JP4989024B2 - Magnetite powder and method for producing the same - Google Patents

Magnetite powder and method for producing the same Download PDF

Info

Publication number
JP4989024B2
JP4989024B2 JP2004353980A JP2004353980A JP4989024B2 JP 4989024 B2 JP4989024 B2 JP 4989024B2 JP 2004353980 A JP2004353980 A JP 2004353980A JP 2004353980 A JP2004353980 A JP 2004353980A JP 4989024 B2 JP4989024 B2 JP 4989024B2
Authority
JP
Japan
Prior art keywords
magnetite
hematite
powder
radio wave
magnetite powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004353980A
Other languages
Japanese (ja)
Other versions
JP2006160559A (en
JP2006160559A5 (en
Inventor
正憲 俵
一生 桜井
Original Assignee
株式会社 赤見製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 赤見製作所 filed Critical 株式会社 赤見製作所
Priority to JP2004353980A priority Critical patent/JP4989024B2/en
Publication of JP2006160559A publication Critical patent/JP2006160559A/en
Publication of JP2006160559A5 publication Critical patent/JP2006160559A5/ja
Application granted granted Critical
Publication of JP4989024B2 publication Critical patent/JP4989024B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

本発明は、ヘマタイト(Fe23)を還元して得られるマグネタイト(Fe34)の粉末であって、特にGHz帯域での電波吸収性を改善したものに関する。 The present invention relates to a magnetite (Fe 3 O 4 ) powder obtained by reducing hematite (Fe 2 O 3 ), and more particularly to an improved radio wave absorptivity in the GHz band.

近年、通信手段の急速な発達により、GHz帯域の高周波を利用した電子機器が急増している。これに伴い、電子機器の誤動作防止等の観点から、GHz帯域で良好な特性を示す電波吸収体の普及が強く望まれている。   In recent years, due to the rapid development of communication means, electronic devices using a high frequency in the GHz band are rapidly increasing. Along with this, from the viewpoint of preventing malfunction of electronic devices and the like, the spread of radio wave absorbers that exhibit good characteristics in the GHz band is strongly desired.

従来、マイクロ波領域(MHz帯域〜GHz帯域にかけて)の電波に対する電波吸収体には、特殊な用途を除きソフトフェライトがほぼ独占的に使用されている。しかし、ソフトフェライトはヘマタイトに複合化のための金属酸化物を添加して製造されるので高価であり、電波吸収体ひいては電子機器のコストを増大させる一因となっている。また、ソフトフェライトには「スネークの限界」と言われる電波吸収限界があって、10GHz以上の高周波の電波に対しては吸収能力が急速に減衰するので、通信用電波の高周波化に十分対応できないという問題がある。   Conventionally, soft ferrite has been almost exclusively used for radio wave absorbers for radio waves in the microwave region (from the MHz band to the GHz band) except for special applications. However, soft ferrite is expensive because it is manufactured by adding metal oxides for compounding to hematite, which contributes to an increase in the cost of the radio wave absorber and thus the electronic equipment. In addition, soft ferrite has a radio wave absorption limit called “the limit of snake”, and the absorption capacity for high frequency radio waves of 10 GHz or more is rapidly attenuated, so that it cannot sufficiently cope with high frequency radio waves for communication. There is a problem.

一方、マグネタイト(Fe34)は数少ない黒色顔料の一つで、可視光領域の電磁波を吸収することから高周波領域の電波吸収能力も期待できるが、塗料、黒色トナーの用途に広く利用されているものの、電波吸収体としては広く普及するには至っていない。 On the other hand, magnetite (Fe 3 O 4 ) is one of the few black pigments that absorbs electromagnetic waves in the visible light region and can be expected to absorb radio waves in the high frequency region, but is widely used for paint and black toner applications. However, it has not been widely used as a radio wave absorber.

マグネタイトの工業的製法としては、「湿式法」によりヘマタイトを経ずにFeイオン含有水溶液から直接マグネタイトを製造する方法(例えば特許文献1)が知られている。また、塩化第一鉄とヘマタイトの混合材料から、熱分解と固相反応を利用してマグネタイトを得る方法(例えば特許文献2)も知られている。   As an industrial production method of magnetite, a method of producing magnetite directly from a Fe ion-containing aqueous solution without using hematite by a “wet method” (for example, Patent Document 1) is known. In addition, a method of obtaining magnetite from a mixed material of ferrous chloride and hematite by utilizing thermal decomposition and solid phase reaction (for example, Patent Document 2) is also known.

中間物質であるヘマタイトの製造法としては「湿式法」と「乾式法」がある。「湿式法」はFe含有酸液を中和するものであり、中和条件の設定を入念に行うことにより粒径の精度を高めることができる。しかし、工程が多いのでコストは高くなる。他方、「乾式法」はFe含有酸液を脱水・大気酸化するものであり、一旦低温で乾燥したのち高温で焼成する「低温乾燥方式」と、高温で一気に焼成する「熱分解方式」がある。乾式法は工程が少ないのでコスト面で有利となる。   There are a “wet method” and a “dry method” as methods for producing the intermediate hematite. The “wet method” neutralizes the Fe-containing acid solution, and the accuracy of the particle size can be increased by carefully setting the neutralization conditions. However, since there are many processes, cost becomes high. On the other hand, the “dry method” is a method of dehydrating and oxidizing the Fe-containing acid solution, and there are a “low temperature drying method” in which the Fe-containing acid solution is once dried at a low temperature and then fired at a high temperature and a “thermal decomposition method” in which it is fired at a high temperature at once . The dry method is advantageous in terms of cost because there are few steps.

特開平7−257930号公報JP 7-257930 A 特開平9−71423号公報JP-A-9-71423

上述のように、マグネタイトは高周波域での電波吸収特性が期待されるにもかかわらず、現時点ではまだソフトフェライトに代わって広く流通するには至っていない。本発明は、電波吸収性能を顕著に改善したマグネタイトを開発し提供しようというものである。   As described above, although magnetite is expected to have radio wave absorption characteristics in a high frequency region, it has not yet been widely distributed in place of soft ferrite. The present invention seeks to develop and provide magnetite with significantly improved radio wave absorption performance.

発明者は種々検討の結果、Fe含有酸液を乾式法で熱分解して得たヘマタイトを使用し、これを還元してマグネタイトとしたとき、湿式法を主体として製造される既存のマグネタイトと比べGHz帯域の高周波に対する電波吸収性能が顕著に向上することを見出した。そして、中間物質であるヘマタイトの構造についても調査を進めたところ、熱分解法によるヘマタイトは湿式法によるものと顕著に異なる表面性状をもつことが明らかになった。本発明はこのような新規な知見に基づいて完成したものである。   As a result of various studies, the inventor uses hematite obtained by thermally decomposing an Fe-containing acid solution by a dry method, and when this is reduced to magnetite, it is compared with the existing magnetite produced mainly by the wet method. It has been found that the radio wave absorption performance for high frequencies in the GHz band is significantly improved. As a result of investigations on the structure of hematite, an intermediate substance, it was found that hematite obtained by the pyrolysis method has a surface property that is significantly different from that obtained by the wet method. The present invention has been completed based on such novel findings.

すなわち本発明では、電波吸収性能を顕著に改善したマグネタイト粉末として、AFM(原子間力顕微鏡)像において5〜80nm間隔の層状凹凸模様が観察されるヘマタイトを、外熱式の加熱機構と、攪拌機構と、水冷装置による冷却機構を1つの炉心管に備え、かつ炉心管内部にライニングを施していないロータリーキルンにより、400〜650℃で加熱還元してマグネタイトとしたのち冷却してなる98質量%以上がマグネタイトからなる電波吸収用マグネタイトの粉末が提供される。
ここで、層状凹凸とは、畝状の凸部がほぼ平行に並んだ凹凸形状あるいは階段状の凹凸形状である。層状凹凸模様の間隔は、隣り合う凸部同士(あるいは凹部同士)のAFM像における投影距離である。
That is, in the present invention, as the magnetite powder with significantly improved radio wave absorption performance, hematite in which layered uneven patterns with an interval of 5 to 80 nm are observed in an AFM (Atomic Force Microscope) image is used. 98 mass% or more formed by cooling and heating at 400 to 650 ° C. with a rotary kiln equipped with a mechanism and a cooling mechanism using a water cooling device in one core tube and not lined inside the core tube An electromagnetic wave absorbing magnetite powder is provided which comprises magnetite.
Here, the layered unevenness is an uneven shape or a stepped uneven shape in which bowl-shaped protrusions are arranged substantially in parallel. The interval between the layered concavo-convex patterns is a projection distance in an AFM image between adjacent convex portions (or concave portions).

このような電波吸収用マグネタイトの粉末は、Fe含有酸液を450℃以上の大気雰囲気中で熱分解して得たヘマタイト(以下「熱分解ヘマタイト」という)を上記の手法で還元および冷却して得ることができる。例えば、鉄鋼酸洗廃液を450〜900℃の大気雰囲気中に噴霧することにより熱分解して得たヘマタイトを上記の手法で還元および冷却することによって得られる。 Such electromagnetic wave absorbing magnetite powder is obtained by reducing and cooling hematite (hereinafter referred to as “pyrolytic hematite”) obtained by pyrolyzing an Fe-containing acid solution in an air atmosphere at 450 ° C. or higher by the above-described method. Obtainable. For example, it obtained by reducing and cooling hematite obtained by pyrolysis by spraying the steel pickling waste liquid in the air atmosphere at 450 to 900 ° C. in the above manner.

このようなマグネタイト粉末のうち、平均粒径D50が1〜10μm、D90が10〜50μmのものが好適な対象となる。
ここで、D50はレーザー回折法で測定される粒度分布における平均粒径である。D90はレーザー回折法で測定される粒度分布における90%個数存在率に相当する粒径である。
Among such magnetite powders, those having an average particle size D 50 of 1 to 10 μm and D 90 of 10 to 50 μm are suitable targets.
Here, D 50 is the average particle diameter in the particle size distribution measured by laser diffraction method. D 90 is a particle size corresponding to 90% number abundance in the particle size distribution measured by laser diffraction method.

上記の熱分解ヘマタイトを還元および冷却して得たマグネタイトの粉末は更に湿式粉砕に供してもよい。また、上記熱分解ヘマタイトを湿式粉砕した粉末を還元してマグネタイトとすることができる。このように微細化したマグネタイトとしては、1次粒子の平均粒径が0.1〜1.0μmにまで粉砕されたマグネタイト粉末が好適な対象となる。 The magnetite powder obtained by reducing and cooling the pyrolytic hematite may be further subjected to wet grinding. The powder obtained by wet-grinding the pyrolytic hematite can be reduced to magnetite. As the magnetite thus refined, a magnetite powder pulverized to have an average primary particle size of 0.1 to 1.0 μm is a suitable target.

本発明によれば、後述のように、従来のマグネタイトに比べGHz帯域の電波吸収性能を大幅に改善したマグネタイトが提供可能になった。このマグネタイトは原料として鉄鋼酸洗廃液を熱分解したヘマタイトを使用できるので、従来のソフトフェライトと比べコスト低減が可能である。また、熱分解ヘマタイトは通常ブロードな粒度分布を有するので、これを基にして作られたマグネタイトも湿式法のものに比べブロードな粒度分布なる。ブロードな粒度分布をもつマグネタイト粉末はフィラーとして大きな充填率が期待される。   According to the present invention, as will be described later, it has become possible to provide a magnetite that has significantly improved radio wave absorption performance in the GHz band compared to conventional magnetite. Since this magnetite can use hematite obtained by thermally decomposing iron pickling waste liquid as a raw material, the cost can be reduced as compared with conventional soft ferrite. In addition, since pyrolytic hematite usually has a broad particle size distribution, the magnetite produced based on the particle size distribution also has a broad particle size distribution compared to the wet method. A magnetite powder having a broad particle size distribution is expected to have a large filling rate as a filler.

図1に、後述実施例の試料E(本発明例のマグネタイト)の製造に使用したヘマタイトのAFM(原子間力顕微鏡)像を例示する。このヘマタイトは鉄鋼酸洗廃液を約700℃の大気雰囲気中に噴霧して熱分解することにより得られたものである。AFM観察は、島津製作所製SFT−9800を用いてダイナミックモードで行った。ヘマタイト粉末を原子レベルで平坦な雲母劈開面に均一に塗り、これを観察した。図1から判るように、このヘマタイト粒子の表面には層状の凹凸模様が見られる。その凹凸模様の間隔(例えば白く見える凸部同士の写真上における投影距離)が5〜80nmである部分がいたるところに観察される。   In FIG. 1, the AFM (atomic force microscope) image of the hematite used for manufacture of the sample E (magnetite of the example of this invention) of the below-mentioned Example is illustrated. This hematite is obtained by spraying a steel pickling waste liquid into an air atmosphere of about 700 ° C. and thermally decomposing it. AFM observation was performed in the dynamic mode using SFT-9800 manufactured by Shimadzu Corporation. Hematite powder was evenly applied to the flat cleaved surface of mica at the atomic level and observed. As can be seen from FIG. 1, a layered uneven pattern is seen on the surface of the hematite particles. The part where the space | interval of the uneven | corrugated pattern (For example, the projection distance on the photograph of the convex parts which look white) is 5-80 nm is observed everywhere.

図2に、後述実施例の試料D(比較例のマグネタイト)の製造に使用したヘマタイトのAFM(原子間力顕微鏡)像を例示する。このヘマタイトは硫酸第一鉄の水溶液に水酸化ナトリウムを添加してオキシ水酸化鉄を生成し、これをエアー曝気して製造した湿式法によるヘマタイト(以下「湿式ヘマタイト」という)である。AFM観察は上記と同様にして行った。図2のAFM像には明瞭な表面凹凸は見られない。   FIG. 2 illustrates an AFM (Atomic Force Microscope) image of hematite used for the manufacture of Sample D (magnetite of Comparative Example) in Examples described later. This hematite is a hematite (hereinafter referred to as “wet hematite”) manufactured by adding sodium hydroxide to an aqueous ferrous sulfate solution to produce iron oxyhydroxide and aeration of it with air. AFM observation was performed in the same manner as described above. No clear surface irregularities are seen in the AFM image of FIG.

図1に見られる層状の表面凹凸は、ヘマタイト粒子の結晶内部に多数の面状欠陥が存在する構造を反映したものと推察される。すなわちこのヘマタイト粒子は、いわば多数の断層を含むような構造であると捉えることができる。このような断層構造は、湿式ヘマタイト(図2)には見られないものであり、熱分解を伴う乾式法で得られたヘマタイトに特有なものである。その生成メカニズムは十分解明されていないが、結晶の成長過程において熱分解による大きな熱的衝撃が加わることによって結晶内部に多数の欠陥が導入されるものと考えられる。   The layered surface irregularities seen in FIG. 1 are presumed to reflect the structure in which a large number of planar defects exist inside the crystal of the hematite particles. That is, it can be considered that the hematite particles have a structure including many faults. Such a fault structure is not found in wet hematite (FIG. 2), and is unique to hematite obtained by a dry process involving thermal decomposition. Although the mechanism of its formation has not been fully elucidated, it is considered that a large number of defects are introduced into the crystal by applying a large thermal shock due to thermal decomposition during the crystal growth process.

図3には、図1の熱分解ヘマタイトを還元して得たマグネタイト粒子(後述の試料E)のTEM(透過型電子顕微鏡)写真を示す。凹凸の輪郭が観察され、これはヘマタイト粒子表面に見られた層状凹凸に由来するものと考えられる。このマグネタイトは後述実施例で示すように、湿式法で直接得たマグネタイトや、湿式ヘマタイトを還元して得たマグネタイトに比べ、電波吸収特性が顕著に改善されている。その改善メカニズムも未解明であるが、内部欠陥に起因する構造の相違が有効に作用しているものと推察される。   FIG. 3 shows a TEM (transmission electron microscope) photograph of magnetite particles (sample E described later) obtained by reducing the pyrolytic hematite of FIG. Contours of the irregularities are observed, which are considered to be derived from the layered irregularities seen on the surface of the hematite particles. As will be described later in Examples, this magnetite has significantly improved radio wave absorption characteristics as compared with magnetite obtained directly by a wet method or magnetite obtained by reducing wet hematite. The improvement mechanism is still unclear, but it is presumed that the structural difference due to internal defects is acting effectively.

本発明のマグネタイトの粉末を得るための中間物質である熱分解ヘマタイトは、例えば以下のようにして製造することができる。
まず、原料としてFe含有酸液を用意する。塩化第一鉄を主体とする溶液が好ましい。例えば、鉄鋼酸洗ラインから出る廃酸は塩化第一鉄主体であり、本発明で利用することが可能である。特に普通鋼の酸洗ラインから出る廃酸は含有メタル分の大部分(概ね95質量%以上)がFeであるため、これを使用するとヘマタイト主体の金属酸化物が得られ、そのまま選別せずにマグネタイトへの還元処理に供することができる。ステンレス鋼などの高合金鋼の酸洗ラインから出る廃酸は、Feの他、Cr、Niなどのメタル分を多く含むので、注意を要する。
Pyrolytic hematite, which is an intermediate substance for obtaining the magnetite powder of the present invention, can be produced, for example, as follows.
First, an Fe-containing acid solution is prepared as a raw material. A solution mainly composed of ferrous chloride is preferred. For example, the waste acid from the steel pickling line is mainly ferrous chloride and can be used in the present invention. In particular, the waste acid that comes out of the pickling line of ordinary steel contains Fe (mostly 95% by mass or more) of the metal content. It can be subjected to a reduction treatment to magnetite. Care must be taken because the waste acid from the pickling line of high alloy steel such as stainless steel contains a large amount of metal such as Cr and Ni in addition to Fe.

次に、Fe含有酸液を高温の大気雰囲気中で焙焼することにより、熱分解ヘマタイトを得る。雰囲気の温度は450℃以上とすることが望ましい。それより低温だと断層構造を有するヘマタイトを安定して得ることが難しくなる。これは熱衝撃が不足するためだと考えられる。実用的には500〜900℃程度が良く、550〜850℃が一層好ましい。雰囲気温度が高くなると一般には得られるヘマタイトの平均粒径が大きくなる傾向がある。このような焙焼は、後述する耐酸性のロータリーキルンを用いることにより好適に実施できる。鉄鋼酸洗廃液を利用する場合は、塩酸回収を主たる目的としたルスナー法による処理を流用することも可能である。   Next, pyrolyzed hematite is obtained by baking the Fe-containing acid solution in a high-temperature atmosphere. The atmosphere temperature is desirably 450 ° C. or higher. If the temperature is lower than that, it is difficult to stably obtain hematite having a fault structure. This is thought to be due to the lack of thermal shock. Practically, the temperature is preferably about 500 to 900 ° C, and more preferably 550 to 850 ° C. As the atmospheric temperature increases, the average particle size of the obtained hematite generally tends to increase. Such roasting can be suitably carried out by using an acid-resistant rotary kiln described later. In the case of using a steel pickling waste liquid, it is possible to divert the treatment by the Lusner method, which is mainly intended for the recovery of hydrochloric acid.

このようにして、AFM(原子間力顕微鏡)像に5〜80nm間隔の層状凹凸模様が観察されるヘマタイトが得られる。この熱分解ヘマタイトをマグネタイトまで還元すると、高周波帯域での電波吸収特性が改善されたマグネタイトとなる。マグネタイトへの還元は、基本的には水素等の還元雰囲気中で加熱することによって行われる。ただし、熱分解ヘマタイトは一般に粒度分布がブロードであり、粉末の中にはサブミクロンの超微粒子も含まれる点に注意する必要がある。すなわち、粉体の乾燥や焙焼処理に使われる一般的な炉(ロータリーキルンなど)を用いると、サブミクロンの超微粒子ヘマタイトがライニングの目地に入り込み、滞留時間が長くなると金属鉄にまで過剰還元されてしまう恐れがある。この微細な金属鉄粉が製品中に混入すると大気中で発火することもあり、危険である。また、炉内開放時には炉内で発火し、ライニングを損傷することがある。   In this way, hematite is obtained in which layered uneven patterns with an interval of 5 to 80 nm are observed in an AFM (atomic force microscope) image. When this pyrolytic hematite is reduced to magnetite, it becomes a magnetite with improved radio wave absorption characteristics in the high frequency band. Reduction to magnetite is basically performed by heating in a reducing atmosphere such as hydrogen. However, it should be noted that pyrolytic hematite generally has a broad particle size distribution, and the powder contains submicron ultrafine particles. That is, when using a general furnace (rotary kiln, etc.) used for powder drying and roasting treatment, submicron ultrafine particle hematite enters the lining joint, and when the residence time increases, it is excessively reduced to metallic iron. There is a risk that. If this fine metallic iron powder is mixed in the product, it may ignite in the atmosphere, which is dangerous. In addition, when the furnace is opened, it may ignite in the furnace and damage the lining.

発明者は種々検討の結果、このようなトラブルを引き起こさずに安全にマグネタイトの段階で還元を終了し、目的のマグネタイト粉末製品を得るためには、以下のような構成を備えた還元炉を使用すればよいことを見出した。
すなわち、還元性ガスを導入して炉内を還元雰囲気に保てるロータリーキルンにおいて、i) 微細なヘマタイト粒子の飛散を防止するため、加熱は外熱式のラジアル方式とし、ii) 炉心管はライニングを施す必要のないステンレス鋼等の高耐食・耐熱合金で作り、iii) 粉体全体がガスとできるだけ均一に接触するように攪拌機構を設け、iv) 金属鉄粉が生成した場合の発火を防止するため、炉心管の後面(粉体取り出し側)に強力な冷却機構(水冷装置など)を設ける。
このような特殊構造のロータリーキルンによって目的のマグネタイト粉末を安全かつ安定的に得ることができた。
As a result of various studies, the inventor uses a reduction furnace having the following configuration in order to safely finish the reduction at the magnetite stage without causing such trouble and to obtain the target magnetite powder product. I found out that I should do.
That is, in a rotary kiln in which reducing gas is introduced and the inside of the furnace is kept in a reducing atmosphere, i) to prevent scattering of fine hematite particles, heating is an external heating radial method, and ii) the core tube is lined Made of stainless steel and other highly corrosion-resistant and heat-resistant alloys, iii) Provide a stirring mechanism so that the entire powder contacts the gas as uniformly as possible, and iv) To prevent ignition when metallic iron powder is generated A powerful cooling mechanism (such as a water cooling device) is provided on the rear surface (powder take-out side) of the core tube.
The target magnetite powder could be obtained safely and stably by the rotary kiln having such a special structure.

還元雰囲気は、例えばH2やCOなどの還元性ガスを連続的に導入しながら、温度を400〜650℃程度に維持した雰囲気が採用できる。400℃未満では還元反応が進行し難い。650℃を超えると過剰還元を防止するための滞留時間のコントロールが難しくなる。つまり、滞留時間遅延によりマグネタイトを超えてウスタイトあるいはさらに金属鉄にまで還元され易くなる。上記温度範囲においては、適正な還元滞留時間を概ね数分〜30分程度の範囲で設定することが可能であり、工業生産に適している。 As the reducing atmosphere, for example, an atmosphere in which the temperature is maintained at about 400 to 650 ° C. while continuously introducing a reducing gas such as H 2 or CO can be adopted. If it is less than 400 degreeC, a reductive reaction will not advance easily. If the temperature exceeds 650 ° C., it becomes difficult to control the residence time for preventing excessive reduction. That is, it becomes easy to reduce to wustite or even metallic iron beyond magnetite due to a delay in residence time. In the above temperature range, an appropriate reduction residence time can be set in a range of approximately several minutes to 30 minutes, which is suitable for industrial production.

電波吸収体の用途を考慮した場合、平均粒径D50が1〜10μm、D90が10〜50μmの粒度分布をもつマグネタイトの粉末が好ましい。マグネタイトは磁性粒子であるから、通常、1次粒子に分離した形態で存在することはなく、1次粒子が凝集した2次粒子として存在する。上記D50は2次粒子の粒径として測定される値である。ところが、発明者の研究により、その2次粒子を構成する1次粒子自体の平均粒径D50が1μm以下に細粒化されているとき、電波吸収性能はより一層向上することがわかった。具体的には、マグネタイト粉末の1次粒子の平均粒径D50が0.1〜1.0μmになっている微粉砕マグネタイトはGHz帯域での電波吸収特性改善に極めて有効となる。この場合、1次粒子のD90は0.4〜3.0μm程度となっていることが望ましい。 When considering the application of the wave absorber, the average particle diameter D 50 of 1 to 10 [mu] m, the powder of magnetite D 90 of having a particle size distribution of 10~50μm is preferred. Since magnetite is a magnetic particle, it usually does not exist in a form separated into primary particles, and exists as secondary particles in which primary particles are aggregated. The D 50 is a value measured as the particle size of the secondary particles. However, the inventors' research has shown that the radio wave absorption performance is further improved when the average particle diameter D 50 of the primary particles constituting the secondary particles is reduced to 1 μm or less. Specifically, finely pulverized magnetite having an average particle diameter D 50 of primary particles of magnetite powder of 0.1 to 1.0 μm is extremely effective in improving the radio wave absorption characteristics in the GHz band. In this case, the D 90 of the primary particles is desirably about 0.4 to 3.0 μm.

通常の熱分解法では、通常、D50が1〜数μm程度の熱分解ヘマタイトが得られるが、還元処理時に造粒や若干の焼結が生じることから、還元後のマグネタイト粉末のD50はそれより大きくなる。還元後の状態において、マグネタイト粉末のD50が10μmを超えているような場合には、その粉末を湿式粉砕することによりD50を1〜10μmに調整することができる。D90も同時に10〜50μmに調整可能である。また、還元して得たマグネタイト粉末を十分に湿式粉砕することで1次粒子を0.1〜1.0μmに細粒化したマグネタイト粉末を得ることができる。このような湿式粉砕手段としては、高速ビーズミルを使用することが好適である。ただし、還元後に粉砕する場合は、乾燥時にマグネタイトが酸化しないように乾燥温度や雰囲気に注意する必要がある。 In the usual pyrolysis method, pyrolyzed hematite having a D 50 of about 1 to several μm is usually obtained. However, since granulation and slight sintering occur during the reduction treatment, the D 50 of the reduced magnetite powder is It becomes bigger than that. In the state after the reduction, when such D 50 of the magnetite powder is greater than 10μm, it is possible to adjust the D 50 to 1~10μm by wet grinding the powder. D 90 can also be adjusted to 10 to 50 μm at the same time. Moreover, the magnetite powder which refined the primary particle to 0.1-1.0 micrometer by fully wet-pulverizing the magnetite powder obtained by reduction | restoration can be obtained. As such a wet grinding means, it is preferable to use a high-speed bead mill. However, when pulverizing after reduction, it is necessary to pay attention to the drying temperature and atmosphere so that the magnetite is not oxidized during drying.

〔実施例1〕
普通鋼の酸洗ラインから出る鉄鋼酸洗廃液を濃縮した後、ルスナー法により噴霧焙焼して熱分解ヘマタイトを得た。この濃縮廃酸は、含有メタル分の97%がFeからなるものであった。噴霧焙焼では、濃縮廃酸を焙焼炉(ロースター)の頂部から数本のスプレーノズルにより50〜80N/cm2の圧力で約700℃の大気雰囲気中に噴霧した。得られた熱分解ヘマタイトの粒度分布をレーザー回折式粒度分布測定装置(島津製作所製SALD−2000)にて測定した結果、平均粒径D50=2.93μm、D90=19.40μmであった。また、この熱分解ヘマタイトをAFM(原子間力顕微鏡)で観察した結果、前述の図1に示すとおり、5〜80nm間隔の層状凹凸模様が見られた。AFMの観察手法は前述したとおりである。
[Example 1]
After concentrating the iron pickling waste liquid from the pickling line of ordinary steel, spray roasting was performed by the Lusner method to obtain pyrolytic hematite. This concentrated waste acid was composed of Fe for 97% of the contained metal. In the spray roasting, the concentrated waste acid was sprayed from the top of the roasting furnace (roaster) into several air nozzles at a pressure of 50 to 80 N / cm 2 in an air atmosphere of about 700 ° C. As a result of measuring the particle size distribution of the obtained pyrolytic hematite with a laser diffraction particle size distribution analyzer (SALD-2000 manufactured by Shimadzu Corporation), the average particle size D 50 = 2.93 μm and D 90 = 19.40 μm. . Moreover, as a result of observing this pyrolysis hematite with an AFM (atomic force microscope), as shown in FIG. 1 described above, layered uneven patterns with an interval of 5 to 80 nm were observed. The observation method of AFM is as described above.

この熱分解ヘマタイトを前述の特殊構造のロータリーキルンにより還元して、マグネタイト粉末を得た。このロータリーキルンは、炉心管の内径が約250mmであり、前述のi)〜iv)の構成を有するものであり、炉心管および攪拌羽はステンレス鋼で構成され、内部にライニングは施していない。H2ガスを150L/分の流量で導入し、還元温度500℃で15分間還元処理を行った。得られた粉体は、X線回折の結果、98質量%以上がマグネタイトからなるものであった。このマグネタイト粉末の粒度分布を上記の方法で測定した結果、D50=6.2μm、D90=35.3μmであった。熱分解ヘマタイトと、それを還元して得たマグネタイトの粒径が異なるのは、ロータリーキルン方式で還元したことによる造粒と若干の焼結によるものと考えられる。
このマグネタイト粉末を試料Eとして、後述の電波吸収特性試験および実施例3の粉砕処理に供した。
This pyrolytic hematite was reduced with the rotary kiln having the special structure described above to obtain a magnetite powder. In this rotary kiln, the inner diameter of the core tube is about 250 mm, and has the above-described structures i) to iv). The core tube and the stirring blade are made of stainless steel, and the interior is not lined. H 2 gas was introduced at a flow rate of 150 L / min, and reduction treatment was performed at a reduction temperature of 500 ° C. for 15 minutes. As a result of X-ray diffraction, the obtained powder was 98% by mass or more of magnetite. The particle size distribution of the magnetite powder was measured by the above method. As a result, D 50 = 6.2 μm and D 90 = 35.3 μm. The difference in the particle size between pyrolytic hematite and magnetite obtained by reducing it is thought to be due to granulation due to reduction by a rotary kiln system and slight sintering.
This magnetite powder was used as sample E and subjected to the radio wave absorption characteristic test described later and the pulverization treatment of Example 3.

〔実施例2〕
Fe濃度20%の塩化第一鉄水溶液を用意し、実施例1でヘマタイトの還元に用いたロータリーキルンの炉内に滴下する方法で噴霧焙焼を行い、熱分解ヘマタイトを得た。焙焼雰囲気は約800℃の大気雰囲気とした。得られた熱分解ヘマタイトの粒度分布を上記の方法で測定した結果、平均粒径D50=6.61μm、D90=19.40μmであった。また、この熱分解ヘマタイトを実施例1と同様の方法でAFM(原子間力顕微鏡)で観察した結果、図1と同様に5〜80nm間隔の層状凹凸模様が見られた。
[Example 2]
An aqueous ferrous chloride solution with an Fe concentration of 20% was prepared, and spray roasting was performed by the method of dropping into the rotary kiln furnace used for the reduction of hematite in Example 1 to obtain pyrolytic hematite. The roasting atmosphere was an air atmosphere of about 800 ° C. As a result of measuring the particle size distribution of the obtained pyrolyzed hematite by the above method, the average particle size D 50 = 6.61 μm and D 90 = 19.40 μm. Moreover, as a result of observing this pyrolytic hematite with an AFM (atomic force microscope) in the same manner as in Example 1, layered uneven patterns with an interval of 5 to 80 nm were observed as in FIG.

この熱分解ヘマタイトを実施例1で使用したロータリーキルンにより還元して、マグネタイト粉末を得た。H2ガスを150L/分の流量で導入し、還元温度600℃で20分間還元処理を行った。得られた粉体は、X線回折の結果、98質量%以上がマグネタイトからなるものであった。このマグネタイト粉末の粒度分布を上記の方法で測定した結果、D50=9.4μm、D90=39.0μmであった。
このマグネタイト粉末を試料Fとして、後述の電波吸収特性試験に供した。
This pyrolytic hematite was reduced by the rotary kiln used in Example 1 to obtain a magnetite powder. H 2 gas was introduced at a flow rate of 150 L / min, and reduction treatment was performed at a reduction temperature of 600 ° C. for 20 minutes. As a result of X-ray diffraction, the obtained powder was 98% by mass or more of magnetite. The particle size distribution of the magnetite powder was measured by the above method. As a result, D 50 = 9.4 μm and D 90 = 39.0 μm.
This magnetite powder was used as Sample F and subjected to a radio wave absorption characteristic test described later.

〔実施例3〕
実施例1で得られた試料Eのマグネタイト粉末を、湿式高速ビーズミルで60分間粉砕して、微細化したマグネタイト粉末を得た。このマグネタイト粉末の粒度分布を上記の方法で測定した結果、D50=1.61μm、D90=3.42μmであった。この粒度分布の測定値は1次粒子が凝集した2次粒子のものであるが、ヘマタイト粉末を用いて上記と同様の条件で粉砕処理実験を行ったところ、その微粉砕ヘマタイトの粒度分布はD50=0.37μm、D90=0.64μmであった。ヘマタイトは磁性を有しない(すなわち1次粒子が分離して存在できる)粒子であるから、その測定値は1次粒子の測定値であると考えよく、ここで得られた微粉砕マグネタイトの1次粒子の粒度分布もこれと同程度になっていると見てよい。このことは、当該微粉砕マグネタイト粒子の走査型電子顕微鏡観察の結果から肯定される。
この微細化したマグネタイト粉末を試料Gとして、後述の電波吸収特性試験に供した。
Example 3
The magnetite powder of Sample E obtained in Example 1 was pulverized for 60 minutes by a wet high-speed bead mill to obtain a refined magnetite powder. The particle size distribution of the magnetite powder was measured by the above method. As a result, D 50 = 1.61 μm and D 90 = 3.42 μm. The measured value of the particle size distribution is that of the secondary particles in which the primary particles are aggregated. When a pulverization treatment experiment was performed using hematite powder under the same conditions as described above, the particle size distribution of the finely pulverized hematite was D. 50 = 0.37 μm and D 90 = 0.64 μm. Since hematite is a particle that does not have magnetism (that is, the primary particles can exist separately), the measured value is considered to be a measured value of the primary particles, and the primary of the finely pulverized magnetite obtained here It can be seen that the particle size distribution of the particles is about the same. This is affirmed from the results of observation of the finely pulverized magnetite particles by a scanning electron microscope.
This refined magnetite powder was used as a sample G for a radio wave absorption characteristic test described later.

〔電波吸収特性試験〕
(1)電子レンジ被爆試験
試料として、下記のマグネタイト粉末を用意した。
・試料C:湿式法によりオキシ水酸化鉄を還元して直接得られたマグネタイト粉末。平均粒径D50=2.3μm、D90=4.2μm。
・試料D:湿式法によりFe含有酸液を中和する方法で得られたヘマタイトを、実施例1と同様の方法で還元して得たマグネタイト粉末。平均粒径D50=2.8μm、D90=5.3μm。
・試料E:熱分解ヘマタイトを還元して得た実施例1のマグネタイト粉末。D50=6.2μm、D90=35.3μm。
・試料F:熱分解ヘマタイトを還元して得た実施例2のマグネタイト粉末。D50=9.4μm、D90=39.0μm
・試料G:試料Eを粉砕して得た実施例3マグネタイト粉末。D50=1.61μm、D90=3.42μm。かつ1次粒子の平均粒径は0.1〜1.0μmの範囲にある。
(Radio wave absorption characteristics test)
(1) Microwave exposure test The following magnetite powder was prepared as a sample.
Sample C: Magnetite powder obtained directly by reducing iron oxyhydroxide by a wet method. Average particle diameter D 50 = 2.3 μm, D 90 = 4.2 μm.
Sample D: Magnetite powder obtained by reducing hematite obtained by the method of neutralizing the Fe-containing acid solution by a wet method by the same method as in Example 1. Average particle diameter D 50 = 2.8 μm, D 90 = 5.3 μm.
Sample E: Magnetite powder of Example 1 obtained by reducing pyrolytic hematite. D 50 = 6.2 μm, D 90 = 35.3 μm.
Sample F: Magnetite powder of Example 2 obtained by reducing pyrolytic hematite. D 50 = 9.4 μm, D 90 = 39.0 μm
Sample G: Example 3 magnetite powder obtained by pulverizing Sample E. D 50 = 1.61 μm, D 90 = 3.42 μm. The average particle size of the primary particles is in the range of 0.1 to 1.0 μm.

電波吸収体では、電波のエネルギーを熱エネルギーに変換することにより電波を吸収する。そこで、各試料のGHz帯域での電波吸収特性を簡便に比較するために、電子レンジを用いて試料の反応を調べた。電子レンジは2.45GHzの強力な電波を照射する調理器具である。ここでは家庭用として市販されている出力1000Wの電子レンジを用いた。試料粉末5gを蒸発皿に入れ、電子レンジで2.45GHzの強力な電波に被爆させ、被爆開始から赤熱するまで、または放電が開始するまでの時間を計測した。この反応時間が短いほど当該電波のエネルギーを熱に変換する作用が大きい、すなわち電波吸収作用が大きいと考えられる。各試料につき繰り返し数n=5で実験を行った。結果を表1に示す。   A radio wave absorber absorbs radio waves by converting radio wave energy into thermal energy. Therefore, in order to easily compare the radio wave absorption characteristics of each sample in the GHz band, the reaction of the sample was examined using a microwave oven. A microwave oven is a cooking utensil that emits a powerful radio wave of 2.45 GHz. Here, a microwave oven with an output of 1000 W that is commercially available for home use was used. 5 g of the sample powder was put in an evaporating dish, exposed to a powerful radio wave of 2.45 GHz with a microwave oven, and the time from the start of the exposure until it became red heat or the start of discharge was measured. It is considered that the shorter the reaction time, the greater the action of converting the radio wave energy into heat, that is, the radio wave absorption action is greater. The experiment was performed with a repetition number n = 5 for each sample. The results are shown in Table 1.

表1から判るように、熱分解ヘマタイトを経て得られたマグネタイト(試料E、F、G)は、湿式法を経て得られたマグネタイト(試料C、D)に比べ、赤熱・放電開始までの時間が大幅に短縮され、2.45GHzの電波に対する吸収特性は顕著に改善された。これは、熱分解ヘマタイトを生成する過程で導入された結晶内部の欠陥構造が何らかの作用をもたらしているものと推察される。また、1次粒子の平均粒径が0.1〜1.0μmの範囲にある微粉砕されたマグネタイト(試料G)は、微粉砕していないもの(試料E、F)と比べても更に吸収特性が改善された。   As can be seen from Table 1, the magnetite (samples E, F, and G) obtained through pyrolysis hematite has a longer time to start red heat and discharge than the magnetite (samples C and D) obtained through the wet method. Was significantly shortened, and the absorption characteristics for radio waves of 2.45 GHz were significantly improved. This is presumed that the defect structure inside the crystal introduced in the process of generating pyrolytic hematite has some effect. In addition, finely pulverized magnetite (sample G) having an average primary particle size in the range of 0.1 to 1.0 μm is further absorbed as compared with non-pulverized particles (samples E and F). The characteristics have been improved.

(2)粉体のみでの電波吸収量測定試験
一般に電波吸収体用の磁性粉末はポリマーなど他の成形材料に混練されて使用され、電波吸収量はポリマーの種類、フィラーの充填率、コンパウンドの厚みなどによって影響を受ける。ここでは粉体独自がもつ吸収特性を把握するためにコンパウンド化していない粉体のみを自然堆積・平準化法により厚さ2mmまたは6mmに調製して測定用サンプルとした。試料としては前記マグネタイト粉末の試料Cおよび試料Eと、試薬のカルボニル鉄粉(平均粒径8.5μm)を用いた。各測定用サンプルについて近傍電界吸収量測定法により0.1〜3GHzでの電波吸収量を測定した。測定は電磁波吸収特性JIS化委員所属機関にて、マイクロストリップライン法により行った。電波吸収量は、各圧粉体厚さともカルボニル鉄粉の吸収量を基準(100%)とした吸収率(%)で評価した。結果を表2に示す。
(2) Radio wave absorption measurement test using powder alone Generally, magnetic powder for radio wave absorbers is kneaded with other molding materials such as polymers, and the radio wave absorption is based on the type of polymer, filler filling rate, compound It is affected by the thickness. Here, in order to grasp the absorption characteristics inherent in the powder, only a powder that has not been compounded was prepared to a thickness of 2 mm or 6 mm by a natural deposition / leveling method, and used as a measurement sample. Samples C and E of the magnetite powder and a reagent carbonyl iron powder (average particle size 8.5 μm) were used. For each measurement sample, the radio wave absorption at 0.1 to 3 GHz was measured by the near electric field absorption measurement method. The measurement was performed by the microstrip line method at the organization to which the electromagnetic wave absorption characteristics JIS committee belongs. The radio wave absorption amount was evaluated by the absorption rate (%) based on the absorption amount of carbonyl iron powder (100%) for each green compact thickness. The results are shown in Table 2.

表2から判るように、熱分解ヘマタイトを還元して得られた本発明のマグネタイト粉末(試料E)のものは、湿式法を経て得られた従来のマグネタイト粉末(試料C)のものと比べ、吸収特性は格段に改善されている。   As can be seen from Table 2, the magnetite powder (sample E) of the present invention obtained by reducing pyrolytic hematite is compared with that of the conventional magnetite powder (sample C) obtained through the wet method, Absorption characteristics are significantly improved.

試料E(本発明例)のマグネタイトの製造に使用した熱分解ヘマタイトについてのAFM(原子間力顕微鏡)像。The AFM (atomic force microscope) image about the pyrolysis hematite used for manufacture of the magnetite of the sample E (invention example). 試料D(比較例)のマグネタイトの製造に使用した湿式ヘマタイトについてのAFM(原子間力顕微鏡)像。The AFM (atomic force microscope) image about the wet hematite used for manufacture of the magnetite of the sample D (comparative example). 試料E(本発明例)のマグネタイト粒子の一部を撮影した透過型電子顕微鏡写真。The transmission electron micrograph which image | photographed a part of magnetite particle | grains of the sample E (invention example).

Claims (9)

AFM(原子間力顕微鏡)像において粒子表面に5〜80nm間隔の層状凹凸模様が観察されるヘマタイトを、外熱式の加熱機構と、攪拌機構と、水冷装置による冷却機構を1つの炉心管に備え、かつ炉心管内部にライニングを施していないロータリーキルンにより、400〜650℃で加熱還元してマグネタイトとしたのち冷却してなる98質量%以上がマグネタイトからなる電波吸収用マグネタイトの粉末。 Hematite whose layer surface unevenness pattern is observed on the particle surface in the AFM (Atomic Force Microscope) image is combined with an external heating type heating mechanism, a stirring mechanism, and a cooling mechanism using a water cooling device in one core tube. A magnetite powder for radio wave absorption comprising 98% by mass or more of magnetite , which is provided and is heated and reduced at 400 to 650 ° C. by a rotary kiln that is not lined inside the furnace tube and then cooled. Fe含有酸液を450℃以上の大気雰囲気中で熱分解して得たヘマタイトを、外熱式の加熱機構と、攪拌機構と、水冷装置による冷却機構を1つの炉心管に備え、かつ炉心管内部にライニングを施していないロータリーキルンにより、400〜650℃で加熱還元してマグネタイトとしたのち冷却してなる98質量%以上がマグネタイトからなる電波吸収用マグネタイトの粉末。 Hematite obtained by pyrolyzing an Fe-containing acid solution in an air atmosphere at 450 ° C. or higher is equipped with an external heating type heating mechanism, a stirring mechanism, and a cooling mechanism by a water cooling device in one core tube, and the core tube Electromagnetic wave absorbing magnetite powder comprising 98% by mass or more of magnetite, which is reduced by heating and reducing at 400 to 650 ° C. with a rotary kiln without lining inside, and then cooling. 鉄鋼酸洗廃液を450〜900℃の大気雰囲気中に噴霧することにより熱分解して得たヘマタイトを、外熱式の加熱機構と、攪拌機構と、水冷装置による冷却機構を1つの炉心管に備え、かつ炉心管内部にライニングを施していないロータリーキルンにより、400〜650℃で加熱還元してマグネタイトとしたのち冷却してなる98質量%以上がマグネタイトからなる電波吸収用マグネタイトの粉末。 Hematite obtained by thermal decomposition by spraying steel pickling waste liquid into an air atmosphere at 450 to 900 ° C. is combined with an external heating type heating mechanism, a stirring mechanism, and a cooling mechanism with a water cooling device in one core tube. A magnetite powder for radio wave absorption comprising 98% by mass or more of magnetite , which is provided and is heated and reduced at 400 to 650 ° C. by a rotary kiln that is not lined inside the furnace tube and then cooled. 平均粒径D50が1〜10μm、D90が10〜50μmである請求項1〜3のいずれかに記載の98質量%以上がマグネタイトからなる電波吸収用マグネタイトの粉末。
ただし、D50はレーザー法で測定される平均粒径であり、D90はレーザー法で測定される粒度分布における90%個数存在率に相当する粒径である。
4. The electromagnetic wave absorbing magnetite powder comprising 98% by mass or more of magnetite according to claim 1, having an average particle size D 50 of 1 to 10 μm and D 90 of 10 to 50 μm.
However, D 50 is the average particle diameter measured by a laser method, D 90 is the particle diameter corresponding to 90% the number existence ratio in the particle size distribution measured by a laser method.
請求項1〜3のいずれかに記載のマグネタイトの粉末を湿式粉砕してなる98質量%以上がマグネタイトからなる電波吸収用マグネタイトの粉末。 A magnetite powder for radio wave absorption in which 98% by mass or more obtained by wet-grinding the magnetite powder according to any one of claims 1 to 3 comprises magnetite. 1次粒子の平均粒径が0.1〜1.0μmである請求項5に記載の98質量%以上がマグネタイトからなる電波吸収用マグネタイトの粉末。 6. An electromagnetic wave absorbing magnetite powder comprising 98% by mass or more of magnetite according to claim 5, wherein the primary particles have an average particle size of 0.1 to 1.0 μm. AFM(原子間力顕微鏡)像において粒子表面に5〜80nm間隔の層状凹凸模様が観察されるヘマタイトを、外熱式の加熱機構と、攪拌機構と、水冷装置による冷却機構を1つの炉心管に備え、かつ炉心管内部にライニングを施していないロータリーキルンにより、400〜650℃で加熱還元してマグネタイトとしたのち冷却する、電波吸収用マグネタイト粉末の製造法。   Hematite whose layer surface unevenness pattern is observed on the particle surface in the AFM (Atomic Force Microscope) image is combined with an external heating type heating mechanism, a stirring mechanism, and a cooling mechanism using a water cooling device in one core tube. A method for producing magnetite powder for radio wave absorption, which is provided with a rotary kiln that is not lined inside the furnace tube and is heated and reduced at 400 to 650 ° C. to form magnetite and then cooled. Fe含有酸液を450℃以上の大気雰囲気中で熱分解して得たヘマタイトを、外熱式の加熱機構と、攪拌機構と、水冷装置による冷却機構を1つの炉心管に備え、かつ炉心管内部にライニングを施していないロータリーキルンにより、400〜650℃で加熱還元してマグネタイトとしたのち冷却する、電波吸収用マグネタイト粉末の製造法。   Hematite obtained by pyrolyzing an Fe-containing acid solution in an air atmosphere at 450 ° C. or higher is equipped with an external heating type heating mechanism, a stirring mechanism, and a cooling mechanism by a water cooling device in one core tube, and the core tube A method for producing a magnetite powder for radio wave absorption, which is heated and reduced at 400 to 650 ° C. to form magnetite and then cooled by a rotary kiln without lining inside. 鉄鋼酸洗廃液を450〜900℃の大気雰囲気中に噴霧することにより熱分解して得たヘマタイトを、外熱式の加熱機構と、攪拌機構と、水冷装置による冷却機構を1つの炉心管に備え、かつ炉心管内部にライニングを施していないロータリーキルンにより、400〜650℃で加熱還元してマグネタイトとしたのち冷却する、電波吸収用マグネタイト粉末の製造法。   Hematite obtained by thermal decomposition by spraying steel pickling waste liquid into an air atmosphere at 450 to 900 ° C. is combined with an external heating type heating mechanism, a stirring mechanism, and a cooling mechanism with a water cooling device in one core tube. A method for producing magnetite powder for radio wave absorption, which is provided with a rotary kiln that is not lined inside the furnace tube and is heated and reduced at 400 to 650 ° C. to form magnetite and then cooled.
JP2004353980A 2004-12-07 2004-12-07 Magnetite powder and method for producing the same Active JP4989024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004353980A JP4989024B2 (en) 2004-12-07 2004-12-07 Magnetite powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004353980A JP4989024B2 (en) 2004-12-07 2004-12-07 Magnetite powder and method for producing the same

Publications (3)

Publication Number Publication Date
JP2006160559A JP2006160559A (en) 2006-06-22
JP2006160559A5 JP2006160559A5 (en) 2007-06-21
JP4989024B2 true JP4989024B2 (en) 2012-08-01

Family

ID=36662991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004353980A Active JP4989024B2 (en) 2004-12-07 2004-12-07 Magnetite powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP4989024B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5373838B2 (en) * 2011-03-22 2013-12-18 タイガースポリマー株式会社 Magnetite-containing elastomer composition
CO6380006A1 (en) * 2011-08-26 2012-02-15 Botero Gabriel Santiago Jaramillo PROCESS FOR PRODUCTION OF HIGH PURITY SYNTHETIC MAGNETITE BY OXIDATION FROM METAL WASTE AND APPLIANCE TO PRODUCE

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6172630A (en) * 1984-09-18 1986-04-14 Nippon Kokan Kk <Nkk> Preparation of iron oxide powder for magnetic material
JP2704521B2 (en) * 1988-04-08 1998-01-26 戸田工業株式会社 Plate-like magnetite particle powder and production method thereof
JPH04128396A (en) * 1990-09-17 1992-04-28 Sumitomo Metal Ind Ltd Method for recovering iron oxide
JP3467316B2 (en) * 1994-05-25 2003-11-17 Tdk株式会社 Method for producing magnetite and method for producing magnetic toner
JP3867562B2 (en) * 2000-11-30 2007-01-10 Jfeスチール株式会社 Magnetite-iron composite powder mixture, production method thereof, and radio wave absorber
JP2004175596A (en) * 2002-11-26 2004-06-24 Nisshin Ferrite Kk Method of manufacturing red iron oxide
JP2005306642A (en) * 2004-04-20 2005-11-04 Nisshin Steel Co Ltd Iron oxide composite particle and manufacturing method therefor

Also Published As

Publication number Publication date
JP2006160559A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
Ding et al. Electromagnetic wave absorption in reduced graphene oxide functionalized with Fe 3 O 4/Fe nanorings
Ma et al. Microwave absorption of carbonization temperature-dependent uniform yolk-shell H-Fe3O4@ C microspheres
CN108655411B (en) Preparation method of wave-absorbing material and wave-absorbing coating
CN109705808A (en) A kind of cobalt-nickel alloy with MOF structure-porous carbon composite wave-suction material and preparation method thereof
CN110079271B (en) Protein-based carbon/magnetic Fe Co nanoparticle composite wave absorber and preparation method and application thereof
CN110819302A (en) Preparation method of silicon carbide/carbon hollow porous microsphere wave-absorbing material
Li et al. A simple approach to spherical nickel-carbon monoliths as light-weight microwave absorbers
Zhao et al. Preparation of SnO2-coated Ni microsphere composites with controlled microwave absorption properties
Zhou et al. Preparation of CoFe2O4 hollow spheres with carbon sphere templates and their wave absorption performance
CN109762518B (en) Three-dimensional porous graphene/boron nitride composite material and preparation method thereof
CN114195197B (en) Magnetic porous carbon compound and preparation method and application thereof
CN113697863B (en) Ferroferric oxide/carbon nanosheet composite material with excellent electromagnetic wave absorption performance and preparation method and application thereof
Liu et al. Multicomponent Fe-based composites derived from the oxidation and reduction of Prussian blue towards efficient electromagnetic wave absorption
Che et al. Preparation and microwave absorbing properties of the core-nanoshell composite absorbers with the magnetic fly-ash hollow cenosphere as core
CN110028930B (en) HalS-Fe3O4@ C composite material and preparation method and application thereof
Liu et al. In situ construction of complex spinel ferrimagnet in multi-elemental alloy for modulating natural resonance and highly efficient electromagnetic absorption
CN115173079A (en) ZnFe loaded on coal gasification fine ash carbon residue 2 O 4 Nano microsphere composite material and preparation method thereof
Entezari et al. In situ precipitation synthesis of FeNi/ZnO nanocomposites with high microwave absorption properties
JP4989024B2 (en) Magnetite powder and method for producing the same
Du et al. Heterostructured C@ Fe3O4@ FeSiCr composite absorbing material derived from MIL-88 (Fe)@ FeSiCr
CN109289718A (en) A kind of three-dimensional redox graphene aerogel material and preparation method thereof
CN115368133B (en) Preparation method and application of high-temperature ceramic powder
KR20100111602A (en) Flake powder for electromagnetic wave absorber and method for manufacturing the same
CN113423255B (en) Core-shell structure Ti 4 O 7 Magnetic metal composite absorbent and preparation method thereof
CN109251728A (en) A kind of absorbing material and preparation method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120427

R150 Certificate of patent or registration of utility model

Ref document number: 4989024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250