JP4985175B2 - High toughness sequential biaxially stretched optical film and method for producing the same - Google Patents

High toughness sequential biaxially stretched optical film and method for producing the same Download PDF

Info

Publication number
JP4985175B2
JP4985175B2 JP2007190814A JP2007190814A JP4985175B2 JP 4985175 B2 JP4985175 B2 JP 4985175B2 JP 2007190814 A JP2007190814 A JP 2007190814A JP 2007190814 A JP2007190814 A JP 2007190814A JP 4985175 B2 JP4985175 B2 JP 4985175B2
Authority
JP
Japan
Prior art keywords
axis direction
film
copolymer
optical film
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007190814A
Other languages
Japanese (ja)
Other versions
JP2009025711A (en
Inventor
武 春成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2007190814A priority Critical patent/JP4985175B2/en
Publication of JP2009025711A publication Critical patent/JP2009025711A/en
Application granted granted Critical
Publication of JP4985175B2 publication Critical patent/JP4985175B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、耐熱性、力学特性、光学特性に優れる光学フィルムに関するものであり、特にフィルム面内の任意の方向の靱性(伸び)に優れ、負の複屈折性を示す高靱性逐次2軸延伸光学フィルム及びその製造方法に関するものである。   TECHNICAL FIELD The present invention relates to an optical film excellent in heat resistance, mechanical properties, and optical properties, and in particular, high toughness sequential biaxial stretching that exhibits excellent toughness (elongation) in any direction within the film plane and exhibits negative birefringence. The present invention relates to an optical film and a manufacturing method thereof.

近年、ブラウン管型テレビモニターに代わる薄型液晶表示素子や、エレクトロルミネッセンス素子などが開発され、光学異方性を制御したフィルム材料が要求されている。透明樹脂材料は光学フィルムとして軽量性、生産性及びコストの面から多用される状況にある。   In recent years, thin liquid crystal display elements, electroluminescence elements, and the like that replace CRT-type television monitors have been developed, and film materials with controlled optical anisotropy are required. Transparent resin materials are frequently used as optical films in terms of lightness, productivity, and cost.

従来、透明樹脂材料の光学異方性を発現させる方法として、フィルムの延伸配向が行われている。この延伸配向によれば、ポリメチルメタクリレート(以下、PMMAと称する。)やポリスチレン(以下、PSと称する。)よりなるフィルムは負の複屈折性を示し、ポリカーボネート(以下、PCと称する。)や非晶性の環状ポリオレフィン(以下、APOと称する。)よりなるフィルムは正の複屈折性を示すことが知られている。   Conventionally, stretch orientation of a film has been performed as a method of developing optical anisotropy of a transparent resin material. According to this stretched orientation, a film made of polymethyl methacrylate (hereinafter referred to as PMMA) or polystyrene (hereinafter referred to as PS) exhibits negative birefringence, and polycarbonate (hereinafter referred to as PC) or the like. It is known that a film made of amorphous cyclic polyolefin (hereinafter referred to as APO) exhibits positive birefringence.

しかしながら、PMMAやPSはガラス転移温度(以下、Tgと称する。)が100℃付近にあり、耐熱性が不十分なこと、脆いことなどから用途に制限を受けていた。一方、PCやAPOなどはTgが140℃程度であり、耐熱性や力学特性に優れるものではあるが正の複屈折性を示す材料であり、光学フィルムとしては、専ら正の複屈折性を示す樹脂材料を用いて製造されているのが現状である。   However, PMMA and PS have a glass transition temperature (hereinafter referred to as Tg) in the vicinity of 100 ° C., and are limited in application due to insufficient heat resistance and brittleness. On the other hand, PC, APO and the like have a Tg of about 140 ° C. and are excellent in heat resistance and mechanical properties, but are a material exhibiting positive birefringence, and as an optical film, exhibit only positive birefringence. Currently, it is manufactured using a resin material.

また、マレイミド系共重合体として、フェニルマレイミド残基とα−オレフィン残基からなる共重合体は、スチレン残基とアクリロニトリル残基からなる共重合体とのブレンドにおいて、特定の割合範囲内で熱力学的に混和性を示すことが知られている(例えば特許文献1参照。)。   In addition, as a maleimide copolymer, a copolymer composed of phenylmaleimide residues and α-olefin residues is heated within a specific ratio range in a blend of a copolymer composed of styrene residues and acrylonitrile residues. It is known to exhibit miscibility (see, for example, Patent Document 1).

そのような現状に対し、N−フェニル置換マレイミド−オレフィン共重合体30〜95重量%及びアクリロニトリル残基単位:スチレン残基単位=20:80〜35:65(重量比)からなるアクリロニトリル−スチレン系共重合体70〜5重量%よりなる負の複屈折性を示す光学フィルム用樹脂組成物及び該組成物よりなる光学フィルムの提案を行った(例えば特許文献2参照。)。   In contrast to such a current situation, an acrylonitrile-styrene system comprising 30 to 95% by weight of an N-phenyl-substituted maleimide-olefin copolymer and an acrylonitrile residue unit: styrene residue unit = 20: 80 to 35:65 (weight ratio). A proposal was made of a resin composition for optical films having a negative birefringence of 70 to 5% by weight of a copolymer and an optical film made of the composition (for example, see Patent Document 2).

また、N−フェニル置換マレイミド−オレフィン共重合体20〜85重量%及びアクリロニトリル残基単位:スチレン残基単位=36:64〜50:50(重量比)からなるアクリロニトリル−スチレン系共重合体80〜15重量%よりなる負の複屈折性を示す光学フィルム用樹脂組成物及び該組成物よりなる高靱性光学フィルムの提案を行った(例えば特許文献3参照。)。   Further, an acrylonitrile-styrene copolymer 80 to 80 comprising 20 to 85% by weight of an N-phenyl-substituted maleimide-olefin copolymer and an acrylonitrile residue unit: styrene residue unit = 36: 64 to 50:50 (weight ratio). A resin composition for optical films having a negative birefringence of 15% by weight and a high toughness optical film made of the composition were proposed (for example, see Patent Document 3).

そして、位相差板を偏光板とガラス基板の間に挟持し、耐久性試験を行なう際に、位相差板の強度が不足した場合、位相差板に割れが発生する問題が指摘されている(例えば特許文献4参照。)。   And, when the retardation plate is sandwiched between the polarizing plate and the glass substrate and the durability test is performed, if the strength of the retardation plate is insufficient, there is a problem that the retardation plate is cracked ( For example, refer to Patent Document 4.)

米国特許第4605700号公報US Pat. No. 4,605,700 特開2004−315788号公報JP 2004-315788 A 特開2006−257339号公報JP 2006-257339 A 特開2006−235613号公報JP 2006-235613 A

特許文献2において提案を行った樹脂組成物及び光学フィルムは、耐熱性、力学特性などに優れ、特に負の複屈折性という特異な光学特性を有するものであったが、実用面の製品安定性という点においては、まだ靱性(脆さ)、特に伸びに課題を有するものであることが判明した。   The resin composition and optical film proposed in Patent Document 2 are excellent in heat resistance, mechanical properties, etc., and have particularly unique optical properties such as negative birefringence. In that respect, it has been found that there is still a problem in toughness (brittleness), particularly elongation.

また、特許文献3において提案を行った高靱性光学フィルムは、耐熱性、力学特性、特に靱性(伸び)に優れ、負の複屈折性という特異な光学特性を有するものであったが、フィルム面内のある特定方向の伸びに課題を有するものであり、特に特許文献4に記載される如く、LCDの耐久性試験を行なう際に割れることが懸念された。   The high toughness optical film proposed in Patent Document 3 has excellent heat resistance, mechanical properties, particularly toughness (elongation), and has a unique optical property of negative birefringence. In particular, there is a problem with the elongation in a specific direction, and as described in Patent Document 4, there is a concern that the LCD is cracked when the durability test is performed.

そこで、本発明は、耐熱性、力学特性、特にフィルム面内の任意の方向の靱性(伸び)に優れ、負の複屈折性を示す高靱性光学フィルム及びその製造方法を提供することを目的とするものである。   Accordingly, an object of the present invention is to provide a high-toughness optical film having excellent heat resistance, mechanical properties, particularly toughness (elongation) in any direction within the film plane, and exhibiting negative birefringence, and a method for producing the same. To do.

本発明者らは、上記課題に関し鋭意検討した結果、α−オレフィン残基単位とN−フェニル置換マレイミド残基単位からなる特定の共重合体及び特定のアクリロニトリル−スチレン系共重合体からなるフィルムを逐次2軸延伸してなる光学フィルムが負の複屈折性を示す高靱性逐次2軸延伸光学フィルムとなることを見出し、本発明を完成するに至った。   As a result of intensive studies on the above problems, the present inventors have obtained a film comprising a specific copolymer comprising an α-olefin residue unit and an N-phenyl-substituted maleimide residue unit and a specific acrylonitrile-styrene copolymer. The inventors have found that an optical film obtained by successive biaxial stretching becomes a high toughness sequential biaxially stretched optical film exhibiting negative birefringence, and has completed the present invention.

すなわち、本発明は、下記の式(i)で表されるα−オレフィン残基単位:下記の式(ii)で表されるN−フェニル置換マレイミド残基単位=45:55〜35:65(モル比)からなり、標準ポリスチレン換算の重量平均分子量5×10以上5×10以下である共重合体(a)15〜70重量%、及び標準ポリスチレン換算の重量平均分子量5×10以上5×10以下であるアクリロニトリル−スチレン共重合体(b)85〜30重量%からなるフィルムを、下記(a)及び(b)の条件下逐次2軸延伸してなることを特徴とする高靱性逐次2軸延伸光学フィルムの製造方法に関するものである。
(a)x軸方向及びy軸方向のそれぞれの延伸倍率1.1〜5.5倍。
(b)x軸方向の延伸倍率/y軸方向の延伸倍率=1.2〜4。
(ここで、x軸方向は逐次2軸延伸を行う際のフィルム面内の一延伸方向を示し、y軸方向は該x軸方向に直交するフィルム面内のもう一方の延伸方向を示す。)
That is, the present invention relates to an α-olefin residue unit represented by the following formula (i): an N-phenyl-substituted maleimide residue unit represented by the following formula (ii) = 45 : 55 to 35:65 ( 15 to 70% by weight of a copolymer (a) having a weight average molecular weight of 5 × 10 3 or more and 5 × 10 6 or less in terms of standard polystyrene, and a weight average molecular weight of 5 × 10 3 or more in terms of standard polystyrene A film comprising 85 to 30% by weight of an acrylonitrile-styrene copolymer (b) that is 5 × 10 6 or less is successively biaxially stretched under the following conditions (a) and (b): The present invention relates to a method for producing a toughness sequential biaxially stretched optical film.
(A) Each draw ratio in the x-axis direction and y-axis direction is 1.1 to 5.5 times.
(B) Stretch ratio in x-axis direction / stretch ratio in y-axis direction = 1.2-4.
(Here, the x-axis direction indicates one stretching direction in the film plane when sequential biaxial stretching is performed, and the y-axis direction indicates the other stretching direction in the film plane orthogonal to the x-axis direction.)

Figure 0004985175
(ここで、R1、R2、R3はそれぞれ独立して水素又は炭素数1〜6のアルキル基である。)
Figure 0004985175
(Here, R1, R2, and R3 are each independently hydrogen or an alkyl group having 1 to 6 carbon atoms.)

Figure 0004985175
(ここで、R4、R5はそれぞれ独立して水素又は炭素数1〜8の直鎖状若しくは分岐状アルキル基であり、R6、R7、R8、R9、R10はそれぞれ独立して水素、ハロゲン系元素、カルボン酸、カルボン酸エステル、水酸基、シアノ基、ニトロ基又は炭素数1〜8の直鎖状若しくは分岐状アルキル基である。)
以下に本発明に関し、詳細に説明する。
Figure 0004985175
(Where R4 and R5 are each independently hydrogen or a linear or branched alkyl group having 1 to 8 carbon atoms, and R6, R7, R8, R9 and R10 are each independently hydrogen or a halogen-based element. A carboxylic acid, a carboxylic acid ester, a hydroxyl group, a cyano group, a nitro group, or a linear or branched alkyl group having 1 to 8 carbon atoms.)
Hereinafter, the present invention will be described in detail.

本発明の高靱性逐次2軸延伸光学フィルムは、共重合体(a)及びアクリロニトリル−スチレン共重合体(b)よりなるものである。   The high toughness sequential biaxially stretched optical film of the present invention comprises a copolymer (a) and an acrylonitrile-styrene copolymer (b).

本発明の高靱性逐次2軸延伸光学フィルムを構成する共重合体(a)は、標準ポリスチレン換算の重量平均分子量5×10以上5×10以下であり、上記の式(i)で示されるα−オレフィン残基単位:上記の式(ii)で表されるN−フェニル置換マレイミド残基単位=49:51〜35:65(以下、モル比)、特に耐熱性に優れる光学フィルムとなることから好ましくは45:55〜35:65からなるものである。ここで、重量平均分子量は、ゲル・パーミエーション・クロマトグラフィー(以下、GPCと称する。)による共重合体(a)の溶出曲線を標準ポリスチレン換算値として測定することができる。そして、共重合体(a)のポリスチレン換算の重量平均分子量が5×10未満、もしくは5×10を越える場合、得られる光学フィルムは脆いものとなる。また、式(i)で示されるα−オレフィン残基単位のモル比が35未満である場合、高分子量の共重合体を得ることが困難であり、その結果得られる光学フィルムは靱性に劣るものとなる。一方、該モル比が49を越える場合、得られる光学フィルムは透明性、靱性に劣る場合がある。 The copolymer (a) constituting the highly tough sequential biaxially stretched optical film of the present invention has a weight average molecular weight of 5 × 10 3 or more and 5 × 10 6 or less in terms of standard polystyrene, and is represented by the above formula (i). Α-olefin residue unit: N-phenyl-substituted maleimide residue unit represented by the above formula (ii) = 49: 51 to 35:65 (hereinafter, molar ratio), and an optical film excellent in heat resistance in particular. Therefore, it is preferably composed of 45:55 to 35:65. Here, the weight average molecular weight can be measured by using an elution curve of the copolymer (a) by gel permeation chromatography (hereinafter referred to as GPC) as a standard polystyrene equivalent value. When the copolymer (a) has a polystyrene-equivalent weight average molecular weight of less than 5 × 10 3 or more than 5 × 10 6 , the resulting optical film becomes brittle. Moreover, when the molar ratio of the α-olefin residue unit represented by the formula (i) is less than 35, it is difficult to obtain a high molecular weight copolymer, and the resulting optical film has poor toughness. It becomes. On the other hand, when the molar ratio exceeds 49, the resulting optical film may be inferior in transparency and toughness.

共重合体(a)を構成する式(i)で示されるα−オレフィン残基単位におけるR1、R2、R3はそれぞれ独立して水素又は炭素数1〜6のアルキル基であり、炭素数1〜6のアルキル基としては、例えばメチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、s−ブチル基、t−ブチル基、n−ペンチル基、2−ペンチル基、n−ヘキシル基、2−ヘキシル基等を挙げることができる。ここで、R1、R2、R3が炭素数6を越えるアルキル置換基である場合、共重合体のガラス転移温度が著しく低下する、共重合体が結晶性となり透明性を損なうなどの問題がある。そして、式(i)で示されるα−オレフィン残基単位を誘導する具体的な化合物としては、例えばイソブテン、2−メチル−1−ブテン、2−メチル−1−ペンテン、2−メチル−1−ヘキセン、2−メチル−1−ヘプテン、1−イソオクテン、2−メチル−1−オクテン、2−エチル−1−ペンテン、2−メチル−2−ペンテン、2−メチル−2−ヘキセン、エチレン、プロピレン、1−ブテン、1−ヘキセンなどが挙げられ、その中でも1,2−ジ置換オレフィン類に属するα−オレフィンが好ましく、特に耐熱性、透明性、力学特性に優れる共重合体(a)が得られることからイソブテンであることが好ましい。また、α−オレフィン残基単位は1種又は2種以上組み合わされたものでもよく、その比率は特に制限はない。   R1, R2, and R3 in the α-olefin residue unit represented by the formula (i) constituting the copolymer (a) are each independently hydrogen or an alkyl group having 1 to 6 carbon atoms, Examples of the alkyl group 6 include, for example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, t-butyl group, n-pentyl group, 2-pentyl group, n -A hexyl group, 2-hexyl group, etc. can be mentioned. Here, when R 1, R 2 and R 3 are alkyl substituents having more than 6 carbon atoms, there are problems such that the glass transition temperature of the copolymer is remarkably lowered, and the copolymer becomes crystalline and impairs transparency. As specific compounds for deriving the α-olefin residue unit represented by the formula (i), for example, isobutene, 2-methyl-1-butene, 2-methyl-1-pentene, 2-methyl-1- Hexene, 2-methyl-1-heptene, 1-isooctene, 2-methyl-1-octene, 2-ethyl-1-pentene, 2-methyl-2-pentene, 2-methyl-2-hexene, ethylene, propylene, 1-butene, 1-hexene and the like can be mentioned, among which α-olefins belonging to 1,2-disubstituted olefins are preferable, and in particular, a copolymer (a) excellent in heat resistance, transparency and mechanical properties can be obtained. Therefore, isobutene is preferable. The α-olefin residue unit may be one type or a combination of two or more types, and the ratio is not particularly limited.

共重合体(a)を構成する式(ii)で示されるN−フェニル置換マレイミド残基単位におけるR4、R5はそれぞれ独立して水素又は炭素数1〜8の直鎖状若しくは分岐状アルキル基であり、炭素数1〜8の直鎖状又は分岐状アルキル基としては、例えばメチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、s−ブチル基、t−ブチル基、n−ペンチル基、2−ペンチル基、n−ヘキシル基、2−ヘキシル基、n−ヘプチル基、2−ヘプチル基、3−ヘプチル基、n−オクチル基、2−オクチル基、3−オクチル基等を挙げることができる。また、R6、R7、R8、R9、R10はそれぞれ独立して水素、ハロゲン系元素、カルボン酸、カルボン酸エステル、水酸基、シアノ基、ニトロ基又は炭素数1〜8の直鎖状若しくは分岐状アルキル基であり、ハロゲン系元素としは、例えばフッ素、臭素、塩素、沃素等を挙げることができ、カルボン酸エステルとしては、例えばメチルカルボン酸エステル、エチルカルボン酸エステル等を挙げることができ、炭素数1〜8の直鎖状又は分岐状アルキル基としては、例えばメチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、s−ブチル基、t−ブチル基、n−ペンチル基、2−ペンチル基、n−ヘキシル基、2−ヘキシル基、n−ヘプチル基、2−ヘプチル基、3−ヘプチル基、n−オクチル基、2−オクチル基、3−オクチル基等を挙げることができる。ここで、R4、R5、R6、R7、R8、R9、R10が炭素数8を越えるアルキル置換基の場合、共重合体のガラス転移温度が著しく低下する、共重合体が結晶性となり透明性を損なうなどの問題がある。   R4 and R5 in the N-phenyl-substituted maleimide residue unit represented by the formula (ii) constituting the copolymer (a) are each independently hydrogen or a linear or branched alkyl group having 1 to 8 carbon atoms. Examples of the linear or branched alkyl group having 1 to 8 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an s-butyl group, and a t-butyl group. N-pentyl group, 2-pentyl group, n-hexyl group, 2-hexyl group, n-heptyl group, 2-heptyl group, 3-heptyl group, n-octyl group, 2-octyl group, 3-octyl group Etc. R6, R7, R8, R9, and R10 are each independently hydrogen, halogen-based element, carboxylic acid, carboxylic acid ester, hydroxyl group, cyano group, nitro group, or linear or branched alkyl having 1 to 8 carbon atoms. Examples of the halogen element include fluorine, bromine, chlorine, iodine and the like, and examples of the carboxylic acid ester include methyl carboxylic acid ester and ethyl carboxylic acid ester. Examples of the linear or branched alkyl group of 1 to 8 include, for example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, t-butyl group, and n-pentyl. Group, 2-pentyl group, n-hexyl group, 2-hexyl group, n-heptyl group, 2-heptyl group, 3-heptyl group, n-octyl group, 2-octyl group, 3 An octyl group. Here, when R4, R5, R6, R7, R8, R9, and R10 are alkyl substituents having more than 8 carbon atoms, the glass transition temperature of the copolymer is remarkably lowered, and the copolymer becomes crystalline and becomes transparent. There are problems such as loss.

そして、式(ii)で示されるN−フェニル置換マレイミド残基単位を誘導する化合物としては、例えばマレイミド化合物のN置換基として無置換フェニル基又は置換フェニル基を導入したマレイミド化合物を挙げることができ、具体的にはN−フェニルマレイミド、N−(2−メチルフェニル)マレイミド、N−(2−エチルフェニル)マレイミド、N−(2−n−プロピルフェニル)マレイミド、N−(2−イソプロピルフェニル)マレイミド、N−(2−n−ブチルフェニル)マレイミド、N−(2−s−ブチルフェニル)マレイミド、N−(2−t−ブチルフェニル)マレイミド、N−(2−n−ペンチルフェニル)マレイミド、N−(2−t−ペンチルフェニル)マレイミド、N−(2,6−ジメチルフェニル)マレイミド、N−(2,6−ジエチルフェニル)マレイミド、N−(2,6−ジ−n−プロピルフェニル)マレイミド、N−(2,6−ジ−イソプロピルフェニル)マレイミド、N−(2−メチル,6−エチルフェニル)マレイミド、N−(2−メチル,6−イソプロピルフェニル)マレイミド、N−(2−クロロフェニル)マレイミド、N−(2−ブロモフェニル)マレイミド、N−(2,6−ジクロロフェニル)マレイミド、N−(2,6−ジブロモフェニル)マレイミド、N−2−ビフェニルマレイミド、N−2−ジフェニルエーテルマレイミド、N−(2−シアノフェニル)マレイミド、N−(2−ニトロフェニル)マレイミド、N−(2,4,6−トリメチルフェニル)マレイミド、N−(2,4−ジメチルフェニル)マレイミド、N−パーブロモフェニルマレイミド、N−(2−メチル,4−ヒドロキシフェニル)マレイミド、N−(2,6−ジエチル,4−ヒドロキシフェニル)マレイミドなどが挙げられ、その中でもN−フェニルマレイミド、N−(2−メチルフェニル)マレイミド、N−(2−エチルフェニル)マレイミド、N−(2−n−プロピルフェニル)マレイミド、N−(2−イソプロピルフェニル)マレイミド、N−(2−n−ブチルフェニル)マレイミド、N−(2−s−ブチルフェニル)マレイミド、N−(2−t−ブチルフェニル)マレイミド、N−(2−n−ペンチルフェニル)マレイミド、N−(2−t−ペンチルフェニル)マレイミド、N−(2,6−ジメチルフェニル)マレイミド、N−(2,6−ジエチルフェニル)マレイミド、N−(2,6−ジ−n−プロピルフェニル)マレイミド、N−(2,6−ジ−イソプロピルフェニル)マレイミド、N−(2−メチル,6−エチルフェニル)マレイミド、N−(2−メチル,6−イソプロピルフェニル)マレイミド、N−(2−クロロフェニル)マレイミド、N−(2−ブロモフェニル)マレイミド、N−(2,6−ジクロロフェニル)マレイミド、N−(2,6−ジブロモフェニル)マレイミド、N−2−ビフェニルマレイミド、N−2−ジフェニルエーテルマレイミド、N−(2−シアノフェニル)マレイミド、N−(2−ニトロフェニル)マレイミドが好ましく、特に耐熱性、透明性、力学特性にも優れる共重合体(a)が得られることからN−フェニルマレイミド、N−(2−メチルフェニル)マレイミドであることが好ましい。また、N−フェニル置換マレイミド残基単位は1種又は2種以上組み合わされたものでもよく、その比率は特に制限はない。   Examples of the compound for deriving the N-phenyl substituted maleimide residue unit represented by the formula (ii) include maleimide compounds in which an unsubstituted phenyl group or a substituted phenyl group is introduced as the N substituent of the maleimide compound. Specifically, N-phenylmaleimide, N- (2-methylphenyl) maleimide, N- (2-ethylphenyl) maleimide, N- (2-n-propylphenyl) maleimide, N- (2-isopropylphenyl) Maleimide, N- (2-n-butylphenyl) maleimide, N- (2-s-butylphenyl) maleimide, N- (2-t-butylphenyl) maleimide, N- (2-n-pentylphenyl) maleimide, N- (2-t-pentylphenyl) maleimide, N- (2,6-dimethylphenyl) maleimide, N- 2,6-diethylphenyl) maleimide, N- (2,6-di-n-propylphenyl) maleimide, N- (2,6-di-isopropylphenyl) maleimide, N- (2-methyl, 6-ethylphenyl) ) Maleimide, N- (2-methyl, 6-isopropylphenyl) maleimide, N- (2-chlorophenyl) maleimide, N- (2-bromophenyl) maleimide, N- (2,6-dichlorophenyl) maleimide, N- ( 2,6-dibromophenyl) maleimide, N-2-biphenylmaleimide, N-2-diphenylethermaleimide, N- (2-cyanophenyl) maleimide, N- (2-nitrophenyl) maleimide, N- (2,4,4) 6-trimethylphenyl) maleimide, N- (2,4-dimethylphenyl) maleimide, N-perbromo Examples include phenyl maleimide, N- (2-methyl, 4-hydroxyphenyl) maleimide, N- (2,6-diethyl, 4-hydroxyphenyl) maleimide, among which N-phenylmaleimide, N- (2-methyl) Phenyl) maleimide, N- (2-ethylphenyl) maleimide, N- (2-n-propylphenyl) maleimide, N- (2-isopropylphenyl) maleimide, N- (2-n-butylphenyl) maleimide, N- (2-s-butylphenyl) maleimide, N- (2-t-butylphenyl) maleimide, N- (2-n-pentylphenyl) maleimide, N- (2-t-pentylphenyl) maleimide, N- (2 , 6-Dimethylphenyl) maleimide, N- (2,6-diethylphenyl) maleimide, N- (2,6-di-n -Propylphenyl) maleimide, N- (2,6-di-isopropylphenyl) maleimide, N- (2-methyl, 6-ethylphenyl) maleimide, N- (2-methyl, 6-isopropylphenyl) maleimide, N- (2-chlorophenyl) maleimide, N- (2-bromophenyl) maleimide, N- (2,6-dichlorophenyl) maleimide, N- (2,6-dibromophenyl) maleimide, N-2-biphenylmaleimide, N-2 -Diphenyl ether maleimide, N- (2-cyanophenyl) maleimide, and N- (2-nitrophenyl) maleimide are preferable, and N is particularly preferable because a copolymer (a) having excellent heat resistance, transparency, and mechanical properties can be obtained. -Phenylmaleimide and N- (2-methylphenyl) maleimide are preferred. The N-phenyl-substituted maleimide residue unit may be one or a combination of two or more, and the ratio is not particularly limited.

該共重合体(a)は、上記した式(i)で示されるα−オレフィン残基単位を誘導する化合物及び式(ii)で示されるN−フェニル置換マレイミド残基単位を誘導する化合物を公知の重合法を利用することにより得ることができる。公知の重合法としては、例えば塊状重合法、溶液重合法、懸濁重合法、乳化重合法などを挙げることができる。また、別法として、上記した式(i)で示されるα−オレフィン残基単位を誘導する化合物と無水マレイン酸とを共重合することにより得られた共重合体に、さらに例えばアニリン、2〜6位に置換基を導入したアニリンを反応し、脱水閉環イミド化反応を行うことにより得ることもできる。   As the copolymer (a), a compound that derives an α-olefin residue unit represented by the above formula (i) and a compound that derives an N-phenyl-substituted maleimide residue unit represented by the formula (ii) are known. It can obtain by utilizing the polymerization method. Examples of known polymerization methods include bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization. Further, as another method, a copolymer obtained by copolymerizing a compound that induces the α-olefin residue unit represented by the above formula (i) and maleic anhydride is further added to, for example, aniline, 2- It can also be obtained by reacting aniline having a substituent introduced at the 6-position and performing a dehydration ring-closing imidization reaction.

共重合体(a)としては、上記した式(i)で示されるα−オレフィン残基単位及び式(ii)で示されるN−フェニル置換マレイミド残基単位からなる共重合体であり、例えばN−フェニルマレイミド−イソブテン共重合体、N−フェニルマレイミド−エチレン共重合体、N−フェニルマレイミド−2−メチル−1−ブテン共重合体、N−(2−メチルフェニル)マレイミド−イソブテン共重合体、N−(2−メチルフェニル)マレイミド−エチレン共重合体、N−(2−メチルフェニル)マレイミド−2−メチル−1−ブテン共重合体、N−(2−エチルフェニル)マレイミド−イソブテン共重合体、N−(2−エチルフェニル)マレイミド−エチレン共重合体、N−(2−エチルフェニル)マレイミド−2−メチル−1−ブテン共重合体等が挙げられ、その中でも特に耐熱性、透明性、力学特性にも優れるものとなることから、N−フェニルマレイミド−イソブテン共重合体、N−(2−メチルフェニル)マレイミド−イソブテン共重合体が好ましい。   The copolymer (a) is a copolymer comprising an α-olefin residue unit represented by the above formula (i) and an N-phenyl-substituted maleimide residue unit represented by the formula (ii). -Phenylmaleimide-isobutene copolymer, N-phenylmaleimide-ethylene copolymer, N-phenylmaleimide-2-methyl-1-butene copolymer, N- (2-methylphenyl) maleimide-isobutene copolymer, N- (2-methylphenyl) maleimide-ethylene copolymer, N- (2-methylphenyl) maleimide-2-methyl-1-butene copolymer, N- (2-ethylphenyl) maleimide-isobutene copolymer N- (2-ethylphenyl) maleimide-ethylene copolymer, N- (2-ethylphenyl) maleimide-2-methyl-1-butene copolymer Among them, N-phenylmaleimide-isobutene copolymer and N- (2-methylphenyl) maleimide-isobutene copolymer are particularly excellent in heat resistance, transparency, and mechanical properties. preferable.

本発明の高靱性逐次2軸延伸光学フィルムを構成するアクリロニトリル−スチレン共重合体(b)は、標準ポリスチレン換算の重量平均分子量5×10以上5×10以下であるアクリロニトリル−スチレン共重合体であり、また、特に透明性、靱性に優れた光学フィルムが得られることから、アクリロニトリル残基単位:スチレン残基単位=20:80〜50:50(以下、重量比)であることが好ましく、特に25:75〜40:60であることが好ましい。ここで、重量平均分子量は、GPCによるアクリロニトリル−スチレン共重合体の溶出曲線を標準ポリスチレン換算値として測定することができる。そして、アクリロニトリル−スチレン共重合体(b)のポリスチレン換算の重量平均分子量が5×10未満、もしくは5×10を越える場合、得られる光学フィルムは脆いものとなる。また、本発明に用いられるアクリロニトリル−スチレン共重合体(b)としては、スチレン残基単位の一部又は全部をα−メチルスチレン残基単位としたアクリロニトリル−スチレン共重合体を用いることもできる。 The acrylonitrile-styrene copolymer (b) constituting the highly tough sequential biaxially stretched optical film of the present invention is an acrylonitrile-styrene copolymer having a weight average molecular weight of 5 × 10 3 or more and 5 × 10 6 or less in terms of standard polystyrene. In addition, since an optical film particularly excellent in transparency and toughness can be obtained, it is preferable that acrylonitrile residue unit: styrene residue unit = 20: 80 to 50:50 (hereinafter, weight ratio), In particular, it is preferably 25:75 to 40:60. Here, the weight average molecular weight can be measured by using an elution curve of acrylonitrile-styrene copolymer by GPC as a standard polystyrene equivalent value. And when the weight average molecular weight of polystyrene conversion of an acrylonitrile styrene copolymer (b) is less than 5 * 10 < 3 > or exceeds 5 * 10 < 6 >, the obtained optical film will become a brittle thing. Moreover, as the acrylonitrile-styrene copolymer (b) used in the present invention, an acrylonitrile-styrene copolymer in which a part or all of the styrene residue units are α-methylstyrene residue units can also be used.

本発明に用いられるアクリロニトリル−スチレン共重合体(b)の合成方法としては、公知の重合法が利用でき、例えば塊状重合法、溶液重合法、懸濁重合法、乳化重合法などにより製造することが可能である。また、市販品として入手したものであってもよい。   As a method for synthesizing the acrylonitrile-styrene copolymer (b) used in the present invention, a known polymerization method can be used, for example, a bulk polymerization method, a solution polymerization method, a suspension polymerization method, an emulsion polymerization method, or the like. Is possible. Moreover, what was obtained as a commercial item may be used.

本発明の高靱性逐次2軸延伸光学フィルムは、共重合体(a)15〜70重量%及びアクリロニトリル−スチレン共重合体(b)85〜30重量%からなり、特に耐熱性と力学特性のバランスに優れた光学フィルムとなることから共重合体(a)20〜60重量%及びアクリロニトリル−スチレン共重合体(b)80〜40重量%からなることが好ましい。ここで、共重合体(a)が15重量%未満である場合、得られる光学フィルムの耐熱性が低下する。一方、共重合体(a)が70重量%を越える場合、得られる光学フィルムは非常に脆いものとなり、力学特性の低いものとなる。   The high toughness sequential biaxially stretched optical film of the present invention comprises 15 to 70% by weight of copolymer (a) and 85 to 30% by weight of acrylonitrile-styrene copolymer (b), and in particular, balance between heat resistance and mechanical properties. Therefore, the copolymer (a) is preferably 20 to 60% by weight and the acrylonitrile-styrene copolymer (b) is preferably 80 to 40% by weight. Here, when copolymer (a) is less than 15 weight%, the heat resistance of the optical film obtained will fall. On the other hand, when the copolymer (a) exceeds 70% by weight, the obtained optical film is very brittle and has low mechanical properties.

本発明の高靱性逐次2軸延伸光学フィルムは、それぞれの延伸方向に平行な方向でASTM D882に準拠して測定したフィルム面内の引張破断伸びがそれぞれ5%以上のものであり、特に5.5%以上のものであることが好ましい。ここで、延伸方向に平行な方向の少なくとも一方の引張破断伸びが5%未満の場合、光学フィルムを製造する際、あるいは耐久性試験の際に光学フィルムに割れが発生する場合があり、生産性や品質の安定性が低下する問題がある。そして、本発明の高靱性逐次2軸延伸光学フィルムは、それぞれの延伸方向に平行な方向でのフィルム面内の引張破断伸びがそれぞれ5%以上との要件を満足することにより、フィルム面内の任意の方向の靱性(伸び)が優れた光学フィルムとなるものである。   The high-toughness sequential biaxially stretched optical film of the present invention has a tensile elongation at break of 5% or more measured in accordance with ASTM D882 in a direction parallel to the respective stretching directions, particularly 5. It is preferably 5% or more. Here, when the tensile elongation at break in at least one of the directions parallel to the stretching direction is less than 5%, the optical film may be cracked during the production of the optical film or during the durability test. And there is a problem that the stability of quality is lowered. And the high toughness sequential biaxially stretched optical film of the present invention satisfies the requirement that the tensile break elongation in the film plane in the direction parallel to the respective stretching directions is 5% or more, respectively. The optical film is excellent in toughness (elongation) in any direction.

本発明に用いられる高靱性逐次2軸延伸光学フィルム用樹脂組成物の調整方法としては、共重合体(a)及びアクリロニトリル−スチレン系共重合体(b)からなる樹脂組成物を得ることが可能であれば如何なる方法を用いてもよく、例えばインターナルミキサーや押出機など混練機により加熱溶融混練することにより調整する方法、溶剤を用い溶液ブレンドにより調整する方法、等を挙げることができる。また、その際には、本発明の目的を逸脱しない限りにおいて必要に応じて熱安定剤、紫外線安定剤などの添加剤や可塑剤を配合していてもよく、これら添加剤や可塑剤としては通常樹脂材料用として公知のものを使用してもよい。   As a method for preparing a resin composition for a tough sequential biaxially stretched optical film used in the present invention, it is possible to obtain a resin composition comprising a copolymer (a) and an acrylonitrile-styrene copolymer (b). Any method may be used, and examples thereof include a method of adjusting by heating and melt-kneading with a kneader such as an internal mixer or an extruder, a method of adjusting by solution blending using a solvent, and the like. In this case, additives and plasticizers such as heat stabilizers and UV stabilizers may be blended as necessary without departing from the object of the present invention. Ordinarily, known materials for resin materials may be used.

本発明の高靱性逐次2軸延伸光学フィルムは、負の複屈折性を示す高靱性光学フィルムとして用いられるものであり、特に負の複屈折性を示す位相差フィルムとして用いることが好ましい。   The high toughness sequential biaxially stretched optical film of the present invention is used as a high toughness optical film exhibiting negative birefringence, and is particularly preferably used as a retardation film exhibiting negative birefringence.

以下に、本発明の高靱性逐次2軸延伸光学フィルムの製造方法について、具体的例示に基づき説明する。   Below, the manufacturing method of the toughness sequential biaxially stretched optical film of this invention is demonstrated based on a specific illustration.

本発明の高靱性逐次2軸延伸光学フィルムは、上記した式(i)で表されるα−オレフィン残基単位:上記の式(ii)で表されるN−フェニル置換マレイミド残基単位=49:51〜35:65、好ましくは45:55〜35:65からなり、標準ポリスチレン換算の重量平均分子量5×10以上5×10以下である共重合体(a)15〜70重量%、及び標準ポリスチレン換算の重量平均分子量5×10以上5×10以下であるアクリロニトリル−スチレン共重合体(b)85〜30重量%からなる樹脂組成物よりなるものであり、例えば該樹脂組成物をフィルム成形に供し、フィルムとし、該フィルムを逐次2軸延伸加工に供する事により高靱性逐次2軸延伸光学フィルムとすることができる。 The high toughness sequential biaxially stretched optical film of the present invention has an α-olefin residue unit represented by the above formula (i): an N-phenyl-substituted maleimide residue unit represented by the above formula (ii) = 49. 15-70% by weight of copolymer (a) consisting of 51:35:65, preferably 45: 55-35: 65, and having a weight average molecular weight of 5 × 10 3 or more and 5 × 10 6 or less in terms of standard polystyrene, And a polystyrene composition weight average molecular weight of 5 × 10 3 or more and 5 × 10 6 or less of an acrylonitrile-styrene copolymer (b) of 85 to 30% by weight, for example, the resin composition Is subjected to film forming to form a film, and the film is subjected to sequential biaxial stretching to obtain a high toughness sequential biaxially stretched optical film.

その際のフィルム成形法としては、例えば溶融押出成形法、溶液流延法(溶液キャスト法と称する場合もある。)などの成形法によりフィルムを得ることができる。   As a film forming method at that time, the film can be obtained by a forming method such as a melt extrusion forming method or a solution casting method (sometimes referred to as a solution casting method).

以下に、溶融押出成形法によるフィルム化に関し詳細に説明する。   Hereinafter, film formation by melt extrusion molding will be described in detail.

上記した樹脂組成物を例えばT型ダイスと称されるような薄いダイスを装着した一軸押し出し機、二軸押し出し機等の押し出し機に供し、加熱溶融を行いながら該ダイスの隙間を通して押し出し、得られるフィルムの引き取りを行うことにより任意の厚みを有するフィルムとすることができる。この際、フィルム成形に際しては、成形時のガス発泡などによる外観不良を抑制するために、樹脂組成物を予め80〜130℃の温度範囲にて加熱乾燥を行うことが望ましい。また、所望のフィルム厚みと光学純度に応じて異物を濾過するためのフィルターを設置し、溶融押出成形を行うことが望ましい。さらに、溶融状態のフィルムを効率よく冷却固化し、外観に優れるフィルムを効率よく製造するために低温度金属ロールやスチールベルトなどを設置し、溶融押出成形を行うことが望ましい。   For example, the resin composition described above is applied to an extruder such as a uniaxial extruder or a biaxial extruder equipped with a thin die such as a T-shaped die, and is extruded through a gap between the dies while being heated and melted. It can be set as the film which has arbitrary thickness by taking up a film. At this time, in film forming, it is desirable to heat dry the resin composition in advance in a temperature range of 80 to 130 ° C. in order to suppress poor appearance due to gas foaming at the time of forming. In addition, it is desirable to perform melt extrusion molding by installing a filter for filtering foreign matter according to the desired film thickness and optical purity. Furthermore, in order to efficiently cool and solidify the molten film and efficiently produce a film having an excellent appearance, it is desirable to perform low temperature metal rolls, steel belts, etc. and perform melt extrusion molding.

溶融押出成形条件としては、加熱、剪断応力によって樹脂組成物が溶融流動するTgよりも十分に高い温度にて剪断速度1000sec−1未満の条件で溶融押出成形を行うことが望ましい。 As melt extrusion molding conditions, it is desirable to perform melt extrusion molding at a temperature sufficiently higher than Tg at which the resin composition melts and flows due to heating and shear stress, and under a shear rate of less than 1000 sec- 1 .

また、フィルムを溶融押出成形する際には、得られたフィルムを延伸加工に供し光学フィルムとする際に3次元屈折率の関係が安定した光学フィルムが効率よく得られることから、フィルムの流動方向、幅方向及び厚み方向の分子鎖配向度ができるだけ一様となる条件制御を行うことが好ましく、そのような方法としては、広く知られる成形加工技術を用いることができる。例えばダイスから吐出する樹脂組成物を位置によって均一にする方法、吐出後のフィルム冷却工程を均一にする方法及びこれに関する装置などを用いることができる。   In addition, when the film is melt-extruded, an optical film having a stable three-dimensional refractive index relationship can be efficiently obtained when the obtained film is subjected to stretching and used as an optical film. It is preferable to control the conditions so that the molecular chain orientations in the width direction and the thickness direction are as uniform as possible. As such a method, a well-known molding technique can be used. For example, a method of making the resin composition discharged from the die uniform depending on the position, a method of making the film cooling step after discharge uniform, and an apparatus related thereto can be used.

以下に、溶液キャスト法によるフィルム化に関し詳細に説明する。   Hereinafter, film formation by the solution casting method will be described in detail.

上記した樹脂組成物に対し可溶性を示す溶剤に該樹脂組成物を溶解させて溶液とし、該溶液を流延した後、溶剤を除去することによりフィルムとすることができる。また、その際の溶剤としては、樹脂組成物が可溶性を示す溶剤であれば如何なるものでもよい。   A film can be obtained by dissolving the resin composition in a solvent that is soluble in the resin composition described above to form a solution, casting the solution, and then removing the solvent. In addition, any solvent may be used as long as the resin composition is soluble.

溶液キャスト法による基材の乾燥においては、加熱条件の設定により、フィルム内に気泡又は内部空隙を形成しないように行うことが重要であり、後に続く2次成形加工である延伸加工操作時点にて残留溶剤濃度が2wt%以下であることが望ましい。また、延伸加工後に得られるフィルムに均一な負の複屈折性を発現させるためには、1次成形加工により得られたフィルムに不均一な配向や残留歪みがなく、光学的に等方性であることが望ましく、そのような方法として溶液キャスト法が好ましい。   In the drying of the substrate by the solution casting method, it is important to set the heating conditions so as not to form bubbles or internal voids in the film, and at the time of the subsequent stretching process that is the secondary forming process. The residual solvent concentration is desirably 2 wt% or less. In addition, in order to develop uniform negative birefringence in the film obtained after the stretching process, the film obtained by the primary molding process has no non-uniform orientation and residual distortion, and is optically isotropic. It is desirable that the solution casting method is preferable as such a method.

そして、溶融押出成形法、溶液キャスト法等の成形法により得られたフィルムを逐次2軸延伸加工に供し共重合体の分子鎖を配向させることにより、本発明の高靱性逐次2軸延伸光学フィルムを製造することができる。   The film obtained by a molding method such as a melt extrusion molding method or a solution casting method is subjected to sequential biaxial stretching to orient the molecular chains of the copolymer, whereby the high toughness sequential biaxially stretched optical film of the present invention. Can be manufactured.

逐次2軸延伸を行なう際には、フィルム面内の任意の方向の靱性(伸び)が優れる負の複屈折性を有する光学フィルムとなることから、(a)x軸方向及びy軸方向のそれぞれの延伸倍率1.1〜5.5倍、好ましくは1.2〜4.8倍、(b)x軸方向の延伸倍率/y軸方向の延伸倍率=1.1〜5、好ましくは1.2〜4、のそれぞれの条件下で行うことが好ましい。なお、ここで、x軸方向とは逐次2軸延伸を行う際のフィルム面内の一延伸方向を示し、y軸方向とは該x軸方向に直交するフィルム面内のもう一方の延伸方向を示す。   When performing sequential biaxial stretching, since it becomes an optical film having negative birefringence with excellent toughness (elongation) in any direction within the film plane, (a) each of the x-axis direction and the y-axis direction The draw ratio of 1.1 to 5.5 times, preferably 1.2 to 4.8 times, (b) The draw ratio in the x-axis direction / the draw ratio in the y-axis direction = 1.1 to 5, preferably 1. It is preferable to carry out under the respective conditions of 2-4. Here, the x-axis direction indicates one stretching direction in the film plane when sequentially biaxially stretching, and the y-axis direction indicates the other stretching direction in the film plane orthogonal to the x-axis direction. Show.

そして、効率よく負の複屈折性を示すことで位相差フィルムとして適した高靱性逐次2軸延伸光学フィルムを生産効率よく製造することが可能となることから、上述の該樹脂組成物のTg−20℃〜Tg+20℃の範囲内で逐次2軸延伸加工を行うことが好ましい。ここで、Tgとはガラス転移温度を指すものであり、示差走査型熱量計(DSC)などにより測定することが可能である。   And since it becomes possible to produce a high toughness sequential biaxially stretched optical film suitable as a retardation film by showing negative birefringence efficiently, it is possible to produce the Tg- of the above resin composition. It is preferable to sequentially perform biaxial stretching within a range of 20 ° C. to Tg + 20 ° C. Here, Tg refers to the glass transition temperature and can be measured by a differential scanning calorimeter (DSC) or the like.

また、延伸を行なう際の延伸条件である延伸温度、延伸速度などは本発明の目的を達成できる限りにおいて適宜選択を行えばよい。   Moreover, what is necessary is just to select suitably the extending | stretching temperature, extending | stretching speed, etc. which are extending | stretching conditions at the time of extending | stretching as long as the objective of this invention can be achieved.

なお、本発明の高靱性逐次2軸延伸光学フィルム、特に位相差フィルムにおいては、位相差量を用いることにより複屈折特性を把握することが可能である。ここでいう位相差量の定義は、当該樹脂組成物からなるフィルムである場合、逐次2軸延伸加工することにより得られるフィルムの面内方向であるx1軸方向及びy1軸方向、面外方向であるz1軸方向の3次元屈折率であるnx1、ny1、nz1の差分に該フィルム厚み(d)を乗した値として表すことができる。この場合、屈折率の差分として、具体的にはフィルム面内の屈折率の差分;nx1−ny1、フィルム面外の屈折率の差分;nx1−nz1,ny1−nz1を挙げることができる。そして、光学特性を位相差量で評価する際には、フィルム面内位相差量;Re又はRexy=(nx1−ny1)d、フィルム面外位相差量;Re又はRexz=(nx1−nz1)d,Re又はReyz=(ny1−nz1)d、等として表すことも有効である。また、逐次二軸延伸配向させてなる光学フィルムは、延伸方向をフィルム面内のx1軸及びy1軸とし、これらと直交するフィルム面外の垂直方向をz1軸とした場合、3次元屈折率の関係nz1>ny1≧nx1又はnz1>nx1≧ny1となる負の複屈折性を示す光学フィルムとなる。   In the high toughness sequential biaxially stretched optical film of the present invention, particularly the retardation film, the birefringence characteristics can be grasped by using the retardation amount. In the case of a film made of the resin composition, the definition of the retardation amount here refers to the x1 axis direction, the y1 axis direction, and the out-of-plane direction which are in-plane directions of the film obtained by sequentially biaxially stretching. It can be expressed as a value obtained by multiplying the difference between nx1, ny1, and nz1 which are three-dimensional refractive indexes in a certain z1 axis direction by the film thickness (d). In this case, specific examples of the difference in refractive index include a difference in refractive index within the film plane; nx1-ny1, a difference in refractive index outside the film plane; nx1-nz1, ny1-nz1. When optical properties are evaluated by the retardation amount, the in-plane retardation amount; Re or Rexy = (nx1-ny1) d, the out-of-film retardation amount; Re or Rexz = (nx1-nz1) d , Re, or Reyz = (ny1-nz1) d, etc. is also effective. In addition, an optical film obtained by sequentially biaxially stretching and orientation has a three-dimensional refractive index when the stretching direction is the x1 axis and y1 axis in the film plane, and the vertical direction outside the film plane perpendicular to these is the z1 axis. It becomes an optical film which shows the negative birefringence which becomes relationship nz1> ny1> = nx1 or nz1> nx1> = ny1.

本発明の高靱性逐次2軸延伸光学フィルムは、本発明の目的を逸脱しない限りにおいて必要に応じて熱安定剤、紫外線安定剤などの添加剤や可塑剤を配合されたものであってもよく、これら可塑剤や添加剤としては樹脂材料用として公知のものを使用することができる。また、本発明の負の複屈折性を示す高靱性逐次2軸延伸光学フィルムにおいては、該高靱性光学フィルムの表面を保護することを目的としてハードコートなどを施していてもよく、ハードコート剤として公知のものを用いることができる。   The high toughness sequential biaxially stretched optical film of the present invention may be blended with additives such as heat stabilizers and UV stabilizers and plasticizers as necessary without departing from the object of the present invention. As these plasticizers and additives, those known for resin materials can be used. In the high toughness sequential biaxially stretched optical film showing negative birefringence of the present invention, a hard coat or the like may be applied for the purpose of protecting the surface of the high toughness optical film. A known material can be used.

本発明の高靱性逐次2軸延伸光学フィルムは、屈折率が1.50以上であることが好ましく、LCDなどの光学デバイス製造上及び光学デバイスとしての実用耐熱性の面からTgが120℃以上を示すものであることが好ましい。   The high toughness sequential biaxially stretched optical film of the present invention preferably has a refractive index of 1.50 or more, and has a Tg of 120 ° C. or more in terms of practical heat resistance as an optical device for manufacturing an LCD or the like. It is preferable that it is shown.

本発明の高靱性逐次2軸延伸光学フィルムは、単独での使用以外に、同種光学材料及び/又は異種光学材料と積層して用いることによりさらに光学特性を制御したものとすることができる。この際に積層される光学材料としては、ポリビニルアルコール/色素/アセチルセルロースなどの組み合わせからなる偏光板、ポリカーボネート製延伸配向フィルムなどを挙げられるがこれに制限されるものではない。   The high-toughness sequential biaxially stretched optical film of the present invention can be used by laminating with the same kind of optical material and / or different kind of optical material and controlling the optical properties in addition to the use alone. Examples of the optical material laminated at this time include, but are not limited to, a polarizing plate made of a combination of polyvinyl alcohol / dye / acetylcellulose, a stretched oriented film made of polycarbonate, and the like.

本発明の高靱性逐次2軸延伸光学フィルムは、液晶表示素子用の光学補償部材として好適に用いられる。そのようなものとしては、例えばSTN型LCD、TFT−TN型LCD、OCB型LCD、VA型LCD、IPS型LCDなどのLCD用の位相差フィルム;1/2波長板;1/4波長板;逆波長分散特性フィルム;光学補償フィルム;カラーフィルター;偏光板との積層フィルム;偏光板光学補償フィルムなどが挙げられる。また、本発明の応用としての用途はこれに制限されるものではなく、負の複屈折性を利用する場合には広く利用できる。   The high toughness sequential biaxially stretched optical film of the present invention is suitably used as an optical compensation member for liquid crystal display elements. Examples of such films include retardation films for LCDs such as STN type LCDs, TFT-TN type LCDs, OCB type LCDs, VA type LCDs, and IPS type LCDs; 1/2 wavelength plates; 1/4 wavelength plates; Examples include reverse wavelength dispersion film; optical compensation film; color filter; laminated film with polarizing plate; polarizing optical compensation film. Moreover, the use as an application of this invention is not restrict | limited to this, When using a negative birefringence, it can utilize widely.

本発明の高靱性逐次2軸延伸光学フィルムは、耐熱性、力学特性、特に靱性に優れ、負の複屈折性を示す光学フィルムに好適に用いることができる。   The high toughness sequential biaxially stretched optical film of the present invention can be suitably used for an optical film that is excellent in heat resistance, mechanical properties, particularly toughness, and exhibits negative birefringence.

以下に、本発明を実施例にて具体的に説明するが、本発明はこれらに制限されるものではない。各物性値の測定方法を以下に示す。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. The measuring method of each physical property value is shown below.

〜ガラス転移温度の測定〜
示差走査型熱量計(セイコー電子工業(株)製、商品名DSC2000)を用い、10℃/min.の昇温速度にて測定した。
~ Measurement of glass transition temperature ~
A differential scanning calorimeter (manufactured by Seiko Denshi Kogyo Co., Ltd., trade name DSC2000) was used, and the temperature was 10 ° C./min. It measured at the temperature increase rate of.

〜重量平均分子量の測定〜
ゲル・パーミエーション・クロマトグラフィー(GPC)(東ソー(株)製、商品名HLC−802A)を用い測定した溶出曲線により、標準ポリスチレン換算値として重量平均分子量(Mw)を測定した。
~ Measurement of weight average molecular weight ~
The weight average molecular weight (Mw) was measured as a standard polystyrene equivalent value by an elution curve measured using gel permeation chromatography (GPC) (trade name HLC-802A, manufactured by Tosoh Corporation).

〜3次元屈折率の測定〜
試料傾斜型自動複屈折計(王子計測機器(株)製、商品名KOBRA−WR)を用い、測定波長を589nmとして、入射角0°の時の位相差値、及び遅相軸方向に試料を傾斜させて測定した入射角40°の時の位相差値より3次元屈折率を算出した。
~ Measurement of three-dimensional refractive index ~
Using a sample tilt type automatic birefringence meter (trade name KOBRA-WR, manufactured by Oji Scientific Instruments Co., Ltd.), with a measurement wavelength of 589 nm, a phase difference value at an incident angle of 0 °, and a sample in the slow axis direction The three-dimensional refractive index was calculated from the phase difference value at an incident angle of 40 ° measured by tilting.

〜引張破断伸びの測定〜
ASTM D882に準拠し、フィルムの逐次2軸延伸方向の一延伸方向をx軸方向とし、該x軸方向に直交するもう一方の延伸方向をy軸として、これら軸と平行する方向の引張破断伸びを測定した。
~ Measurement of tensile elongation at break ~
In accordance with ASTM D882, the tensile elongation at break in a direction parallel to these axes, with one stretching direction of the sequential biaxial stretching direction of the film as the x-axis direction and the other stretching direction orthogonal to the x-axis direction as the y-axis. Was measured.

合成例1(N−フェニルマレイミド−イソブテン共重合体の調製例)
ステンレス製オートクレーブにN−フェニルマレイミド300重量部、t−ブチルパーオキシピバレート1.0重量部及びメチルエチルケトン660重量部を仕込み、窒素で数回パージした後、液化イソブテン112重量部を仕込み、60℃で8時間重合を行った。反応終了後の溶液を室温まで冷却した後、メタノールに徐々に添加して再沈澱処理を行い、次いでろ過、乾燥することにより共重合体を得た。
Synthesis Example 1 (Preparation example of N-phenylmaleimide-isobutene copolymer)
A stainless steel autoclave was charged with 300 parts by weight of N-phenylmaleimide, 1.0 part by weight of t-butylperoxypivalate and 660 parts by weight of methyl ethyl ketone, purged several times with nitrogen, and then charged with 112 parts by weight of liquefied isobutene at 60 ° C. For 8 hours. The solution after completion of the reaction was cooled to room temperature, gradually added to methanol for reprecipitation treatment, and then filtered and dried to obtain a copolymer.

H−NMR測定により生成した共重合体はN−フェニルマレイミド残基単位:イソブテン残基単位=57/43(モル比)のN−フェニルマレイミド−イソブテン共重合体(以下、共重合体A(1)と記す。)であることを確認した。また、重量平均分子量は170000であり、ガラス転移温度は209℃であった。 The copolymer produced by 1 H-NMR measurement was an N-phenylmaleimide residue unit: isobutene residue unit = 57/43 (molar ratio) N-phenylmaleimide-isobutene copolymer (hereinafter referred to as copolymer A ( 1).) Was confirmed. Moreover, the weight average molecular weight was 170000 and the glass transition temperature was 209 degreeC.

合成例2(N−(2−メチルフェニル)マレイミド−イソブテン共重合体の調製例)
ステンレス製オートクレーブにN−(2−メチルフェニル)マレイミド335重量部、t−ブチルパーオキシピバレート1.9重量部及びメチルエチルケトン610重量部を仕込み、窒素で数回パージした後、液化イソブテン111重量部を仕込み、60℃で8時間重合を行った。反応終了後の溶液を室温まで冷却した後、メタノールに徐々に添加して再沈澱処理を行い、次いでろ過、乾燥することにより共重合体を得た。
Synthesis Example 2 (Preparation example of N- (2-methylphenyl) maleimide-isobutene copolymer)
A stainless steel autoclave was charged with 335 parts by weight of N- (2-methylphenyl) maleimide, 1.9 parts by weight of t-butyl peroxypivalate and 610 parts by weight of methyl ethyl ketone, purged several times with nitrogen, and then 111 parts by weight of liquefied isobutene. And polymerized at 60 ° C. for 8 hours. The solution after completion of the reaction was cooled to room temperature, gradually added to methanol for reprecipitation treatment, and then filtered and dried to obtain a copolymer.

H−NMR測定により生成した共重合体はN−(2−メチルフェニル)フェニルマレイミド残基単位:イソブテン残基単位=59:41(モル比)のN−(2−メチルフェニル)マレイミド−イソブテン共重合体(以下、共重合体A(2)と記す。)であることを確認した。また、重量平均分子量は150000であり、ガラス転移温度は215℃であった。 The copolymer produced by 1 H-NMR measurement is N- (2-methylphenyl) phenylmaleimide residue unit: isobutene residue unit = 59: 41 (molar ratio) N- (2-methylphenyl) maleimide-isobutene. It was confirmed that it was a copolymer (hereinafter referred to as copolymer A (2)). Moreover, the weight average molecular weight was 150,000 and the glass transition temperature was 215 degreeC.

合成例3(N−フェニルマレイミド−イソブテン共重合体の調製例)
ステンレス製オートクレーブにN−フェニルマレイミド323重量部、t−ブチルパーオキシピバレート1.5重量部及びメチルエチルケトン606重量部を仕込み、窒素で数回パージした後、液化イソブテン105重量部を仕込み、60℃で8時間重合を行った。反応終了後の溶液を室温まで冷却した後、メタノールに徐々に添加して再沈澱処理を行い、次いでろ過、乾燥することにより共重合体を得た。
Synthesis Example 3 (Preparation example of N-phenylmaleimide-isobutene copolymer)
A stainless steel autoclave was charged with 323 parts by weight of N-phenylmaleimide, 1.5 parts by weight of t-butylperoxypivalate and 606 parts by weight of methyl ethyl ketone, purged several times with nitrogen, and then charged with 105 parts by weight of liquefied isobutene at 60 ° C. For 8 hours. The solution after completion of the reaction was cooled to room temperature, gradually added to methanol for reprecipitation treatment, and then filtered and dried to obtain a copolymer.

H−NMR測定により生成した共重合体はN−フェニルマレイミド残基単位:イソブテン残基単位=60/40(モル比)のN−フェニルマレイミド−イソブテン共重合体(以下、共重合体A(3)と記す。)であることを確認した。また、重量平均分子量は140000であり、ガラス転移温度は220℃であった。 The copolymer produced by 1 H-NMR measurement was an N-phenylmaleimide residue unit: isobutene residue unit = 60/40 (molar ratio) N-phenylmaleimide-isobutene copolymer (hereinafter referred to as copolymer A ( 3).) Was confirmed. Moreover, the weight average molecular weight was 140,000 and the glass transition temperature was 220 degreeC.

合成例4(N−フェニルマレイミド−イソブテン共重合体の調製例)
ステンレス製オートクレーブにN−フェニルマレイミド43重量部、t−ブチルパーオキシピバレート0.2重量部及びメチルエチルケトン750重量部を仕込み、窒素で数回パージした後、液化イソブテン140重量部を仕込み、60℃で8時間重合を行った。反応終了後の溶液を室温まで冷却した後、メタノールに徐々に添加して再沈澱処理を行い、次いでろ過、乾燥することにより共重合体を得た。
Synthesis Example 4 (Preparation example of N-phenylmaleimide-isobutene copolymer)
A stainless steel autoclave was charged with 43 parts by weight of N-phenylmaleimide, 0.2 parts by weight of t-butylperoxypivalate and 750 parts by weight of methyl ethyl ketone, purged several times with nitrogen, and then charged with 140 parts by weight of liquefied isobutene at 60 ° C. For 8 hours. The solution after completion of the reaction was cooled to room temperature, gradually added to methanol for reprecipitation treatment, and then filtered and dried to obtain a copolymer.

H−NMR測定により生成した共重合体はN−フェニルマレイミド残基単位:イソブテン残基単位=50/50(モル比)のN−フェニルマレイミド−イソブテン共重合体(以下、共重合体A(4)と記す。)であることを確認した。また、重量平均分子量は190000であり、ガラス転移温度は192℃であった。 The copolymer produced by 1 H-NMR measurement was an N-phenylmaleimide residue unit: isobutene residue unit = 50/50 (molar ratio) N-phenylmaleimide-isobutene copolymer (hereinafter referred to as copolymer A ( 4).) Was confirmed. Moreover, the weight average molecular weight was 190,000 and the glass transition temperature was 192 degreeC.

合成例5(N−フェニルマレイミド−イソブテン共重合体の調製例)
ステンレス製オートクレーブにN−フェニルマレイミド369重量部、t−ブチルパーオキシピバレート2.2重量部及びメチルエチルケトン606重量部を仕込み、窒素で数回パージした後、液化イソブテン72重量部を仕込み、60℃で8時間重合を行った。反応終了後の溶液を室温まで冷却した後、メタノールに徐々に添加して再沈澱処理を行い、次いでろ過、乾燥することにより共重合体を得た。
Synthesis Example 5 (Preparation example of N-phenylmaleimide-isobutene copolymer)
A stainless steel autoclave was charged with 369 parts by weight of N-phenylmaleimide, 2.2 parts by weight of t-butylperoxypivalate and 606 parts by weight of methyl ethyl ketone, purged several times with nitrogen, and then charged with 72 parts by weight of liquefied isobutene at 60 ° C. For 8 hours. The solution after completion of the reaction was cooled to room temperature, gradually added to methanol for reprecipitation treatment, and then filtered and dried to obtain a copolymer.

H−NMR測定により生成した共重合体はN−フェニルマレイミド残基単位:イソブテン残基単位=66/34(モル比)のN−フェニルマレイミド−イソブテン共重合体(以下、共重合体A(5)と記す。)であることを確認した。また、重量平均分子量は82000であり、ガラス転移温度は235℃であった。 The copolymer produced by 1 H-NMR measurement was an N-phenylmaleimide residue unit: isobutene residue unit = 66/34 (molar ratio) N-phenylmaleimide-isobutene copolymer (hereinafter referred to as copolymer A ( 5).) Was confirmed. Moreover, the weight average molecular weight was 82000 and the glass transition temperature was 235 degreeC.

調整例(偏光板の調製)
偏光膜としてポリビニルアルコールフィルムにヨウ素を吸着させて延伸した厚み20μmのフィルムを用い、該偏光膜の両面に透明保護フィルムとして厚み40μmのセルローストリアセテートフィルムを接着剤を介して積層して偏光板(1)を得た。
Example of adjustment (preparation of polarizing plate)
As a polarizing film, a film having a thickness of 20 μm stretched by adsorbing iodine to a polyvinyl alcohol film is used, and a cellulose triacetate film having a thickness of 40 μm is laminated on both surfaces of the polarizing film via an adhesive as a transparent protective film (1 )

実施例1
合成例1により得られた共重合体A(1)を25重量%、アクリロニトリル−スチレン共重合体(旭化成ケミカルズ(株)製、商品名スタイラック727、重量平均分子量=130000、アクリロニトリル残基単位:スチレン残基単位(重量比)=38:62)(以下、共重合体B(1)と記す。)を75重量%の割合で配合し、30mmφ2軸押出機(株式会社日本製鋼所製、商品名TEX30)に供して押出し、樹脂組成物を得た。
Example 1
25% by weight of copolymer A (1) obtained in Synthesis Example 1, acrylonitrile-styrene copolymer (manufactured by Asahi Kasei Chemicals Co., Ltd., trade name Stylac 727, weight average molecular weight = 130,000, acrylonitrile residue unit: A styrene residue unit (weight ratio) = 38: 62) (hereinafter referred to as copolymer B (1)) was blended at a ratio of 75% by weight, and a 30 mmφ twin screw extruder (manufactured by Nippon Steel Works, Ltd., product) The resin composition was obtained by extruding it to the name TEX30).

次いで、得られた樹脂組成物を該樹脂組成物の濃度が25重量%となるように塩化メチレンに溶解し、塩化メチレン溶液を調整した。そして、溶液流延法のフィルム製造ラインを用いてフィルムの連続製造を行ない、厚みが約100μmのフィルムを得た。この際、該塩化メチレン溶液は、ポリエチレンテレフタレートフィルム(以下、PETフィルムと記す。)上に流延した。また、乾燥炉の温度は第1乾燥炉を40℃、第2乾燥炉を80℃、第3乾燥炉を120℃に設定した。   Next, the obtained resin composition was dissolved in methylene chloride so that the concentration of the resin composition was 25% by weight to prepare a methylene chloride solution. The film was continuously produced using a solution casting film production line to obtain a film having a thickness of about 100 μm. At this time, the methylene chloride solution was cast on a polyethylene terephthalate film (hereinafter referred to as PET film). The temperature of the drying oven was set to 40 ° C for the first drying oven, 80 ° C for the second drying oven, and 120 ° C for the third drying oven.

引き続き、延伸温度を樹脂組成物のガラス転移温度プラス10℃とし、延伸速度100%/分の条件で、得られたフィルムをx軸方向に延伸倍率3.6倍、y軸方向に延伸倍率1.2倍、x軸方向の延伸倍率/y軸方向の延伸倍率=3の条件下逐次2軸延伸することにより高靱性逐次2軸延伸光学フィルムを得た。得られた高靱性逐次2軸延伸光学フィルムは負の複屈折性を示し、x軸方向及びy軸方向の靱性、及び耐熱性に優れるものであった。本高靱性逐次2軸延伸光学フィルムを用いて物性を測定した結果を表1に示す。   Subsequently, the stretching temperature was set to the glass transition temperature of the resin composition plus 10 ° C., and the obtained film was stretched at a stretching ratio of 3.6 times in the x-axis direction and a stretching ratio of 1 in the y-axis direction at a stretching speed of 100% / min. The film was sequentially biaxially stretched under the conditions of 2 times, draw ratio in the x-axis direction / stretch ratio in the y-axis direction = 3 to obtain a high toughness sequential biaxially stretched optical film. The obtained high-toughness sequential biaxially stretched optical film exhibited negative birefringence and was excellent in toughness in the x-axis direction and y-axis direction, and heat resistance. Table 1 shows the results of measuring the physical properties using this high toughness sequential biaxially stretched optical film.

次に、実施例1で得られた高靱性逐次2軸延伸光学フィルムの片面を、アクリル系粘着剤を介して、調整例で得られた偏光板(1)と貼合し、更に該光学フィルムの他方の面をアクリル系粘着剤を介してガラスと貼合し、耐久性試験を行った。耐久性試験は−40℃と85℃にそれぞれ30分ずつ保持するサイクルを200回繰り返し、光学フィルムの割れを観察し耐久性を評価した。その結果、高靱性逐次2軸延伸光学フィルムに割れは観察されなかった。   Next, one side of the high-toughness sequential biaxially stretched optical film obtained in Example 1 is bonded to the polarizing plate (1) obtained in the adjustment example via an acrylic pressure-sensitive adhesive, and further the optical film. The other surface of was bonded to glass via an acrylic pressure-sensitive adhesive, and a durability test was conducted. In the durability test, a cycle of holding at −40 ° C. and 85 ° C. for 30 minutes each was repeated 200 times, and cracking of the optical film was observed to evaluate durability. As a result, no crack was observed in the high toughness sequential biaxially stretched optical film.

実施例2
x軸方向に延伸倍率3.6倍、y軸方向に延伸倍率1.2倍、x軸方向の延伸倍率/y軸方向の延伸倍率=3の条件下逐次2軸延伸を行う代わりに、x軸方向に延伸倍率2.4倍、y軸方向に延伸倍率1.2倍、x軸方向の延伸倍率/y軸方向の延伸倍率=2の条件下逐次2軸延伸を行った以外は、実施例1と同様の方法により高靱性逐次2軸延伸光学フィルムを得、その評価を行なった。
Example 2
Instead of sequential biaxial stretching under the conditions of stretching ratio 3.6 times in the x-axis direction, stretching ratio 1.2 times in the y-axis direction, stretching ratio in the x-axis direction / stretching ratio in the y-axis direction = 3, x Except for performing sequential biaxial stretching under the conditions of a stretching ratio of 2.4 times in the axial direction, a stretching ratio of 1.2 times in the y-axis direction, a stretching ratio in the x-axis direction / a stretching ratio in the y-axis direction = 2. A high toughness sequential biaxially stretched optical film was obtained in the same manner as in Example 1 and evaluated.

得られた高靱性逐次2軸延伸光学フィルムは、負の複屈折性を示し、x軸方向及びy軸方向の靱性、及び耐熱性に優れるものであった。本高靱性逐次2軸延伸光学フィルムを用いて物性を測定した結果、及び耐久性試験の結果を表1に示す。   The obtained high-toughness sequential biaxially stretched optical film exhibited negative birefringence, and was excellent in toughness in the x-axis direction and y-axis direction, and heat resistance. Table 1 shows the results of measuring physical properties using the high toughness sequential biaxially stretched optical film and the results of the durability test.

実施例3
x軸方向に延伸倍率3.6倍、y軸方向に延伸倍率1.2倍、x軸方向の延伸倍率/y軸方向の延伸倍率=3の条件下逐次2軸延伸を行う代わりに、x軸方向に延伸倍率3.9倍、y軸方向に延伸倍率1.3倍、x軸方向の延伸倍率/y軸方向の延伸倍率=3の条件下逐次2軸延伸を行った以外は、実施例1と同様の方法により高靱性逐次2軸延伸光学フィルムを得、その評価を行なった。
Example 3
Instead of sequential biaxial stretching under the conditions of stretching ratio 3.6 times in the x-axis direction, stretching ratio 1.2 times in the y-axis direction, stretching ratio in the x-axis direction / stretching ratio in the y-axis direction = 3, x Except for sequentially performing biaxial stretching under the conditions of a stretching ratio of 3.9 times in the axial direction, a stretching ratio of 1.3 times in the y-axis direction, a stretching ratio in the x-axis direction / a stretching ratio in the y-axis direction = 3. A high toughness sequential biaxially stretched optical film was obtained in the same manner as in Example 1 and evaluated.

得られた高靱性逐次2軸延伸光学フィルムは、負の複屈折性を示し、x軸方向及びy軸方向の靱性、及び耐熱性に優れるものであった。本高靱性逐次2軸延伸光学フィルムを用いて物性を測定した結果、及び耐久性試験の結果を表1に示す。   The obtained high-toughness sequential biaxially stretched optical film exhibited negative birefringence, and was excellent in toughness in the x-axis direction and y-axis direction, and heat resistance. Table 1 shows the results of measuring physical properties using the high toughness sequential biaxially stretched optical film and the results of the durability test.

実施例4
x軸方向に延伸倍率3.6倍、y軸方向に延伸倍率1.2倍、x軸方向の延伸倍率/y軸方向の延伸倍率=3の条件下逐次2軸延伸を行う代わりに、x軸方向に延伸倍率1.5倍、y軸方向に延伸倍率1.2倍、x軸方向の延伸倍率/y軸方向の延伸倍率=1.25の条件下逐次2軸延伸を行った以外は、実施例1と同様の方法により高靱性逐次2軸延伸光学フィルムを得、その評価を行なった。
Example 4
Instead of sequential biaxial stretching under the conditions of stretching ratio 3.6 times in the x-axis direction, stretching ratio 1.2 times in the y-axis direction, stretching ratio in the x-axis direction / stretching ratio in the y-axis direction = 3, x Except for performing sequential biaxial stretching under the conditions of 1.5 times the draw ratio in the axial direction, 1.2 times the draw ratio in the y-axis direction, the draw ratio in the x-axis direction / the draw ratio in the y-axis direction = 1.25. A high toughness sequential biaxially stretched optical film was obtained by the same method as in Example 1 and evaluated.

得られた高靱性逐次2軸延伸光学フィルムは、負の複屈折性を示し、x軸方向及びy軸方向の靱性、及び耐熱性に優れるものであった。本高靱性逐次2軸延伸光学フィルムを用いて物性を測定した結果、及び耐久性試験の結果を表1に示す。   The obtained high-toughness sequential biaxially stretched optical film exhibited negative birefringence, and was excellent in toughness in the x-axis direction and y-axis direction, and heat resistance. Table 1 shows the results of measuring physical properties using the high toughness sequential biaxially stretched optical film and the results of the durability test.

実施例5
共重合体A(1)25重量%、共重合体B(1)75重量%とし、x軸方向に延伸倍率3.6倍、y軸方向に延伸倍率1.2倍、x軸方向の延伸倍率/y軸方向の延伸倍率=3の条件下逐次2軸延伸を行う代わりに、共重合体A(1)40重量%、共重合体B(1)60重量%とし、x軸方向に延伸倍率2.4倍、y軸方向に延伸倍率1.2倍、x軸方向の延伸倍率/y軸方向の延伸倍率=2の条件下逐次2軸延伸を行った以外は、実施例1と同様の方法により高靱性逐次2軸延伸光学フィルムを得、その評価を行なった。
Example 5
Copolymer A (1) 25% by weight, copolymer B (1) 75% by weight, stretch ratio 3.6 times in the x-axis direction, stretch ratio 1.2 times in the y-axis direction, stretch in the x-axis direction Ratio / stretch ratio in y-axis direction = 3 instead of sequential biaxial stretching under the condition of copolymer A (1) 40% by weight and copolymer B (1) 60% by weight, stretching in the x-axis direction Example 2 except that sequential biaxial stretching was performed under the conditions of a magnification of 2.4 times, a draw ratio of 1.2 times in the y-axis direction, a draw ratio of x-axis direction / a draw ratio of y-axis direction = 2. A high toughness sequential biaxially stretched optical film was obtained by the above method and evaluated.

得られた高靱性逐次2軸延伸光学フィルムは、負の複屈折性を示し、x軸方向及びy軸方向の靱性、及び耐熱性に優れるものであった。本高靱性逐次2軸延伸光学フィルムを用いて物性を測定した結果、及び耐久性試験の結果を表1に示す。   The obtained high-toughness sequential biaxially stretched optical film exhibited negative birefringence, and was excellent in toughness in the x-axis direction and y-axis direction, and heat resistance. Table 1 shows the results of measuring physical properties using the high toughness sequential biaxially stretched optical film and the results of the durability test.

実施例6
共重合体A(1)25重量%、共重合体B(1)75重量%とし、x軸方向に延伸倍率3.6倍、y軸方向に延伸倍率1.2倍、x軸方向の延伸倍率/y軸方向の延伸倍率=3の条件下逐次2軸延伸を行う代わりに、共重合体A(1)60重量%、共重合体B(1)40重量%とし、x軸方向に延伸倍率2.4倍、y軸方向に延伸倍率1.2倍、x軸方向の延伸倍率/y軸方向の延伸倍率=2の条件下逐次2軸延伸を行った以外は、実施例1と同様の方法により高靱性逐次2軸延伸光学フィルムを得、その評価を行なった。
Example 6
Copolymer A (1) 25% by weight, copolymer B (1) 75% by weight, stretch ratio 3.6 times in the x-axis direction, stretch ratio 1.2 times in the y-axis direction, stretch in the x-axis direction Ratio / stretch ratio in y-axis direction = 3 instead of sequential biaxial stretching under the condition of copolymer A (1) 60% by weight and copolymer B (1) 40% by weight, stretching in the x-axis direction Example 2 except that sequential biaxial stretching was performed under the conditions of a magnification of 2.4 times, a draw ratio of 1.2 times in the y-axis direction, a draw ratio of x-axis direction / a draw ratio of y-axis direction = 2. A high toughness sequential biaxially stretched optical film was obtained by the above method and evaluated.

得られた高靱性逐次2軸延伸光学フィルムは、負の複屈折性を示し、x軸方向及びy軸方向の靱性、及び耐熱性に優れるものであった。本高靱性逐次2軸延伸光学フィルムを用いて物性を測定した結果、及び耐久性試験の結果を表2に示す。   The obtained high-toughness sequential biaxially stretched optical film exhibited negative birefringence, and was excellent in toughness in the x-axis direction and y-axis direction, and heat resistance. Table 2 shows the results of measuring the physical properties using this high toughness sequential biaxially stretched optical film and the results of the durability test.

実施例7
共重合体A(1)25重量%の代わりに合成例2で得られた共重合体A(2)25重量%とした以外は、実施例1と同様の方法により高靱性逐次2軸延伸光学フィルムを得、その評価を行なった。
Example 7
High-toughness sequential biaxially-stretched optical fiber by the same method as in Example 1 except that 25% by weight of copolymer A (2) obtained in Synthesis Example 2 was used instead of 25% by weight of copolymer A (1). A film was obtained and evaluated.

得られた高靱性逐次2軸延伸光学フィルムは、負の複屈折性を示し、x軸方向及びy軸方向の靱性、及び耐熱性に優れるものであった。本高靱性逐次2軸延伸光学フィルムを用いて物性を測定した結果、及び耐久性試験の結果を表2に示す。   The obtained high-toughness sequential biaxially stretched optical film exhibited negative birefringence, and was excellent in toughness in the x-axis direction and y-axis direction, and heat resistance. Table 2 shows the results of measuring the physical properties using this high toughness sequential biaxially stretched optical film and the results of the durability test.

実施例8
共重合体A(1)25重量%の代わりに合成例3で得られた共重合体A(3)25重量%とした以外は、実施例1と同様の方法により高靱性逐次2軸延伸光学フィルムを得、その評価を行なった。
Example 8
High-toughness sequential biaxially-stretched optical fiber according to the same method as in Example 1 except that 25% by weight of copolymer A (3) obtained in Synthesis Example 3 was used instead of 25% by weight of copolymer A (1). A film was obtained and evaluated.

得られた高靱性逐次2軸延伸光学フィルムは、負の複屈折性を示し、x軸方向及びy軸方向の靱性、及び耐熱性に優れるものであった。本高靱性逐次2軸延伸光学フィルムを用いて物性を測定した結果、及び耐久性試験の結果を表2に示す。   The obtained high-toughness sequential biaxially stretched optical film exhibited negative birefringence, and was excellent in toughness in the x-axis direction and y-axis direction, and heat resistance. Table 2 shows the results of measuring the physical properties using this high toughness sequential biaxially stretched optical film and the results of the durability test.

実施例9
共重合体B(1)75重量%の代わりにアクリロニトリル−スチレン共重合体(ダイセルポリマー(株)製、商品名セビアン080、重量平均分子量=130000、アクリロニトリル残基単位:スチレン残基単位(重量比)=30:70)(以下、共重合体B(2)と記す。)75重量%とした以外は、実施例1と同様の方法により高靱性逐次2軸延伸光学フィルムを得、その評価を行なった。
Example 9
Copolymer B (1) Instead of 75% by weight, an acrylonitrile-styrene copolymer (manufactured by Daicel Polymer Co., Ltd., trade name: Sebian 080, weight average molecular weight = 130,000, acrylonitrile residue unit: styrene residue unit (weight ratio) ) = 30: 70) (hereinafter referred to as copolymer B (2)) A high-toughness sequential biaxially stretched optical film was obtained in the same manner as in Example 1 except that 75% by weight, and the evaluation was made. I did it.

得られた高靱性逐次2軸延伸光学フィルムは、負の複屈折性を示し、x軸方向及びy軸方向の靱性、及び耐熱性に優れるものであった。本高靱性逐次2軸延伸光学フィルムを用いて物性を測定した結果、及び耐久性試験の結果を表2に示す。   The obtained high-toughness sequential biaxially stretched optical film exhibited negative birefringence, and was excellent in toughness in the x-axis direction and y-axis direction, and heat resistance. Table 2 shows the results of measuring the physical properties using this high toughness sequential biaxially stretched optical film and the results of the durability test.

比較例1
x軸方向に延伸倍率3.6倍、y軸方向に延伸倍率1.2倍、x軸方向の延伸倍率/y軸方向の延伸倍率=3の条件下逐次2軸延伸を行う代わりに、x軸方向に延伸倍率3.6倍、y軸方向を自由幅として1軸延伸を行った以外は、実施例1と同様の方法によりフィルムを得、その評価を行なった。
Comparative Example 1
Instead of sequential biaxial stretching under the conditions of stretching ratio 3.6 times in the x-axis direction, stretching ratio 1.2 times in the y-axis direction, stretching ratio in the x-axis direction / stretching ratio in the y-axis direction = 3, x A film was obtained and evaluated in the same manner as in Example 1 except that uniaxial stretching was performed in the axial direction with a draw ratio of 3.6 times and the y-axis direction as a free width.

得られたフィルムはy軸方向の靱性に劣るものであり、耐久性試験で割れが観察された。
本フィルムを用いて物性を測定した結果、及び耐久性試験の結果を表2に示す。
The obtained film was inferior in toughness in the y-axis direction, and cracks were observed in the durability test.
Table 2 shows the results of measuring physical properties using this film and the results of the durability test.

比較例2
x軸方向に延伸倍率3.6倍、y軸方向に延伸倍率1.2倍、x軸方向の延伸倍率/y軸方向の延伸倍率=3の条件下逐次2軸延伸を行う代わりに、x軸方向に延伸倍率3.6倍、y軸方向に延伸倍率1.0倍で幅拘束1軸延伸を行った以外は、実施例1と同様の方法によりフィルムを得、その評価を行なった。
Comparative Example 2
Instead of sequential biaxial stretching under the conditions of stretching ratio 3.6 times in the x-axis direction, stretching ratio 1.2 times in the y-axis direction, stretching ratio in the x-axis direction / stretching ratio in the y-axis direction = 3, x A film was obtained and evaluated in the same manner as in Example 1 except that width-constrained uniaxial stretching was performed at a stretching ratio of 3.6 times in the axial direction and a stretching ratio of 1.0 times in the y-axis direction.

得られたフィルムはy軸方向の靱性に劣るものであり、耐久性試験で割れが観察された。
本フィルムを用いて物性を測定した結果、及び耐久性試験の結果を表3に示す。
The obtained film was inferior in toughness in the y-axis direction, and cracks were observed in the durability test.
Table 3 shows the results of measuring the physical properties using this film and the results of the durability test.

比較例3
共重合体A(1)25重量%の代わりに合成例4で得られた共重合体A(4)25重量%とした以外は、実施例1と同様の方法によりフィルムを得、その評価を行なった。
Comparative Example 3
A film was obtained in the same manner as in Example 1 except that 25% by weight of copolymer A (4) obtained in Synthesis Example 4 was used instead of 25% by weight of copolymer A (1). I did it.

得られたフィルムはx軸方向、及びy軸方向の靱性に劣るものであり、耐久性試験で割れが観察された。本フィルムを用いて物性を測定した結果、及び耐久性試験の結果を表3に示す。   The obtained film was inferior in toughness in the x-axis direction and y-axis direction, and cracks were observed in the durability test. Table 3 shows the results of measuring the physical properties using this film and the results of the durability test.

比較例4
共重合体A(1)25重量%の代わりに合成例5で得られた共重合体A(5)25重量%とした以外は、実施例1と同様の方法によりフィルムを得、その評価を行なった。
Comparative Example 4
A film was obtained in the same manner as in Example 1 except that the copolymer A (5) obtained in Synthesis Example 5 was replaced by 25% by weight instead of 25% by weight of the copolymer A (1). I did it.

得られたフィルムはx軸方向、及びy軸方向の靱性に劣るものであり、耐久性試験で割れが観察された。本フィルムを用いて物性を測定した結果、及び耐久性試験の結果を表3に示す。   The obtained film was inferior in toughness in the x-axis direction and y-axis direction, and cracks were observed in the durability test. Table 3 shows the results of measuring the physical properties using this film and the results of the durability test.

比較例5
共重合体A(1)25重量%、共重合体B(1)75重量%の代わりに共重合体A(1)10重量%、共重合体B(1)90重量%とした以外は、実施例1と同様の方法によりフィルムを得、その評価を行なった。
Comparative Example 5
The copolymer A (1) was 25% by weight, the copolymer B (1) was 75% by weight, but the copolymer A (1) was 10% by weight, and the copolymer B (1) was 90% by weight, A film was obtained by the same method as in Example 1 and evaluated.

得られたフィルムは耐熱性に劣るものであった。本フィルムを用いて物性を測定した結果、及び耐久性試験の結果を表3に示す。   The obtained film was inferior in heat resistance. Table 3 shows the results of measuring the physical properties using this film and the results of the durability test.

比較例6
共重合体A(1)25重量%、共重合体B(1)75重量%とし、x軸方向に延伸倍率3.6倍、y軸方向に延伸倍率1.2倍、x軸方向の延伸倍率/y軸方向の延伸倍率=3の条件下逐次2軸延伸を行う代わりに、共重合体A(1)75重量%、共重合体B(1)25重量%とし、x軸方向に延伸倍率2.4倍、y軸方向に延伸倍率1.2倍、x軸方向の延伸倍率/y軸方向の延伸倍率=2の条件下逐次2軸延伸した以外、実施例1と同様の方法によりフィルムを得、その評価を行なった。
Comparative Example 6
Copolymer A (1) 25% by weight, copolymer B (1) 75% by weight, stretch ratio 3.6 times in the x-axis direction, stretch ratio 1.2 times in the y-axis direction, stretch in the x-axis direction Ratio / stretch ratio in y-axis direction = 3 instead of sequential biaxial stretching under the condition of 3%, copolymer A (1) 75% by weight, copolymer B (1) 25% by weight, stretching in the x-axis direction According to the same method as in Example 1, except that the film was sequentially biaxially stretched under the conditions of a magnification of 2.4 times, a draw ratio of 1.2 times in the y-axis direction, a draw ratio of x-axis direction / a draw ratio of y-axis direction = 2. A film was obtained and evaluated.

得られたフィルムはy軸方向の靱性に劣るものであり、耐久性試験で割れが観察された。本フィルムを用いて物性を測定した結果、及び耐久性試験の結果を表3に示す。   The obtained film was inferior in toughness in the y-axis direction, and cracks were observed in the durability test. Table 3 shows the results of measuring the physical properties using this film and the results of the durability test.

Figure 0004985175
Figure 0004985175

Figure 0004985175
Figure 0004985175

Figure 0004985175
Figure 0004985175

Claims (2)

下記の式(i)で表されるα−オレフィン残基単位:下記の式(ii)で表されるN−フェニル置換マレイミド残基単位=45:55〜35:65(モル比)からなり、標準ポリスチレン換算の重量平均分子量5×10以上5×10以下である共重合体(a)15〜70重量%、及び標準ポリスチレン換算の重量平均分子量5×10以上5×10以下であるアクリロニトリル−スチレン共重合体(b)85〜30重量%からなるフィルムを、下記(a)及び(b)の条件下逐次2軸延伸してなることを特徴とする高靱性逐次2軸延伸光学フィルムの製造方法
Figure 0004985175
(ここで、R1、R2、R3はそれぞれ独立して水素又は炭素数1〜6のアルキル基である。)
Figure 0004985175
(ここで、R4、R5はそれぞれ独立して水素又は炭素数1〜8の直鎖状若しくは分岐状アルキル基であり、R6、R7、R8、R9、R10はそれぞれ独立して水素、ハロゲン系元素、カルボン酸、カルボン酸エステル、水酸基、シアノ基、ニトロ基又は炭素数1〜8の直鎖状若しくは分岐状アルキル基である。)
(a)x軸方向及びy軸方向のそれぞれの延伸倍率1.1〜5.5倍。
(b)x軸方向の延伸倍率/y軸方向の延伸倍率=1.2〜4。
(ここで、x軸方向は逐次2軸延伸を行う際のフィルム面内の一延伸方向を示し、y軸方向は該x軸方向に直交するフィルム面内のもう一方の延伸方向を示す。)
Α-olefin residue unit represented by the following formula (i): N-phenyl-substituted maleimide residue unit represented by the following formula (ii) = 45 : 55 to 35:65 (molar ratio), the weight average molecular weight in terms of standard polystyrene least 5 × 10 3 5 × 10 6 or less copolymer (a) 15 to 70 wt%, and the weight average molecular weight in terms of standard polystyrene least 5 × 10 3 5 × 10 6 or less A high-toughness sequential biaxially-stretched optical film obtained by sequentially biaxially stretching a film comprising 85 to 30% by weight of an acrylonitrile-styrene copolymer (b) under the following conditions (a) and (b) A method for producing a film.
Figure 0004985175
(Here, R1, R2, and R3 are each independently hydrogen or an alkyl group having 1 to 6 carbon atoms.)
Figure 0004985175
(Where R4 and R5 are each independently hydrogen or a linear or branched alkyl group having 1 to 8 carbon atoms, and R6, R7, R8, R9 and R10 are each independently hydrogen or a halogen-based element. A carboxylic acid, a carboxylic acid ester, a hydroxyl group, a cyano group, a nitro group, or a linear or branched alkyl group having 1 to 8 carbon atoms.)
(A) Each draw ratio in the x-axis direction and y-axis direction is 1.1 to 5.5 times.
(B) Stretch ratio in x-axis direction / stretch ratio in y-axis direction = 1.2-4.
(Here, the x-axis direction indicates one stretching direction in the film plane when sequential biaxial stretching is performed, and the y-axis direction indicates the other stretching direction in the film plane orthogonal to the x-axis direction.)
それぞれの延伸方向に平行な方向でASTM D882に準拠して測定したフィルム面内の引張破断伸びがそれぞれ5%以上である高靭性逐次2軸延伸光学フィルムであることを特徴とする請求項1に記載の高靭性逐次2軸延伸光学フィルムの製造方法 To claim 1, wherein the tensile elongation at break of the respective stretching direction in the film plane was measured in accordance with ASTM D882 in parallel direction is high toughness sequential biaxial stretching the optical film is 5% or more, respectively The manufacturing method of the toughness sequential biaxially-stretched optical film of description .
JP2007190814A 2007-07-23 2007-07-23 High toughness sequential biaxially stretched optical film and method for producing the same Expired - Fee Related JP4985175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007190814A JP4985175B2 (en) 2007-07-23 2007-07-23 High toughness sequential biaxially stretched optical film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007190814A JP4985175B2 (en) 2007-07-23 2007-07-23 High toughness sequential biaxially stretched optical film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009025711A JP2009025711A (en) 2009-02-05
JP4985175B2 true JP4985175B2 (en) 2012-07-25

Family

ID=40397543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007190814A Expired - Fee Related JP4985175B2 (en) 2007-07-23 2007-07-23 High toughness sequential biaxially stretched optical film and method for producing the same

Country Status (1)

Country Link
JP (1) JP4985175B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114621698B (en) * 2022-03-02 2023-06-02 业成科技(成都)有限公司 Film material and laminating method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4449606B2 (en) * 2004-07-05 2010-04-14 東ソー株式会社 Method for producing stretched film
JP4696619B2 (en) * 2005-03-18 2011-06-08 東ソー株式会社 Optical film resin composition and optical film

Also Published As

Publication number Publication date
JP2009025711A (en) 2009-02-05

Similar Documents

Publication Publication Date Title
JP5018002B2 (en) High toughness film
US7001967B2 (en) Transparent heat-resistant resin optical material and film
KR101785485B1 (en) Fumarate diester resin for retardation film, and retardation film comprising same
CN107429024B (en) Polymer mixture based on fluoropolymer, polymer film, and polarizer protective film
JP4792777B2 (en) Wide viewing angle compensation film and transmissive liquid crystal display device using the same
JP5298535B2 (en) Retardation film and optical compensation film using the same
KR101950257B1 (en) Resin composition, optical compensation film using the same and production method of optical compensation film
JP4774703B2 (en) Heat-resistant optical compensation film for liquid crystal display elements
JPWO2005108438A1 (en) IMIDE RESIN, ITS MANUFACTURING METHOD, AND MOLDED BODY USING SAME
JP2011511101A (en) Transparent resin composition
KR100939990B1 (en) Resin composition for optical film, optical film and process for producing the optical film
JP4696619B2 (en) Optical film resin composition and optical film
JP5920052B2 (en) Resin composition and optical compensation film using the same
JP2013028741A (en) Resin composition and optical compensation film using the same
JP4985175B2 (en) High toughness sequential biaxially stretched optical film and method for producing the same
JP6904137B2 (en) Resin composition and optical compensation film using it
JP5321567B2 (en) Optical film resin composition and optical film
KR20230132784A (en) Optical films based on styrene fluoropolymers and acrylic copolymers
JP4449606B2 (en) Method for producing stretched film
JP2012068430A (en) Retardation film
JP4696493B2 (en) Optical compensation film for liquid crystal display elements
JP2006010812A (en) Optical compensation film and its manufacturing method
JP4696490B2 (en) Optical compensation film for liquid crystal display elements
JP6897084B2 (en) Optical compensation film and its manufacturing method
JP6904136B2 (en) Resin composition and optical compensation film using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R151 Written notification of patent or utility model registration

Ref document number: 4985175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees