JP4988399B2 - Pre-control method of lambda value - Google Patents

Pre-control method of lambda value Download PDF

Info

Publication number
JP4988399B2
JP4988399B2 JP2007081076A JP2007081076A JP4988399B2 JP 4988399 B2 JP4988399 B2 JP 4988399B2 JP 2007081076 A JP2007081076 A JP 2007081076A JP 2007081076 A JP2007081076 A JP 2007081076A JP 4988399 B2 JP4988399 B2 JP 4988399B2
Authority
JP
Japan
Prior art keywords
lambda
value
control method
storage capacity
oxygen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007081076A
Other languages
Japanese (ja)
Other versions
JP2007263113A (en
Inventor
アンドレアス・クフェラス
クラウス・マルクル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JP2007263113A publication Critical patent/JP2007263113A/en
Application granted granted Critical
Publication of JP4988399B2 publication Critical patent/JP4988399B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0255Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus to accelerate the warming-up of the exhaust gas treating apparatus at engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0864Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/141Introducing closed-loop corrections characterised by the control or regulation method using a feed-forward control element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2024Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control switching a load after time-on and time-off pulses
    • F02D2041/2027Control of the current by pulse width modulation or duty cycle control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

本発明は、少なくとも一つの触媒装置と少なくとも一つのラムダセンサとを備えた内燃機関の排気ガス浄化設備の加熱段階(過熱相)の間におけるラムダ値の事前制御(開ループ制御)のための方法に関する。   The present invention relates to a method for pre-control (open loop control) of a lambda value during a heating phase (superheated phase) of an exhaust gas purification facility of an internal combustion engine comprising at least one catalytic device and at least one lambda sensor. About.

熱機関における厳しい排気ガス基準を満たすためには、未処理排出ガスの最少化と共に、スタート時に触媒ができるだけ迅速に適正な作動温度へ加熱されなければならない。そのためには、例えば遅延点火による排気ガス温度の引き上げ、二次エアの吹込みと組み合わせた混合気の過濃化、触媒装置の手前の排気ガス経路内でのグロープラグの使用などの様々な措置が知られている。排気ガスターボチャージャーと過給圧調節弁とを備えたエンジンの場合には、触媒装置の迅速な加熱のために過給圧調節弁を開くことができる。これ等の措置は全て、一方では過濃或いは希薄というような排気ガス構想に、又他方では利用可能なハードウェア(例えば、過給運動弁、二次エア吹き込み装置、カムシャフト調整、等)に依存しており、且つ排気ガスの室に影響を与える。法律の規定に基づいて、それ等の効果は、オンボード診断機能を備えた自動車ではチェックされなければならない。コールドスタートの際に、これ等の措置の中の何れかが上手く働かないと、排気ガスの限界値を守ることができないことがある。   In order to meet stringent exhaust gas standards in heat engines, the catalyst must be heated to the proper operating temperature as quickly as possible at the start, along with the minimization of raw exhaust gas. For that purpose, various measures such as raising the exhaust gas temperature by delayed ignition, over-concentration of the air-fuel mixture combined with secondary air blowing, and the use of a glow plug in the exhaust gas path in front of the catalytic device, etc. It has been known. In the case of an engine equipped with an exhaust gas turbocharger and a supercharging pressure control valve, the supercharging pressure control valve can be opened for rapid heating of the catalyst device. All of these measures are on the one hand on exhaust gas concepts such as rich or lean, and on the other hand available hardware (eg supercharged valve, secondary air blowing device, camshaft adjustment, etc.) Depends on and affects the exhaust gas chamber. Based on the provisions of the law, their effects must be checked in cars with on-board diagnostic functions. If any of these measures do not work well during a cold start, the exhaust gas limits may not be met.

他方、有害ガス成分の変換に関しては、酸素に対する触媒装置の吸蔵能力OSC(Oxygen Storage Capacity)にとりわけ関心が寄せられている。酸素に対する排気ガス浄化設備の吸蔵能力が、希薄段階で酸素を取り込み、過濃段階で再び放出するために利用される。これによって、排気ガスの酸化すべき有害ガス成分を変換することができる。排気ガス浄化設備の老化が進むのに伴って、酸素に対する設備の吸蔵能力が低下する。これによって、過濃段階では最早排気ガスを有害ガス成分から浄化するために十分な酸素が利用できなくなり、排気ガス浄化設備の後方のラムダセンサは、酸化すべきそれ等の成分を検出する。ラムダセンサは更に、より長い希薄段階で酸素を検出し、この酸素は、最早排気ガス浄化設備によっては吸蔵されることができない。多くの国では、走行運転の間にエンジン制御装置によって排気ガス浄化設備をチェックすることを法律によって命じている(オンボード診断)。その際、アクティブな(積極的な)触媒装置の診断は、排気ガス値の許容できない上昇をもたらす、許容されない変換の低下を検出してコントロールランプを通じて表示することを課題としている。   On the other hand, regarding the conversion of harmful gas components, there is a particular interest in the storage capacity OSC (Oxygen Storage Capacity) of the catalytic device for oxygen. The storage capacity of the exhaust gas purification equipment for oxygen is used to take up oxygen in the lean stage and release it again in the rich stage. Thereby, the harmful gas component to be oxidized of the exhaust gas can be converted. As the exhaust gas purification equipment ages, the storage capacity of the equipment for oxygen decreases. As a result, sufficient oxygen is no longer available to purify the exhaust gas from harmful gas components in the over-rich stage, and the lambda sensor behind the exhaust gas purification equipment detects those components to be oxidized. The lambda sensor further detects oxygen in a longer lean phase, which oxygen can no longer be stored by the exhaust gas purification equipment. In many countries, the law mandates that the exhaust gas purification equipment be checked by the engine controller during driving (onboard diagnostics). In doing so, the diagnosis of the active (active) catalytic device is aimed at detecting and displaying through the control lamp an unacceptable reduction in conversion which results in an unacceptable increase in the exhaust gas value.

酸素を測定する触媒診断は、ワイドバンドセンサを用いて次のように行われる。
触媒が先ず過濃混合気(λ<1)によって酸素を除去される。条件調節と呼ばれているこの段階の後希薄排気ガス(λ>1)が送り込まれ、その際に送り込まれた酸素量が積分される。この測定段階の間に、触媒装置の後方のセンサが、希薄な、即ち酸素を含んでいる混合気を指示した場合には、積分された量は、品質に関する尺度となる、触媒の実際の酸素吸蔵能力に対応している。この方法が次々と何度も適用される。
The catalyst diagnosis for measuring oxygen is performed as follows using a wideband sensor.
The catalyst is first deoxygenated by a rich mixture (λ <1). After this stage, which is called condition adjustment, lean exhaust gas (λ> 1) is fed, and the amount of oxygen fed at that time is integrated. During this measurement phase, if the sensor behind the catalytic device indicates a lean or oxygen-containing mixture, the integrated quantity is the actual oxygen of the catalyst, which is a measure for quality. Corresponds to storage capacity. This method is applied over and over again.

DE 41 12 478 C2 には、触媒の老化状態の判定のための方法が記載されており、この方法ではラムダ値が触媒装置の前方と後方で測定される。触媒の手前での過濃から希薄への或いはその反対方向への制御振動の際に、触媒の後方のラムダ値がそれに対応した移行を示し、且つ触媒を通して流れるガスの質量流量が確定されると、ガスの質量流量と触媒装置の手前のラムダ値との積の時間積分が計算され、ガスの質量流量と触媒装置の後方のラムダ値との積の時間積分が計算され、且つ触媒の老化状態に関する尺度として、上記の二つの積分の値の間の差或いは二つの積分の値から得られる商或いは、上記の差と二つの積分の値の中の一方の値から得られる商が用いられる。そこに記載されている方法の場合の欠点は、実際のラムダ値とガスの質量流量から得られる積の積分を通じて送り込まれた或いは取除かれた酸素量を確定するためには、排気ガス浄化設備の手前のラムダ値を高価なワイドバンドラムダセンサを用いて測定しなければならないということである。   DE 41 12 478 C2 describes a method for determining the aging state of a catalyst, in which the lambda value is measured in front and behind the catalytic device. During control oscillations from rich to lean or in the opposite direction before the catalyst, the lambda value behind the catalyst shows a corresponding shift and the mass flow rate of the gas flowing through the catalyst is determined The time integral of the product of the gas mass flow rate and the lambda value before the catalytic device is calculated, the time integral of the product of the gas mass flow rate and the lambda value behind the catalytic device is calculated, and the aging state of the catalyst As a measure for the above, the difference between the two integral values or the quotient obtained from the two integral values or the quotient obtained from one of the difference and the two integral values is used. The disadvantage of the method described there is that an exhaust gas purification facility is used to determine the amount of oxygen fed or removed through the integration of the product obtained from the actual lambda value and the gas mass flow rate. It is necessary to measure the lambda value before this value using an expensive wideband lambda sensor.

排気ガス浄化設備の酸素吸蔵能力を確定するためのもう一つの方法が、EP0546 318 B1 に記載されている。このシステムには、最初は酸素欠乏入力が触媒の酸素吸蔵能力よりも高いラムダ変化を与える。この酸素入力は、触媒が希薄段階でそれぞれ触媒の能力の限度まで満たされるように選ばれる。触媒の酸素吸蔵能力を確定するために、触媒装置の手前の平均ラムダ値がシステムのラムダ振動の間に意図的に希薄の方向へ移動され、これによって段階から段階への酸素除去が減少される。触媒装置の後方に配置されたラムダセンサが表示する過濃/希薄移行の回数の確定によって、酸素吸蔵能力を確定することができ、その際、増加した段階の回数が減少した吸蔵能力を意味している。この方法での欠点は、希薄段階に浄化されていない排気ガスが引渡されてしまうことである。   Another method for determining the oxygen storage capacity of exhaust gas purification equipment is described in EP 0546 318 B1. This system initially gives a lambda change in which the oxygen deficient input is higher than the oxygen storage capacity of the catalyst. This oxygen input is chosen so that the catalysts are each filled to the limit of their capacity in the lean stage. To determine the oxygen storage capacity of the catalyst, the average lambda value before the catalytic device is intentionally moved in the lean direction during the lambda oscillation of the system, thereby reducing the oxygen removal from stage to stage. . Oxygen storage capacity can be determined by determining the number of over- / deep-lean transitions displayed by the lambda sensor located behind the catalytic device, which means that the increased number of steps reduces the storage capacity. ing. The disadvantage with this method is that exhaust gas that has not been purified is delivered to the lean stage.

DE 10240977 A1には、燃料直接噴射システムを備えた、特に自動車のための内燃機関の運転方法が記載されており、この方法では、少なくとも一つの触媒装置を持つ排気ガスシステムが備えられている。それ等の触媒装置の少なくとも一つのを加熱するために、内燃機関が循環的に希薄運転中に少なくとも一つのの触媒装置の酸素吸蔵装置を満たすためにλ>1 で運転され、又過濃運転中は少なくとも一つの触媒装置の中の酸素と未燃焼燃料成分との反応の反応熱によって触媒を加熱するためにλ<1 で運転される。その際には、先ずラムダジャンプによって各々の個別触媒装置或いは一群の触媒装置の酸素吸蔵能力が確定され、且つ求められた一つ又は複数の触媒のその時々の酸素吸蔵能力を通じて酸素に関する発熱量が確定され、又排気ガスラムダ及び排気ガス質量流量を考慮しながらエネルギー供給が確定され、又それによって少なくとも一つの触媒装置での温度が確定される。これによって、過濃段階および/または希薄段階の調節を通じて、一つ又は複数の触媒装置の加熱制御が行われる。   DE 102409777 A1 describes a method for operating an internal combustion engine with a direct fuel injection system, in particular for motor vehicles, in which an exhaust gas system with at least one catalytic device is provided. In order to heat at least one of these catalytic devices, the internal combustion engine is operated with λ> 1 to fill the oxygen storage device of at least one catalytic device during cyclic lean operation, and also over-rich operation Some are operated at λ <1 in order to heat the catalyst by the reaction heat of the reaction between oxygen and unburned fuel components in at least one catalytic device. In that case, first, the oxygen storage capacity of each individual catalyst device or a group of catalyst devices is determined by lambda jump, and the calorific value related to oxygen is determined through the current oxygen storage capacity of one or more catalysts obtained. The energy supply is determined, taking into account the exhaust gas lambda and the exhaust gas mass flow, and thereby the temperature in at least one catalytic device. Thereby, the heating control of one or a plurality of catalyst devices is performed through adjustment of the rich stage and / or the lean stage.

触媒装置の迅速な加熱のために、従来技術に基づいて、スタートの後わずかに希薄な混合気が、λ>1で制御される。特にコールドスタートの際には、ラムダセンサにとって未だ露点に達していないので、ラムダセンサの作動準備状態はスタートの後に始めてはっきりと到達される。従って、ラムダ値は、スタートの直後にλ>1 に事前制御され、この場合には、一般におよそ1.05となる。これによって、例え量産に起因する燃料計量のばらつきがあったとしても、常にわずかに希薄なラムダが保持されるということが保証される。ラムダ値λ=1 が割り込まれると、一つにはCO排出およびHC排出の大幅な上昇がもたらされ、状況によっては、対応する排出限界値を超えることがある。しかしながら、希薄なラムダによって、いわゆる“ライトオフ温度”(その温度から触媒が最適な反応温度に到達し、従って触媒が原則的に三元触媒として働くことができるようになる温度)を超えた後でも、排気ガス中の窒素酸化物の変換ができない。   Due to the prior art, a slightly lean mixture after start is controlled with λ> 1 for rapid heating of the catalytic device. Particularly during a cold start, since the dew point has not yet been reached for the lambda sensor, the operational ready state of the lambda sensor is clearly reached only after the start. Therefore, the lambda value is pre-controlled immediately after the start with λ> 1 and in this case is generally around 1.05. This ensures that a slightly lean lambda is always maintained, even if there are variations in fuel metering due to mass production. The interruption of the lambda value λ = 1 leads in part to a significant increase in CO emissions and HC emissions, and in some circumstances may exceed the corresponding emission limits. However, after exceeding the so-called “light-off temperature” (the temperature at which the catalyst reaches the optimum reaction temperature and thus allows the catalyst to act in principle as a three-way catalyst) by dilute lambda. However, nitrogen oxides in the exhaust gas cannot be converted.

本発明の課題は、既に触媒装置の加熱段階の間にNOxの少なくとも部分的変換を保証し、しかもこの段階の中で酸化すべき成分に関する限界値に違反することのない方法を提供することである。   The object of the present invention is to provide a method that guarantees at least partial conversion of NOx already during the heating stage of the catalytic device and does not violate the limit values for the components to be oxidized during this stage. is there.

上記の課題は、少なくとも一つの触媒装置と少なくとも一つのラムダ(λ)センサとを備えた内燃機関の排気ガス浄化設備の加熱段階の間におけるラムダ値の事前制御方法において、ラムダ事前制御の時間的ラムダ変化が、触媒装置の加熱段階の間に、少なくとも一時的に、より高い周波数変調を用いて、この段階の中で、λ>1の時間的ラムダ平均値が事前設定され、且つ少なくとも一時的に λ<1 のラムダ値が達成されるように制御されることによって解決される。   The above object is to provide a method for pre-controlling lambda values during a heating phase of an exhaust gas purification equipment of an internal combustion engine having at least one catalyst device and at least one lambda (λ) sensor. A lambda change is preset at least temporarily during the heating phase of the catalytic device, using a higher frequency modulation, during which a temporal lambda average of λ> 1 is preset and at least temporarily This is solved by being controlled so that a lambda value of λ <1 is achieved.

本発明によれば、ラムダに関するこの意図的な制御戦略によって既にこの段階の間に、少なくとも一時的にλ<1 のラムダ値が達成されるので、窒素酸化物の部分変換が達成される。同時に、平均すれば相変わらず希薄なラムダ値によって、HCやCO等の酸化されるべき成分の変換にマイナスの影響が出ることは無い。この事前制御戦略によって、わずかながら、酸化すべき成分の変換も支援されるということさえ観察された。その際、λ>1、例えばλ=1.05、への事前制御によって量産に起因するばらつきが確実にカバーされるので、既に前に説明された、酸化すべき成分に関する限界値を超える危険が無い。   According to the invention, this intentional control strategy for lambda already achieves a lambda value of λ <1 at least temporarily during this stage, so that a partial conversion of nitrogen oxides is achieved. At the same time, the average sparse lambda value does not negatively affect the conversion of components to be oxidized, such as HC and CO. It was even observed that this pre-control strategy also supported the conversion of the components to be oxidized to a small extent. In that case, since the variation due to mass production is reliably covered by the prior control to λ> 1, for example, λ = 1.05, there is a risk of exceeding the limit value relating to the component to be oxidized already explained above. No.

その際、より高い周波数変調の加算は、好ましいやり方によれば、ラムダ事前制御の時間的ラムダ変化が非対称的なオンオフ比で、λ>1と λ<1 の段階の間で事前制御され、その際には比較的短時間にラムダ値が明らかに1よりも小さい値から制御され、そのためにラムダが、HCやCO等の酸化されるべき成分の変換を確実に保証するために、比較的長い時間λ>1 に留まることができる。これに対して、1よりも明らかに小さいラムダ値は窒素酸化物の変換を加速させる。   In that case, the addition of the higher frequency modulation is pre-controlled between the λ> 1 and λ <1 stages, according to a preferred manner, with a lambda change of lambda pre-control with an asymmetric on / off ratio, In some cases, the lambda value is controlled from a value clearly less than 1 in a relatively short time, so that the lambda is relatively long to ensure the conversion of components to be oxidized, such as HC and CO. It can remain at time λ> 1. In contrast, a lambda value clearly less than 1 accelerates the conversion of nitrogen oxides.

更に、より高い周波数変調は、振幅および/または周波数に関して内燃機関の運転ポイントに応じて変化され、これによってフレキシブルなラムダ事前制御を達成することができるということが考えられる。   Furthermore, it is conceivable that the higher frequency modulation is varied depending on the operating point of the internal combustion engine with respect to amplitude and / or frequency, whereby a flexible lambda pre-control can be achieved.

例えば、一つ又は複数の触媒装置の酸素吸蔵能力(OSC)は一定の老化を受けるから、本発明によれば、より高い周波数変調の周波数を一つ又は複数の触媒装置の酸素吸蔵能力(OSC)の実際の値に適合させるということを考えることができる。かくして、このラムダ事前制御によって、一方では窒素酸化物の又他方ではHC又はCOのできる限りコンスタントな変換率が保証され、このことがとりわけ、ある程度の老化の後にも、これ等の有害物質成分に関する限界値の保持を保証している。   For example, since the oxygen storage capacity (OSC) of one or more catalytic devices undergoes a certain amount of aging, according to the present invention, a higher frequency modulation frequency may be used for the oxygen storage capacity (OSC) of one or more catalytic devices. Can be considered to fit the actual value of). Thus, this lambda pre-control guarantees as constant a conversion rate as possible of nitrogen oxides on the one hand and HC or CO on the other hand, which in particular relates to these harmful substance components even after some aging. The retention of the limit value is guaranteed.

一般に、より高い周波数変調の周波数が、一つ又は複数の触媒装置の酸素吸蔵能力(OSC)の値が小さくなるのに伴って引き上げられると有効且つ有利となる。過濃ピークの出現の危険をこれによって低減させることができる。   In general, it is advantageous and advantageous if a higher frequency modulation frequency is increased as the oxygen storage capacity (OSC) value of one or more catalytic devices decreases. This can reduce the risk of appearance of over-rich peaks.

その際、この方法は、一つ又は複数の触媒装置の酸素吸蔵能力(OSC)の実際値を酸素吸蔵能力(OSC)に関する診断方法によって測定し且つ記憶することを考えている。次いで、この値は直接、周波数、振幅、及び場合によってはλ>1 の段階と λ<1の段階との間のオンオフ比に関する最適な変調の計算のために用いることができる。   In this case, this method contemplates measuring and storing the actual value of the oxygen storage capacity (OSC) of one or more catalytic devices by a diagnostic method relating to the oxygen storage capacity (OSC). This value can then be used directly for frequency, amplitude, and in some cases, calculation of the optimum modulation for the on / off ratio between the λ> 1 and λ <1 steps.

一つ又は複数の触媒装置の酸素吸蔵能力(OSC)に加えて、触媒温度の体積重み付けが行われ、且つこれがラムダ事前制御の時間的ラムダ変化の振幅変調および/または周波数変調の際の一つ又は複数の触媒装置の加熱の間に考慮されると、そこから、一つ又は複数の触媒装置の中の温度の関数となる実際の酸素吸蔵能力を求めることができる。触媒装置は、加熱プロセスの間に(ガスの流れ方向に見て)手前側から後側に向かって加熱されるので、この体積重み付けによって全ての触媒装置について特徴的な触媒温度を定めることができ、この触媒温度はその後の計算のために利用される。   In addition to the oxygen storage capacity (OSC) of one or more catalytic devices, volume weighting of the catalyst temperature is performed, and this is one of the amplitude modulation and / or frequency modulation of the lambda change over time of the lambda pre-control. Alternatively, when considered during heating of the plurality of catalytic devices, the actual oxygen storage capacity as a function of temperature in the one or more catalytic devices can be determined therefrom. Since the catalytic device is heated from the front side to the rear side (as viewed in the gas flow direction) during the heating process, this volume weighting can define a characteristic catalyst temperature for all catalytic devices. This catalyst temperature is then used for subsequent calculations.

その際、この方法のとりわけ有利なバリアントでは、一つ又は複数の触媒装置の酸素吸蔵能力(OSC)の値と触媒温度の体積重み付けのための値とが測定され、特性マップに記憶されることが考えられている。これによって、複雑な関数関係も有利に表現され且つ評価される。   In this case, in a particularly advantageous variant of the method, the value of the oxygen storage capacity (OSC) of one or more catalytic devices and the value for volume weighting of the catalyst temperature are measured and stored in a characteristic map. Is considered. Thereby, complex functional relationships are also advantageously expressed and evaluated.

先に説明された方法では、ラムダ事前制御の時間的ラムダ変化の変調の振幅を制限することを考えることができる。このことは特に、希薄なラムダ値が、事前制御される時には、とりわけ走行安定性に関して有意義となる。   In the method described above, it can be considered to limit the amplitude of the modulation of the lambda pre-control temporal lambda change. This is particularly significant with respect to running stability, especially when sparse lambda values are pre-controlled.

先に説明された措置が、触媒加熱の間およびラムダセンサの作動準備完了状態への到達前に適用されると、一つ又は複数の触媒装置の作用を更に幾分引き上げることができるので、この措置は、ライトオフ段階への到達前でも有利となり、その際には、酸化されるべき成分(HC、CO)の変換のための一つ又は複数の触媒装置の活性の上昇が、通常のλ=1 の運転からのラムダの変調によって分かる。   If the measures described above are applied during catalyst heating and before reaching the ready state of operation of the lambda sensor, the action of the one or more catalyst devices can be further enhanced somewhat. The measure is advantageous even before reaching the light-off stage, in which the increase in the activity of one or more catalytic devices for the conversion of the components to be oxidized (HC, CO) is the usual λ It can be seen by the lambda modulation from the driving of = 1.

この措置がガソリン直接噴射式或いはインテークマニホルド内噴射式の内燃機関に適用される場合には、この制御戦略を既知の“均質スプリット”運転様式と組み合わせるとりわけガソリン直接噴射式の内燃機関が対象となる。何故なら、ここでは希薄運転性が純粋な均質運転と比較して改善されているからである。原理的には運転様式の交替もそれと組み合わせることができるであろう。そこで例えば、燃焼方法がそれを許せば、振幅の希薄部分の中に成層運転様式が選ばれ、又振幅の過濃部分の中で均質運転様式が運転される。インテークマニホルド内噴射式の場合に必要な領域内で希薄運転性が得られるならば、ここでも又この戦略を適用することができる。   If this measure is applied to a gasoline direct injection or intake manifold internal combustion engine, this control strategy is combined with a known "homogeneous split" mode of operation, especially for gasoline direct injection internal combustion engines. . This is because here lean operation is improved compared to pure homogeneous operation. In principle, driving mode changes could be combined with it. So, for example, if the combustion method allows it, a stratified mode of operation is selected in the lean portion of the amplitude, and a homogeneous mode of operation is operated in the rich portion of the amplitude. This strategy can also be applied here if lean drivability is obtained in the required region for the intake manifold injection type.

本発明が以下に、図面に示された実施例に基づいて詳しく説明される。
本発明に基づく方法が適用される技術的環境は、例えば、エンジンブロックとそのエンジンブロックに燃焼空気を供給するエアインテークカナルとから成る内燃機関を想定している。そこでは、エアインテークカナル内の空気量はインテークエア測定装置を用いて求めることができる。内燃機関の排気ガスは、メインコンポーネントとして排気ガスカナルを持つ排気ガス浄化設備を通じて送られ、この排気ガスカナルの中に第一のラムダセンサが排気ガス流の方向に見て触媒装置の手前に配置され、又第二のラムダセンサが触媒装置の背後に配置されている。排気ガス浄化設備は更に、第二の触媒装置を上記の第二のラムダセンサの後方に備えることができる。これ等のラムダセンサは制御装置に接続されており、この制御装置は、ラムダセンサのデータとインテークエア測定装置のデータから混合気を計算し、エアインテークカナル内の対応する噴射ノズルによる燃料の計量配分のために燃料計量配分装置を制御する。
The invention is explained in more detail below on the basis of the embodiment shown in the drawing.
The technical environment to which the method according to the present invention is applied assumes, for example, an internal combustion engine comprising an engine block and an air intake canal for supplying combustion air to the engine block. There, the amount of air in the air intake canal can be determined using an intake air measuring device. The exhaust gas of the internal combustion engine is sent through an exhaust gas purification facility having an exhaust gas canal as a main component, and in this exhaust gas canal, a first lambda sensor is disposed in front of the catalyst device when viewed in the direction of the exhaust gas flow, A second lambda sensor is disposed behind the catalytic device. The exhaust gas purification equipment can further include a second catalytic device behind the second lambda sensor. These lambda sensors are connected to a control device, which calculates the mixture from the lambda sensor data and the intake air measurement device data and measures the fuel by the corresponding injection nozzle in the air intake canal. Control the fuel metering device for distribution.

エンジンブロックの後方の排気ガスカナル内に配置されているラムダセンサによって、制御装置により、排気ガス浄化設備にとって最適の浄化効果の達成のために適したラムダ値が調節される。ラムダセンサは、簡単なジャンプセンサとして或いは高価なワイドバンドセンサとして作ることができ、このセンサによって広い範囲にわたって空気過剰率λが確定される。ラムダセンサがジャンプセンサとして作られている場合には、コスト的に有利であるが、λ=1の基準値に合わせて調節することしかできない。従って、酸素吸蔵能力を確定する間は何れのラムダ制御装置も働かない。この動作段階では、制御装置によって事前確定されたラムダ値を用いた燃料混合気の事前制御しか行われない。排気ガスカナル内の第一の触媒装置の後方に配置された第二のラムダセンサも又制御装置の中で評価され、従来技術に基づく方法で排気ガス浄化設備の酸素吸蔵能力を確定するために用いられることができる。   A lambda sensor located in the exhaust gas canal behind the engine block adjusts the lambda value suitable for achieving the optimum purification effect for the exhaust gas purification equipment by the control device. The lambda sensor can be made as a simple jump sensor or as an expensive wideband sensor, which determines the excess air ratio λ over a wide range. If the lambda sensor is made as a jump sensor, it is advantageous in terms of cost, but it can only be adjusted to a reference value of λ = 1. Therefore, none of the lambda control devices works while determining the oxygen storage capacity. In this operation phase, only pre-control of the fuel mixture using the lambda value determined in advance by the control device is performed. A second lambda sensor located behind the first catalytic device in the exhaust gas canal is also evaluated in the control device and used to determine the oxygen storage capacity of the exhaust gas purification equipment in a manner based on the prior art. Can be done.

制御装置は更に、表示/記憶ユニットに接続され、このユニットによって、例えば排気ガス浄化設備の故障を表示することができる。更に、このユニットによって、例えばオンボード診断の際に触媒装置の酸素吸蔵能力が求められるならば、どれだけの吸蔵能力が既に法律による排気ガス規定に適合するために、限界値として定められているかということを表示することもできる。   The control device is further connected to a display / storage unit, which can, for example, indicate a fault in the exhaust gas purification facility. Furthermore, if this unit requires the oxygen storage capacity of the catalytic device, for example during on-board diagnostics, how much storage capacity has already been set as a limit value in order to comply with legal exhaust gas regulations. Can also be displayed.

酸素吸蔵能力の確定のためには、一般にオンボード診断の際に内燃機関が先ず、触媒装置の中の全ての酸素を還元するために、十分長い時間燃料過剰(“過濃混合気”)の状態で運転される。その後に続く希薄運転の際に、触媒装置の中に酸素が取り込まれ、その際に触媒装置の後方のラムダセンサによって、何時酸素の豊富な排気ガスが現れたかが確定される。何故なら、その際には酸素吸蔵能力OSCを超えることになるからである。   In order to determine the oxygen storage capacity, in general during onboard diagnostics, the internal combustion engine will first have a long enough fuel excess (“rich mixture”) to reduce all the oxygen in the catalytic device. It is driven in the state. During the subsequent lean operation, oxygen is taken into the catalyst device and at that time it is determined by the lambda sensor behind the catalyst device when the exhaust gas rich in oxygen has appeared. This is because the oxygen storage capacity OSC is exceeded at that time.

従来技術によって、λ<1と λ>1 との間の跳躍的交替が設定される。この事前制御の際には、例えば噴射弁のばらつき或いは給気測定の際の誤差によって引き起こされるエラーが生じることがある。その様なエラーはラムダ値を狂わせ、又それによって酸素吸蔵能力の確定の際にエラーを生じさせる。   The prior art sets a jump alternation between λ <1 and λ> 1. During this pre-control, there may be errors caused by, for example, injection valve variations or errors in air supply measurement. Such an error will cause the lambda value to be distorted and thereby cause an error in determining the oxygen storage capacity.

内燃機関のスタート直後の加熱段階の間に、触媒装置の迅速な加熱のために、スタート後にλ>1 の幾分希薄な混合気を送り込むということが考えられている。特にコールドスタートの際に、ラムダセンサの露点は未だ割り込まれていないので、ラムダセンサの作動準備完了状態はスタートの後にはじめて明確に到達される。   During the heating phase immediately after the start of the internal combustion engine, it is considered that a somewhat lean mixture with λ> 1 is fed after the start in order to heat the catalyst device quickly. Particularly during a cold start, the dew point of the lambda sensor has not yet been interrupted, so that the lambda sensor ready for operation is clearly reached only after the start.

図1aと図1bに略示されているように、内燃機関の排気ガス浄化設備の加熱段階の間に、触媒装置の加熱段階の間のラムダ(λ)事前制御10の時間的ラムダ(λ)変化11が、少なくとも一時的により高い周波数変調を用いて、この段階の中でλ>1、図示されている例の場合には λ=1.05、の時間的ラムダ(λ)平均値が事前設定されて、少なくとも一時的にλ<1 のラムダ値が到達されるように制御される。図1aには、対称的ラムダ事前制御10によるこの方法のバリアントが示されている。図1bは、ラムダ事前制御10の時間的ラムダ変化11が、λ>1の段階と λ<1 の段階との間で、非対称的なオンオフ比で事前制御されるというこの方法のバリアントを示している。   As schematically shown in FIGS. 1 a and 1 b, the lambda (λ) pre-control 10 temporal lambda (λ) during the heating phase of the catalytic device during the heating phase of the exhaust gas purification equipment of the internal combustion engine. The change 11 is pre-established with a temporal lambda (λ) average value of λ> 1 in this stage, at least temporarily using higher frequency modulation, and in the example shown, λ = 1.05. It is set and controlled so that a lambda value of λ <1 is reached at least temporarily. FIG. 1 a shows a variant of this method with a symmetrical lambda pre-control 10. FIG. 1b shows a variant of this method in which the temporal lambda change 11 of the lambda pre-control 10 is pre-controlled with an asymmetric on / off ratio between the λ> 1 and λ <1 steps. Yes.

NOx変換の領域20は、一つ又は複数の触媒装置のライトオフ段階、即ち反応温度、が到達されている限り、λ<1の時間的ラムダ変化11の領域内にある。過濃段階の中で低減されたNOxは、触媒の中又更にその後の排気ガス径路内における反応運動上の理由から、再び形成されることは無い。しかしながら、これについては、三元触媒の制御されたλ=1運転の際に達成されるような>99%の効率のNOx変換率は、本発明の方法によっては達成することはできないということを指摘しておくべきであろうが、それでもその様な>99%の効率のNOx=変換率を達成するということは、ここで説明されている戦略の目的ではない。   The region 20 of NOx conversion is in the region of the temporal lambda change 11 with λ <1 as long as the light-off phase of one or more catalytic devices, ie the reaction temperature, has been reached. NOx reduced in the overconcentration stage is not formed again for reasons of reaction motion in the catalyst or further in the exhaust gas path thereafter. However, in this regard, NOx conversion rates of> 99% efficiency as achieved during controlled λ = 1 operation of the three-way catalyst cannot be achieved by the method of the present invention. It should be pointed out that achieving such a NOx = conversion rate of> 99% is not the goal of the strategy described here.

本発明によれば、振幅13および/または周波数に関するより高い周波数変調が内燃機関の運転ポイントに応じて変化されるということが考えられている。この方法によれば、より高い周波数変調の振幅13を一つ又は複数の触媒装置の酸素吸蔵能力(OSC)の実際値に適応させることができる。更に、より高い周波数変調の周波数を一つ又は複数の触媒装置の酸素吸蔵能力(OSC)値が小さくなるのに伴って引き上げることを行うことができる。   According to the invention, it is envisaged that the higher frequency modulation with respect to the amplitude 13 and / or the frequency is varied depending on the operating point of the internal combustion engine. According to this method, a higher frequency modulation amplitude 13 can be adapted to the actual value of the oxygen storage capacity (OSC) of one or more catalytic devices. Furthermore, the frequency of higher frequency modulation can be increased as the oxygen storage capacity (OSC) value of one or more catalytic devices decreases.

一つ又は複数の触媒装置の酸素吸蔵能力(OSC)の実際値は、既に前に説明されたような、酸素吸蔵能力(OSC)に関する診断方法によって測定し且つ記憶することができる。一つ又は複数の触媒装置の酸素吸蔵能力(OSC)に加えて、触媒温度の体積重み付けを行い、これを一つ又は複数の触媒装置の加熱の間のラムダ事前制御10の時間的ラムダ変化11の振幅変調変調および/または周波数変調の際に考慮することができる。変調の振幅13および周波数の計算のためにこの方法の好ましいバリアントでは、一つ又は複数の触媒装置の酸素吸蔵能力(OSC)の値と触媒温度の体積重み付けのための値とが測定されて特性マップに記憶される。   The actual value of the oxygen storage capacity (OSC) of one or more catalytic devices can be measured and stored by a diagnostic method relating to the oxygen storage capacity (OSC), as already described above. In addition to the oxygen storage capacity (OSC) of one or more catalyst devices, volume weighting of the catalyst temperature is performed, which is the temporal lambda change 11 of the lambda pre-control 10 during heating of the one or more catalyst devices. Can be taken into account during amplitude modulation and / or frequency modulation. In a preferred variant of this method for the calculation of the modulation amplitude 13 and the frequency, the oxygen storage capacity (OSC) value of one or more catalytic devices and the value for volume weighting of the catalyst temperature are measured and characterized. Stored in the map.

先に説明された戦略が以下に、下記の表によって示されているような触媒装置の加熱の様々な段階の中で用いられ、上述の措置が触媒装置の加熱の間およびラムダセンサの作動準備完了状態到達前に適用される。   The strategy described above is used below in various stages of heating of the catalytic device as shown by the table below, and the above measures are taken during heating of the catalytic device and preparation of the lambda sensor for operation. Applied before completion is reached.

Figure 0004988399
Figure 0004988399

段階B、即ち触媒の反応開始温度(“ライトオフ”温度)に到達する前での適用は、NOx変換の改善の他に酸化すべき成分(HC、CO)の変換のための一つ又は複数の触媒装置の活性の上昇が観察されるという限りでは有意義と成り得る。更に、システム設計或いは用途によっては、段階Dは省略されることが有り、その場合には、更なる触媒加熱措置無しに直接通常運転へ移行することができる。その場合これは、ラムダセンサが作動準備完了状態にあるか否かに応じて、制御された或いは制御されていないラムダによる段階の中で行われることができる。又、ラムダセンサが作動準備完了状態にある段階Dの中でこの開ループ制御戦略を閉ループ制御戦略に移行させることも可能である。ラムダのための事前設定値は、直接ラムダ調節(ラムダ閉ループ制御)の中へ事前設定基準値として導入される。   Application before stage B, i.e., reaching the reaction start temperature ("light off" temperature) of the catalyst, is one or more for the conversion of the components to be oxidized (HC, CO) in addition to the improvement of NOx conversion. This can be meaningful as long as an increase in the activity of the catalytic device is observed. Further, depending on the system design or application, stage D may be omitted, in which case it can be shifted directly to normal operation without further catalyst heating measures. In this case, this can be done in a phase with a controlled or uncontrolled lambda, depending on whether the lambda sensor is ready for operation. It is also possible to transfer this open loop control strategy to a closed loop control strategy during stage D when the lambda sensor is ready for operation. The preset value for lambda is introduced as a preset reference value directly into the lambda adjustment (lambda closed loop control).

図2は、時間的ラムダ変化11、酸素濃度40並びに様々な有害物質の濃度30、60の時間的変化を略示している。
周波数と振幅13の調節に応じて、図示されている例では、λ=1.04のコンスタントなラムダ値での事前制御された運転と比較して、50%超のNOx変換が達成される。その際、ラムダ事前制御のための変調の振幅13の上昇に伴って、NOx濃度30が次第に低下して行くということが認められる。図2では又、振幅13が小さくて、ラムダ値が1未満に事前制御されない場合には、NOx濃度30の低下が全く認められないということも分かる。振幅13が大きくなって初めてNOx濃度30が低下する。その際、酸素濃度40は広い範囲にわたってコンスタントに、およそ0.6%に留まっている。三元触媒の中に常に存在している酸素吸蔵能力(OSC)によって事前制御された過濃ラムダからの過濃ピークは良好に捕捉されるので、周波数と振幅13が適性に設定されていれば、COとHCの問題となる程の出現は、CO濃度50とHC濃度60についての時間的変化が示しているように、予想されない。
FIG. 2 schematically shows the temporal change of the temporal lambda change 11, the oxygen concentration 40 and the concentrations 30 and 60 of various harmful substances.
Depending on the frequency and amplitude 13 adjustment, in the example shown, a NOx conversion of more than 50% is achieved compared to pre-controlled operation with a constant lambda value of λ = 1.04. At this time, it is recognized that the NOx concentration 30 gradually decreases as the modulation amplitude 13 for lambda pre-control increases. FIG. 2 also shows that when the amplitude 13 is small and the lambda value is not pre-controlled to less than 1, no reduction in the NOx concentration 30 is observed at all. Only when the amplitude 13 increases, the NOx concentration 30 decreases. At that time, the oxygen concentration 40 is constantly kept at approximately 0.6% over a wide range. The over-concentration peak from the over-concentration lambda pre-controlled by the oxygen storage capacity (OSC) always present in the three-way catalyst is well captured, so if the frequency and amplitude 13 are set appropriately The appearance of CO and HC as a problem is not expected, as the temporal changes for CO concentration 50 and HC concentration 60 indicate.

この方法によれば、内燃機関のスタート直後に未だラムダ(閉ループ)制御の動作準備ができていないうちにラムダ事前(開ループ)制御が実現され、この制御は、触媒装置の加熱段階の間に既に窒素酸化物の部分変換を行い、それによって、酸化すべき成分について問題となるような悪化がもたらされることも無い。この戦略のもう一つの利点は、例えば、λ=1での運転の場合に必要となり、そのために(閉ループ)制御の準備完了状態のラムダセンサが必要となるような、正確にラムダの固定値を指示されることがないということである。   According to this method, the lambda pre-open (open loop) control is realized immediately after the start of the internal combustion engine and before the lambda (closed loop) control is ready for operation, and this control is performed during the heating stage of the catalyst device. Already partial conversion of the nitrogen oxide has already been carried out, which does not lead to any problematic deterioration of the components to be oxidized. Another advantage of this strategy is, for example, that it is necessary for operating at λ = 1, so that a precise lambda value is required, so that a lambda sensor ready for control (closed loop) is required. There is no indication.

対称形のラムダ事前制御の概略図である。It is the schematic of symmetrical lambda pre-control. 非対称形のラムダ事前制御の概略図である。It is the schematic of asymmetrical lambda pre-control. ラムダ値、酸素濃度、並びに様々な有害物質の濃度の時間的変化の概略図である。It is the schematic of the lambda value, oxygen concentration, and the time change of the density | concentration of various harmful | toxic substances.

符号の説明Explanation of symbols

10…ラムダ事前制御
11…時間的ラムダ変化
12…時間的ラムダ平均値
13…振幅
20…NOx変換の領域
λ…空気過剰率
30…NOx濃度
40…酸素濃度
50…CO濃度
60…有害物質濃度
10 ... Lambda pre-control 11 ... Time lambda change 12 ... Time lambda average 13 ... Amplitude 20 ... NOx conversion region λ ... Air excess ratio 30 ... NOx concentration 40 ... Oxygen concentration 50 ... CO concentration 60 ... toxic substance concentration

Claims (9)

少なくとも一つの触媒装置と少なくとも一つのラムダ(λ)センサとを備えた内燃機関の排気ガス浄化設備の加熱段階の間におけるラムダ値の事前制御方法において、
ラムダ事前制御(10)の時間的ラムダ変化(11)が、触媒装置の作動温度への加熱段階の間に、少なくとも一時的に、より高い周波数変調を用いて、この段階の中で、λ>1の時間的ラムダ平均値(12)が事前設定され、且つ少なくとも一時的にλ<1のラムダ値が達成されるように制御されること、
前記ラムダ値の事前制御が、前記触媒装置の加熱段階の間に且つラムダセンサが作動準備完了状態に到達する前に、適用されること、
を特徴とするラムダ値の事前制御方法。
In a method for pre-controlling a lambda value during a heating phase of an exhaust gas purification equipment of an internal combustion engine comprising at least one catalytic device and at least one lambda (λ) sensor,
The lambda change (11) in time of the lambda pre-control (10) is used at least temporarily during this phase of heating to the operating temperature of the catalytic device, during this phase using λ> A temporal lambda average value of 12 (12) is preset and controlled to at least temporarily achieve a lambda value of λ <1;
The pre-control of the lambda value is applied during the heating phase of the catalytic device and before the lambda sensor reaches the ready state of operation;
A lambda value pre-control method characterized by:
ラムダ事前制御(10)の時間的ラムダ変化(11)が、非対称的なオンオフ比で、λ>1とλ<1の段階の間で事前制御されることを特徴とする請求項1に記載の事前制御方法。   The lambda pre-control (10) temporal lambda change (11) is pre-controlled between λ> 1 and λ <1 stages with an asymmetric on / off ratio. Advance control method. 前記より高い周波数変調の振幅(13)が、一つ又は複数の触媒装置の酸素吸蔵能力(OSC)の実際値に対して適合されることを特徴とする請求項に記載の事前制御方法。 Pre control method according to claim 1 wherein the higher frequency modulation amplitude (13), characterized in that it is adapted to the actual value of the oxygen storage capacity of the one or more catalytic converter (OSC). 前記より高い周波数変調の周波数が、一つ又は複数の触媒装置の酸素吸蔵能力(OSC)の値が小さくなるのに伴って高められることを特徴とする請求項に記載の事前制御方法。 Pre control method according to claim 1, wherein the frequency of the high frequency modulation than is the value of the oxygen storage capacity (OSC) of one or more catalytic device, characterized in that the increased along with the decrease. 前記一つ又は複数の触媒装置の酸素吸蔵能力(OSC)の実際値が、酸素吸蔵能力(OSC)に関する診断方法を用いて求められ且つ記憶されることを特徴とする請求項またはに記載の事前制御方法。 The actual value of the oxygen storage capability (OSC) of the one or more catalytic device, according to claim 3 or 4, characterized in that it is sought and stored using a diagnostic method for the oxygen storage capacity (OSC) Prior control method. 前記一つ又は複数の触媒装置の酸素吸蔵能力(OSC)に加えて、触媒装置の温度の体積重み付けが行われ、且つこの重み付けが、前記一つ又は複数の触媒装置の加熱段階の間のラムダ事前制御(10)の時間的ラムダ変化(11)の振幅変調および周波数変調の少なくともいずれかの際に考慮されることを特徴とする請求項3ないしのいずれかに記載の事前制御方法。 In addition to the oxygen storage capacity (OSC) of the one or more catalytic devices, a volume weighting of the temperature of the catalytic device is performed, and this weighting is applied to the lambda during the heating phase of the one or more catalytic devices. amplitude modulation and advance control method according to any one of claims 3 to 5, characterized in that it is considered in at least one of the frequency modulation of the temporal lambda variation of precontrol (10) (11). 前記一つ又は複数の触媒装置の酸素吸蔵能力(OSC)に関する値と、前記触媒装置の温度の体積重み付けに関する値とが測定され、且つ特性マップに登録されることを特徴とする請求項に記載の事前制御方法。 And values for the oxygen storage capacity (OSC) of the one or more catalyst apparatuses, the measured and the values for the volume weighted temperature of the catalytic converter, be and registered in the characteristic map to claim 6, wherein The pre-control method described. ラムダ事前制御(10)の時間的ラムダ変化(11)の変調の振幅(13)が制限されていることを特徴とする請求項1ないしのいずれかに記載の事前制御方法。 Pre control method according to any one of claims 1 to 7, characterized in that lambda pre amplitude of the modulation of the temporal lambda change in the control (10) (11) (13) is limited. ガソリン直接噴射式の或いはマニホルド内噴射式の内燃機関に適用されることを特徴とする請求項1ないしのいずれかに記載の事前制御方法。 Pre control method according to any one of claims 1 to 8, characterized in that it is applied to a gasoline direct injection type or manifold injection type internal combustion engine.
JP2007081076A 2006-03-28 2007-03-27 Pre-control method of lambda value Expired - Fee Related JP4988399B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006014249.7 2006-03-28
DE102006014249A DE102006014249A1 (en) 2006-03-28 2006-03-28 Lambda value pre-controlling method for use during pre-heating phase of catalyzer, involves partially loading lambda-characteristic of lambda-pre-control, so that temporal lambda-center value is provided and lambda-value is obtained

Publications (2)

Publication Number Publication Date
JP2007263113A JP2007263113A (en) 2007-10-11
JP4988399B2 true JP4988399B2 (en) 2012-08-01

Family

ID=38460096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007081076A Expired - Fee Related JP4988399B2 (en) 2006-03-28 2007-03-27 Pre-control method of lambda value

Country Status (3)

Country Link
JP (1) JP4988399B2 (en)
DE (1) DE102006014249A1 (en)
FR (1) FR2899277B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4924396B2 (en) * 2007-12-10 2012-04-25 トヨタ自動車株式会社 Control device for internal combustion engine
DE102008005882B4 (en) * 2008-01-24 2014-02-06 Continental Automotive Gmbh Method and device for operating an internal combustion engine
US8499546B2 (en) 2008-08-29 2013-08-06 Ford Global Technologies, Llc Methods for reducing engine exhaust emissions
JP5057096B2 (en) * 2008-10-07 2012-10-24 三菱自動車工業株式会社 Engine control device
FR2946394B1 (en) * 2009-06-03 2015-12-11 Peugeot Citroen Automobiles Sa METHOD AND SYSTEM FOR STIMULATING A CATALIZER
DE102010002586A1 (en) 2010-03-04 2011-09-08 Robert Bosch Gmbh Method for operating an internal combustion engine
JP6183295B2 (en) * 2014-05-30 2017-08-23 トヨタ自動車株式会社 Control device for internal combustion engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4158268B2 (en) * 1999-03-17 2008-10-01 日産自動車株式会社 Engine exhaust purification system
JP4016905B2 (en) * 2003-08-08 2007-12-05 トヨタ自動車株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
JP2007263113A (en) 2007-10-11
DE102006014249A1 (en) 2007-10-04
FR2899277A1 (en) 2007-10-05
FR2899277B1 (en) 2013-03-22

Similar Documents

Publication Publication Date Title
JP4988399B2 (en) Pre-control method of lambda value
US5617720A (en) Method for controlling the fuel supply for an internal combustion engine with a heatable catalytic converter
JP2000297671A (en) Method and apparatus for regularly desulfurizing storage container for nitrogen oxides or sulfur oxides by rich/lean adjustment of engine and cylinder
US10100695B2 (en) Exhaust fluid dosing control system and method
CA2534031C (en) Method and apparatus for operating a methane-fuelled engine and treating exhaust gas with a methane oxidation catalyst
US8833061B2 (en) Method and device for regenerating a particle filter in a Y-exhaust gas system
US9422851B2 (en) Exhaust gas purification apparatus for an internal combustion engine
US8661791B2 (en) Systems and methods for controlling regeneration of nitrogen oxide adsorbers
US9863343B2 (en) Method and device for operating an exhaust gas recirculation of a self-ignition internal combustion engine, in particular of a motor vehicle
JP4888379B2 (en) Control device for internal combustion engine
CN106574567A (en) Control system of internal combustion engine
WO2012066645A1 (en) Control device for internal combustion engine
WO2019214821A1 (en) An egr flow determination method, an egr rate error determination method, a control method for an internal combustion engine, and an internal combustion engine
US10774769B2 (en) Controller for internal combustion engine and method for controlling internal combustion engine
US20120023913A1 (en) Catalyst abnormality diagnosis apparatus
JP4099272B2 (en) Method for regenerating nitrogen oxide trap in exhaust system of internal combustion engine
JP2005291100A (en) Exhaust emission control device for engine
CN112567117B (en) Method and device for determining the efficiency of an SCR catalyst
WO1999035386A1 (en) Method for regenerating a nitrogen oxide trap in the exhaust system of an internal combustion engine
US9574483B2 (en) System and method for controlling exhaust gas temperature during particulate matter filter regeneration
JP6061078B2 (en) Exhaust gas purification device for internal combustion engine
KR101808651B1 (en) Diagnosis method and device for operating an internal combustion engine
US20090308056A1 (en) Procedure and device for the purification of exhaust gas
JP2010196552A (en) Exhaust emission control device of internal combustion engine
KR101467190B1 (en) Regeneration method for a storage catalytic converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110704

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120210

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120328

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees