JP4990204B2 - Power generation system and power generation system control method - Google Patents

Power generation system and power generation system control method Download PDF

Info

Publication number
JP4990204B2
JP4990204B2 JP2008076469A JP2008076469A JP4990204B2 JP 4990204 B2 JP4990204 B2 JP 4990204B2 JP 2008076469 A JP2008076469 A JP 2008076469A JP 2008076469 A JP2008076469 A JP 2008076469A JP 4990204 B2 JP4990204 B2 JP 4990204B2
Authority
JP
Japan
Prior art keywords
pressure
steam
power generation
flow rate
reducing valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008076469A
Other languages
Japanese (ja)
Other versions
JP2009228604A (en
Inventor
英明 桑原
真 西村
治幸 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008076469A priority Critical patent/JP4990204B2/en
Priority to KR1020080122864A priority patent/KR101011554B1/en
Priority to CN2008101837484A priority patent/CN101546980B/en
Publication of JP2009228604A publication Critical patent/JP2009228604A/en
Application granted granted Critical
Publication of JP4990204B2 publication Critical patent/JP4990204B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Control Of Fluid Pressure (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

本発明は、発電システム及び発電システムの制御方法に関するものである。   The present invention relates to a power generation system and a method for controlling the power generation system.

従来、減圧弁が設けられ、蒸気生成手段で生成された蒸気を蒸気利用設備へ供給する主配管のうち前記減圧弁の上流側から所定圧力の蒸気を発電装置に導入して発電を行い、その発電に利用した後の蒸気を前記主配管のうち減圧弁の下流側に戻して蒸気利用設備へ供給する発電システムが知られている(例えば、特許文献1参照)。   Conventionally, a pressure reducing valve is provided, and power is generated by introducing steam at a predetermined pressure into the power generator from the upstream side of the pressure reducing valve in the main pipe for supplying the steam generated by the steam generating means to the steam utilization facility. There is known a power generation system in which steam used for power generation is returned to the downstream side of the pressure reducing valve in the main pipe and supplied to steam utilization equipment (for example, see Patent Document 1).

図6には、上記特許文献1に開示された従来の発電システムの全体構成が示されている。この図6に示すように、蒸気生成手段100が主配管102を通じて蒸気利用設備104に繋がっているとともに、その主配管102に減圧弁106が設けられている。そして、主配管102において減圧弁106の上流側の位置に発電システムの導入管108が接続されており、その導入管108が発電装置110の駆動機112の入口側に接続されている。発電装置110の駆動機112の出口側から主配管102のうち減圧弁106の下流側の位置へ排出管114が接続されている。発電装置110には、駆動機112によって駆動される発電機116が設けられている。   FIG. 6 shows an overall configuration of a conventional power generation system disclosed in Patent Document 1. As shown in FIG. 6, the steam generation means 100 is connected to the steam utilization facility 104 through the main pipe 102, and a pressure reducing valve 106 is provided in the main pipe 102. An introduction pipe 108 of the power generation system is connected to a position upstream of the pressure reducing valve 106 in the main pipe 102, and the introduction pipe 108 is connected to the inlet side of the drive unit 112 of the power generation apparatus 110. A discharge pipe 114 is connected from the outlet side of the drive unit 112 of the power generation apparatus 110 to a position downstream of the pressure reducing valve 106 in the main pipe 102. The power generator 110 is provided with a generator 116 that is driven by a drive machine 112.

そして、この発電システムでは、蒸気生成手段100から送られる蒸気が主配管102及び減圧弁106を通って蒸気利用設備104に供給される。一方、主配管102から導入管108を通じて駆動機112に蒸気が導入されて駆動機112が駆動することにより発電機113が発電を行うとともに、その発電に利用された後の蒸気が駆動機112から排出管114を通じて主配管102のうち減圧弁106の下流側へ流されて蒸気利用設備104に供給される。
特開2007−74894号公報
In this power generation system, the steam sent from the steam generation means 100 is supplied to the steam utilization facility 104 through the main pipe 102 and the pressure reducing valve 106. On the other hand, the steam is introduced from the main pipe 102 to the driving machine 112 through the introduction pipe 108 and the driving machine 112 is driven, whereby the generator 113 generates power, and the steam used for the power generation is sent from the driving machine 112. The main pipe 102 flows through the discharge pipe 114 to the downstream side of the pressure reducing valve 106 and is supplied to the steam utilization facility 104.
JP 2007-74894 A

ところで、上記のような発電システムでは、発電装置110の駆動機112に導入される蒸気流量が変動する場合がある。そして、駆動機112に導入される蒸気流量があまりに低下するときには、駆動機112の駆動を停止させて蒸気生成手段100から供給される全ての蒸気を主配管102を通じて蒸気利用設備104へ供給する制御が一般的に行われる。この制御では、駆動機112が停止すると、その下流側に蒸気が流れなくなり、駆動機112の下流側の蒸気圧、すなわち減圧弁106の下流側の蒸気圧が減圧弁106の設定圧力に低下したことに応じて減圧弁106を開け、主配管102を通じて電気利用設備104へ流す蒸気の流量を増加させる。   By the way, in the above power generation systems, the steam flow rate introduced into the drive machine 112 of the power generation apparatus 110 may fluctuate. When the flow rate of the steam introduced into the driving machine 112 is too low, the driving of the driving machine 112 is stopped and all the steam supplied from the steam generating means 100 is supplied to the steam utilization facility 104 through the main pipe 102. Is generally done. In this control, when the driving machine 112 is stopped, the steam stops flowing downstream, and the steam pressure downstream of the driving machine 112, that is, the steam pressure downstream of the pressure reducing valve 106 is reduced to the set pressure of the pressure reducing valve 106. Accordingly, the pressure reducing valve 106 is opened, and the flow rate of the steam flowing to the electricity utilization facility 104 through the main pipe 102 is increased.

しかしながら、この場合には、蒸気利用設備104に供給される蒸気の圧力が一時的に許容圧力範囲を逸脱して大きく低下するという問題点がある。   However, in this case, there is a problem that the pressure of the steam supplied to the steam utilization facility 104 temporarily falls outside the allowable pressure range.

すなわち、上記構成では、駆動機112が停止してその下流側に蒸気が流れなくなってから減圧弁106が完全に開くまでにタイムラグがあり、その期間は蒸気利用設備104へ流れる蒸気流量が大きく低下するため、この期間に蒸気利用設備104に供給される蒸気の圧力が一時的に許容圧力範囲を逸脱して低下する。   That is, in the above configuration, there is a time lag from when the driving device 112 stops and steam stops flowing to the downstream side until the pressure reducing valve 106 is fully opened, and during that period, the flow rate of steam flowing to the steam utilization facility 104 greatly decreases. Therefore, the pressure of the steam supplied to the steam utilization facility 104 during this period temporarily falls outside the allowable pressure range.

本発明は、上記のような課題を解決するためになされたものであり、その目的は、蒸気利用設備に供給される蒸気の圧力が一時的に許容圧力範囲を逸脱して低下するのを防ぐことが可能な発電システム及び発電システムの制御方法を提供することである。   The present invention has been made to solve the above-described problems, and its purpose is to prevent the pressure of the steam supplied to the steam utilization facility from temporarily deviating from the allowable pressure range. A power generation system and a method for controlling the power generation system are provided.

上記目的を達成するために、本発明による発電システムは、減圧弁を有し、蒸気生成手段によって生成された蒸気を蒸気利用設備へ供給する主配管に接続され、蒸気のエネルギーを利用して発電を行う発電システムであって、前記主配管のうち前記減圧弁の上流側の位置に接続可能な導入管と、前記主配管のうち前記減圧弁の下流側の位置に接続可能な排出管と、蒸気流量の調整機能を有し、前記主配管から前記導入管を通じて導入される蒸気により発電を行うとともに、その発電に用いた後の蒸気を前記排出管を通じて前記主配管へ排出する発電装置と、前記減圧弁及び前記発電装置の下流側における蒸気圧を検出する圧力検出手段と、前記圧力検出手段の検出圧力に基づいて前記減圧弁の下流側の蒸気圧が第1設定圧となるように前記減圧弁を開閉制御する減圧弁コントローラとを備え、前記発電装置は、導入される蒸気流量が所定流量よりも多いときには、前記圧力検出手段の検出圧力に基づいて当該発電装置の下流側の蒸気圧が前記第1設定圧よりも高い第2設定圧となるように当該発電装置を通過する蒸気流量を制御する一方、導入される蒸気流量が前記所定流量まで低下したときには、前記圧力検出手段の検出圧力に基づいて当該発電装置の下流側の蒸気圧が前記第1設定圧よりも低く、かつ、0kPaGよりも高い第3設定圧となるように当該発電装置を通過する蒸気流量を制御する。   In order to achieve the above object, a power generation system according to the present invention has a pressure reducing valve, is connected to a main pipe that supplies steam generated by steam generation means to steam utilization equipment, and generates power using steam energy. An introduction pipe connectable to a position on the upstream side of the pressure reducing valve in the main pipe, and a discharge pipe connectable to a position on the downstream side of the pressure reducing valve in the main pipe, A power generation device having a function of adjusting a steam flow rate, generating power by steam introduced from the main pipe through the introduction pipe, and discharging the steam used for power generation to the main pipe through the discharge pipe; Pressure detecting means for detecting a vapor pressure downstream of the pressure reducing valve and the power generator, and the vapor pressure downstream of the pressure reducing valve based on the detected pressure of the pressure detecting means so as to become a first set pressure. Decrease A pressure reducing valve controller that controls opening and closing of the valve, and when the steam flow rate to be introduced is greater than a predetermined flow rate, the power generation device has a steam pressure downstream of the power generation device based on a detected pressure of the pressure detection means. While the flow rate of steam passing through the power generation device is controlled to be a second set pressure higher than the first set pressure, the detected pressure of the pressure detecting means is reduced when the introduced steam flow rate is reduced to the predetermined flow rate. The steam flow rate passing through the power generator is controlled so that the steam pressure downstream of the power generator becomes a third set pressure lower than the first set pressure and higher than 0 kPaG.

この発電システムでは、発電装置が、導入される蒸気流量が所定流量よりも多いときには、発電装置の下流側の蒸気圧が減圧弁の第1設定圧よりも高い第2設定圧となるように当該発電装置を通過する蒸気流量を制御する一方、導入される蒸気流量が前記所定流量まで低下したときには、発電装置の下流側の蒸気圧が前記第1設定圧よりも低く、かつ、0kPaGよりも高い第3設定圧となるように当該発電装置を通過する蒸気流量を制御する。これにより、発電装置に導入される蒸気流量が前記所定流量まで低下したときには、発電装置を通って蒸気が流れるのと並行して、発電装置の下流側の蒸気圧、すなわち減圧弁の下流側の蒸気圧が第1設定圧よりも低い第3設定圧へ制御されることにより減圧弁が開かれてこの減圧弁を通じても蒸気が流れる。この場合、発電装置及び減圧弁のそれぞれを通って下流側へ流れる蒸気が合流して蒸気利用設備へ供給される。このため、従来のように発電装置に導入される蒸気流量が所定流量まで低下したときに発電装置を停止し、その発電装置の下流側の蒸気圧が低下してから減圧弁を開く構成と異なり、蒸気利用設備に供給される蒸気の圧力が一時的に許容圧力範囲を逸脱して低下するのを防ぐことができる。   In this power generation system, when the steam flow rate introduced by the power generation device is higher than the predetermined flow rate, the steam pressure on the downstream side of the power generation device is set to a second set pressure higher than the first set pressure of the pressure reducing valve. While controlling the flow rate of steam passing through the power generation device, the steam pressure on the downstream side of the power generation device is lower than the first set pressure and higher than 0 kPaG when the introduced steam flow rate is reduced to the predetermined flow rate. The flow rate of steam passing through the power generator is controlled so as to be the third set pressure. Thereby, when the steam flow rate introduced into the power generation device is reduced to the predetermined flow rate, the steam pressure on the downstream side of the power generation device, that is, the downstream side of the pressure reducing valve is parallel to the flow of the steam through the power generation device. By controlling the vapor pressure to a third set pressure lower than the first set pressure, the pressure reducing valve is opened, and the steam also flows through the pressure reducing valve. In this case, the steam flowing downstream through the power generation device and the pressure reducing valve merges and is supplied to the steam utilization facility. For this reason, unlike the conventional configuration, the power generation device is stopped when the steam flow rate introduced into the power generation device is reduced to a predetermined flow rate, and the pressure reducing valve is opened after the vapor pressure on the downstream side of the power generation device is reduced. It is possible to prevent the pressure of the steam supplied to the steam utilization facility from temporarily deviating from the allowable pressure range.

上記発電システムにおいて、前記圧力検出手段は、前記主配管において前記減圧弁の下流側に設けられた第1圧力センサと、前記排出管に設けられた第2圧力センサとを含み、前記減圧弁コントローラは、前記第1圧力センサの検出圧力に基づいて前記減圧弁を開閉制御し、前記発電装置は、前記第2圧力センサの検出圧力に基づいて当該発電装置を通過する蒸気流量を制御するのが好ましい。   In the power generation system, the pressure detecting means includes a first pressure sensor provided on the downstream side of the pressure reducing valve in the main pipe and a second pressure sensor provided on the discharge pipe, and the pressure reducing valve controller Controls the opening and closing of the pressure reducing valve based on the pressure detected by the first pressure sensor, and the power generator controls the flow rate of steam passing through the power generator based on the pressure detected by the second pressure sensor. preferable.

この構成によれば、減圧弁コントローラが減圧弁の下流側の近傍に位置する第1圧力センサの検出圧力に基づいて減圧弁を開閉制御できるので、減圧弁を精度良く開閉制御することができるとともに、減圧弁の下流側の蒸気圧を精度良く制御することができる。また、発電装置がその下流側の近傍に位置する第2圧力センサの検出圧力に基づいて当該発電装置を通過する蒸気流量を制御することができるので、発電装置の下流側に流れる蒸気流量及び蒸気圧を精度良く制御することができる。   According to this configuration, the pressure reducing valve controller can control the opening and closing of the pressure reducing valve based on the detected pressure of the first pressure sensor located in the vicinity of the downstream side of the pressure reducing valve. The vapor pressure on the downstream side of the pressure reducing valve can be accurately controlled. Moreover, since the steam flow rate which passes the said electric power generating apparatus can be controlled based on the detection pressure of the 2nd pressure sensor located in the vicinity of the downstream of the electric power generating apparatus, the steam flow rate and steam which flow downstream of the electric power generating apparatus The pressure can be controlled with high accuracy.

本発明による発電システムの制御方法は、減圧弁を有し、蒸気生成手段によって生成された蒸気を蒸気利用設備へ供給する主配管に接続され、蒸気のエネルギーを利用して発電を行う発電システムの制御方法であって、前記主配管のうち前記減圧弁の上流側の位置に接続可能な導入管と、前記前記主配管のうち前記減圧弁の下流側の位置に接続可能な排出管とが設けられているとともに、蒸気流量の調整機能を有し、前記主配管から前記導入管を通じて導入される蒸気により発電を行うとともに、その発電に用いた後の蒸気を前記排出管を通じて前記主配管へ排出する発電装置が設けられており、前記発電装置に導入される蒸気流量が所定流量よりも多いときには、当該発電装置の下流側の蒸気圧が前記減圧弁の第1設定圧よりも高い第2設定圧となるように当該発電装置を通過する蒸気流量を制御する一方、前記発電装置に導入される蒸気流量が前記所定流量まで低下したときには、当該発電装置の下流側の蒸気圧が前記減圧弁の第1設定圧よりも低く、かつ、0kPaGよりも高い第3設定圧となるように当該発電装置を通過する蒸気流量を制御する。   A power generation system control method according to the present invention includes a pressure reducing valve, and is connected to a main pipe that supplies steam generated by steam generation means to steam utilization equipment, and generates power using steam energy. A control method comprising: an introduction pipe connectable to a position upstream of the pressure reducing valve in the main pipe; and a discharge pipe connectable to a position downstream of the pressure reducing valve in the main pipe. And has a function of adjusting the flow rate of steam, and generates power using steam introduced from the main pipe through the introduction pipe, and discharges steam used for the power generation to the main pipe through the discharge pipe. When a steam flow rate introduced into the power generation device is greater than a predetermined flow rate, a second setting in which the vapor pressure on the downstream side of the power generation device is higher than the first set pressure of the pressure reducing valve is provided. While the flow rate of steam passing through the power generation device is controlled so as to become a pressure, when the flow rate of steam introduced into the power generation device is reduced to the predetermined flow rate, the steam pressure on the downstream side of the power generation device is reduced by the pressure reducing valve. The flow rate of steam passing through the power generation device is controlled so that the third set pressure is lower than the first set pressure and higher than 0 kPaG.

この発電システムの制御方法では、発電装置に導入される蒸気流量が所定流量よりも多いときには、発電装置の下流側の蒸気圧が減圧弁の第1設定圧よりも高い第2設定圧となるように発電装置を通過する蒸気流量を制御する一方、発電装置に導入される蒸気流量が前記所定流量まで低下したときには、発電装置の下流側の蒸気圧が減圧弁の第1設定圧よりも低く、かつ、0kPaGよりも高い第3設定圧となるように発電装置を通過する蒸気流量を制御する。これにより、上記発電システムによる作用と同様にして、発電装置に導入される蒸気流量が前記所定流量まで低下したときには、発電装置を通って蒸気が流れるのと並行して、減圧弁を通じても蒸気が流れ、発電装置及び減圧弁のそれぞれを通って流れる蒸気が合流して蒸気利用設備へ供給される。このため、蒸気利用設備に供給される蒸気の圧力が一時的に許容圧力範囲を逸脱して低下するのを防ぐことができる。   In this power generation system control method, when the steam flow rate introduced into the power generation device is larger than the predetermined flow rate, the steam pressure on the downstream side of the power generation device is set to a second set pressure higher than the first set pressure of the pressure reducing valve. When the flow rate of steam passing through the power generator is controlled to the predetermined flow rate, the steam pressure on the downstream side of the power generator is lower than the first set pressure of the pressure reducing valve. In addition, the flow rate of the steam passing through the power generation device is controlled so that the third set pressure is higher than 0 kPaG. Thus, in the same manner as the operation by the power generation system, when the flow rate of the steam introduced into the power generation device decreases to the predetermined flow rate, the steam flows through the pressure reducing valve in parallel with the flow of the steam through the power generation device. The steam flowing through each of the flow, the power generation device and the pressure reducing valve joins and is supplied to the steam utilization facility. For this reason, it is possible to prevent the pressure of the steam supplied to the steam utilization facility from temporarily deviating from the allowable pressure range.

以上説明したように、本発明によれば、蒸気利用設備に供給される蒸気の圧力が一時的に許容圧力範囲を逸脱して低下するのを防ぐことができる。   As described above, according to the present invention, it is possible to prevent the pressure of the steam supplied to the steam utilization facility from temporarily deviating from the allowable pressure range.

以下、本発明の実施形態を図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態による発電システムの全体構成を概略的に示す図である。まず、この図1を参照して、本発明の一実施形態による発電システムの構成について説明する。   FIG. 1 is a diagram schematically showing an overall configuration of a power generation system according to an embodiment of the present invention. First, with reference to this FIG. 1, the structure of the electric power generation system by one Embodiment of this invention is demonstrated.

本実施形態による発電システム20は、蒸気生成手段10によって生成されて蒸気利用設備12で利用される蒸気のエネルギーを利用して発電を行うものである。   The power generation system 20 according to the present embodiment generates power using steam energy generated by the steam generation means 10 and used in the steam utilization facility 12.

具体的には、この発電システム20は、蒸気生成手段10によって生成された蒸気を蒸気利用設備12へ供給する主配管14に接続されている。この主配管14には、減圧弁16が設けられている。   Specifically, the power generation system 20 is connected to a main pipe 14 that supplies steam generated by the steam generation means 10 to the steam utilization facility 12. The main pipe 14 is provided with a pressure reducing valve 16.

前記蒸気生成手段10は、蒸気流路14に並列に接続された複数のボイラー10aによって構成されている。   The steam generation means 10 includes a plurality of boilers 10 a connected in parallel to the steam flow path 14.

前記蒸気利用設備12は、例えば給湯器、暖房機、風呂設備、乾燥機、洗浄設備、厨房機器、殺菌器等の所定温度の蒸気を利用する設備である。   The steam utilization facility 12 is a facility that utilizes steam at a predetermined temperature, such as a water heater, a heater, a bath facility, a dryer, a cleaning facility, a kitchen device, and a sterilizer.

本実施形態による発電システム20は、減圧弁圧力センサ22と、減圧弁コントローラ24と、導入管26と、排出管28と、排出圧力センサ30と、発電装置32とを備えている。   The power generation system 20 according to the present embodiment includes a pressure reducing valve pressure sensor 22, a pressure reducing valve controller 24, an introduction pipe 26, a discharge pipe 28, a discharge pressure sensor 30, and a power generation device 32.

前記減圧弁圧力センサ22は、主配管14において減圧弁16の下流側近傍の位置に設けられており、その位置における蒸気圧を検出する。この減圧弁圧力センサ22は、本発明の第1圧力センサの概念に含まれるものである。   The pressure reducing valve pressure sensor 22 is provided in the main pipe 14 at a position near the downstream side of the pressure reducing valve 16 and detects the vapor pressure at that position. The pressure reducing valve pressure sensor 22 is included in the concept of the first pressure sensor of the present invention.

前記減圧弁コントローラ24は、前記減圧弁圧力センサ22の検出圧力に基づいて減圧弁16を開閉制御するものである。   The pressure reducing valve controller 24 controls opening / closing of the pressure reducing valve 16 based on the pressure detected by the pressure reducing valve pressure sensor 22.

具体的には、この減圧弁コントローラ24には、前記減圧弁圧力センサ22の検出圧力のデータが常時入力されるようになっている。そして、減圧弁コントローラ24では、減圧弁16の第1設定圧SVが設定されている。減圧弁コントローラ24は、前記減圧弁圧力センサ22によって検出される減圧弁16の下流側の蒸気圧が第1設定圧SVよりも低いときには減圧弁16を開く一方、減圧弁16の下流側の蒸気圧が第1設定圧SV以上になると減圧弁16を閉じるように制御する。これにより、減圧弁16の下流側の蒸気圧が第1設定圧SVとなるように減圧弁コントローラ24によって減圧弁16が開閉制御されるようになっている。 Specifically, data of the pressure detected by the pressure reducing valve pressure sensor 22 is always input to the pressure reducing valve controller 24. Then, the pressure reducing valve controller 24, the first set pressure SV 1 of the pressure reducing valve 16 is set. Pressure reducing valve controller 24, the vapor pressure of the downstream side of the pressure reducing valve 16 detected by the pressure reducing valve the pressure sensor 22 is one which when first set lower than the pressure SV 1 opening the pressure reducing valve 16, the downstream side of the pressure reducing valve 16 vapor pressure controlled to close the pressure reducing valve 16 and reaches the first set pressure SV 1 or more. Thus, the vapor pressure of the downstream side of the pressure reducing valve 16 is pressure reducing valve 16 is opened and closed controlled by vacuum valve controller 24 so that the first set pressure SV 1.

前記導入管26は、主配管14のうち減圧弁16の上流側の位置に接続可能に構成されており、前記発電装置32へ蒸気を導入するものである。この導入管26の主配管14との接続部近傍には、開閉弁34が設けられている。   The introduction pipe 26 is configured to be connectable to a position upstream of the pressure reducing valve 16 in the main pipe 14, and introduces steam into the power generation device 32. An opening / closing valve 34 is provided in the vicinity of the connection portion of the introduction pipe 26 with the main pipe 14.

前記排出管28は、主配管14のうち減圧弁16の下流側の位置に接続可能に構成されており、前記発電装置32から排出された蒸気を主配管14へ流すものである。この排出管28の主配管14との接続部近傍には、開閉弁36が設けられている。この開閉弁36と前記導入管26に設けられた開閉弁34は、同時に開閉され、主配管14から導入管26へ蒸気を導入し、前記発電装置32を経て排出管28から主配管14へ蒸気を戻す状態と、主配管14から導入管26へ蒸気を導入せず、蒸気生成手段10で生成された蒸気を全て主配管14を通じて蒸気利用設備12へ流す状態とを相互に切り換えられるようになっている。   The discharge pipe 28 is configured to be connectable to a position on the downstream side of the pressure reducing valve 16 in the main pipe 14, and flows the steam discharged from the power generation device 32 to the main pipe 14. An open / close valve 36 is provided in the vicinity of the connection portion of the discharge pipe 28 with the main pipe 14. The on-off valve 36 and the on-off valve 34 provided on the introduction pipe 26 are simultaneously opened and closed to introduce steam from the main pipe 14 to the introduction pipe 26, and then to the steam from the discharge pipe 28 to the main pipe 14 through the power generator 32. And a state where all the steam generated by the steam generating means 10 is allowed to flow to the steam utilization facility 12 through the main pipe 14 without introducing the steam from the main pipe 14 to the introduction pipe 26 can be switched. ing.

また、この排出管28において前記発電装置32の下流側で、かつ、前記開閉弁36の上流側の位置には、前記排出圧力センサ30が設けられており、この排出圧力センサ30によって発電装置32の下流側の蒸気圧が検出されるようになっている。この排出圧力センサ30は、本発明の第2圧力センサの概念に含まれるものであり、本実施形態では、この排出圧力センサ30と前記減圧弁圧力センサ22とによって本発明の圧力検出手段が構成されている。   Further, the discharge pressure sensor 30 is provided in the discharge pipe 28 at a position downstream of the power generation device 32 and upstream of the on-off valve 36, and the power generation device 32 is provided by the discharge pressure sensor 30. The downstream vapor pressure is detected. The discharge pressure sensor 30 is included in the concept of the second pressure sensor of the present invention. In this embodiment, the discharge pressure sensor 30 and the pressure reducing valve pressure sensor 22 constitute the pressure detection means of the present invention. Has been.

前記発電装置32は、前記導入管26と前記排出管28に接続されており、前記主配管14から導入管26を通じて導入される蒸気により発電を行うとともに、その発電に用いた後の蒸気を排出管28を通じて主配管14へ排出する。この発電装置32と前記排出圧力センサ30は、筐体33内に設置されており、1つのユニットとして構成されている。   The power generation device 32 is connected to the introduction pipe 26 and the discharge pipe 28, and generates power using steam introduced from the main pipe 14 through the introduction pipe 26, and discharges steam after being used for the power generation. It is discharged to the main pipe 14 through the pipe 28. The power generation device 32 and the discharge pressure sensor 30 are installed in a housing 33 and are configured as one unit.

そして、発電装置32は、蒸気流量の調整機能を有している。具体的には、この発電装置32は、駆動機38と、発電機40と、周波数変換器42と、ドレンセパレータ44と、流量調整弁46と、緊急遮断弁48と、導入圧力センサ50と、コントローラ52とを有している。   The power generation device 32 has a function of adjusting the steam flow rate. Specifically, the power generation device 32 includes a drive unit 38, a generator 40, a frequency converter 42, a drain separator 44, a flow rate adjustment valve 46, an emergency shut-off valve 48, an introduction pressure sensor 50, And a controller 52.

前記駆動機38は、前記導入管26を通じて導入された蒸気によって駆動されるものであり、例えば各種タービンやスクリュ膨張機等によって構成される。   The drive unit 38 is driven by steam introduced through the introduction pipe 26, and includes, for example, various turbines, screw expanders, and the like.

前記導入管26は、この駆動機38の入口側に接続されているとともに、前記排出管28は、この駆動機38の出口側に接続されている。これにより、前記主配管24から導入管26を通じて導入される蒸気によって駆動機38が駆動し、その駆動機38から排出された蒸気が排出管28を通じて主配管に戻されるようになっている。   The introduction pipe 26 is connected to the inlet side of the driving machine 38, and the discharge pipe 28 is connected to the outlet side of the driving machine 38. Thereby, the driving machine 38 is driven by the steam introduced from the main pipe 24 through the introduction pipe 26, and the steam discharged from the driving machine 38 is returned to the main pipe through the discharge pipe 28.

この駆動機38の駆動軸38aは、前記発電機40の回転軸40aと繋がっている。これにより、駆動機38が駆動し、駆動軸38aが回転すると、その駆動軸38aの回転力が発電機40の回転軸40aに伝達されて発電機40が駆動し、発電を行うようになっている。   The drive shaft 38a of the drive machine 38 is connected to the rotary shaft 40a of the generator 40. As a result, when the drive machine 38 is driven and the drive shaft 38a rotates, the rotational force of the drive shaft 38a is transmitted to the rotary shaft 40a of the generator 40, and the generator 40 is driven to generate power. Yes.

発電機40で発電された電力は、前記周波数変換器42に導入される。この周波数変換器42は、発電機40で発電された電力の周波数を所望の周波数に変換して出力するものであり、この周波数変換器42から出力された電力は、外部の変圧器54を通じて系統56へ供給される。   The electric power generated by the generator 40 is introduced into the frequency converter 42. The frequency converter 42 converts the frequency of the electric power generated by the generator 40 into a desired frequency and outputs it. The electric power output from the frequency converter 42 is supplied to the system through an external transformer 54. 56.

前記ドレンセパレータ44、前記流量調整弁46、前記緊急遮断弁48及び導入圧力センサ50は、前記導入管26において前記開閉弁34と前記駆動機38との間に上流側からこの順番で設けられている。   The drain separator 44, the flow rate adjusting valve 46, the emergency shut-off valve 48, and the introduction pressure sensor 50 are provided in this order from the upstream side between the opening / closing valve 34 and the driving machine 38 in the introduction pipe 26. Yes.

前記ドレンセパレータ44は、導入管26を流れる蒸気からドレンを分離するためのものである。   The drain separator 44 is for separating drain from the steam flowing through the introduction pipe 26.

前記流量調整弁46は、導入管26を通じて駆動機38に導入される蒸気流量を調整するものであり、前記コントローラ52によって開閉制御可能に構成されている。本実施形態では、この流量調整弁46によって発電装置32を通過する蒸気流量が調整されるようになっている。   The flow rate adjusting valve 46 adjusts the flow rate of the steam introduced into the driving machine 38 through the introduction pipe 26, and is configured to be openable / closable by the controller 52. In the present embodiment, the flow rate of the steam passing through the power generator 32 is adjusted by the flow rate adjusting valve 46.

前記緊急遮断弁48は、導入管26を完全に遮断するものであり、前記コントローラ52によって制御可能となっている。   The emergency shutoff valve 48 completely shuts off the introduction pipe 26 and can be controlled by the controller 52.

前記導入圧力センサ50は、導入管26を通じて駆動機38へ導入される蒸気の圧力を検出するものである。   The introduction pressure sensor 50 detects the pressure of steam introduced into the driving machine 38 through the introduction pipe 26.

前記コントローラ52は、前記導入圧力センサ50及び前記排出圧力センサ30の検出圧力に基づいて適正回転数を導出する。そして、このコントローラ52によって導出された適正回転数に基づいて、前記周波数変換器42が発電機40に回転数制御信号を出力し、発電機40が蒸気流量に応じた適正回転数で運転されるようになっている。   The controller 52 derives an appropriate rotational speed based on the pressure detected by the introduction pressure sensor 50 and the discharge pressure sensor 30. Then, based on the appropriate rotation speed derived by the controller 52, the frequency converter 42 outputs a rotation speed control signal to the generator 40, and the generator 40 is operated at an appropriate rotation speed corresponding to the steam flow rate. It is like that.

そして、本実施形態では、発電装置32がこのコントローラ52により排出圧力センサ30の検出圧力に基づいて流量調整弁46を開閉制御することによって、発電装置32を通過する蒸気流量を制御するようになっている。   In this embodiment, the power generation device 32 controls the flow rate of the steam passing through the power generation device 32 by controlling the flow rate adjustment valve 46 based on the detected pressure of the discharge pressure sensor 30 by the controller 52. ing.

具体的には、コントローラ52は、蒸気利用設備12で要求される蒸気流量に応じた制御出力値を流量調整弁46に出力し、その制御出力値に応じて流量調整弁46の開度が制御されることにより、発電装置32に導入される蒸気流量、すなわち発電装置32を通過して下流側へ流れ、蒸気利用設備12に供給される蒸気流量を調整する。   Specifically, the controller 52 outputs a control output value corresponding to the steam flow rate required in the steam utilization facility 12 to the flow rate adjustment valve 46, and the opening degree of the flow rate adjustment valve 46 is controlled according to the control output value. Thus, the flow rate of the steam introduced into the power generation device 32, that is, the flow rate of the steam that passes through the power generation device 32 and flows downstream is supplied to the steam utilization facility 12.

そして、コントローラ52では、駆動機38を駆動させるために導入すべき蒸気流量の範囲として容量制御範囲が設定されているとともに、発電装置32の下流側の蒸気圧の設定値として第2設定圧SVと第3設定圧SVとが設定されるようになっている。 In the controller 52, a capacity control range is set as a range of steam flow to be introduced to drive the drive machine 38, and a second set pressure SV is set as a set value of the steam pressure downstream of the power generator 32. 2 and the third set pressure SV 3 is adapted to be set.

前記第2設定圧SVは、図2に示すように前記減圧弁16の第1設定圧SVに対して所定の圧力差を有し、その第1設定圧SVよりも高い圧力に設定されている。コントローラ52は、流量調整弁46に出力する制御出力値、すなわち発電装置32に導入する蒸気流量が前記容量制御範囲の下限の流量よりも少し上に設定された所定流量よりも多いときには、排出圧力センサ30の検出圧力に基づいて発電装置32の下流側の蒸気圧を前記第2設定圧SVとなるように流量調整弁46の開度を制御し、発電装置32を通過する蒸気流量を制御する。 As shown in FIG. 2, the second set pressure SV 2 has a predetermined pressure difference with respect to the first set pressure SV 1 of the pressure reducing valve 16 and is set to a pressure higher than the first set pressure SV 1. Has been. When the control output value to be output to the flow rate adjustment valve 46, that is, the steam flow rate to be introduced into the power generation device 32 is higher than the predetermined flow rate set slightly above the lower limit flow rate of the capacity control range, the controller 52 controlling the opening degree of the flow rate adjusting valve 46 so that the vapor pressure of the downstream side of the generator 32 becomes the second set pressure SV 2 on the basis of the detected pressure of the sensor 30, controls the steam flow through the turbine generator 32 To do.

そして、発電装置32の下流側と減圧弁16の下流側とが繋がっていることに起因して、発電装置32の流量調整弁46と減圧弁16は、それら発電装置32及び減圧弁16の下流側における同じ蒸気圧に基づいて開閉制御される。この際、流量調整弁46の開閉制御の基準となる前記第2設定圧SVが減圧弁16の開閉制御の基準となる前記第1設定圧SVに対して所定の圧力差で高い圧力に設定されているため、減圧弁16と流量調整弁46との間でのハンチングが防止されるようになっている。 The flow rate adjusting valve 46 and the pressure reducing valve 16 of the power generating device 32 are downstream of the power generating device 32 and the pressure reducing valve 16 because the downstream side of the power generating device 32 and the downstream side of the pressure reducing valve 16 are connected. Opening and closing is controlled based on the same vapor pressure on the side. At this time, the high pressure at a predetermined pressure differential the second set as a reference for opening and closing the control pressure SV 2 is relative to the first set pressure SV 1 as a reference for opening and closing control of the pressure reducing valve 16 of the flow control valve 46 Since it is set, hunting between the pressure reducing valve 16 and the flow rate adjusting valve 46 is prevented.

また、前記第3設定圧SVは、前記減圧弁16の第1設定圧SVよりも低く、かつ、0kPaG、すなわち大気圧よりも高い圧力に設定されている。コントローラ52は、蒸気利用設備12で要求される蒸気流量が低下し、流量調整弁46へ出力する制御出力値が低下することにより、発電装置32に導入される蒸気流量が前記所定流量まで低下したときには、発電装置32の下流側の蒸気圧の設定値を前記第2設定圧SVから第3設定圧SVに変更する。これにより、コントローラ52は、排出圧力センサ30の検出圧力に基づいて発電装置32の下流側の蒸気圧が前記第3設定圧SVとなるように流量調整弁46の開度を制御して発電装置32を通過する蒸気流量を制御する。 The third set pressure SV 3, the lower than the first set pressure SV 1 of the pressure reducing valve 16, and, 0 kPag, that is, set to a pressure higher than atmospheric pressure. In the controller 52, the steam flow rate required in the steam utilization facility 12 decreases, and the control output value output to the flow rate adjustment valve 46 decreases, so that the steam flow rate introduced into the power generation device 32 decreases to the predetermined flow rate. sometimes, it changes the setting value of the downstream of the vapor pressure of the generator 32 from the second set pressure SV 2 to a third set pressure SV 3. Power Accordingly, the controller 52 controls the opening of flow control valve 46 as the vapor pressure of the downstream side of the generator 32 becomes the third set pressure SV 2 on the basis of the detected pressure of the exhaust pressure sensor 30 The steam flow rate through the device 32 is controlled.

また、コントローラ52は、流量調整弁46へ出力する制御出力値がさらに低下し、発電装置32に導入される蒸気流量が前記容量制御範囲の下限の流量まで低下したときには、流量制御弁46を閉じて発電装置32に導入する蒸気流量を0にし、駆動機38を停止させる。   Further, the controller 52 closes the flow control valve 46 when the control output value output to the flow rate adjustment valve 46 further decreases and the steam flow rate introduced into the power generation device 32 decreases to the lower limit flow rate of the capacity control range. Then, the flow rate of the steam introduced into the power generation device 32 is set to 0, and the drive unit 38 is stopped.

図2には、本実施形態による発電システム20の制御方法を説明するための発電装置32を通過する蒸気流量と減圧弁16及び発電装置32の下流側の設定圧との関係が示されている。次に、図1及び図2を参照して、本実施形態による発電システム20の制御方法について説明する。   FIG. 2 shows the relationship between the flow rate of steam passing through the power generation device 32 and the set pressure on the downstream side of the pressure reducing valve 16 and the power generation device 32 for explaining the control method of the power generation system 20 according to the present embodiment. . Next, with reference to FIG.1 and FIG.2, the control method of the electric power generation system 20 by this embodiment is demonstrated.

まず、蒸気生成手段10で生成された蒸気が主配管14から導入管26を通じて発電装置32の駆動機38に導入されており、その蒸気によって駆動機38が駆動され、発電機40で発電が行われている。そして、駆動機38から排出された蒸気が排出管28を通じて主配管14のうち減圧弁16の下流側に戻されて蒸気利用設備12へ供給されている。   First, the steam generated by the steam generating means 10 is introduced from the main pipe 14 through the introduction pipe 26 to the drive unit 38 of the power generation device 32, and the drive unit 38 is driven by the steam, and the generator 40 generates power. It has been broken. The steam discharged from the drive unit 38 is returned to the downstream side of the pressure reducing valve 16 in the main pipe 14 through the discharge pipe 28 and supplied to the steam utilization facility 12.

この状態で、発電装置32に導入される蒸気流量、すなわち駆動機38に導入される蒸気流量は、駆動機38の容量制御範囲内で前記所定流量(図2参照)よりも多い流量となっている。このとき、発電装置32のコントローラ52は、排出圧力センサ30の検出圧力に基づいて流量調整弁46の開度を制御し、発電装置32の下流側の蒸気圧が主配管14の減圧弁16の第1設定圧SVよりも高い第2設定圧SVとなるように発電装置32を通過して下流側へ流れる蒸気流量を制御している。 In this state, the steam flow rate introduced into the power generation device 32, that is, the steam flow rate introduced into the drive unit 38, is larger than the predetermined flow rate (see FIG. 2) within the capacity control range of the drive unit 38. Yes. At this time, the controller 52 of the power generation device 32 controls the opening degree of the flow rate adjustment valve 46 based on the detected pressure of the discharge pressure sensor 30, and the vapor pressure on the downstream side of the power generation device 32 is reduced in the pressure reducing valve 16 of the main pipe 14. controlling the flow rate of steam flowing to the downstream side through the power generation device 32 such that the second set pressure SV 2 higher than the first set pressure SV 1.

これにより、減圧弁圧力センサ22によって検出される減圧弁16の下流側の蒸気圧も減圧弁16の第1設定圧SVよりも高い前記第2設定圧SVとなっており、減圧弁16が閉じられている。このため、主配管14は遮断されており、蒸気生成手段10で生成された蒸気は、全て発電装置32を通って蒸気利用設備12に供給されている。 Thereby, the vapor pressure downstream of the pressure reducing valve 16 detected by the pressure reducing valve pressure sensor 22 is also the second set pressure SV 2 higher than the first set pressure SV 1 of the pressure reducing valve 16. Is closed. For this reason, the main pipe 14 is shut off, and all the steam generated by the steam generation means 10 is supplied to the steam utilization facility 12 through the power generator 32.

次に、蒸気利用設備12で要求される蒸気流量が低下した場合には、コントローラ52から流量調整弁46に出力される制御出力値が低下し、それに応じて発電装置32を通過する蒸気流量が低下するとともに、排出圧力センサ30によって検出される発電装置32の下流側の蒸気圧も低下する。   Next, when the steam flow rate required in the steam utilization facility 12 decreases, the control output value output from the controller 52 to the flow rate adjustment valve 46 decreases, and the steam flow rate passing through the power generation device 32 correspondingly decreases. Along with the decrease, the vapor pressure on the downstream side of the power generation device 32 detected by the discharge pressure sensor 30 also decreases.

そして、コントローラ52から流量調整弁46に出力される制御出力値、すなわち発電装置32に導入される蒸気流量が前記所定流量まで低下すると、コントローラ52が発電装置32の下流側の蒸気圧の設定値を減圧弁16の第1設定圧SVよりも低く、かつ、0kPaGよりも高い第3設定圧SVに変更する。これにより、発電装置32は、そのコントローラ52により排出圧力センサ30の検出圧力に基づいて発電装置32の下流側の蒸気圧が前記第3設定圧SVとなるように流量調整弁46の開度を制御し、発電装置32を通過する蒸気流量を制御する。 When the control output value output from the controller 52 to the flow rate adjustment valve 46, that is, when the steam flow rate introduced into the power generation device 32 decreases to the predetermined flow rate, the controller 52 sets the steam pressure setting value on the downstream side of the power generation device 32. the lower than the first set pressure SV 1 of the pressure reducing valve 16, and is changed to the third set pressure SV 3 higher than 0 kPag. Thus, the power generation device 32, the opening degree of the controller 52 by the discharge pressure sensor vapor pressure of the downstream side of the generator 32 on the basis of the detected pressure of 30 the third set pressure SV 3 become as flow control valve 46 And the flow rate of the steam passing through the power generation device 32 is controlled.

発電装置32の下流側の蒸気圧が前記第3設定圧SVとなるように制御されると、減圧弁16の下流側の蒸気圧も前記第2設定圧SVからその第3設定圧SVへ向かって低下する。その過程において、減圧弁16の下流側の蒸気圧が第1設定圧SVよりも低下すると、それに応じて減圧弁コントローラ24により減圧弁16が開かれる。これにより、発電装置32を通って蒸気利用設備12へ蒸気が供給されるのと並行して、減圧弁16を通って蒸気が蒸気利用設備12へ供給される。 When controlled to the vapor pressure of the downstream side of the generator 32 becomes the third set pressure SV 3, the third set pressure vapor pressure downstream from the second set pressure SV 2 of the pressure reducing valve 16 SV It decreases toward 3 . In the process, the vapor pressure of the downstream side of the pressure reducing valve 16 when lower than the first set pressure SV 1, pressure reducing valve 16 is opened by the pressure reducing valve controller 24 accordingly. Thus, in parallel with the supply of steam to the steam utilization facility 12 through the power generation device 32, the steam is supplied to the steam utilization facility 12 through the pressure reducing valve 16.

その後、発電装置32に導入される蒸気流量がさらに低下して前記容量制御範囲の下限の流量まで低下すると、コントローラ52によって流量調整弁46が閉じられて発電装置32に導入される蒸気流量が0にされ、駆動機38が停止される。これにより、発電装置32を通過して蒸気利用設備12へ供給される蒸気流量は0になる。一方、この時点で減圧弁16は所定の開度で開いており、蒸気生成手段10で生成された全ての蒸気は、主配管14及び減圧弁16を通って蒸気利用設備12に供給される。そして、この状態では、減圧弁コントローラ24により、減圧弁圧力センサ22の検出圧力に基づいて減圧弁16の下流側の蒸気圧が第1設定圧SVとなるように減圧弁16が開閉制御される。 Thereafter, when the steam flow rate introduced into the power generation device 32 further decreases to a lower limit flow rate of the capacity control range, the controller 52 closes the flow rate adjustment valve 46 and the steam flow rate introduced into the power generation device 32 becomes 0. The driving machine 38 is stopped. Thereby, the flow rate of steam supplied to the steam utilization facility 12 through the power generation device 32 becomes zero. On the other hand, the pressure reducing valve 16 is opened at a predetermined opening degree at this time, and all the steam generated by the steam generating means 10 is supplied to the steam utilization facility 12 through the main pipe 14 and the pressure reducing valve 16. In this state, the pressure reducing valve controller 24 controls the opening and closing of the pressure reducing valve 16 so that the vapor pressure on the downstream side of the pressure reducing valve 16 becomes the first set pressure SV 1 based on the detected pressure of the pressure reducing valve pressure sensor 22. The

ところで、上記した本実施形態の制御方法と異なり、図3に示す比較例のように、発電装置32に導入される蒸気流量が前記容量制御範囲の下限の流量まで低下したときに駆動機38を停止し、発電装置32を通過する蒸気流量が0になった時点で、減圧弁16を開いて蒸気利用設備12へ蒸気を流す場合には、駆動機38が停止してその下流側に蒸気が流れなくなってから減圧弁106が完全に開くまでにタイムラグがあるため、その間に蒸気利用設備12へ供給される蒸気圧が一時的に大きく低下する。これにより、図4に示すように、蒸気利用設備12に供給される蒸気圧がその蒸気利用設備12の許容圧力範囲を一時的に逸脱して低下する場合がある。   By the way, unlike the control method of the present embodiment described above, as in the comparative example shown in FIG. 3, when the flow rate of the steam introduced into the power generation device 32 is reduced to the lower limit of the capacity control range, the driver 38 is turned on. When the flow rate of the steam passing through the power generation device 32 is zero and the decompression valve 16 is opened and the steam is allowed to flow to the steam utilization facility 12, the drive unit 38 is stopped and steam is generated downstream thereof. Since there is a time lag until the pressure reducing valve 106 is completely opened after it stops flowing, the steam pressure supplied to the steam utilization facility 12 during that time temporarily greatly decreases. Thereby, as shown in FIG. 4, the vapor pressure supplied to the steam utilization facility 12 may temporarily deviate from the allowable pressure range of the steam utilization facility 12.

これに対して、本実施形態では、上記のような制御が行われることによって、図3に示すように発電装置32に導入される蒸気流量が前記所定流量に低下した時点で減圧弁16が開き始めるため、発電装置32に導入される蒸気流量が前記所定流量からさらに前記容量制御範囲の下限の流量に低下するまでの間は、発電装置32を通って流れる蒸気と減圧弁16を通って流れる蒸気とが合流して蒸気利用設備12に供給される。そして、発電装置32に導入される蒸気流量が前記容量制御範囲の下限の流量まで低下したときには、すでに減圧弁16が所定の開度まで開いているため、減圧弁16が開き始めてからタイムラグがあったとしても上記比較例による制御方法ほどは蒸気利用設備12に供給される蒸気圧が低下せず、図5に示すように蒸気利用設備12に供給される蒸気圧が蒸気利用設備12の許容圧力範囲内で維持される。   On the other hand, in the present embodiment, by performing the control as described above, the pressure reducing valve 16 is opened when the flow rate of the steam introduced into the power generation device 32 is reduced to the predetermined flow rate as shown in FIG. In order to start, the steam flowing through the power generation device 32 and the pressure reducing valve 16 flow until the flow rate of the steam introduced into the power generation device 32 further decreases from the predetermined flow rate to the lower limit flow rate of the capacity control range. The steam merges and is supplied to the steam utilization facility 12. When the flow rate of steam introduced into the power generation device 32 is reduced to the lower limit of the capacity control range, the pressure reducing valve 16 has already been opened to a predetermined opening, so that there is a time lag after the pressure reducing valve 16 starts to open. Even so, the steam pressure supplied to the steam utilization facility 12 does not decrease as much as the control method according to the comparative example, and the steam pressure supplied to the steam utilization facility 12 is the allowable pressure of the steam utilization facility 12 as shown in FIG. Maintained within range.

以上説明したように、本実施形態では、発電装置32が、導入される蒸気流量が前記所定流量よりも多いときには、発電装置32の下流側の蒸気圧が主配管14の減圧弁16の第1設定圧SVよりも高い第2設定圧SVとなるように当該発電装置32を通過する蒸気流量を制御する一方、導入される蒸気流量が前記所定流量まで低下したときには、発電装置32の下流側の蒸気圧が前記減圧弁16の第1設定圧SVよりも低く、かつ、0kPaGよりも高い第3設定圧SVとなるように当該発電装置32を通過する蒸気流量を制御する。これにより、発電装置32に導入される蒸気流量が前記所定流量まで低下したときには、発電装置32を通って蒸気が流れるのと並行して、発電装置32の下流側の蒸気圧、すなわち減圧弁16の下流側の蒸気圧が第1設定圧SVよりも低い第3設定圧SVへ制御されることにより減圧弁16が開かれてこの減圧弁16を通じても蒸気が流れる。この場合、発電装置32及び減圧弁16のそれぞれを通って下流側へ流れる蒸気が合流して蒸気利用設備12へ供給される。このため、蒸気利用設備12に供給される蒸気の圧力が一時的に許容圧力範囲を逸脱して低下するのを防ぐことができる。 As described above, in the present embodiment, when the steam flow rate introduced into the power generation device 32 is larger than the predetermined flow rate, the steam pressure on the downstream side of the power generation device 32 is the first pressure reducing valve 16 of the main pipe 14. while controlling the steam flow through the turbine generator 32 such that the higher the second set pressure SV 2 than the set pressure SV 1, when the steam flow rate to be introduced is decreased to the predetermined flow rate, downstream of the power plant 32 vapor pressure side is lower than the first set pressure SV 1 of the pressure reducing valve 16, and controls the steam flow passing through the power generating apparatus 32 such that the third set pressure SV 3 higher than 0 kPag. Thereby, when the flow rate of the steam introduced into the power generation device 32 decreases to the predetermined flow rate, the steam pressure on the downstream side of the power generation device 32, that is, the pressure reducing valve 16, in parallel with the flow of the steam through the power generation device 32. pressure reducing valve 16 is opened to flow the steam even through the pressure reducing valve 16 by being controlled to the third set pressure SV 3 lower than the downstream side of the steam pressure first set pressure SV 1 in. In this case, steam flowing downstream through each of the power generation device 32 and the pressure reducing valve 16 joins and is supplied to the steam utilization facility 12. For this reason, it is possible to prevent the pressure of the steam supplied to the steam utilization facility 12 from temporarily deviating from the allowable pressure range.

また、本実施形態では、減圧弁コントローラ24が主配管14において減圧弁16の下流側に設けられた減圧弁圧力センサ22の検出圧力に基づいて減圧弁16を開閉制御し、発電装置32のコントローラ52が排出管28に設けられた排出圧力センサ30の検出圧力に基づいて流量調整弁46を開閉制御することにより当該発電装置32を通過する蒸気流量を制御する。このため、減圧弁コントローラ24が減圧弁16の下流側の近傍に位置する減圧弁圧力センサ22の検出圧力に基づいて減圧弁16を開閉制御できるので、減圧弁16を精度良く開閉制御することができるとともに、減圧弁16の下流側の蒸気圧を精度良く制御することができる。また、発電装置32がその下流側の近傍に位置する排出圧力センサ30の検出圧力に基づいて当該発電装置32を通過する蒸気流量を制御することができるので、発電装置32の下流側に流れる蒸気流量及び蒸気圧を精度良く制御することができる。   In the present embodiment, the pressure reducing valve controller 24 controls the opening and closing of the pressure reducing valve 16 based on the pressure detected by the pressure reducing valve pressure sensor 22 provided on the downstream side of the pressure reducing valve 16 in the main pipe 14, and the controller of the power generation device 32. 52 controls the flow rate of the steam passing through the power generation device 32 by controlling the opening and closing of the flow rate adjustment valve 46 based on the detected pressure of the discharge pressure sensor 30 provided in the discharge pipe 28. For this reason, since the pressure reducing valve controller 24 can control the opening and closing of the pressure reducing valve 16 based on the pressure detected by the pressure reducing valve pressure sensor 22 located near the downstream side of the pressure reducing valve 16, the pressure reducing valve 16 can be controlled to open and close with high accuracy. In addition, the vapor pressure downstream of the pressure reducing valve 16 can be accurately controlled. Further, since the flow rate of steam passing through the power generation device 32 can be controlled based on the detection pressure of the discharge pressure sensor 30 located in the vicinity of the downstream side of the power generation device 32, the steam flowing downstream of the power generation device 32 The flow rate and vapor pressure can be controlled with high accuracy.

なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and further includes meanings equivalent to the scope of claims for patent and all modifications within the scope.

例えば、前記減圧弁圧力センサ22と前記排出圧力センサ30の代わりに共通の1つの圧力センサを減圧弁16及び発電装置32の下流側に設け、その圧力センサの検出圧力に基づいて前記減圧弁コントローラ24が減圧弁16を開閉制御するとともに前記コントローラ52が前記流量制御弁46を開閉制御してもよい。   For example, instead of the pressure reducing valve pressure sensor 22 and the discharge pressure sensor 30, a common pressure sensor is provided on the downstream side of the pressure reducing valve 16 and the power generation device 32, and the pressure reducing valve controller is based on the detected pressure of the pressure sensor. 24 may control the opening / closing of the pressure reducing valve 16 and the controller 52 may control the opening / closing of the flow control valve 46.

また、前記流量調整弁46とともに駆動機38を用いてその駆動機38の回転数をコントローラ52が制御することにより発電装置32を通過する蒸気流量を制御してもよい。   In addition, the flow rate of the steam passing through the power generation device 32 may be controlled by using the drive unit 38 together with the flow rate adjusting valve 46 and controlling the rotational speed of the drive unit 38 by the controller 52.

本発明の一実施形態による発電システムの全体構成を概略的に示す図である。It is a figure showing roughly the whole power generation system composition by one embodiment of the present invention. 本発明の一実施形態による発電システムの制御方法を説明するための発電装置を通過する蒸気流量と減圧弁及び発電装置の下流側の設定圧との関係を示す図である。It is a figure which shows the relationship between the flow volume of the steam which passes the electric power generating apparatus for demonstrating the control method of the electric power generation system by one Embodiment of this invention, the pressure reducing valve, and the setting pressure of the downstream of an electric power generating apparatus. 本発明の一実施形態及び比較例における発電装置の通過蒸気流量及び減圧弁の通過蒸気流量の変化を示した図である。It is the figure which showed the change of the passage steam flow rate of the electric power generating apparatus in one Embodiment and comparative example of this invention, and the passage steam flow rate of a pressure-reduction valve. 本発明の比較例の発電システムにおいて蒸気利用設備に供給される蒸気圧の変化を示した図である。It is the figure which showed the change of the vapor | steam pressure supplied to a vapor | steam utilization equipment in the electric power generation system of the comparative example of this invention. 本発明の一実施形態による発電システムにおいて蒸気利用設備に供給される蒸気圧の変化を示した図である。It is the figure which showed the change of the vapor | steam pressure supplied to a vapor | steam utilization equipment in the electric power generation system by one Embodiment of this invention. 従来の一例による発電システムの全体構成を概略的に示す図である。It is a figure which shows roughly the whole structure of the electric power generation system by an example of the past.

符号の説明Explanation of symbols

10 蒸気生成手段
12 蒸気利用設備
14 主配管
16 減圧弁
20 発電システム
22 減圧弁圧力センサ(第1圧力センサ)
24 減圧弁コントローラ
26 導入管
28 排出管
30 排出圧力センサ(第2圧力センサ)
32 発電装置
DESCRIPTION OF SYMBOLS 10 Steam production | generation means 12 Steam utilization equipment 14 Main piping 16 Pressure reducing valve 20 Electric power generation system 22 Pressure reducing valve pressure sensor (1st pressure sensor)
24 pressure reducing valve controller 26 introduction pipe 28 discharge pipe 30 discharge pressure sensor (second pressure sensor)
32 Power generator

Claims (3)

減圧弁を有し、蒸気生成手段によって生成された蒸気を蒸気利用設備へ供給する主配管に接続され、蒸気のエネルギーを利用して発電を行う発電システムであって、
前記主配管のうち前記減圧弁の上流側の位置に接続可能な導入管と、
前記主配管のうち前記減圧弁の下流側の位置に接続可能な排出管と、
蒸気流量の調整機能を有し、前記主配管から前記導入管を通じて導入される蒸気により発電を行うとともに、その発電に用いた後の蒸気を前記排出管を通じて前記主配管へ排出する発電装置と、
前記減圧弁及び前記発電装置の下流側における蒸気圧を検出する圧力検出手段と、
前記圧力検出手段の検出圧力に基づいて前記減圧弁の下流側の蒸気圧が第1設定圧となるように前記減圧弁を開閉制御する減圧弁コントローラとを備え、
前記発電装置は、導入される蒸気流量が所定流量よりも多いときには、前記圧力検出手段の検出圧力に基づいて当該発電装置の下流側の蒸気圧が前記第1設定圧よりも高い第2設定圧となるように当該発電装置を通過する蒸気流量を制御する一方、導入される蒸気流量が前記所定流量まで低下したときには、前記圧力検出手段の検出圧力に基づいて当該発電装置の下流側の蒸気圧が前記第1設定圧よりも低く、かつ、0kPaGよりも高い第3設定圧となるように当該発電装置を通過する蒸気流量を制御する、発電システム。
A power generation system that has a pressure reducing valve and is connected to a main pipe that supplies steam generated by steam generation means to steam utilization equipment, and generates power using the energy of the steam,
An introduction pipe connectable to a position upstream of the pressure reducing valve in the main pipe;
A discharge pipe connectable to a position downstream of the pressure reducing valve in the main pipe;
A power generation device having a function of adjusting a steam flow rate, generating power by steam introduced from the main pipe through the introduction pipe, and discharging the steam used for power generation to the main pipe through the discharge pipe;
Pressure detecting means for detecting a vapor pressure downstream of the pressure reducing valve and the power generator;
A pressure reducing valve controller that controls opening and closing of the pressure reducing valve so that the vapor pressure downstream of the pressure reducing valve becomes a first set pressure based on the detected pressure of the pressure detecting means,
When the steam flow rate to be introduced is greater than a predetermined flow rate, the power generation device has a second set pressure in which the steam pressure on the downstream side of the power generation device is higher than the first set pressure based on the detected pressure of the pressure detecting means. The steam flow rate passing through the power generation device is controlled so that when the steam flow rate is reduced to the predetermined flow rate, the steam pressure downstream of the power generation device is determined based on the pressure detected by the pressure detection means. Is a power generation system that controls the flow rate of steam passing through the power generation device so that the third set pressure is lower than the first set pressure and higher than 0 kPaG.
前記圧力検出手段は、前記主配管において前記減圧弁の下流側に設けられた第1圧力センサと、前記排出管に設けられた第2圧力センサとを含み、
前記減圧弁コントローラは、前記第1圧力センサの検出圧力に基づいて前記減圧弁を開閉制御し、
前記発電装置は、前記第2圧力センサの検出圧力に基づいて当該発電装置を通過する蒸気流量を制御する、請求項1に記載の発電システム。
The pressure detecting means includes a first pressure sensor provided on the downstream side of the pressure reducing valve in the main pipe, and a second pressure sensor provided on the discharge pipe,
The pressure reducing valve controller controls the opening and closing of the pressure reducing valve based on a detected pressure of the first pressure sensor;
The power generation system according to claim 1, wherein the power generation device controls a flow rate of steam passing through the power generation device based on a detection pressure of the second pressure sensor.
減圧弁を有し、蒸気生成手段によって生成された蒸気を蒸気利用設備へ供給する主配管に接続され、蒸気のエネルギーを利用して発電を行う発電システムの制御方法であって、
前記主配管のうち前記減圧弁の上流側の位置に接続可能な導入管と、前記前記主配管のうち前記減圧弁の下流側の位置に接続可能な排出管とが設けられているとともに、蒸気流量の調整機能を有し、前記主配管から前記導入管を通じて導入される蒸気により発電を行うとともに、その発電に用いた後の蒸気を前記排出管を通じて前記主配管へ排出する発電装置が設けられており、
前記発電装置に導入される蒸気流量が所定流量よりも多いときには、当該発電装置の下流側の蒸気圧が前記減圧弁の第1設定圧よりも高い第2設定圧となるように当該発電装置を通過する蒸気流量を制御する一方、前記発電装置に導入される蒸気流量が前記所定流量まで低下したときには、当該発電装置の下流側の蒸気圧が前記減圧弁の第1設定圧よりも低く、かつ、0kPaGよりも高い第3設定圧となるように当該発電装置を通過する蒸気流量を制御する、発電システムの制御方法。
A control method of a power generation system having a pressure reducing valve, connected to a main pipe for supplying steam generated by steam generating means to steam using equipment, and generating power using steam energy,
An inlet pipe connectable to a position upstream of the pressure reducing valve in the main pipe and a discharge pipe connectable to a position downstream of the pressure reducing valve in the main pipe are provided, and steam A power generation device is provided that has a flow rate adjusting function, generates power using steam introduced from the main pipe through the introduction pipe, and discharges steam used for the power generation to the main pipe through the discharge pipe. And
When the steam flow rate introduced into the power generation device is higher than a predetermined flow rate, the power generation device is set so that the vapor pressure downstream of the power generation device becomes a second set pressure higher than the first set pressure of the pressure reducing valve. While controlling the flow rate of steam passing through, when the flow rate of steam introduced into the power generation device is reduced to the predetermined flow rate, the vapor pressure on the downstream side of the power generation device is lower than the first set pressure of the pressure reducing valve, and , A method for controlling the power generation system, wherein the flow rate of steam passing through the power generation device is controlled so that the third set pressure is higher than 0 kPaG.
JP2008076469A 2008-03-24 2008-03-24 Power generation system and power generation system control method Expired - Fee Related JP4990204B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008076469A JP4990204B2 (en) 2008-03-24 2008-03-24 Power generation system and power generation system control method
KR1020080122864A KR101011554B1 (en) 2008-03-24 2008-12-05 Power generation system and control method thereof
CN2008101837484A CN101546980B (en) 2008-03-24 2008-12-15 Power generation system and control method for power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008076469A JP4990204B2 (en) 2008-03-24 2008-03-24 Power generation system and power generation system control method

Publications (2)

Publication Number Publication Date
JP2009228604A JP2009228604A (en) 2009-10-08
JP4990204B2 true JP4990204B2 (en) 2012-08-01

Family

ID=41193921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008076469A Expired - Fee Related JP4990204B2 (en) 2008-03-24 2008-03-24 Power generation system and power generation system control method

Country Status (3)

Country Link
JP (1) JP4990204B2 (en)
KR (1) KR101011554B1 (en)
CN (1) CN101546980B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110686228A (en) * 2019-10-11 2020-01-14 宁陵县成事科技服务中心 Pressure quantitative control device for boiler

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5887167B2 (en) * 2012-03-02 2016-03-16 ヤンマー株式会社 Power generator
BE1021896B1 (en) * 2014-05-19 2016-01-25 Atlas Copco Airpower Naamloze Vennootschap METHOD FOR LETTING A GAS RATE EXPANDED AND A DEVICE APPLIED THEREOF
EP3521683B1 (en) * 2014-10-10 2021-02-17 TLV Co., Ltd. Steam trap unit

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04153501A (en) * 1990-10-15 1992-05-27 Babcock Hitachi Kk Pressure controller for turbine bypass steam
JP2000008809A (en) * 1998-06-23 2000-01-11 Mitsubishi Heavy Ind Ltd Steam pressure control method and its device for steam turbine
JP2000345811A (en) * 1999-06-04 2000-12-12 Babcock Hitachi Kk Exhaust heat recovery boiler plant and operating method thereof
JP2001263003A (en) * 2000-03-16 2001-09-26 Mitsubishi Heavy Ind Ltd Steam pressure control method of steam turbine and controller
US7405491B2 (en) * 2005-08-11 2008-07-29 Kobe Steel, Ltd. Electric power generating device
JP4970868B2 (en) * 2005-08-11 2012-07-11 株式会社神戸製鋼所 Power generator
JP4764255B2 (en) * 2006-05-25 2011-08-31 株式会社神戸製鋼所 Small once-through boiler power generation system and operation control method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110686228A (en) * 2019-10-11 2020-01-14 宁陵县成事科技服务中心 Pressure quantitative control device for boiler
CN110686228B (en) * 2019-10-11 2021-04-30 赵新建 Pressure quantitative control device for boiler

Also Published As

Publication number Publication date
KR20090101810A (en) 2009-09-29
JP2009228604A (en) 2009-10-08
CN101546980B (en) 2012-04-04
KR101011554B1 (en) 2011-01-27
CN101546980A (en) 2009-09-30

Similar Documents

Publication Publication Date Title
KR101908200B1 (en) 2-axis type gas turbine having steam injecting apparatus
JP4990204B2 (en) Power generation system and power generation system control method
JP6683531B2 (en) Waste treatment facility
JP6249920B2 (en) Operating method of bypass valve in blast furnace top pressure power generation facility
JP5017201B2 (en) Power generation equipment
JP2015124710A (en) Control device and activation method
JP2007309194A (en) Steam turbine plant
JP5320037B2 (en) Boiler automatic control device and boiler system
CN106460569B (en) The method of device and control described device for making steam expansion
JP6678561B2 (en) Turbine control device and geothermal turbine power generation equipment
JP5711795B2 (en) Pressurized fluidized incinerator equipment and control method of pressurized fluidized incinerator equipment
JP5667863B2 (en) Output control device, output control method, and water turbine power generation system including the output control device
JP3670780B2 (en) Pump flow control method
JP5171414B2 (en) Steam power generation system
JP3781929B2 (en) Turbine controller
JP2585204B2 (en) Feed water pump recirculation valve controller
JP5922909B2 (en) Steam turbine control device and steam turbine equipment using the same
JP4633376B2 (en) Process steam control system using steam turbine
JP2006002575A (en) Process steam controller utilizing steam turbine
JP5711794B2 (en) Pressurized fluidized incinerator equipment and control method of pressurized fluidized incinerator equipment
JP2021085576A (en) Waste treatment facility and operating method for the same
JPH0791602A (en) Steam pressure control device for plant equipment
JPH0734809A (en) Temperature control device of extraction steam turbine
JP2554492Y2 (en) Control device for pressurized fluidized bed boiler
JP2000008809A (en) Steam pressure control method and its device for steam turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4990204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees