(b)の対称面以外全て固定境界(T=0)とする。
また、磁石渦電流による反磁界の影響を考慮した場合の解析は、以下の式を用いればよい。
Figure 0004992391
ここで、Aおよびφは、磁気ベクトルポテンシャルおよび電気スカラポテンシャルである。PMモータの2次元解析で求まった磁石内部の磁束密度Bを与えて、磁気ベクトルポテンシャルAおよび電気スカラポテンシャルφを未知数として有限要素法により磁気ベクトルポテンシャルAおよび電気スカラポテンシャルφを求めれば、渦電流密度Jeを得ることができる。
また、この場合の境界条件は、図4(b)の対称面以外全て自然境界(A=未知数)とする。
上記の境界条件は、磁石内で発生した渦電流が磁石外部に漏れないと仮定した場合であるが、磁石の3次元モデルの境界に境界要素法を用いれば、境界条件に制限されない無限遠の解析ができ、解析精度は向上する。
本発明の実施形態による処理と従来方法による処理のフローチャート。 磁石内部の磁束密度B(T)の時間変化の例。 永久磁石の渦電流の説明図。 2次元有限要素と3次元有限要素によるPMモータの解析モデル。

Claims (4)

  1. PMモータの磁石渦電流損失を有限要素法によるコンピュータ処理で解析する方法であって、
    前記コンピュータ処理は、
    PMモータの2次元モデルのデータを作成しておくステップと、
    前記2次元モデルのデータを用い、有限要素法による2次元磁場解析により、前記PMモータの磁石の渦電流を考慮することなく、該磁石内部の磁束密度の時間変化のデータを求めるステップと、
    前記磁石内部の磁束密度の時間変化のデータを、磁石のみの3次元モデルに与えるステップと、
    前記磁石3次元モデルの軸方向に一様な値として前記磁束密度の時間変化のデータを該磁石3次元モデルに与え、有限要素法により、該磁石の渦電流を考慮した3次元解析を行うステップと、
    前記3次元解析により求められる磁石の渦電流密度の時間変化から、磁石渦電流損失密度を算出するステップと、
    を有することを特徴とするPMモータの磁石渦電流損失解析方法。
  2. 前記3次元解析を行うステップは、前記磁石の渦電流による反磁界の影響を無視して該磁石のみの3次元解析を行うことを特徴とする請求項1に記載のPMモータの磁石渦電流損失解析方法。
  3. 前記3次元解析を行うステップは、前記磁石の渦電流による反磁界の影響を考慮して該磁石のみの3次元解析を行うことを特徴とする請求項1に記載のPMモータの磁石渦電流損失解析方法。
  4. 前記3次元解析を行うステップは、前記磁石のみの3次元モデルの境界面に境界要素法を用いることで、境界条件に制限されない無限遠の解析を行うことを特徴とする請求項1〜3のいずれか1項に記載のPMモータの磁石渦電流損失解析方法。
JP2006303531A 2006-11-09 2006-11-09 Pmモータの磁石渦電流損失解析方法 Expired - Fee Related JP4992391B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006303531A JP4992391B2 (ja) 2006-11-09 2006-11-09 Pmモータの磁石渦電流損失解析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006303531A JP4992391B2 (ja) 2006-11-09 2006-11-09 Pmモータの磁石渦電流損失解析方法

Publications (2)

Publication Number Publication Date
JP2008123076A JP2008123076A (ja) 2008-05-29
JP4992391B2 true JP4992391B2 (ja) 2012-08-08

Family

ID=39507795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006303531A Expired - Fee Related JP4992391B2 (ja) 2006-11-09 2006-11-09 Pmモータの磁石渦電流損失解析方法

Country Status (1)

Country Link
JP (1) JP4992391B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5228730B2 (ja) * 2008-09-17 2013-07-03 株式会社明電舎 永久磁石式モータの磁石内渦電流損失解析方法
JP6441661B2 (ja) * 2014-12-18 2018-12-19 株式会社Jsol 特性テーブル作成装置及びコンピュータプログラム
CN105205234B (zh) * 2015-09-09 2018-06-22 华北电力大学 一种交流电机的两项式分段变系数铁耗模型的构建方法
KR102235396B1 (ko) * 2016-07-28 2021-04-02 현대일렉트릭앤에너지시스템(주) 전동기 기동 특성 분석 방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268061A (ja) * 1999-03-15 2000-09-29 Mitsubishi Electric Corp 電磁場解析方法およびその装置
JP2001133527A (ja) * 1999-11-09 2001-05-18 Nissan Motor Co Ltd モータの磁場解析モデルおよび磁場解析方法
JP2002006009A (ja) * 2000-06-16 2002-01-09 Nissan Motor Co Ltd モータ損失の解析方法及びその命令を格納した情報媒体
JP4683591B2 (ja) * 2001-04-27 2011-05-18 キヤノン株式会社 磁化分布算出装置および算出方法
JP2003141186A (ja) * 2001-10-31 2003-05-16 Canon Inc モータ解析装置
JP4376546B2 (ja) * 2002-12-18 2009-12-02 株式会社日立製作所 回転電機の磁界解析方法

Also Published As

Publication number Publication date
JP2008123076A (ja) 2008-05-29

Similar Documents

Publication Publication Date Title
Jin et al. 3-D analytical magnetic field analysis of axial flux permanent-magnet machine
Fu et al. Dynamic demagnetization computation of permanent magnet motors using finite element method with normal magnetization curves
Boroujeni et al. A novel analytical model for no-load, slotted, surface-mounted PM machines: air gap flux density and cogging torque
Chen et al. An analytical method for predicting 3-D eddy current loss in permanent magnet machines based on generalized image theory
JP2010072773A (ja) 永久磁石式モータの磁石内渦電流損失解析方法
JP4992391B2 (ja) Pmモータの磁石渦電流損失解析方法
Min et al. Eddy-current loss analysis of noncontact magnetic device with permanent magnets based on analytical field calculations
Kotter et al. Noise-vibration-harshness-modeling and analysis of a permanent-magnetic disc rotor axial-flux electric motor
Abd-Rabou et al. Design development of permanent magnet excitation transverse flux linear motor with inner mover type
Kremers et al. Analytical flux linkage and EMF calculation of a transverse flux machine
Lee et al. A novel methodology for the demagnetization analysis of surface permanent magnet synchronous motors
Zhao et al. Accelerating the optimal shape design of linear machines by transient simulation using mesh deformation and mesh connection techniques
Custers et al. 2-D semianalytical modeling of eddy currents in segmented structures
Gulbahce et al. A study to determine the act of excitation current on braking torque for a low power eddy current brake
Negrea et al. Thermal analysis of a large permanent magnet synchronous motor for different permanent magnet rotor configurations
Gulbahce et al. Investigation of the effect of pole shape on braking torque for a low power eddy current brake by finite elements method
Madina et al. Magnet eddy current loss calculation method for segmentation analysis on permanent magnet machines
Ding et al. Accurate prediction of leakage flux boundaries for an axial-flux MEMS micromotor design
CN107579643B (zh) 一种单相圆筒型永磁直线电机二维磁路建模方法
Jang et al. Optimal design and torque analysis considering eddy-current reduction of axial-flux permanent magnet couplings with Halbach array based on 3D-FEM
Nair et al. Computationally efficient 3D rotor eddy current loss prediction in permanent magnet machines
Zhong et al. Steady-state finite-element solver for rotor eddy currents in permanent-magnet machines using a shooting-Newton/GMRES approach
Mohammadi et al. Sensitivity analysis and prototyping of a surface-mounted permanent-magnet axial-flux coupler
Tarek et al. Analysis of unbalanced magnetic pull of permanent magnet assisted synchronous reluctance motor based on uneven axial temperature distribution of magnets
Yoon et al. A method to verify accuracy of predicted magnetic orientation of a permanent ring magnet in a brushless DC motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4992391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees