JP4984769B2 - Method for calibrating high-frequency characteristic measuring probe and method for measuring high-frequency characteristic of electronic device using this probe - Google Patents

Method for calibrating high-frequency characteristic measuring probe and method for measuring high-frequency characteristic of electronic device using this probe Download PDF

Info

Publication number
JP4984769B2
JP4984769B2 JP2006247586A JP2006247586A JP4984769B2 JP 4984769 B2 JP4984769 B2 JP 4984769B2 JP 2006247586 A JP2006247586 A JP 2006247586A JP 2006247586 A JP2006247586 A JP 2006247586A JP 4984769 B2 JP4984769 B2 JP 4984769B2
Authority
JP
Japan
Prior art keywords
calibration
probe
substrate
measuring
signal conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006247586A
Other languages
Japanese (ja)
Other versions
JP2008070175A (en
Inventor
知生 高澤
岳 神谷
貴之 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2006247586A priority Critical patent/JP4984769B2/en
Publication of JP2008070175A publication Critical patent/JP2008070175A/en
Application granted granted Critical
Publication of JP4984769B2 publication Critical patent/JP4984769B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電子デバイスの高周波特性を測定するのに使用される高周波特性測定用プローブの校正方法に関する。詳しくは、ネットワークアナライザなどの測定器によって電子デバイスのインピーダンス値やQ値等を測定する際のプローブの測定誤差の補正方法に関する。 The present invention relates to a method for calibrating a high frequency characteristic measuring probe used for measuring high frequency characteristics of an electronic device. Specifically, the present invention relates to a method for correcting a measurement error of a probe when measuring an impedance value, a Q value, or the like of an electronic device with a measuring instrument such as a network analyzer.

高周波測定用プローブとは、ミリ波帯商品のような高周波電子部品の高周波電気特性を測定するプローブのことである。デバイスの高周波特性の真値を測定するためには、デバイスと接触するプローブの先端で校正する必要がある。前記ミリ波帯商品をプローブを用いて測定する場合、プローブの校正を行わなければ、ミリ波帯商品の特性以外にプローブの誤差項を含めた値を測定してしまうため、ミリ波帯商品の真値を得ることができない。そこで、プローブの誤差項を取り除く校正が必要となる。 The high-frequency measurement probe is a probe that measures high-frequency electrical characteristics of a high-frequency electronic component such as a millimeter-wave band product. In order to measure the true value of the high frequency characteristics of the device, it is necessary to calibrate at the tip of the probe that contacts the device. When measuring the millimeter wave band product using a probe, if the probe is not calibrated, the value including the error term of the probe is measured in addition to the characteristics of the millimeter wave band product. The true value cannot be obtained. Therefore, calibration that removes the error term of the probe is required.

高周波特性測定用プローブの校正方法として、非特許文献1に示される方法が知られている。この校正方法は、校正基板に形成されたショート・ロード・スルーの各基準にプローブを接触させた状態と、プローブに何も接触させないオープン状態とをそれぞれ測定し、その測定値を使ってSOLT校正することによって行われている。図1の(a)はショート、(b)はロード、(c)はスルーの各接続状態を示す。図1に示すプローブ1はエア・コプレーナ・プローブであり、プローブ1は中央に信号端子2を有し、両側にGND端子3を有する。校正基板4にはショート基準5、ロード基準6、およびスルー基準7が形成されている。 As a method for calibrating a high-frequency characteristic measuring probe, a method disclosed in Non-Patent Document 1 is known. This calibration method measures the state in which the probe is in contact with each short load through reference formed on the calibration board and the open state in which nothing is in contact with the probe, and uses the measured values to perform SOLT calibration. Is done by doing. 1A shows a connection state of a short circuit, FIG. 1B shows a load state, and FIG. 1C shows a through state. The probe 1 shown in FIG. 1 is an air coplanar probe. The probe 1 has a signal terminal 2 in the center and GND terminals 3 on both sides. On the calibration substrate 4, a short reference 5, a load reference 6, and a through reference 7 are formed.

校正基板4は、電気特性が変化しにくいアルミナ基板で形成されており、その上にショート・ロード・スルーの各基準特性が造り込まれているため、非常に高価である。特に、ロードの基準特性は50Ω±0.3%(DC)に高精度に調整する必要がある。また、プローブ1を校正基板4に接触させる際、オーバードライブと呼ばれる押し付け工程があり、プローブ1の先端が校正基板4の基準上を圧接しながら滑る。その際、接触箇所に傷がつくため、約50回程度使用すると校正基板4の特性が変化してしまう。つまり、校正基板4は消耗品であり、多大なコストが必要となる。また、プローブ1の端子間ピッチとそれを接触させる校正基板4の各基準のピッチは等しくなっているため、端子間ピッチの違うプローブを使用する際には、それに合った校正基板を別途購入する必要があった。 The calibration substrate 4 is formed of an alumina substrate whose electrical characteristics are unlikely to change, and each reference characteristic of short load through is built on the calibration substrate 4, so that it is very expensive. In particular, it is necessary to adjust the reference characteristic of the load to 50Ω ± 0.3% (DC) with high accuracy. Further, when the probe 1 is brought into contact with the calibration substrate 4, there is a pressing process called overdrive, and the tip of the probe 1 slides while being pressed on the reference of the calibration substrate 4. At that time, since the contact portion is scratched, the characteristics of the calibration substrate 4 change when used about 50 times. That is, the calibration board 4 is a consumable item and requires a great deal of cost. In addition, since the pitch between the terminals of the probe 1 and the reference pitch of the calibration board 4 with which the probe 1 is brought into contact with each other are the same, when using a probe with a different pitch between the terminals, a calibration board corresponding to that is purchased separately. There was a need.

特許文献1には、平面伝送路を用いた新規な校正方法が開示されている。この校正方法(以下、RRR校正と呼ぶ)は、単位長さ当たりの電気特性が既知の平面伝送路を有する校正基板を用い、平面伝送路の信号導体と接地導体との間を少なくとも3箇所で短絡させたときの反射係数を測定し、これら測定データから、校正基板のコネクタから校正面までの誤差項(および伝送路の伝達度と位相定数)を算出することができる方法である。 Patent Document 1 discloses a novel calibration method using a planar transmission line. This calibration method (hereinafter referred to as RRR calibration) uses a calibration board having a planar transmission line whose electrical characteristics per unit length are known, and at least three points between the signal conductor and the ground conductor of the planar transmission line. In this method, the reflection coefficient when short-circuited is measured, and the error term (and the transmission rate and phase constant of the transmission line) from the calibration board connector to the calibration surface can be calculated from these measurement data.

この校正方法の場合、校正基板としてコプレーナ基板のような安価な基板を用いることができるので、大幅なコスト低減が可能である。さらに、基板上の少なくとも3箇所で信号導体と接地導体とを短絡するだけで校正できるので、校正作業が簡単でかつ誤差を確実に除去できるという利点がある。
「オン・ウェーハ高周波測定入門」カスケード・マイクロテック株式会社発行、2001年5月 WO2005/101035A1
In the case of this calibration method, an inexpensive substrate such as a coplanar substrate can be used as the calibration substrate, so that the cost can be greatly reduced. Furthermore, since calibration can be performed simply by short-circuiting the signal conductor and the ground conductor at at least three locations on the substrate, there is an advantage that the calibration operation is simple and errors can be reliably removed.
"Introduction to on-wafer high-frequency measurement" published by Cascade Microtech Co., Ltd., May 2001 WO2005 / 101035A1

そこで、本発明の目的は、高価な校正基板を利用せずに、プローブの校正を行うことができる高周波特性測定用プローブの校正方法、およびこの校正方法を利用した電子デバイスの高周波特性測定方法を提供することにある。 Accordingly, an object of the present invention is to provide a method for calibrating a high-frequency characteristic measuring probe that can calibrate the probe without using an expensive calibration substrate, and a method for measuring the high-frequency characteristic of an electronic device using this calibration method. It is to provide.

本発明に係る高周波特性測定用プローブの校正方法は、平面伝送路を有する校正基板を測定器の1つの測定ポートに接続する第1のステップと、前記校正基板を利用した誤差補正方法により、前記校正基板上の所定の校正面から前記測定器までの誤差を導出する第2のステップと、前記プローブを前記測定器の他の測定ポートに接続する第3のステップと、前記校正基板の校正面に前記プローブの先端を接触させ、その電気特性を前記測定器により測定する第4のステップと、前記第4のステップで得られた測定値から、第2のステップで得られた誤差を取り除くことで、前記測定器から前記プローブの先端までの誤差を導出し、前記プローブの先端に校正面を作成する第5のステップと、を有することを特徴とする校正方法である。 The high-frequency characteristic measuring probe calibration method according to the present invention includes the first step of connecting a calibration board having a planar transmission line to one measurement port of a measuring instrument, and the error correction method using the calibration board. A second step of deriving an error from a predetermined calibration surface on the calibration substrate to the measuring device, a third step of connecting the probe to another measurement port of the measuring device, and a calibration surface of the calibration substrate The probe tip is brought into contact with the probe, and the error obtained in the second step is removed from the fourth step in which the electrical characteristics are measured by the measuring instrument and the measurement value obtained in the fourth step. And a fifth step of deriving an error from the measuring instrument to the tip of the probe and creating a calibration surface at the tip of the probe.

本発明は、特許文献1に示されるような平面伝送路を持つ校正基板を利用すれば、プローブの校正を安価にかつ簡単に実施できる点に着目したものである。すなわち、平面伝送路を有する校正基板を測定器の1つの測定ポートに接続し、この校正基板を利用した1ポート誤差補正方法により、校正基板上の所定の校正面から測定器までの誤差を導出する。校正基板のコネクタから校正面までの校正は、特許文献1に示される方法(RRR法)で実施でき、コネクタから測定器までの校正はSOLT法などの公知の方法を用いることで、簡単に校正できる。次に、プローブを測定器の他の測定ポートに接続し、校正基板の校正面にプローブの先端を接触させて電気特性を測定する。そして、この測定値から、校正基板の校正面から測定器までの誤差を取り除くことで、測定器からプローブまでの誤差を導出する。つまり、プローブの先端を校正面とすることができる。 The present invention pays attention to the fact that if a calibration board having a planar transmission line as disclosed in Patent Document 1 is used, the calibration of the probe can be easily performed at low cost. That is, a calibration board having a flat transmission line is connected to one measurement port of the measuring instrument, and an error from a predetermined calibration surface on the calibration board to the measuring instrument is derived by a one-port error correction method using the calibration board. To do. Calibration from the connector of the calibration board to the calibration surface can be performed by the method shown in Patent Document 1 (RRR method), and calibration from the connector to the measuring instrument can be easily performed by using a known method such as the SOLT method. it can. Next, the probe is connected to the other measurement port of the measuring instrument, and the tip of the probe is brought into contact with the calibration surface of the calibration board to measure the electrical characteristics. Then, the error from the measuring instrument to the probe is derived by removing the error from the calibration surface of the calibration board to the measuring instrument. That is, the tip of the probe can be used as a calibration surface.

校正基板の伝送路は、長さ方向に均一な特性インピーダンスを持つものであればよく、従来の校正基板のように特別の基準特性(ショート,ロード,スルー)を造りこむ必要がない。そのため、コプレーナ基板のような安価な基板を用いることができる。校正基板にプローブを接触させて校正する作業を繰り返す間に校正基板の電極が摩耗しても、従来に比べて交換費用を低減できる。さらに、プローブのピッチが変わっても、それに合わせて容易に校正基板を製作できる。その結果、高周波特性測定用プローブの校正にかかるコストを大幅に低減でき、高周波製品の測定コストを下げる効果がある。 The transmission path of the calibration board only needs to have a uniform characteristic impedance in the length direction, and it is not necessary to create special reference characteristics (short, load, and through) unlike the conventional calibration board. Therefore, an inexpensive substrate such as a coplanar substrate can be used. Even if the electrodes of the calibration board are worn while repeating the calibration work by bringing the probe into contact with the calibration board, the replacement cost can be reduced as compared with the conventional technique. Furthermore, even if the pitch of the probe changes, a calibration board can be easily manufactured according to it. As a result, the cost for calibration of the high frequency characteristic measurement probe can be greatly reduced, and the measurement cost of the high frequency product can be reduced.

好ましい実施の形態によれば、校正基板は、信号導体と接地導体とを持ち、単位長さ当たりの電気特性が一定の平面伝送路を有する基板であり、前記第1のステップは、前記信号導体および接地導体の一端を前記測定器の測定ポートに接続することであり、前記第2のステップは、前記信号導体の長さ方向の少なくとも3箇所において、信号導体と接地導体とを接続状態にして反射係数を測定する第1サブステップと、前記接続状態での測定値および前記平面伝送路の電気特性から、前記校正基板の校正面から前記測定器までの誤差を導出する第2サブステップとを含むのがよい。校正に際して、校正基板と測定器とを同軸ケーブル等で接続した状態のまま、3箇所以上で信号導体と接地導体とを接続状態にして反射係数を測定すればよいので、校正作業が簡単で正確である。なお、3箇所以上の接続箇所のいずれか1つと校正面とが同一箇所である必要はないが、いずれか1箇所を校正面と同じ位置とすれば、校正がさらに簡単である。信号導体と接地導体とを接続状態とする場合に、両者を短絡させる短絡基準を使用するのが望ましい。これは、短絡状態であればほぼ全反射状態になるので、信号導体の終端側の影響を受けないこと、及び、対象とする伝送路がTEM単一モードで動作する周波数範囲では短絡状態の特性には誘電体の影響が実質的に無く、電磁界シミュレーションで非常に精度良くその電気特性を予想できること等の理由による。 According to a preferred embodiment, the calibration board is a board having a signal conductor and a ground conductor and having a planar transmission line having a constant electrical characteristic per unit length, and the first step includes the signal conductor. And connecting one end of the ground conductor to the measurement port of the measuring device, and the second step is to connect the signal conductor and the ground conductor in at least three locations in the length direction of the signal conductor. A first sub-step for measuring a reflection coefficient, and a second sub-step for deriving an error from the calibration surface of the calibration board to the measuring device from the measured value in the connected state and the electrical characteristics of the planar transmission line. It is good to include. When calibrating, the calibration coefficient can be measured easily and accurately because the reflection coefficient can be measured with the signal conductor and ground conductor connected at three or more locations with the calibration board and measuring instrument connected with a coaxial cable or the like. It is. Note that any one of the three or more connection locations and the calibration surface need not be the same location, but if any one location is at the same position as the calibration surface, the calibration is further simplified. When the signal conductor and the ground conductor are connected, it is desirable to use a short-circuit reference for short-circuiting the two. Since this is almost totally reflected in the short circuit state, it is not affected by the terminal end of the signal conductor, and in the frequency range where the target transmission line operates in the TEM single mode, the short circuit characteristic This is because there is substantially no influence of a dielectric material, and its electric characteristics can be predicted with high accuracy by electromagnetic field simulation.

好ましい実施の形態によれば、前記プローブは、信号導体と接地導体とを持ち、単位長さ当たりの電気特性が一定の平面伝送路を形成した基板よりなり、前記信号導体と接地導体との間隔は前記校正基板の信号導体と接地導体との間隔に等しく、かつ基板の誘電率は前記校正基板の誘電率とほぼ等しいのがよい。この場合には、プローブと校正基板とがほぼ同様な構造を持つので、相互のインピーダンスを一致させることができる。そのため、更に高精度な校正が可能になる。 According to a preferred embodiment, the probe comprises a substrate having a signal conductor and a ground conductor, forming a planar transmission line having a constant electrical characteristic per unit length, and the distance between the signal conductor and the ground conductor. Is equal to the distance between the signal conductor and the ground conductor of the calibration board, and the dielectric constant of the board is preferably substantially equal to the dielectric constant of the calibration board. In this case, since the probe and the calibration board have substantially the same structure, the mutual impedance can be matched. Therefore, calibration with higher accuracy is possible.

本発明において使用可能な校正基板としては、長さ方向に均一な特性インピーダンスを持つ基板であればよく、コプレーナ基板に限らず、スロット線路を用いることもできる。コプレーナ基板の場合には10GHzまでの高周波特性の測定に適しており、スロット線路の場合は、10GHz以上の高周波特性の測定に適している。また、本発明で使用されるプローブは、コプレーナ構造に限らず、任意の構造のプローブを使用できる。 The calibration substrate that can be used in the present invention is not limited to a coplanar substrate, but may be a slot line as long as it has a uniform characteristic impedance in the length direction. The coplanar substrate is suitable for measuring high frequency characteristics up to 10 GHz, and the slot line is suitable for measuring high frequency characteristics up to 10 GHz. Further, the probe used in the present invention is not limited to the coplanar structure, and a probe having an arbitrary structure can be used.

前記のように校正されたプローブの先端を被測定電子デバイスに接触させ、その電気特性を測定器により測定し、その測定値から第5のステップで求めたプローブの誤差を除去すれば、被測定電子デバイスの高周波電気特性の真値を高精度に求めることができる。 If the tip of the probe calibrated as described above is brought into contact with the electronic device to be measured, its electrical characteristics are measured by a measuring instrument, and the error of the probe obtained in the fifth step is removed from the measured value, the measured device The true value of the high frequency electrical characteristics of the electronic device can be obtained with high accuracy.

好ましい実施の形態によれば、樹脂基板の上に、信号導体とその両側に接地導体とを持ち、単位長さ当たりの電気特性が一定のコプレーナ型平面伝送路をプリント配線してなり、前記樹脂基板の長さ方向一端側に同軸コネクタが、そのコネクタの信号線が前記信号導体に、コネクタのグランド部が前記接地導体にそれぞれ接続されるように、取り付けられており、前記樹脂基板の長さ方向他端側に、前記樹脂基板の本体部より細幅で、弾性変形可能な接触片が一体に形成され、前記接触片には前記信号導体と接地導体とが一定間隔を保ったまま延設されている高周波測定用プローブを使用できる。このプローブはプリント基板で形成できるので、非常に安価であり、しかもコプレーナ構造であるから、被検体の高周波特性を高精度に測定できる。樹脂基板の持つ弾性によって接触片が弾性変形できるので、被検体のI/Oパッドに対して安定に接触させることができる。プローブの本体部と接触片とに、信号導体と接地導体とが同じ間隔で形成されているので、本体部と接触片との間で伝送路特性が殆ど変化せず、高精度の測定ができる。 According to a preferred embodiment, a coplanar type planar transmission line having a signal conductor and ground conductors on both sides thereof on a resin substrate and having a constant electrical characteristic per unit length is printed and wired. A coaxial connector is attached to one end of the substrate in the length direction, and the signal line of the connector is attached to the signal conductor, and the ground portion of the connector is connected to the ground conductor. A contact piece that is narrower than the main body of the resin substrate and elastically deformable is integrally formed on the other end side in the direction, and the signal conductor and the ground conductor are extended at a constant interval on the contact piece. It is possible to use a high-frequency measurement probe. Since this probe can be formed of a printed circuit board, it is very inexpensive and has a coplanar structure, so that the high frequency characteristics of the subject can be measured with high accuracy. Since the contact piece can be elastically deformed by the elasticity of the resin substrate, it can be stably brought into contact with the I / O pad of the subject. Since the signal conductor and the ground conductor are formed at the same interval on the probe main body and the contact piece, the transmission path characteristics hardly change between the main body and the contact piece, and high-precision measurement can be performed. .

好ましい実施の形態によれば、プローブの接触片には、信号導体と接地導体との間を通るスリットが設けられ、スリット長を測定対象周波数の半波長としてもよい。この場合には、接触片にスリットが設けられているため、信号導体を設けた接触片と接地導体を設けた接触片とが独自に弾性変形できる。また、スリットを形成すると、インピーダンスの不整合が発生するが、スリット長を測定対象周波数の半波長とすれば、インピーダンス不整合を緩和することができる。 According to a preferred embodiment, the contact piece of the probe may be provided with a slit passing between the signal conductor and the ground conductor, and the slit length may be a half wavelength of the measurement target frequency. In this case, since the contact piece is provided with the slit, the contact piece provided with the signal conductor and the contact piece provided with the ground conductor can be independently elastically deformed. Moreover, when the slit is formed, impedance mismatching occurs. However, if the slit length is set to a half wavelength of the frequency to be measured, impedance mismatching can be mitigated.

好ましい実施の形態によれば、スリット幅を測定対象周波数の4分の1波長以下とするのがよい。すなわち、スリット幅を測定対象周波数の4分の1波長以下とすれば、信号の放射を抑制でき、損失を低減できる。 According to a preferred embodiment, the slit width is preferably set to a quarter wavelength or less of the measurement target frequency. That is, if the slit width is set to a quarter wavelength or less of the measurement target frequency, signal emission can be suppressed and loss can be reduced.

好ましい実施の形態によれば、接触片の先端部に延ばされた信号導体と接地導体の先端部には、それぞれ突起状のコンタクトを形成するのがよい。接触片の先端に突起状のコンタクトを形成することで、校正および測定時に接触位置が安定し、測定ばらつきが少なくなる。 According to a preferred embodiment, it is preferable that a protruding contact is formed at each of the signal conductor extended to the tip of the contact piece and the tip of the ground conductor. By forming a protruding contact at the tip of the contact piece, the contact position is stabilized during calibration and measurement, and measurement variations are reduced.

以下に、本発明における高周波特性測定用プローブの校正方法について、実施例を参照しながら具体的に説明する。ここでは、校正方法として特許文献1に示されたRRR校正法を用いた例について説明する。 Hereinafter, a method for calibrating a high-frequency characteristic measuring probe according to the present invention will be described in detail with reference to examples. Here, an example using the RRR calibration method disclosed in Patent Document 1 as a calibration method will be described.

−校正基板の準備−
図2に示すように、コプレーナウェーブガイド(CPW)伝送路構造のプリント基板によって製作した校正基板10を用意する。この実施例の校正基板10は、誘電体基板11の上面に、長さ方向に全長に亘って延びる細幅状の信号導体12と、その両側に一定間隔をあけて幅広な接地導体13,13とを設けたものである。誘電体基板11としては、アルミナ基板、テフロン(登録商標)基板でもよいが、エポキシ基板またはガラス−エポキシ基板のようなPCB基板でもよい。なお、校正基板10の伝送路は任意の間隔でよく、長さ方向に均一な特性インピーダンスを有するものであればよい。校正基板10の長さ方向一端側にはコネクタ14が取り付けられ、コネクタ14の信号線14aが信号導体11に、GND部14bが接地導体13にそれぞれ接続されている。コネクタ14は同軸ケーブル15を介して測定器16の測定ポート16bに接続されている。ここでは、測定器16として3ポートのネットワークアナライザを用いた。
-Preparation of calibration board-
As shown in FIG. 2, a calibration board 10 manufactured by a printed board having a coplanar waveguide (CPW) transmission path structure is prepared. The calibration substrate 10 of this embodiment has a narrow signal conductor 12 extending over the entire length in the length direction on the upper surface of a dielectric substrate 11, and wide ground conductors 13 and 13 spaced apart at both sides thereof. Are provided. The dielectric substrate 11 may be an alumina substrate or a Teflon (registered trademark) substrate, but may also be a PCB substrate such as an epoxy substrate or a glass-epoxy substrate. Note that the transmission path of the calibration board 10 may be at any interval as long as it has a uniform characteristic impedance in the length direction. A connector 14 is attached to one end in the length direction of the calibration board 10, and the signal line 14 a of the connector 14 is connected to the signal conductor 11 and the GND portion 14 b is connected to the ground conductor 13. The connector 14 is connected to the measurement port 16 b of the measuring instrument 16 through the coaxial cable 15. Here, a three-port network analyzer was used as the measuring device 16.

−校正基板のRRR校正−
次に、校正基板10の他端から任意の間隔で、4箇所(P1 〜P4 )で信号導体12と接地導体13とを短絡させる(図2参照)。短絡のために、例えば短絡基準17を校正基板10に押しつける。なお、信号導体12と両方の接地導体13を短絡させる必要はなく、信号導体12といずれか一方の接地導体13とを短絡させてもよい。ここでは校正基板10の単位長さ当たりの電気特性が未知であるとして、4箇所で短絡させたが、単位長さ当たりの電気特性が既知である場合には、3箇所でよい。前記短絡状態での測定データを用いて、校正基板10の校正面までの誤差項(散乱パラメータ)ERRR を求める。ここで、校正面とは例えば位置P1 のことである。
-RRR calibration of calibration board-
Next, the signal conductor 12 and the ground conductor 13 are short-circuited at four positions (P 1 to P 4 ) at arbitrary intervals from the other end of the calibration substrate 10 (see FIG. 2). For short circuit, for example, the short circuit reference 17 is pressed against the calibration substrate 10. It is not necessary to short-circuit the signal conductor 12 and both ground conductors 13, and the signal conductor 12 and one of the ground conductors 13 may be short-circuited. Here, it is assumed that the electrical characteristics per unit length of the calibration substrate 10 are unknown, and the circuit is short-circuited at four points. However, when the electrical characteristics per unit length are known, the number may be three. Using the measurement data in the short-circuit state, an error term (scattering parameter) E RRR to the calibration surface of the calibration substrate 10 is obtained. Here, the calibration surface is, for example, the position P 1 .

−RRR校正の誤差モデルの誤差係数の計算−
RRR校正の誤差モデルを図3に示す。反射法とは、一方のポート(コネクタ14)から被検体に入射した電磁波のどれだけの割合が反射するかを観測して、これからインピーダンス等を求める手法で、1ポートであるから、図3に示すように誤差要因もE11、E21、E12、E22の4個しかない。散乱係数測定は比測定であるので、E21=1とおけば、誤差要因はE11、E12、E22の3つである。図中のS11M は反射係数の測定値であり、S11A は被検体の散乱係数の真値である。
-Calculation of error coefficient of RRR calibration error model-
An error model of RRR calibration is shown in FIG. The reflection method is a method of observing how much of the electromagnetic wave incident on the subject is reflected from one port (connector 14) and obtaining an impedance or the like from this. As shown, there are only four error factors E 11 , E 21 , E 12 , and E 22 . Since the scattering coefficient measurement is a ratio measurement, if E 21 = 1, there are three error factors E 11 , E 12 , and E 22 . In the figure, S 11M is a measured value of the reflection coefficient, and S 11A is a true value of the scattering coefficient of the subject.

さて、前述の短絡基準17の接続による測定結果から、図3中の各誤差係数E11、E12、E22は数式1で求められる。なお、D1 は中間変数である。

Figure 0004984769
数式1の具体的な導出方法は、特許文献1に示された通りであるため、ここでは説明を省略する。 Now, the error coefficients E 11 , E 12 , and E 22 in FIG. D 1 is an intermediate variable.
Figure 0004984769
Since the specific derivation method of Formula 1 is as shown in Patent Document 1, description thereof is omitted here.

校正基板10の誤差項を求める際に、図4に示すように、RRR校正時の信号導体12と接地導体13を短絡する短絡基準17の幅分の誤差項(散乱パラメータ)EL が無視できない場合には、EL を求める必要がある。短絡基準幅の誤差項EL は、RRR校正時に算出される伝達度・位相定数を用いて、数式2のように算出できる。

Figure 0004984769
ここで、αはRRR校正によって算出した校正基板伝送路の伝達度であり、βはRRR校正によって算出した校正基板伝送路の位相定数であり、Lは短絡基準の幅である。 When obtaining the error term of the calibration substrate 10, as shown in FIG. 4, the error term (scattering parameters) the width of the short circuit reference 17 for short-circuiting the signal conductor 12 at the RRR calibration grounding conductor 13 E L is not negligible In some cases, E L needs to be determined. The error term E L of the short-circuit reference width can be calculated as Equation 2 using the transmissibility / phase constant calculated at the time of RRR calibration.
Figure 0004984769
Here, α is the transmission degree of the calibration board transmission path calculated by RRR calibration, β is the phase constant of the calibration board transmission path calculated by RRR calibration, and L is the width of the short circuit reference.

前記算出した誤差項EL とERRR を用いて、校正基板10の誤差項を数式3によって求める。計算にあたって、まず散乱パラメータEL 、ERRR をそれぞれ伝送パラメータTL 、TRRR に変換し、これらパラメータの積によって、校正基板10の誤差項の伝送パラメータTCAL を求めることができる。

Figure 0004984769
Using the calculated error terms E L and E RRR , the error term of the calibration substrate 10 is obtained by Equation 3. In the calculation, first, the scattering parameters E L and E RRR are converted into the transmission parameters T L and T RRR , respectively, and the transmission parameter T CAL of the error term of the calibration substrate 10 can be obtained by the product of these parameters.
Figure 0004984769

以上のように求めた校正基板10の誤差項TCAL によって、校正基板10の先端P1 を校正面とすることができる。なお、RRR校正によって校正基板10のコネクタ14から校正面P1 までは校正できるが、校正基板10に接続された同軸ケーブル15のコネクタ14との接続部からネットワークアナライザ16の測定ポート16bまではSOLT法などの公知の校正方法によって事前に校正しておく必要があることは言うまでもない。 Based on the error term T CAL of the calibration substrate 10 obtained as described above, the tip P 1 of the calibration substrate 10 can be used as the calibration surface. The RRR calibration can calibrate from the connector 14 of the calibration board 10 to the calibration plane P 1, but the SOLT from the connection portion with the connector 14 of the coaxial cable 15 connected to the calibration board 10 to the measurement port 16 b of the network analyzer 16. Needless to say, it is necessary to calibrate in advance by a known calibration method such as a method.

−プローブの準備−
図5は、コプレーナウェーブガイド(CPW)伝送路構造のプリント基板(PCB)によって製作したプローブ20の一例を示す。プローブ20の伝送路も任意の間隔でよく、長さ方向に均一な特性インピーダンスを有するものであればよい。ここでは、プローブ20として校正基板10と同一形状のCPW(但し、長さと接触子の形状が異なる)を用いた。すなわち、樹脂基板21の表面には、信号導体22とその両側に一定間隔をあけて接地導体23とが設けられ、プローブ20の長さ方向一端側にはコネクタ24が取り付けられている。コネクタ24の信号線24aが信号導体22に、GND部24bが接地導体23にそれぞれ接続されている。樹脂基板21としては、例えばテフロン(登録商標)基板でもよいが、エポキシ基板やガラス−エポキシ基板等の安価なPCB材料を使用することができる。コネクタ24の信号線24aとGND部24bは、同軸ケーブル25を介してネットワークアナライザ16の別の測定ポート16aに接続されている。
-Probe preparation-
FIG. 5 shows an example of a probe 20 made of a printed circuit board (PCB) having a coplanar waveguide (CPW) transmission line structure. The transmission path of the probe 20 may be at any interval as long as it has a uniform characteristic impedance in the length direction. Here, a CPW having the same shape as the calibration substrate 10 (however, the length and the shape of the contactor are different) was used as the probe 20. That is, on the surface of the resin substrate 21, the signal conductor 22 and the ground conductor 23 are provided at regular intervals on both sides thereof, and the connector 24 is attached to one end side in the length direction of the probe 20. The signal line 24 a of the connector 24 is connected to the signal conductor 22, and the GND portion 24 b is connected to the ground conductor 23. The resin substrate 21 may be a Teflon (registered trademark) substrate, for example, but an inexpensive PCB material such as an epoxy substrate or a glass-epoxy substrate can be used. The signal line 24 a and the GND portion 24 b of the connector 24 are connected to another measurement port 16 a of the network analyzer 16 via the coaxial cable 25.

プローブ20の先端部(コネクタと反対側の端部)には、図6に示すようにプローブ20の本体部より幅狭な接触片20aが一体に形成され、接触片20aの先端まで信号導体22および接地導体23が延長されている。接触片20aは樹脂基板21と一体の帯板部であり、スリット等は形成されていない。接触片20aにおける信号導体22と接地導体23との間隔は、プローブ20の本体部における間隔と等しく、かつ樹脂基板21から接触片20aが連続的に延びているので、本体部と接触片との間で伝送路特性が変化せず、インピーダンス不整合が発生しない。接触片20a上に延長された信号導体22および接地導体23の先端部は、それぞれ接触部22a,23aを形成している。接触片20aは所定のばね弾性を有するものがよく、その幅および長さは任意に設定できる。 As shown in FIG. 6, a contact piece 20a that is narrower than the main body of the probe 20 is integrally formed at the tip of the probe 20 (the end opposite to the connector), and the signal conductor 22 extends to the tip of the contact piece 20a. The ground conductor 23 is extended. The contact piece 20a is a band plate part integral with the resin substrate 21, and no slits or the like are formed. The distance between the signal conductor 22 and the ground conductor 23 in the contact piece 20a is equal to the distance in the main body portion of the probe 20 and the contact piece 20a continuously extends from the resin substrate 21. The transmission line characteristics do not change between them, and impedance mismatch does not occur. The tip portions of the signal conductor 22 and the ground conductor 23 extended on the contact piece 20a form contact portions 22a and 23a, respectively. The contact piece 20a preferably has a predetermined spring elasticity, and its width and length can be arbitrarily set.

−プローブの校正−
図7に示すように、RRR校正の終了した校正基板10の校正面に、プローブ20の接触部22a,23aを接触させる。すなわち、校正基板10の信号導体12にプローブ20の信号導体22を、校正基板10の接地導体13にプローブ20の接地導体23をそれぞれ接触させる。その状態での散乱パラメータSM を測定する。測定した散乱パラメータSM を伝送パラメータTM に変換し、この伝送パラメータTM に校正基板10の伝送パタメータTCAL の逆行列TCAL -1を掛け算することにより、数式4のようにプローブ20の伝送パラメータTprobe を求めることができる。伝送パラメータTprobe は、プローブ20の先端(接触部22a,23a)を校正面としたときのプローブ20の誤差項である。

Figure 0004984769
-Probe calibration-
As shown in FIG. 7, the contact portions 22a and 23a of the probe 20 are brought into contact with the calibration surface of the calibration substrate 10 for which RRR calibration has been completed. That is, the signal conductor 22 of the probe 20 is brought into contact with the signal conductor 12 of the calibration board 10, and the ground conductor 23 of the probe 20 is brought into contact with the ground conductor 13 of the calibration board 10. Measuring the scattering parameter S M in this state. The measured scattering parameters S M into a transmission parameter T M, by multiplying the inverse matrix T CAL -1 transmission Patameta T CAL calibration substrate 10 in this transmission parameter T M, of the probe 20 as in Equation 4 The transmission parameter T probe can be determined. The transmission parameter T probe is an error term of the probe 20 when the tip (contact portion 22a, 23a) of the probe 20 is used as a calibration surface.
Figure 0004984769

図7の下部に、プローブ20の誤差項および校正基板10の誤差項について、モデル図を示した。モデル図ではEパラメータで表示した。なお、校正基板10における校正作業と同様に、プローブ20に接続された同軸ケーブル25のコネクタ24との接続部からネットワークアナライザ16の測定ポート16aまでの範囲を、SOLT法などの公知の校正方法によって事前に校正しておく必要がある。 A model diagram of the error term of the probe 20 and the error term of the calibration board 10 is shown in the lower part of FIG. In the model diagram, it is indicated by E parameter. Similar to the calibration work on the calibration board 10, the range from the connection portion of the coaxial cable 25 connected to the probe 20 to the measurement port 16a of the network analyzer 16 is measured by a known calibration method such as the SOLT method. It is necessary to calibrate in advance.

−別のプローブの準備・校正−
後述するように、電子デバイスの測定に当たって一対のプローブを用いる場合(電子デバイスの伝送I.L.特性を測定する場合)には、図8に示すように、プローブ20と同一形状の別のプローブ20’を準備し、図7と同様にして校正を実施する。すなわち、プローブ20’を同軸ケーブル25’を介してネットワークアナライザ16の別の測定ポート16cに接続し、RRR校正の終了した校正基板10の校正面に、プローブ20’の接触部22a’,23a’を接触させ、その状態での散乱パラメータを測定し、数式4と同様にしてプローブ20’の伝送パラメータを求める。なお、同軸ケーブル25’のコネクタ24’との接続部からネットワークアナライザ16の測定ポート16cまでの範囲は、SOLT法などの公知の校正方法によって事前に校正しておくのがよい。
−Preparation and calibration of another probe−
As will be described later, when a pair of probes is used in measuring an electronic device (when measuring the transmission IL characteristics of the electronic device), another probe having the same shape as the probe 20 is used as shown in FIG. 20 ′ is prepared, and calibration is performed in the same manner as in FIG. That is, the probe 20 ′ is connected to another measurement port 16c of the network analyzer 16 via the coaxial cable 25 ′, and the contact portions 22a ′ and 23a ′ of the probe 20 ′ are connected to the calibration surface of the calibration board 10 after the RRR calibration. And the scattering parameter in that state is measured, and the transmission parameter of the probe 20 ′ is obtained in the same manner as in Equation 4. The range from the connection portion of the coaxial cable 25 ′ to the connector 24 ′ to the measurement port 16 c of the network analyzer 16 is preferably calibrated in advance by a known calibration method such as the SOLT method.

−電子デバイスの測定−
電子デバイスの伝送(I.L.)特性を測定する場合には、校正済みの一対のプローブ20,20’を準備し、図9のように一対のプローブ20,20’の接触部22a,23a、22a’,23a’を電子デバイス30の端子に接触させ、その高周波電気特性を測定する。校正済みのプローブ20,20’は、その先端部(接触部22a,23a、22a’,23a’)を校正面としてあるので、電子デバイス30の電気特性を正確に測定できる。
-Measurement of electronic devices-
When measuring the transmission (IL) characteristics of an electronic device, a pair of calibrated probes 20 and 20 'are prepared, and contact portions 22a and 23a of the pair of probes 20 and 20' are prepared as shown in FIG. , 22a ′ and 23a ′ are brought into contact with terminals of the electronic device 30, and the high-frequency electrical characteristics thereof are measured. Since the calibrated probes 20 and 20 ′ have the tip portions (contact portions 22a, 23a, 22a ′, and 23a ′) as calibration surfaces, the electrical characteristics of the electronic device 30 can be accurately measured.

前記実施形態では、3ポートの測定器16を用いたので、測定器16に2つのプローブ20,20’と1つの校正基板10とを同時に接続でき、校正基板10を取り外すことなく、校正作業および測定作業を行うことができる。測定器に2ポートしかない場合には、一方のプローブ20を校正基板10を利用して校正した後、プローブ20を測定器から取り外して別のプローブ20’を接続し、校正基板10を利用して校正する。その後、校正基板10を測定器から取り外し、校正済みのプローブ20を測定器に再度接続することで、電子デバイスの伝送特性を測定することができる。 In the above embodiment, since the three-port measuring device 16 is used, two probes 20 and 20 ′ and one calibration substrate 10 can be connected to the measuring device 16 at the same time. Measurement work can be performed. When the measuring instrument has only two ports, one probe 20 is calibrated using the calibration board 10, then the probe 20 is detached from the measuring instrument and another probe 20 ′ is connected, and the calibration board 10 is used. And calibrate. Thereafter, the calibration board 10 is removed from the measuring instrument, and the calibrated probe 20 is reconnected to the measuring instrument, whereby the transmission characteristics of the electronic device can be measured.

前記実施形態では、電子デバイスの伝送(I.L.)特性を測定する例について説明したが、反射(R.L.)特性を測定する場合には、1つのプローブだけで測定することができる。この場合には、3ポートの測定器16は必要ではなく、少なくとも2ポートあればよい。具体的には、図7に示す校正を実施した後、校正したプローブ20を電子デバイスの端子にそのまま接触させることで、反射特性を測定できる。 In the above embodiment, the example of measuring the transmission (IL) characteristic of the electronic device has been described. However, when the reflection (RL) characteristic is measured, the measurement can be performed with only one probe. . In this case, the three-port measuring device 16 is not necessary, and at least two ports are sufficient. Specifically, after the calibration shown in FIG. 7 is performed, the reflection characteristic can be measured by bringing the calibrated probe 20 into contact with the terminal of the electronic device as it is.

−実験例−
次に、本発明の校正方法を評価するために、プローブ20のショート状態を測定し、シミュレーション値(Sonnet使用)と比較した。図10に示すように、本発明の校正方法によって校正したプローブ20の先端を、ショートチップ31によってショートさせ、ショート状態を測定した結果を図11,図12に示す。図11は振幅誤差を示し、図12は位相誤差を示す。
-Experimental example-
Next, in order to evaluate the calibration method of the present invention, the short state of the probe 20 was measured and compared with a simulation value (using Sonnet). As shown in FIG. 10, the tip of the probe 20 calibrated by the calibration method of the present invention is short-circuited by the short tip 31, and the short-circuit measurement results are shown in FIGS. FIG. 11 shows the amplitude error, and FIG. 12 shows the phase error.

測定条件は以下の通りである。
〔測定器〕 ネットワークアナライザ E8364B(Agilent Technologies)
〔周波数範囲〕5 GHz 〜20GHz
〔データ点数〕401 点
〔IF帯域幅〕100Hz (平均化処理なし)
プローブ、校正用基板は共に、15μm 片面銅箔(Ni下地のAuメッキ付き)、厚さ0.5mm の樹脂基板(誘電率ε:4.8、誘電正接tan δ:0.015)を持つCPW伝送路構造のプリント基板を使用した。CPW伝送路の寸法は、信号伝送路幅1.35mm、絶縁溝幅0.15mmである。なお、プローブの伝送路長を72.3mmとした場合、伝送路損失は約−9[dB](0.125dB/mm×72.3mm) である。また、校正用基板の長さは15mmである。
The measurement conditions are as follows.
[Measurement instrument] Network analyzer E8364B (Agilent Technologies)
(Frequency range) 5 GHz to 20 GHz
[Data points] 401 points [IF bandwidth] 100Hz (No averaging)
Both the probe and the calibration board are printed on a CPW transmission line structure with a 15μm single-sided copper foil (with Ni-plated Au plating) and a 0.5mm thick resin board (dielectric constant ε: 4.8, dielectric loss tangent tan δ: 0.015) A substrate was used. The dimensions of the CPW transmission line are a signal transmission line width of 1.35 mm and an insulation groove width of 0.15 mm. When the transmission line length of the probe is 72.3 mm, the transmission line loss is about −9 [dB] (0.125 dB / mm × 72.3 mm). The length of the calibration substrate is 15 mm.

図11,図12から明らかなように、本発明による校正結果とシミュレーション値とを比較すると、振幅誤差は±0.5[dB] 、位相誤差は±3[deg]であり、殆ど一致している。よって、本発明により、プローブ先端で精度よく校正されていることがわかる。 As is clear from FIGS. 11 and 12, when the calibration result according to the present invention is compared with the simulation value, the amplitude error is ± 0.5 [dB] and the phase error is ± 3 [deg], which are almost the same. Therefore, according to the present invention, it can be seen that the probe tip is accurately calibrated.

図13は、プローブの第2実施例を示す。このプローブ40も第1実施例と同様に、コプレーナウェーブガイド(CPW)伝送路構造のプリント基板(PCB)によって製作したものであり、樹脂基板41の表面に信号導体42と接地導体43,43とが設けられ、プローブ40の長さ方向一端側にはコネクタ(図示せず)が取り付けられている。プローブ40の先端(コネクタと反対側の端部)には、2本のスリット45a,45bによって分離された3本の爪状の接触片40a〜40cが一体に形成され、各接触片の先端まで信号導体42および接地導体43,43が延びている。接触片における信号導体42および接地導体43の間隔と、本体部における信号導体42および接地導体43の間隔とは等しい。各接触片40a〜40cの先端まで延びた信号導体42および接地導体43,43の先端部には、それぞれ突起状のコンタクト46a〜46cが幅方向に並んだ位置に形成されている。 FIG. 13 shows a second embodiment of the probe. Similar to the first embodiment, this probe 40 is also manufactured by a printed circuit board (PCB) having a coplanar waveguide (CPW) transmission path structure. A signal conductor 42 and ground conductors 43 and 43 are formed on the surface of the resin substrate 41. And a connector (not shown) is attached to one end of the probe 40 in the longitudinal direction. Three claw-like contact pieces 40a to 40c separated by two slits 45a and 45b are integrally formed at the tip (end opposite to the connector) of the probe 40, up to the tip of each contact piece. The signal conductor 42 and the ground conductors 43, 43 extend. The distance between the signal conductor 42 and the ground conductor 43 in the contact piece is equal to the distance between the signal conductor 42 and the ground conductor 43 in the main body. Protruding contacts 46a to 46c are formed at positions where the signal conductors 42 and the ground conductors 43 and 43 extending to the tips of the contact pieces 40a to 40c are arranged in the width direction, respectively.

接触片40a〜40cの間に設けたスリット45a,45bのために接触片40a〜40cが分離されるので、インピーダンス不整合が発生するが、スリット45a,45bの長さを測定対象の測定波長の半波長とすることで、インピーダンス不整合を緩和でき、測定精度を高めることができる。また、スリット45a,45bの幅を、測定対象周波数の4分の1波長以下とすることで、信号の放射を抑制できる。例えば、測定対象周波数が37〜39GHzの場合、スリット45a,45bの長さを3.3mm、幅を0.5mm以下とした場合に、スリット部分の反射特性(R.L.)を−17[dB]以下とすることができ、不整合を緩和できた。 Since the contact pieces 40a to 40c are separated due to the slits 45a and 45b provided between the contact pieces 40a to 40c, impedance mismatch occurs, but the length of the slits 45a and 45b is set to the measurement wavelength of the measurement target. By setting the half wavelength, impedance mismatch can be alleviated and measurement accuracy can be improved. In addition, signal emission can be suppressed by setting the width of the slits 45a and 45b to a quarter wavelength or less of the frequency to be measured. For example, when the measurement target frequency is 37 to 39 GHz, when the length of the slits 45a and 45b is 3.3 mm and the width is 0.5 mm or less, the reflection characteristic (RL) of the slit portion is −17 [ dB] or less, and the mismatch was alleviated.

この実施例の場合は、3本の接触片40a〜40cがスリット45a,45bによって分離されているので、個々の接触片40a〜40cに所望のばね弾性を付与しやすい。そのため、コンタクト46a〜46cを被検体のI/Oパッドの高さに追従して安定して接触させることができる。各接触片40a〜40cの先端に突起状のコンタクト46a〜46cが形成されているので、校正および測定時に接触位置が安定し、測定ばらつきが少ない。 In the case of this embodiment, since the three contact pieces 40a to 40c are separated by the slits 45a and 45b, it is easy to impart desired spring elasticity to the individual contact pieces 40a to 40c. Therefore, the contacts 46a to 46c can be stably brought into contact with the height of the I / O pad of the subject. Since the protruding contacts 46a to 46c are formed at the tips of the contact pieces 40a to 40c, the contact position is stabilized during calibration and measurement, and measurement variation is small.

本発明にかかる校正方法は、前記実施例のようなCPW伝送路構造のプリント基板によって製作したプローブに限られるものではなく、如何なる形状のプローブの校正にも適用できる。すなわち、金属材料で形成された一般的なプローブ、例えば図1に示すような既存のプローブにも適用できる。また、校正基板もCPW伝送路構造のプリント基板に限らず、例えばアルミナ基板などのセラミック基板の表面に平面伝送路を形成した基板を用いてもよい。さらに、プローブおよび校正基板は、CPW伝送路構造に限らず、スロット線路構造でもよい。 The calibration method according to the present invention is not limited to a probe manufactured by a printed circuit board having a CPW transmission line structure as in the above embodiment, and can be applied to calibration of any shape of probe. That is, the present invention can also be applied to a general probe formed of a metal material, for example, an existing probe as shown in FIG. Further, the calibration substrate is not limited to a printed circuit board having a CPW transmission path structure, and a substrate having a planar transmission path formed on the surface of a ceramic substrate such as an alumina substrate may be used. Further, the probe and the calibration board are not limited to the CPW transmission path structure, but may be a slot line structure.

従来のプローブを校正基板に接触させて校正を行う方法を示す図であり、(a)はショート、(b)はロード、(c)はスルーの各接続状態を示す。It is a figure which shows the method of making a conventional probe contact a calibration board | substrate, and (a) is a short circuit, (b) is a load, (c) shows each connection state of through. 本発明で用いる校正基板の校正方法を説明する図である。It is a figure explaining the calibration method of the calibration board | substrate used by this invention. RRR校正の誤差モデルを示す図である。It is a figure which shows the error model of RRR calibration. 短絡基準の幅分の誤差項を補正する方法を示す図である。It is a figure which shows the method of correct | amending the error term for the width | variety of a short circuit standard. 本発明にかかるプローブの第1実施例を測定器に接続した状態を示す図である。It is a figure which shows the state which connected the 1st Example of the probe concerning this invention to the measuring device. 図5に示すプローブの部分斜視図である。FIG. 6 is a partial perspective view of the probe shown in FIG. 5. プローブを校正基板に接触させて校正を行う方法を示す図である。It is a figure which shows the method of making a probe contact a calibration board | substrate and calibrating. 校正基板に別のプローブを接触させて校正を行う方法を示す図である。It is a figure which shows the method of making another probe contact a calibration board | substrate and calibrating. 校正済みのプローブを用いて電子デバイスの電気特性を測定する方法を示す図である。It is a figure which shows the method of measuring the electrical property of an electronic device using the calibrated probe. 本発明にかかる校正方法を評価するため、プローブの先端をショート状態とした図である。It is the figure which made the front-end | tip of a probe the short state in order to evaluate the calibration method concerning this invention. ショート状態における校正値とシミュレーション値との振幅を比較した図である。It is the figure which compared the amplitude of the calibration value and simulation value in a short state. ショート状態における校正値とシミュレーション値との位相を比較した図である。It is the figure which compared the phase of the calibration value in a short state, and a simulation value. 本発明にかかるプローブの第2実施例の部分斜視図である。It is a fragmentary perspective view of 2nd Example of the probe concerning this invention.

符号の説明Explanation of symbols

10 校正基板
11 誘電体基板
12 信号導体
13 接地導体
14 コネクタ
15 同軸ケーブル
16 測定器(ネットワークアナライザ)
16a〜16c 測定ポート
17 短絡基準
20,20’ プローブ
20a 接触片
21 樹脂基板
22 信号導体
23 接地導体
22a,23a 接触部
24,24’ コネクタ
25,25’ 同軸ケーブル
30 被測定電子デバイス
40 プローブ
40a〜40c 接触片
41 樹脂基板
42 信号導体
43 接地導体
45a,45b スリット
46a〜46c コンタクト
10 Calibration board 11 Dielectric board 12 Signal conductor 13 Ground conductor 14 Connector 15 Coaxial cable 16 Measuring instrument (network analyzer)
16a to 16c Measurement port 17 Short-circuit reference 20, 20 'Probe 20a Contact piece 21 Resin substrate 22 Signal conductor 23 Ground conductor 22a, 23a Contact portion 24, 24' Connector 25, 25 'Coaxial cable 30 Electronic device under test 40 Probe 40a- 40c Contact piece 41 Resin substrate 42 Signal conductor 43 Ground conductors 45a and 45b Slits 46a to 46c Contacts

Claims (4)

高周波特性測定用プローブの校正方法において、
平面伝送路を有する校正基板を測定器の1つの測定ポートに接続する第1のステップと、
前記校正基板を利用した誤差補正方法により、前記校正基板上の所定の校正面から前記測定器までの誤差を導出する第2のステップと、
前記プローブを前記測定器の他の測定ポートに接続する第3のステップと、
前記校正基板の校正面に前記プローブの先端を接触させ、その電気特性を前記測定器により測定する第4のステップと、
前記第4のステップで得られた測定値から、第2のステップで得られた誤差を取り除くことで、前記測定器から前記プローブの先端までの誤差を導出し、前記プローブの先端に校正面を作成する第5のステップと、を有することを特徴とする校正方法。
In the calibration method of the probe for measuring high frequency characteristics,
A first step of connecting a calibration board having a planar transmission line to one measurement port of the measuring instrument;
A second step of deriving an error from a predetermined calibration surface on the calibration substrate to the measuring device by an error correction method using the calibration substrate;
A third step of connecting the probe to another measurement port of the measuring device;
A fourth step of bringing the tip of the probe into contact with the calibration surface of the calibration substrate and measuring its electrical characteristics with the measuring instrument;
By removing the error obtained in the second step from the measurement value obtained in the fourth step, the error from the measuring instrument to the tip of the probe is derived, and a calibration surface is placed on the tip of the probe. And a fifth step of creating the calibration method.
前記校正基板は、信号導体と接地導体とを持ち、単位長さ当たりの電気特性が一定の平面伝送路を有する基板であり、
前記第1のステップは、前記信号導体および接地導体の一端を前記測定器の測定ポートに接続することであり、
前記第2のステップは、
前記信号導体の長さ方向の少なくとも3箇所において、信号導体と接地導体とを接続状態にして反射係数を測定する第1サブステップと、前記接続状態での測定値および前記平面伝送路の電気特性から、前記校正基板の校正面から前記測定器までの誤差を導出する第2サブステップとを含む、ことを特徴とする請求項1に記載の校正方法。
The calibration board is a board having a signal conductor and a ground conductor, and having a flat transmission line with a constant electrical characteristic per unit length,
The first step is to connect one end of the signal conductor and the ground conductor to the measurement port of the measuring instrument;
The second step includes
A first sub-step for measuring a reflection coefficient by connecting a signal conductor and a ground conductor in at least three locations in a length direction of the signal conductor; a measurement value in the connection state; and an electrical characteristic of the planar transmission line The calibration method according to claim 1, further comprising: a second sub-step for deriving an error from a calibration surface of the calibration board to the measuring instrument.
前記プローブは、信号導体と接地導体とを持ち、単位長さ当たりの電気特性が一定の平面伝送路を形成した基板よりなり、前記信号導体と接地導体との間隔は前記校正基板の信号導体と接地導体との間隔に等しく、かつ基板の誘電率は前記校正基板の誘電率とほぼ等しいことを特徴とする請求項1に記載の校正方法。 The probe comprises a substrate having a signal conductor and a ground conductor, and a flat transmission line having a constant electrical characteristic per unit length, and the interval between the signal conductor and the ground conductor is the same as that of the signal conductor of the calibration substrate. The calibration method according to claim 1, wherein the calibration constant is equal to a distance from the ground conductor, and a dielectric constant of the substrate is substantially equal to a dielectric constant of the calibration substrate. 請求項1ないし3のいずれかに記載の校正方法を用いて校正した一対のプローブの先端を被測定電子デバイスに接触させて、その電気特性を前記測定器により測定するステップと、
前記被測定電子デバイスの測定値から前記第5のステップで求めた誤差を除去し、被測定電子デバイスの電気特性の真値を求めるステップと、を含むことを特徴とする電子デバイスの高周波特性測定方法。
Contacting the tip of a pair of probes calibrated using the calibration method according to any one of claims 1 to 3 with an electronic device to be measured, and measuring the electrical characteristics with the measuring device;
Removing the error obtained in the fifth step from the measured value of the electronic device to be measured to obtain a true value of the electric characteristic of the electronic device to be measured, Method.
JP2006247586A 2006-09-13 2006-09-13 Method for calibrating high-frequency characteristic measuring probe and method for measuring high-frequency characteristic of electronic device using this probe Expired - Fee Related JP4984769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006247586A JP4984769B2 (en) 2006-09-13 2006-09-13 Method for calibrating high-frequency characteristic measuring probe and method for measuring high-frequency characteristic of electronic device using this probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006247586A JP4984769B2 (en) 2006-09-13 2006-09-13 Method for calibrating high-frequency characteristic measuring probe and method for measuring high-frequency characteristic of electronic device using this probe

Publications (2)

Publication Number Publication Date
JP2008070175A JP2008070175A (en) 2008-03-27
JP4984769B2 true JP4984769B2 (en) 2012-07-25

Family

ID=39291893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006247586A Expired - Fee Related JP4984769B2 (en) 2006-09-13 2006-09-13 Method for calibrating high-frequency characteristic measuring probe and method for measuring high-frequency characteristic of electronic device using this probe

Country Status (1)

Country Link
JP (1) JP4984769B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106940406A (en) * 2016-01-05 2017-07-11 明泰科技股份有限公司 Method for Obtaining Characteristic Impedance of Circuit Transmission Line

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5219633B2 (en) * 2008-06-05 2013-06-26 東京特殊電線株式会社 High frequency measurement probe
JP2012198182A (en) * 2011-03-23 2012-10-18 Fujitsu Ltd Calibration substrate and measuring method of circuit parameters
CN109782206B (en) * 2018-12-26 2020-12-08 华中科技大学 Calibration compensation method for broadband transient voltage measuring device
CN112098728B (en) * 2020-09-17 2023-08-11 东南大学 Irregular thin film resistor test structure and method based on transmission and reflection mechanism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106940406A (en) * 2016-01-05 2017-07-11 明泰科技股份有限公司 Method for Obtaining Characteristic Impedance of Circuit Transmission Line
CN106940406B (en) * 2016-01-05 2019-08-13 明泰科技股份有限公司 Method for Obtaining Characteristic Impedance of Circuit Transmission Line

Also Published As

Publication number Publication date
JP2008070175A (en) 2008-03-27

Similar Documents

Publication Publication Date Title
US7439748B2 (en) Method and apparatus for measuring high-frequency electrical characteristics of electronic device, and method for calibrating apparatus for measuring high-frequency electrical characteristics
US20100001742A1 (en) Calibration technique
JP4984769B2 (en) Method for calibrating high-frequency characteristic measuring probe and method for measuring high-frequency characteristic of electronic device using this probe
JP5483132B2 (en) Correction method for high frequency characteristics error of electronic parts
US20070040561A1 (en) Method and apparatus for measuring high-frequency electrical characteristics of electronic device, and method for calibrating apparatus for measuring high-frequency electrical characteristics
US9535094B2 (en) Vertical/horizontal probe system and calibration kit for the probe system
CA2940904C (en) Contacting assembly, in particular an hf measuring tip
US9075097B2 (en) Transmission device and method of testing transmission characteristic of DUT
US20030115008A1 (en) Test fixture with adjustable pitch for network measurement
US7375534B2 (en) Method and apparatus for measuring high-frequency electrical characteristics of electronic device, and method for calibrating apparatus for measuring high-frequency electrical characteristics
JP2011247720A (en) Trl calibration standard and calibration device including the same
WO2006012529A1 (en) Apparatus and method for calibrating equipment for high frequency measurements
JP3912429B2 (en) Method and apparatus for measuring high-frequency electrical characteristics of electronic components, and calibration method for high-frequency electrical characteristics measuring apparatus
JP4743208B2 (en) Method for measuring electrical characteristics of electronic components
JP2009014385A (en) Error reference detector
US7042232B1 (en) Cable and substrate compensating custom resistor
US11705611B2 (en) High-frequency coaxial attenuator
JP2018151211A (en) High frequency impedance measurement method
JP2004257830A (en) Adaptor for measurement
JPWO2005101033A1 (en) Method and apparatus for measuring high-frequency electrical characteristics of electronic components, and calibration method for high-frequency electrical characteristics measuring apparatus
JP2001343406A (en) Coaxial probe
Kotzev et al. Extraction of broadband error boxes for microprobes and recessed probe launches for measurement of printed circuit board structures
CN115372665A (en) Radio frequency device testing device and testing system
JP2022105348A (en) Substrate for measuring electrical characteristics of electronic component, and method for measuring electrical characteristics of electronic component using the same
Li et al. An approach for microprobe measurement and modeling for millimeter-wave application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Ref document number: 4984769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees