JP4987609B2 - Heat-resistant titanium alloy for exhaust device member excellent in cold workability, manufacturing method thereof, and exhaust device member using the alloy - Google Patents
Heat-resistant titanium alloy for exhaust device member excellent in cold workability, manufacturing method thereof, and exhaust device member using the alloyInfo
- Publication number
- JP4987609B2 JP4987609B2 JP2007197619A JP2007197619A JP4987609B2 JP 4987609 B2 JP4987609 B2 JP 4987609B2 JP 2007197619 A JP2007197619 A JP 2007197619A JP 2007197619 A JP2007197619 A JP 2007197619A JP 4987609 B2 JP4987609 B2 JP 4987609B2
- Authority
- JP
- Japan
- Prior art keywords
- exhaust device
- titanium alloy
- alloy
- cold workability
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Exhaust Silencers (AREA)
Description
本発明は、四輪車、二輪車等自動車用の排気装置として使用されるチタン材料に関するものであり、メインマフラー(消音器)部はもとより、700℃以上の高温に曝され、特に耐熱性、耐酸化性が要求されるエキゾーストマニホールド、エキゾーストパイプや触媒マフラー、メインマフラー等の部材に適した冷間加工性に優れる排気装置部材用耐熱チタン合金およびその製造方法ならびに該合金を用いた排気装置部材に関するものである。 The present invention relates to a titanium material used as an exhaust device for automobiles such as automobiles and motorcycles, and is exposed not only to a main muffler (silencer) part but also to a high temperature of 700 ° C. or more, particularly heat resistance and acid resistance. TECHNICAL FIELD The present invention relates to a heat-resistant titanium alloy for exhaust device members excellent in cold workability suitable for members such as exhaust manifolds, exhaust pipes, catalyst mufflers, main mufflers and the like, a manufacturing method thereof, and exhaust device members using the alloys Is.
チタン材料は、軽量でありながら高強度で耐食性も良好であることから自動車の排気装置にも使用されている。自動車やバイクのエンジンから排出される燃焼ガスは、エキゾーストマニホールドにより一つにまとめられ、エキゾーストパイプにより車両後方の排気口から排出される。エキゾーストパイプは、途中に触媒マフラーやメインマフラー(消音器)を入れるためいくつかに分割されて構成される。本明細書では、エキゾーストマニホールドからエキゾーストパイプ、排気口までの全体を通して排気装置と称する。 Titanium materials are used in automobile exhaust systems because they are lightweight but have high strength and good corrosion resistance. Combustion gases discharged from automobile and motorcycle engines are combined into one by an exhaust manifold and discharged from an exhaust port at the rear of the vehicle by an exhaust pipe. The exhaust pipe is divided into several parts in order to put a catalyst muffler and a main muffler (silencer) on the way. In the present specification, the exhaust system is referred to as the exhaust system from the exhaust manifold to the exhaust pipe and the exhaust port.
こうした排気装置の素材は、現在、耐食性に優れたステンレス鋼が主に使われているが、車輌軽量化の観点から最近バイクを中心としてチタンも使われるようになってきた。現在使用されているチタン製マフラーの材料は、大部分がJIS2種の工業用純チタンである。排気ガスの温度は、およそ700℃以上と言われており、純チタンは、600℃の温度では通常強度が大きく低下するが、マフラー部分はエンジンの排気ガス出口からは遠い上、外気に触れているため、600℃以上となることは少なく、600℃以上になっても長時間その温度にさらされることはないため、純チタンでも十分に使用が可能であった。 Currently, stainless steel with excellent corrosion resistance is mainly used as a material for such exhaust devices, but recently titanium has been used mainly in motorcycles from the viewpoint of weight reduction of vehicles. The material of titanium mufflers currently used is mostly JIS type 2 industrial pure titanium. The temperature of the exhaust gas is said to be about 700 ° C or higher, and pure titanium usually decreases in strength at a temperature of 600 ° C, but the muffler part is far from the exhaust gas outlet of the engine and touches the outside air. Therefore, it is rare that the temperature is 600 ° C. or higher, and even if the temperature is 600 ° C. or higher, it is not exposed to that temperature for a long time, and therefore pure titanium can be used sufficiently.
しかし、近年、よりエンジンの排気口に近い部分まで軽量化したいニーズが出てきており、より高温強度の高いチタン合金が求められている。 However, in recent years, there has been a need to reduce the weight to a portion closer to the exhaust port of the engine, and a titanium alloy with higher high-temperature strength has been demanded.
700℃以上の高温において強度が高いという観点では、Ti−3Al−2.5V合金やTi−6Al−4V合金が適している。 From the viewpoint of high strength at a high temperature of 700 ° C. or higher, Ti-3Al-2.5V alloy and Ti-6Al-4V alloy are suitable.
また、特許文献1では、耐高温酸化性および耐食性に優れるチタン合金が提案されている。 Patent Document 1 proposes a titanium alloy that is excellent in high-temperature oxidation resistance and corrosion resistance.
特許文献2および3では、排気系部品など、高温域での特性と冷間での加工性が要求される用途に適した耐熱チタン合金に関する発明が記載されている。 Patent Documents 2 and 3 describe inventions relating to heat-resistant titanium alloys suitable for applications that require characteristics in a high temperature range and cold workability, such as exhaust system parts.
特許文献4には、Cuを含むα単相チタン合金からなる、電解Cu箔製造ドラム用チタン板およびその製造方法が記載されている。 Patent Document 4 describes a titanium plate for an electrolytic Cu foil production drum made of an α single-phase titanium alloy containing Cu and a method for producing the same.
しかしながら、上記Ti−3Al−2.5V合金は、室温における強度が高すぎ、成形加工性に乏しいこと、また、700℃付近の温度における酸化増量が大きいこと、冷間加工は可能であるが、耳割れを生じ易く中間焼鈍を何度も入れる必要があり加工コストがかかること等の問題があった。また、Ti−6Al−4V合金は、冷間加工が困難で薄板にすることができないため、排気装置用素材として不適当である。 However, the Ti-3Al-2.5V alloy has too high strength at room temperature, poor molding processability, large oxidation increase at temperatures near 700 ° C., and cold working is possible. There was a problem that it was easy to generate an ear crack, and it was necessary to insert intermediate annealing many times, and processing cost was high. Further, Ti-6Al-4V alloy is not suitable as an exhaust device material because it is difficult to cold work and cannot be made into a thin plate.
一方、特許文献1に記載の発明は、0.5〜2.3質量%のAlを含むマフラー用チタン合金であり、純チタンよりも耐熱性に優れ、純チタンと同等の冷間加工性を有することが開示されているが、600〜700℃における高温引張強度はTi−3Al−2.5V合金に比べて低く、6割に満たない。 On the other hand, the invention described in Patent Document 1 is a titanium alloy for a muffler containing 0.5 to 2.3% by mass of Al, which is superior in heat resistance to pure titanium and has a cold workability equivalent to that of pure titanium. Although it is disclosed that the high-temperature tensile strength at 600 to 700 ° C. is lower than that of the Ti-3Al-2.5V alloy, it is less than 60%.
また、特許文献2に記載の発明は、0.30〜1.5質量%のAlと0.10〜1.0質量%のSiを含むα相が90体積%以上となるα型チタン合金、または、これに0.1〜0.5%のNbを含む合金であるが、これらの合金も、600℃における高温引張強度はTi−3Al−2.5V合金に比べて低く、7割に満たない。 The invention described in Patent Document 2 is an α-type titanium alloy in which an α phase containing 0.30 to 1.5% by mass of Al and 0.10 to 1.0% by mass of Si is 90% by volume or more, Or, it is an alloy containing 0.1 to 0.5% Nb, but these alloys also have a high temperature tensile strength at 600 ° C. lower than that of the Ti-3Al-2.5V alloy, which is less than 70%. Absent.
さらに、特許文献3に記載の発明は、質量%で、Cuを0.8〜1.8%、Oを0.18%以下、Feを0.30%以下および0.3%以下の不純物を含む耐熱チタン合金、またはこれに、Sn、Zr、Mo、Nb、Crの少なくとも1種または2種以上を合計で0.3〜1.5%含有する耐熱チタン合金に関するものである。特許文献3のチタン合金も、700℃における高温引張強度はTi−3Al−2.5V合金に比べて低く、7割に満たない。 Furthermore, the invention described in Patent Document 3 includes, by mass%, Cu of 0.8 to 1.8%, O of 0.18% or less, Fe of 0.30% or less, and 0.3% or less of impurities. The present invention relates to a heat-resistant titanium alloy containing or a heat-resistant titanium alloy containing 0.3 to 1.5% in total of at least one or more of Sn, Zr, Mo, Nb, and Cr. The titanium alloy of Patent Document 3 also has a high temperature tensile strength at 700 ° C. lower than that of the Ti-3Al-2.5V alloy, which is less than 70%.
そこで、本発明は、600℃以上の高温に曝されるエキゾーストマニホールド、エキゾーストパイプや触媒マフラー、メインマフラー等の部位に使用可能な、高温における高い強度を有し、かつ優れた耐酸化性および冷間加工性を、安定的に発現できる排気系部品用チタン合金およびその製造方法ならびに該合金を用いた排気装置部材を提供することを目的とするものである。本発明は、特に700℃の高温引張強度としては、Ti−3Al−2.5V合金の高温強度の7割を超える強度、かつ700℃における耐酸化性が特許文献3に記載のチタン合金と同程度以上である冷間加工性に優れる排気装置部材用耐熱チタン合金およびその製造方法ならびに該合金を用いた排気装置部材を提供することを目的としている。 Accordingly, the present invention has high strength at high temperatures and excellent oxidation resistance and cooling that can be used for parts such as exhaust manifolds, exhaust pipes, catalyst mufflers, and main mufflers that are exposed to high temperatures of 600 ° C. or higher. It is an object of the present invention to provide a titanium alloy for exhaust system parts that can stably exhibit the workability, a manufacturing method thereof, and an exhaust device member using the alloy. In the present invention, the high temperature tensile strength at 700 ° C. is more than 70% of the high temperature strength of Ti-3Al-2.5V alloy, and the oxidation resistance at 700 ° C. is the same as that of the titanium alloy described in Patent Document 3. It is an object of the present invention to provide a heat-resistant titanium alloy for an exhaust device member excellent in cold workability, which is about the above, a manufacturing method thereof, and an exhaust device member using the alloy.
なお、特許文献4に記載の発明は、質量%で、Cuを0.5〜2.1%、Oを0.1%以下、Feを0.04%以下含むチタン合金に関するものであり、本発明とはCu量が異なる以外は、成分規定が一致する。しかし、特許文献4に記載の発明は、β相またはTi2Cuの析出を抑え、かつ平均結晶粒径を40μm未満としたα単相チタン合金に関するものであり、本発明のTi2Cu析出を積極的に活用する技術とは異なる。また、特許文献4に記載の発明の用途は、電解Cu箔製造のための陰極ドラムであり、硫酸銅溶液中で該ドラム表面にCu箔を電析させ、該ドラムを回転させながら、この電析Cu箔を剥離させて連続的にCu箔を製造するためのものである。該ドラム表面の品質が、電析Cuの品質に大きな影響を与えるため、平均結晶粒径が40μm未満の微細かつ、第二相のない均質なα単相組織であることが要求され、特許文献4に記載の発明はこれを満足するものとなっている。しかし、特許文献4に記載の発明は、冷間加工性に優れかつ、700℃における優れた耐酸化性および高温強度を有する排気装置部材用材料を提供するものではない。 The invention described in Patent Document 4 relates to a titanium alloy containing, by mass%, 0.5 to 2.1% of Cu, 0.1% or less of O, and 0.04% or less of Fe. The component rules are the same except that the amount of Cu is different from that of the invention. However, the invention described in Patent Document 4, suppress the precipitation of the β-phase or Ti 2 Cu, and the average crystal grain size is related to α single phase titanium alloy to less than 40 [mu] m, the Ti 2 Cu precipitates of the present invention It is different from the technology that actively uses it. The use of the invention described in Patent Document 4 is a cathode drum for producing electrolytic Cu foil. The electrode is deposited on the surface of the drum in a copper sulfate solution while rotating the drum. It is for peeling Cu depositing Cu foil and manufacturing Cu foil continuously. Since the quality of the surface of the drum has a great influence on the quality of the deposited Cu, it is required that the average crystal grain size is a fine α-phase structure having a fine particle size of less than 40 μm and no second phase. The invention described in item 4 satisfies this. However, the invention described in Patent Document 4 does not provide an exhaust device member material that is excellent in cold workability and has excellent oxidation resistance and high temperature strength at 700 ° C.
上記課題を解決するために本発明は、以下の手段を骨子とする。
(1)質量%で、Cu:2.1%超〜4.5%、酸素:0.04%以下、Fe:0.06%以下を含有し、残部Tiおよび不可避的不純物からなることを特徴とする、冷間加工性に優れる排気装置部材用耐熱チタン合金。
(2)前記チタン合金が、さらに、質量%で、Sn、Zrの1種または2種を合計0.5〜1.5%含有することを特徴とする請求項1に記載の冷間加工性に優れる排気装置部材用耐熱チタン合金。
(3)Si、Nbの1種または2種を合計0.5〜1.5%含有することを特徴とする請求項1または2に記載の冷間加工性に優れる排気装置部材用耐熱チタン合金。
(4)素材の熱延、熱延版焼鈍、冷延、中間焼鈍、最終焼鈍の工程を経て製造されるチタン合金板製造方法において、その素材での成分調整を前記(1)〜(3)のいずれかに記載の成分組成に調整するとともに、前記最終焼鈍を650〜780℃の温度域にて行うことを特徴とする冷間加工性に優れる排気装置部材用耐熱チタン合金板の製造方法。
(5)前記(1)〜(3)のいずれかに記載のチタン合金が使用されていることを特徴とする排気装置部材。
In order to solve the above problems, the present invention is based on the following means.
(1) It is characterized by containing Cu: more than 2.1% to 4.5%, oxygen: 0.04% or less, Fe: 0.06% or less, and the balance being Ti and inevitable impurities. A heat-resistant titanium alloy for exhaust device members having excellent cold workability.
(2) The cold workability according to claim 1, wherein the titanium alloy further contains one or two of Sn and Zr in a mass percentage of 0.5 to 1.5% in total. Excellent heat-resistant titanium alloy for exhaust devices.
(3) The heat-resistant titanium alloy for exhaust device members having excellent cold workability according to claim 1 or 2, wherein one or two of Si and Nb are contained in a total amount of 0.5 to 1.5%. .
(4) In the titanium alloy plate manufacturing method manufactured through the steps of hot rolling, hot rolling annealing, cold rolling, intermediate annealing, and final annealing of the material, the component adjustment in the material is performed as described in (1) to (3) above. A method for producing a heat-resistant titanium alloy plate for an exhaust device member excellent in cold workability, wherein the final annealing is performed in a temperature range of 650 to 780 ° C. while adjusting to the component composition described in any of the above.
(5) An exhaust device member using the titanium alloy according to any one of (1) to (3).
本発明によれば、軽量かつ高温で十分な強度があり、かつ冷間加工性に優れる排気装置部材用耐熱チタン合金およびその製造方法ならびに該合金を用いた排気装置部材を提供することが可能になる。この結果、四輪車、二輪車等自動車の排気装置の軽量化が大きく進み、産業上および環境面の貢献が極めて顕著である。 According to the present invention, it is possible to provide a heat-resistant titanium alloy for an exhaust device member that is lightweight, has a sufficient strength at high temperatures, and is excellent in cold workability, a manufacturing method thereof, and an exhaust device member using the alloy. Become. As a result, the weight reduction of exhaust devices of automobiles such as four-wheeled vehicles and two-wheeled vehicles has greatly progressed, and the contribution of industrial and environmental aspects is extremely remarkable.
本発明者らは上記課題を解決すべく、チタンに対する高温強度、高温耐酸化性、冷間加工性におよぼす成分元素の影響を詳細に調べた結果、チタンに一定量のCuを添加し、かつ、酸素および鉄の含有量を一定値以下に抑えることにより、冷間加工性や耐酸化性を損なわずに、600〜700℃の高温強度をTi−3Al−2.5V合金の半分以上に向上させることが可能であることを見出した。本発明はこの知見に基づきなされたものである。 In order to solve the above problems, the present inventors have investigated in detail the effects of component elements on high temperature strength, high temperature oxidation resistance, and cold workability with respect to titanium, and as a result, a certain amount of Cu was added to titanium, and By suppressing the oxygen and iron contents below a certain value, the high temperature strength at 600-700 ° C is improved to more than half that of Ti-3Al-2.5V alloy without impairing cold workability and oxidation resistance. I found out that it is possible. The present invention has been made based on this finding.
請求項1に記載の本発明(以下、本発明(1))では、質量%で、2.1%超〜4.5%のCu、0.04%以下の酸素、0.06%以下のFe、残部Tiおよび不可避不純物からなるチタン合金とした。 In the present invention according to claim 1 (hereinafter referred to as the present invention (1)), by mass%, more than 2.1% to 4.5% Cu, 0.04% or less oxygen, 0.06% or less A titanium alloy composed of Fe, the balance Ti and inevitable impurities was used.
チタン中にCuは最大約1.8%固溶し、それを超えてCuを添加するとTi2Cu相が生成する。すなわち本発明のチタン合金はα−TiにTi2Cu相が析出した2相の合金である。このTi2Cu相は当初、冷間加工性に悪影響を与えると思われていたが、実際には、冷間圧延性にはほとんど影響を与えず、高温強度を向上させることが出来ることを見出した。 Cu dissolves in titanium at a maximum of about 1.8%, and when Cu is added beyond that, a Ti 2 Cu phase is formed. That is, the titanium alloy of the present invention is a two-phase alloy in which a Ti 2 Cu phase is precipitated on α-Ti. This Ti 2 Cu phase was initially thought to have an adverse effect on cold workability, but in practice it has been found that high temperature strength can be improved with little effect on cold rollability. It was.
さらに、本発明が目標としているTi−3Al−2.5V合金の700℃引張強度の7割となる91N/mm2程度以上の引張強度を700℃付近で得るには、ある程度以上のTi2Cu相析出量が必要であり、そのためには、Cu量が2.1%超必要である。一方、Cuの添加量の上限を4.5%としたのは、これを超えてCuを添加すると室温での強度が上りすぎて、冷間加工性が損なわれる。 Furthermore, in order to obtain a tensile strength of about 91 N / mm 2 or more, which is 70% of the 700 ° C. tensile strength of the Ti-3Al-2.5V alloy targeted by the present invention, near 700 ° C., a certain level of Ti 2 Cu or more. The amount of phase precipitation is necessary, and for that purpose, the amount of Cu needs to exceed 2.1%. On the other hand, the upper limit of the Cu addition amount is set to 4.5%. If Cu is added beyond this, the strength at room temperature increases too much and the cold workability is impaired.
このため、本発明では、Cu量の範囲を2.1%超〜4.5%とした。 For this reason, in this invention, the range of Cu amount was made more than 2.1%-4.5%.
本発明(1)のチタン合金は、Cuの添加量が多いため、室温での強度が純チタンに比べやや高い。ここで十分な冷間加工性を確保するため、冷間加工性に影響を与える元素の含有量をできるだけ抑えることが必要である。酸素はチタン材料の冷間加工性を担う双晶変形を抑制するため、その含有量が多いと冷間加工性が悪化する。酸素の含有量を0.04%以下にすれば、冷間加工性への影響はほとんど無視できる。 Since the titanium alloy of the present invention (1) has a large amount of Cu added, the strength at room temperature is slightly higher than that of pure titanium. Here, in order to ensure sufficient cold workability, it is necessary to suppress as much as possible the content of elements that affect the cold workability. Oxygen suppresses twin deformation responsible for the cold workability of the titanium material, so that the cold workability deteriorates if the content is large. If the oxygen content is 0.04% or less, the influence on cold workability can be almost ignored.
また、Feはβ相安定化元素であり、室温から高温域にかけてβ相を生成する。β相があるとCuが集中的に濃化するため、固溶Cu量およびTi2Cu相量に影響を与え、ひいては冷間加工性や耐酸化性を劣化させる。Feの含有量を0.06%以下とすることにより、β相の生成を抑制し、β相へのCuの濃化を防ぐことができる。 Fe is a β-phase stabilizing element and generates a β-phase from room temperature to a high temperature range. If there is a β phase, Cu concentrates in a concentrated manner, affecting the amount of solid solution Cu and the amount of Ti 2 Cu phase, and thus degrading cold workability and oxidation resistance. By making the content of Fe 0.06% or less, the formation of the β phase can be suppressed, and the concentration of Cu in the β phase can be prevented.
不純物元素は、窒素、炭素、Ni、Cr、水素など、通常のチタンに含まれる元素である。これらの元素の総和は0.1%未満であれば冷間加工性に影響を与えない。 Impurity elements are elements contained in normal titanium, such as nitrogen, carbon, Ni, Cr, and hydrogen. If the sum of these elements is less than 0.1%, the cold workability is not affected.
次に請求項2に記載の発明(以下、本発明(2))について説明する。本発明(2)では、本発明(1)の合金に、Sn、Zrの1種または2種を合計0.5〜1.5%含有することとした。これは、本発明(1)の合金の高温強度をさらに向上させようとするものである。Sn、Zrは、いずれもα相にある程度固溶し、Cuと重畳して高温強度を高める効果を有する。含有量の下限は、単独または複合添加のいずれの場合においても、高温強度を向上するために必要最低限の添加量であり、上限はこれを超えて添加すると加工性に影響を与える添加量である。 Next, the invention described in claim 2 (hereinafter referred to as the present invention (2)) will be described. In the present invention (2), the alloy of the present invention (1) contains one or two of Sn and Zr in a total amount of 0.5 to 1.5%. This is intended to further improve the high temperature strength of the alloy of the present invention (1). Both Sn and Zr have a solid solution in the α phase to some extent, and have an effect of increasing the high temperature strength by superimposing with Cu. The lower limit of the content is the minimum amount necessary to improve the high-temperature strength in either case of single or composite addition, and the upper limit is the amount of addition that affects the workability if added beyond this. is there.
請求項3に記載の発明(以下、本発明(3))では、本発明(1)の合金の耐高温酸化性をさらに向上させようとするものである。Si、Nbも、いずれもα相にある程度固溶し、耐高温酸化性を向上する効果を有する。含有量の下限は、単独または複合添加のいずれの場合においても、耐高温酸化性を向上するために必要最低限の添加量であり、上限はこれを超えて添加すると加工性に影響を与える添加量である。 The invention according to claim 3 (hereinafter referred to as the present invention (3)) intends to further improve the high temperature oxidation resistance of the alloy of the present invention (1). Both Si and Nb are dissolved in the α phase to some extent, and have the effect of improving high-temperature oxidation resistance. The lower limit of the content is the minimum amount required to improve high-temperature oxidation resistance in either case of single or composite addition, and the upper limit is an additive that affects the workability if added beyond this. Amount.
高温強度向上に効果のあるSn、Zrのどちらか一方、または両者と、耐高温酸化性に効果のあるSi、Nbのどちらか一方、または両者を複合添加する場合は、それぞれの添加範囲を重畳すれば、高温強度と耐高温酸化性の両方の効果が得られる。 When adding either Sn or Zr effective for improving high-temperature strength, or both, and Si or Nb effective for high-temperature oxidation resistance, or both, the respective addition ranges overlap. By doing so, the effects of both high temperature strength and high temperature oxidation resistance can be obtained.
請求項4に記載の本発明(以下、本発明(4))は、特に自動車用排気装置部材として使用される薄板の製造方法に関するものである。最終焼鈍を650〜780℃の温度域にて行うことを特徴とする、本発明(1)〜(3)のチタン合金板の製造方法である。 The present invention according to claim 4 (hereinafter referred to as the present invention (4)) relates to a method of manufacturing a thin plate used particularly as an automobile exhaust device member. It is a manufacturing method of the titanium alloy plate of this invention (1)-(3) characterized by performing final annealing in the temperature range of 650-780 degreeC.
これは、α相とTi2Cu相の混合組織とするための条件である。790℃を超えて焼鈍を行うとα相とβ相の2相の組織となり耐高温酸化性が損なわれるため、790℃未満の焼鈍が必要であるが、温度制御の観点から780℃以下とした。650℃未満の温度で焼鈍を行った場合、十分な再結晶が得られず延性が小さくなるため、焼鈍温度の下限を650℃とした。 This is a condition for obtaining a mixed structure of the α phase and the Ti 2 Cu phase. Annealing above 790 ° C results in a two-phase structure of α and β phases, and high temperature oxidation resistance is impaired. Therefore, annealing below 790 ° C is necessary, but from the viewpoint of temperature control, it is set to 780 ° C or less. . When annealing is performed at a temperature lower than 650 ° C., sufficient recrystallization cannot be obtained and ductility becomes small. Therefore, the lower limit of the annealing temperature is set to 650 ° C.
請求項5に記載の本発明(以下本発明(5))は、本発明(1)〜(3)のチタン合金を用いて製造した排気装置部材である。ここで排気装置とは、エキゾーストマニホールド、エキゾーストパイプ、触媒マフラー、メインマフラー(消音器)等を指す。本発明のチタン合金は、JIS2種の工業用チタンに準じた加工性、溶接性を有しているので、JIS2種の工業用チタンに準じた方法により、溶解、圧延、成形が可能であり、冷延焼鈍された薄板を管状や断面が楕円形状等の筒状や箱状に湾曲、成形してTIG溶接し、各パーツを溶接することにより排気装置用管、または筐体とすることができる。 The present invention according to claim 5 (hereinafter referred to as the present invention (5)) is an exhaust device member manufactured using the titanium alloys of the present inventions (1) to (3). Here, the exhaust device refers to an exhaust manifold, an exhaust pipe, a catalyst muffler, a main muffler (silencer), and the like. Since the titanium alloy of the present invention has workability and weldability according to JIS type 2 industrial titanium, it can be melted, rolled and formed by a method according to JIS type 2 industrial titanium. Cold-rolled and annealed thin plates can be bent or molded into a tubular shape or a box shape with an elliptical cross section, TIG welded, and each part can be welded to form an exhaust device pipe or casing. .
以下、実施例を挙げて本発明の構成と作用効果をより具体的に説明する。 Hereinafter, an example is given and the composition and operation effect of the present invention are explained more concretely.
表1に示す成分のチタン合金を真空アーク溶解し、鋳造して約10kgの鋳塊とした。これらを850〜900℃に加熱して、熱間圧延し、厚さ約3.5mmの板とした。ショットブラストおよび酸洗後、さらにこれを冷間圧延して、厚さ1mmの板とした。得られた板を真空中で770℃、5時間焼鈍した。これらの供試材からJIS13号Bの試験片を切出し、室温引張試験を行った。また、700℃においてJISG0567に準拠の高温引張試験を行った。高温の酸化試験は20mm×20mmの試験片を表面と端面を#400のサンドペーパーで研磨した後、700℃、または800℃の各温度に大気中に200時間暴露し、試験前後の重量の変化を測定し、単位断面積あたりの酸化増量を求めた。また、しわ押さえ力1tonで押さえた90mm角の板状試験片に、先端が直径20mmの球形のポンチを押し付けて割れずに張り出した最大高さを測定した(エリクセン試験)。なお、使用した潤滑剤はグラファイトグリースである。 Titanium alloys having the components shown in Table 1 were melted by vacuum arc melting and cast into ingots of about 10 kg. These were heated to 850 to 900 ° C. and hot-rolled to obtain a plate having a thickness of about 3.5 mm. After shot blasting and pickling, this was further cold-rolled to obtain a plate having a thickness of 1 mm. The obtained plate was annealed in a vacuum at 770 ° C. for 5 hours. A specimen of JIS No. 13B was cut out from these test materials, and a room temperature tensile test was performed. Moreover, the high temperature tensile test based on JISG0567 was done at 700 degreeC. The high-temperature oxidation test involves polishing a 20 mm × 20 mm test piece with sandpaper # 400 on the surface and end face, and then exposing it to 700 ° C. or 800 ° C. in the atmosphere for 200 hours to change the weight before and after the test. Was measured, and the amount of increase in oxidation per unit cross-sectional area was determined. Further, the maximum height of a 90 mm square plate-like test piece pressed with a crease pressing force of 1 ton without pressing and pressing a spherical punch having a diameter of 20 mm was measured (Erichsen test). The lubricant used is graphite grease.
測定結果を表1にまとめて示す。表1において、No.1からNo.21は、請求項1ないし3に記載の本発明の実施例である。いずれも700℃における引張強度は、Ti−3Al−2.5V合金の7割、すなわち91.7N/mm2を超えており、室温における0.2%耐力は330N/mm2以下、かつ室温における伸びは32%以上であった。耐酸化性では、700℃における200時間の加熱での酸化増量は31g/m2以下、800℃における200時間の加熱での酸化増量は57g/m2以下であった。さらにエリクセン試験でも9.5mmを超える十分な張り出し性があり、マフラーのエンドキャップ等の加工に十分耐える加工性を有している。すなわち、本発明のチタン合金は、室温における十分な延性、加工性と、高温においてTi−3Al−2.5V合金と比較しうる十分な強度、かつ高温における優れた耐酸化性を示している。 The measurement results are summarized in Table 1. In Table 1, no. 1 to No. 21 is an embodiment of the present invention according to claims 1 to 3. In any case, the tensile strength at 700 ° C. exceeds 70% of Ti-3Al-2.5V alloy, that is, 91.7 N / mm 2 , the 0.2% proof stress at room temperature is 330 N / mm 2 or less, and at room temperature. The elongation was 32% or more. In oxidation resistance, the increase in oxidation after heating at 700 ° C. for 200 hours was 31 g / m 2 or less, and the increase in oxidation after heating at 800 ° C. for 200 hours was 57 g / m 2 or less. Furthermore, in the Eriksen test, it has a sufficient overhanging property exceeding 9.5 mm, and has a workability sufficient to withstand the processing of an end cap of a muffler. That is, the titanium alloy of the present invention exhibits sufficient ductility and workability at room temperature, sufficient strength that can be compared with a Ti-3Al-2.5V alloy at high temperatures, and excellent oxidation resistance at high temperatures.
一方、Cuの含有量が、それぞれ本発明の範囲に満たないNo.22は、室温における延性、加工性、および耐高温酸化性については問題ないが、700℃における高温強度はTi−3Al−2.5V合金の高温強度の7割に満たない。また、Cuの含有量が本発明の範囲を超えるNo.23では、700℃における高温強度は十分であるが、室温における延性、加工性が悪く、排気装置部品への加工は難しい。 On the other hand, the Cu content is less than the range of the present invention. No. 22 has no problem with ductility at room temperature, workability, and high-temperature oxidation resistance, but the high-temperature strength at 700 ° C. is less than 70% of the high-temperature strength of the Ti-3Al-2.5V alloy. Moreover, the content of Cu exceeds the range of the present invention. 23, the high-temperature strength at 700 ° C. is sufficient, but the ductility and processability at room temperature are poor, and it is difficult to process exhaust parts.
No.24では、酸素含有量が0.06%を超え、室温における延性が35%を下回り、また、エリクセン値も低く、十分な加工性を有していない。また、Fe含有量の多いNo.25では700℃における酸化増量が、従来合金よりも大きく、十分な耐高温酸化性を有していない。 No. In No. 24, the oxygen content exceeds 0.06%, the ductility at room temperature is less than 35%, the Erichsen value is low, and the processability is not sufficient. In addition, No. with a large Fe content. In No. 25, the increase in oxidation at 700 ° C. is larger than that of the conventional alloy and does not have sufficient high-temperature oxidation resistance.
表1に示すNo.2、および、No.7の成分を有する試験材の最終焼鈍条件を、600℃5h、690℃5h、また、820℃5hとし、室温における0.2%耐力、伸び、700℃における引張強度、700℃と800℃200h加熱における酸化増量、および、エリクセン値を測定した。 No. shown in Table 1. 2 and No. The final annealing conditions of the test material having 7 components were 600 ° C. 5 h, 690 ° C. 5 h, and 820 ° C. 5 h, 0.2% proof stress at room temperature, elongation, tensile strength at 700 ° C., 700 ° C. and 800 ° C. 200 h. The increase in oxidation during heating and the Erichsen value were measured.
結果を表2に示す。焼鈍温度が本発明(4)記載の温度範囲よりも低い、No.27と30では、室温での伸びが大きく低下し、エリクセン値も低く、室温での延性と加工性が不十分である。また、焼鈍温度が本発明(4)記載の温度範囲よりも高い、No.29と32では、α、βの2相組織となり、耐高温酸化特性が劣化する。一方、本発明(4)の温度範囲で焼鈍を行った、表1のNo.1〜21および、表2のNo.28、31では、室温での十分な延性、加工性、および、700℃における十分な高温強度、700℃と800℃における十分な耐高温酸化性を有していることがわかる。 The results are shown in Table 2. The annealing temperature is lower than the temperature range described in the present invention (4). In 27 and 30, the elongation at room temperature is greatly reduced, the Erichsen value is low, and the ductility and workability at room temperature are insufficient. Moreover, No. whose annealing temperature is higher than the temperature range as described in this invention (4). In 29 and 32, it becomes a two-phase structure of α and β, and the high-temperature oxidation resistance deteriorates. On the other hand, No. of Table 1 which annealed in the temperature range of this invention (4). 1 to 21 and No. 2 in Table 2. 28 and 31 have sufficient ductility and workability at room temperature, sufficient high-temperature strength at 700 ° C, and sufficient high-temperature oxidation resistance at 700 ° C and 800 ° C.
表1のNo.6に示す成分のα型チタン合金を電子ビーム溶解により200kg溶製し、1000℃で粗鍛造して300mm角とした後、さらに900℃で鍛造した後、厚さ100mmのスラブを製造した。次に、850℃で熱間圧延して、厚さ4mmの板とした後、厚さ1mmまで冷間圧延し、770℃5時間の熱処理を施した。 No. in Table 1 200 kg of the α-type titanium alloy having the components shown in FIG. 6 was melted by electron beam melting, roughly forged at 1000 ° C. to 300 mm square, and further forged at 900 ° C., and then a slab having a thickness of 100 mm was produced. Next, after hot rolling at 850 ° C. to obtain a plate having a thickness of 4 mm, it was cold-rolled to a thickness of 1 mm and subjected to heat treatment at 770 ° C. for 5 hours.
上記薄板を適宜必要な幅で切り出し、外径42.7mm、50.8mm、60.5mmの溶接管を製造、かつ断面形状が長径100mm、短径69mmの楕円の筐体を、同材料から切り出した板とTIG溶接により製造し、エキゾーストマニホールド、エキゾーストパイプ、触媒マフラー、メインマフラー(消音器)の外筒、内筒、内装の一部に用いた排気装置を製造した。製造に当たり、外径42.7mmの溶接管端部に60°の円錐コーンを押し込み、初期直径の1.3倍まで押し広げたところ、溶接部に割れを生じず、良好な押し広げ特性を有するとともに、同溶接管を半径90mmで90°曲げ加工したところ、割れや皺などは生じなかった。 The above thin plate is appropriately cut out to the required width to produce a welded tube having an outer diameter of 42.7 mm, 50.8 mm, and 60.5 mm, and an elliptical casing having a cross-sectional shape of a major axis of 100 mm and a minor axis of 69 mm is cut out of the same material. Exhaust devices used for exhaust manifolds, exhaust pipes, catalyst mufflers, main muffler (silencer) outer cylinders, inner cylinders, and interior parts. In manufacturing, when a 60 ° conical cone is pushed into the end of a welded pipe having an outer diameter of 42.7 mm and expanded to 1.3 times the initial diameter, the weld does not crack and has good spreading characteristics. At the same time, when the welded tube was bent 90 ° with a radius of 90 mm, no cracks or wrinkles occurred.
本発明のチタン合金は、高温強度が高く、かつ耐高温酸化性が良好で、室温における優れた延性、冷間加工性を安定的に発現できる、溶接管の製造が従来の純チタン材並に容易であり、四輪者や二輪車等自動車のメインマフラー部はもとより、エキゾーストマニホールド、エキゾーストパイプや触媒マフラー等の排気装置用部材に利用することが可能である。 The titanium alloy of the present invention has high strength at high temperatures and good high temperature oxidation resistance, and can stably exhibit excellent ductility and cold workability at room temperature. It is easy and can be used not only for main muffler parts of automobiles such as automobiles and motorcycles but also for exhaust device members such as exhaust manifolds, exhaust pipes and catalyst mufflers.
Claims (5)
Cu:2.1%超〜4.5%、
酸素:0.04%以下、
Fe:0.06%以下
を含有し、残部Tiおよび不可避的不純物からなることを特徴とする、冷間加工性に優れる排気装置部材用耐熱チタン合金。 % By mass
Cu: more than 2.1% to 4.5%,
Oxygen: 0.04% or less,
Fe: A heat-resistant titanium alloy for exhaust device members having excellent cold workability, characterized by containing 0.06% or less and the balance being Ti and inevitable impurities.
Sn、Zrの1種または2種を合計0.5〜1.5%含有することを特徴とする請求項1に記載の冷間加工性に優れる排気装置部材用耐熱チタン合金。 The titanium alloy is further in mass%,
The heat-resistant titanium alloy for exhaust device members having excellent cold workability according to claim 1, comprising one or two of Sn and Zr in a total amount of 0.5 to 1.5%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007197619A JP4987609B2 (en) | 2007-07-30 | 2007-07-30 | Heat-resistant titanium alloy for exhaust device member excellent in cold workability, manufacturing method thereof, and exhaust device member using the alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007197619A JP4987609B2 (en) | 2007-07-30 | 2007-07-30 | Heat-resistant titanium alloy for exhaust device member excellent in cold workability, manufacturing method thereof, and exhaust device member using the alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009030140A JP2009030140A (en) | 2009-02-12 |
JP4987609B2 true JP4987609B2 (en) | 2012-07-25 |
Family
ID=40400957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007197619A Expired - Fee Related JP4987609B2 (en) | 2007-07-30 | 2007-07-30 | Heat-resistant titanium alloy for exhaust device member excellent in cold workability, manufacturing method thereof, and exhaust device member using the alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4987609B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109022914A (en) * | 2018-10-09 | 2018-12-18 | 广州宇智科技有限公司 | A kind of corrosion-resistant high heat-transfer performance chemical field titanium alloy and its technique |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4935849B2 (en) * | 2009-04-24 | 2012-05-23 | トヨタ自動車株式会社 | Exhaust pipe structure |
KR101454458B1 (en) | 2009-12-28 | 2014-10-27 | 신닛테츠스미킨 카부시키카이샤 | Heat-resistant titanium alloy with excellent oxidation resistance for exhaust system components, manufacturing method of heat-resistant titanium plate with excellent oxidation resistance for exhaust system components, and exhaust system |
US10358698B2 (en) | 2009-12-28 | 2019-07-23 | Nippon Steel Corporation | Heat resistant titanium alloy material for exhaust system part use excellent in oxidation resistance, method of production of heat resistant titanium alloy material for exhaust system part use excellent in oxidation resistance, and exhaust system |
JP2012052178A (en) * | 2010-08-31 | 2012-03-15 | Kobe Steel Ltd | Titanium alloy excellent in strength and ductility at room temperature |
JP2013001973A (en) * | 2011-06-17 | 2013-01-07 | Nippon Steel & Sumitomo Metal Corp | Titanium alloy welded pipe having excellent hydrogen absorption resistance and pipe-formability and hoop product for welled pipe, and methods for manufacturing them |
CN102626724B (en) * | 2012-04-19 | 2014-11-26 | 常熟市异型钢管有限公司 | Method for producing titanium alloy pipe |
JP6772069B2 (en) | 2014-05-15 | 2020-10-21 | ゼネラル・エレクトリック・カンパニイ | Titanium alloy and its manufacturing method |
EP3712282B1 (en) | 2018-02-07 | 2023-08-09 | Nippon Steel Corporation | Titanium alloy material |
CN111020342B (en) * | 2019-12-27 | 2021-09-14 | 昆明理工大学 | Method for preparing antibacterial titanium alloy through deformation strengthening |
JP7541255B2 (en) | 2021-01-20 | 2024-08-28 | 日本製鉄株式会社 | Titanium alloy plate and automotive exhaust system parts |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1237454A (en) * | 1968-07-01 | 1971-06-30 | Imp Metal Ind Kynoch Ltd | Titanium-base alloys |
JPH0819501B2 (en) * | 1989-12-25 | 1996-02-28 | 新日本製鐵株式会社 | Titanium alloy with excellent heat resistance |
JP2000254150A (en) * | 1999-03-05 | 2000-09-19 | Osamu Okuno | Dental free-cutting titanium alloy |
JP4486530B2 (en) * | 2004-03-19 | 2010-06-23 | 新日本製鐵株式会社 | Heat-resistant titanium alloy plate excellent in cold workability and method for producing the same |
-
2007
- 2007-07-30 JP JP2007197619A patent/JP4987609B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109022914A (en) * | 2018-10-09 | 2018-12-18 | 广州宇智科技有限公司 | A kind of corrosion-resistant high heat-transfer performance chemical field titanium alloy and its technique |
Also Published As
Publication number | Publication date |
---|---|
JP2009030140A (en) | 2009-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4987609B2 (en) | Heat-resistant titanium alloy for exhaust device member excellent in cold workability, manufacturing method thereof, and exhaust device member using the alloy | |
JP4819200B2 (en) | Heat resistant titanium alloy material for exhaust system parts excellent in oxidation resistance, manufacturing method of heat resistant titanium alloy plate for exhaust system parts excellent in oxidation resistance, and exhaust system | |
JP6541869B2 (en) | Austenitic stainless steel plate and turbocharger part for exhaust parts excellent in heat resistance and processability, and manufacturing method of austenitic stainless steel sheet for exhaust parts | |
JP4486530B2 (en) | Heat-resistant titanium alloy plate excellent in cold workability and method for producing the same | |
JP5700175B2 (en) | Ferritic stainless steel | |
CN102471841B (en) | The ferrite-group stainless steel of excellent heat resistance | |
JP4850662B2 (en) | Α-type titanium alloy material for exhaust system parts excellent in workability, manufacturing method thereof, and exhaust device member using the alloy | |
JP5176445B2 (en) | Titanium alloy material for exhaust system parts excellent in oxidation resistance and formability, manufacturing method thereof, and exhaust device using the alloy material | |
US6531091B2 (en) | Muffler made of a titanium alloy | |
CN108026623B (en) | Ferritic stainless steel | |
CN104364404B (en) | Ferritic stainless steel | |
JP2019059995A (en) | Austenitic stainless steel plate having excellent heat resistance and method for producing the same | |
WO2020080104A1 (en) | Ferritic stainless steel | |
WO2019043882A1 (en) | Titanium sheet | |
JP5862314B2 (en) | Titanium alloy material for exhaust system parts excellent in oxidation resistance, manufacturing method thereof, and exhaust device using the alloy material | |
JP6624345B1 (en) | Ferritic stainless steel | |
JP7303434B2 (en) | Titanium alloy plates and automotive exhaust system parts | |
JP4414928B2 (en) | Titanium alloy material for exhaust system parts having excellent workability, manufacturing method thereof, and exhaust device using the alloy material | |
JP7528894B2 (en) | Ferritic Stainless Steel | |
WO2023170996A1 (en) | Ferritic stainless steel sheet and exhaust parts | |
JP4414929B2 (en) | Titanium alloy material with excellent oxidation resistance for exhaust system parts and exhaust device using the alloy material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090916 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120327 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120403 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120425 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4987609 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150511 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150511 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150511 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |