JP4984317B2 - Ultraviolet light source and ultraviolet irradiation device - Google Patents

Ultraviolet light source and ultraviolet irradiation device Download PDF

Info

Publication number
JP4984317B2
JP4984317B2 JP2006114571A JP2006114571A JP4984317B2 JP 4984317 B2 JP4984317 B2 JP 4984317B2 JP 2006114571 A JP2006114571 A JP 2006114571A JP 2006114571 A JP2006114571 A JP 2006114571A JP 4984317 B2 JP4984317 B2 JP 4984317B2
Authority
JP
Japan
Prior art keywords
ultraviolet
light source
lamp
source body
straight pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006114571A
Other languages
Japanese (ja)
Other versions
JP2007287516A (en
Inventor
史生 鈴木
広樹 高橋
健一郎 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP2006114571A priority Critical patent/JP4984317B2/en
Publication of JP2007287516A publication Critical patent/JP2007287516A/en
Application granted granted Critical
Publication of JP4984317B2 publication Critical patent/JP4984317B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、紫外線を利用して殺菌及び紫外線酸化分解、オゾン洗浄・改質、樹脂硬化等に使用されるバッチ式の紫外線ランプ及び紫外線照射装置に関する。 The present invention relates to a batch-type ultraviolet lamp and ultraviolet irradiation device used for sterilization and ultraviolet oxidative decomposition, ozone cleaning / modification, resin curing, and the like using ultraviolet rays.

従来から紫外線ランプは、そのエネルギーの高さ・特有の波長の発光・光の特徴である直進性から電気エネルギーを遠隔的に物体にエネルギーを移すことが出来る。つまり光化学反応を自由に操ることを可能とするため、様々な分野へ応用されていることは周知の通りである。 Conventionally, an ultraviolet lamp can transfer electric energy to an object remotely because of its high energy, light emission of a specific wavelength, and straightness that is characteristic of light. In other words, it is well known that the photochemical reaction is applied to various fields in order to freely control the photochemical reaction.

低圧水銀ランプはその主な発光波長である185nm、254nmの紫外線の発光効率が電力に対し20〜35%くらいまでと非常に優れている。特に254nmの波長はDNAに作用し、遺伝子のチミン−チミン配列を変化させ強制的に突然変異を起こさせ生存維持を不能とすることにより殺菌さらしめる特徴のある波長域であり、その最も効率良く作用する260nm波長に極近いことから別名殺菌線とも呼ばれる。真空紫外域である185nmも同時に発光するため、紫外線酸化分解、オゾン洗浄・改質として利用されている。近年は半導体・液晶カラーフィルター・パネル製造業にオゾン洗浄としての利用が急増している。 The low-pressure mercury lamp has an excellent emission efficiency of ultraviolet rays of 185 nm and 254 nm, which are the main emission wavelengths, up to about 20 to 35% of electric power. In particular, the wavelength of 254 nm is a wavelength range characterized by sterilization exposure by acting on DNA and changing the thymine-thymine sequence of the gene to forcibly mutate and make it impossible to maintain survival. It is also called a germicidal line because it is very close to the 260 nm wavelength that acts. Since it also emits light in the vacuum ultraviolet region of 185 nm, it is used for ultraviolet oxidative decomposition, ozone cleaning and reforming. In recent years, the use of ozone cleaning has increased rapidly in the semiconductor, liquid crystal color filter, and panel manufacturing industries.

低圧水銀ランプの主な構造と動作は次のようなものである。発光管はガラス管の両端にリード線を介して電極を封着し、そのガラス管内には水銀と希ガスを封入している。そして両電極間に電圧を印可することによって放電させ、水銀に励起エネルギーを与えて発光させる。発光スペクトルは励起エネルギーに相当する波長の紫外線(主に254nmと185nm)が得られる。
高圧ランプは水銀ランプと水銀とその他の金属を添加したメタルハライドランプに分類され、高圧ランプの特徴としては365nm波長を中心とした水銀もしくはその他の金属の発光による紫外線をランプ電力として消費させることにより高出力化することができる。この特徴から高スピードの硬化・処理に対応することができ、専用の紫外線硬化インキ・樹脂との組み合わせで印刷・製版・家具等の表面コーティング等に利用されている。
The main structure and operation of the low-pressure mercury lamp are as follows. In the arc tube, electrodes are sealed at both ends of the glass tube via lead wires, and mercury and a rare gas are sealed in the glass tube. And it discharges by applying a voltage between both electrodes, gives excitation energy to mercury, and makes it light-emit. In the emission spectrum, ultraviolet rays (mainly 254 nm and 185 nm) having a wavelength corresponding to the excitation energy are obtained.
High-pressure lamps are classified into mercury lamps and metal halide lamps with added mercury and other metals. The high-pressure lamps are characterized by high consumption by radiating ultraviolet light from mercury or other metals with a wavelength of 365 nm as lamp power. Can be output. Because of this feature, it can be used for high-speed curing and processing, and is used for surface coating for printing, plate making, furniture, etc. in combination with a special ultraviolet curable ink and resin.

高圧ランプの発光管として実用上は透過率・コストから石英ガラスが使用されるがアーク温度が2000℃以上に達することからランプ形状は1対の電極を挟み直管型もしくは楕円・球状の発光管からなることが一般的である。近年半導体・液晶の露光パターン形成は現在のところ最も有効な方法であるため高出力の点光源として超高圧水銀ランプが年々大型化されている。 In practice, quartz glass is used as the arc tube for high-pressure lamps because of its transmittance and cost, but since the arc temperature reaches 2000 ° C or higher, the lamp shape is a straight tube type or elliptical / spherical arc tube with a pair of electrodes sandwiched between them. It is common to consist of. In recent years, since the exposure pattern formation of semiconductors and liquid crystals is the most effective method at present, an ultra-high pressure mercury lamp is becoming larger year by year as a high output point light source.

低圧ランプ・高圧ランプの他、キセノンなどの不活性ガス放電を利用する光源がある。キセノン発光は真空紫外から長波長と幅広い波長域をもち、希ガス発光であるため光の立ち上がりが水銀やメタルハライドランプに比べ極めて早い特性がある。この反面発光効率が低いが、フラッシュランプとして高エネルギー化・発熱抑制に工夫されDVDの張り合わせや表面殺菌及び薬液の滅菌等に応用され、近年用途開発が進んでいる。 In addition to low-pressure lamps and high-pressure lamps, there are light sources that use an inert gas discharge such as xenon. Xenon light emission has a wide wavelength range from vacuum ultraviolet to long wavelength and is rare gas light emission, so that the rise of light is extremely fast compared to mercury and metal halide lamps. On the other hand, although the luminous efficiency is low, it has been devised to increase energy and suppress heat generation as a flash lamp, and has been applied to DVD bonding, surface sterilization, chemical solution sterilization, etc., and development of applications has been progressing in recent years.

上記の希ガス放電ランプは発光管内に電極を溶着して発光管内に電子を供給する有電極ランプであるが、キセノン原子の二量体励起による発光つまりエキシマ発光を利用したランプが開発されている。エキシマランプはこれまでの水銀・その他の金属原子の励起による発光波長よりさらにエネルギーの高い172nmの真空紫外線を発光させるため、近年液晶等のフラットパネル製造業に利用されている。エキシマランプの形状は現在のところ石英ガラスによる二重管形状もしくは加熱用ハロゲンランプの直管型で使用されている。
また、近年では紫外線LEDの開発も進んでいる。
The rare gas discharge lamp described above is an electroded lamp in which an electrode is welded in an arc tube and electrons are supplied into the arc tube. However, a lamp utilizing excimer emission, that is, light emission by dimer excitation of xenon atoms has been developed. . Excimer lamps have been used in the flat panel manufacturing industry for liquid crystals and the like in recent years because they emit 172 nm vacuum ultraviolet light, which has higher energy than the emission wavelength by excitation of mercury and other metal atoms. Excimer lamps are currently used in the form of double tubes made of quartz glass or straight tube types of heating halogen lamps.
In recent years, ultraviolet LEDs have been developed.

上記紫外線ランプは一般的にバッチ式またはコンベア等の専用の装置に取り付けられる。大量生産が必要とされる液晶等のフラットパネル製造業界では製造スピードを上げるために装置はコンベア式が一般的であり、光量を稼ぐためランプを複数並べて点灯されることが多い。また被照射物の大型化に伴い紫外線ランプも高出力・長大化に進んでいる。 The ultraviolet lamp is generally attached to a dedicated apparatus such as a batch type or a conveyor. In the flat panel manufacturing industry that requires mass production, in order to increase the manufacturing speed, the apparatus is generally a conveyor type, and in order to increase the amount of light, a plurality of lamps are often arranged side by side. In addition, with the increase in the size of irradiated objects, the UV lamps are also increasing in output and length.

一方、一括処理のバッチ式はコンベア式と異なり少量・多品種生産もしくは企業や学術機関の開発・研究の実験に使用されるケースが前途に比べ多い。バッチ式照射装置はランプからの紫外線出力と照射時間により紫外線光量つまりエネルギーを調整する。図1はバッチ式紫外線照射装置の概略図を示す。1が紫外線ランプであり、その下部に紫外線ランプからの紫外線を照射して、ワークを処理する被照射面2がある。これらが箱体3の内部に配置され、紫外線照射装置を成している。処理面2上にワークを乗せたり取り出したりを容易にするため、引き出しになっており、実験の都度、ワークを出し入れすることができる。 On the other hand, unlike the conveyor type, the batch type of batch processing is often used for small-scale, multi-product production or for development and research experiments of companies and academic institutions. The batch irradiation apparatus adjusts the amount of ultraviolet light, that is, the energy, according to the ultraviolet output from the lamp and the irradiation time. FIG. 1 is a schematic view of a batch type ultraviolet irradiation apparatus. Reference numeral 1 denotes an ultraviolet lamp, and there is an irradiated surface 2 for processing the workpiece by irradiating ultraviolet rays from the ultraviolet lamp below. These are arranged inside the box 3 and constitute an ultraviolet irradiation device. In order to make it easy to put and take out the workpiece on the processing surface 2, it is a drawer, and the workpiece can be taken in and out at every experiment.

従来は図11に示すように、複数回屈曲させたランプの直管部分の設置間隔は被照射面の大きさやランプと処理面の距離に関係なく等間隔に設置されている。例えば直管部分を図2のように円筒と見なして、それらをA、B、C、D、E、Fとする。そのようなランプの照度分布は、例えばCの発光部の直下では、その両側にB、Dの発光があるため、その影響で高い照度が得られるが、Aの発光部の直下では片側にBの発光があるものの、Cの直下と比較すると照度は低くなる。図3は図2の円筒を長手方向の横手方向断面から眺めたもので、断面直下の相対照度分布(ピーク値を100%としている)を示している。図3のようにランプ直下の照度はC,D付近はA、F付近よりも高くなり、そのため紫外線照度の照射ムラが起こっていた。紫外線照射装置では、一定以上の均一な紫外線照度分布面を有効照射面として利用するが、従来の紫外線ランプではこの有効照射面が非常に小さくなっていた。 Conventionally, as shown in FIG. 11, the installation interval of the straight tube portion of the lamp bent a plurality of times is set at equal intervals irrespective of the size of the irradiated surface and the distance between the lamp and the processing surface. For example, the straight pipe portion is regarded as a cylinder as shown in FIG. 2 and these are designated as A, B, C, D, E, and F. The illuminance distribution of such a lamp is, for example, that there is B and D light emission on both sides just below the C light emitting part, so that high illuminance can be obtained due to that, but B just below the A light emitting part is B on one side. However, the illuminance is lower than that immediately below C. FIG. 3 is a view of the cylinder of FIG. 2 as viewed from the longitudinal cross section in the transverse direction, and shows a relative illuminance distribution (with a peak value of 100%) immediately below the cross section. As shown in FIG. 3, the illuminance immediately below the lamp is higher in the vicinity of C and D than in the vicinity of A and F, and therefore, irradiation unevenness of ultraviolet illuminance has occurred. In the ultraviolet irradiation apparatus, a uniform ultraviolet illuminance distribution surface of a certain level or more is used as an effective irradiation surface, but this effective irradiation surface is very small in the conventional ultraviolet lamp.

特許文献1には、液晶パネル用ではあるが、ランプ軸方向に均一な照度を得るために、軸方向に液晶パネルをはみ出すように配置している。また特許文献2では、こちらも液晶パネル用ではあるが、均斉度を改善するためにランプの配置によって蛍光体皮膜の膜厚を変化させている。 In Patent Document 1, although it is for a liquid crystal panel, in order to obtain uniform illuminance in the lamp axial direction, the liquid crystal panel is arranged so as to protrude in the axial direction. In Patent Document 2, although this is also for a liquid crystal panel, the film thickness of the phosphor film is changed by the arrangement of the lamps in order to improve the uniformity.

特開平07−175064JP 07-175064 A 特開平07−272507JP 07-272507 A

本発明は、上記問題を解消すべく、バッチ式の紫外線照射装置において、紫外線照度の均整度が高い被照射面を得て、更に、有効照射面を広くした紫外線ランプ及び紫外線照射装置を提供することを目的とする。 In order to solve the above problems, the present invention provides an ultraviolet lamp and an ultraviolet irradiation device that obtain an irradiated surface with a high degree of uniformity of ultraviolet illuminance in a batch type ultraviolet irradiation device and further widen the effective irradiation surface. For the purpose.

請求項1に記載された発明にかかる紫外線照射装置は、箱体の内部に平面状に配列された、直管部分を有する紫外線光源体と、該光源体と平行に配置された被照射面とからなるバッチ式の紫外線照射装置において、前記光源体は、その直管部分が、被照射面に対向して6本以上平行に且つ左右対称に配列されて、1つの群を構成し、その直管部分の群のうち、直管部分の中心軸に直交する方向で最外側に当たる位置の直管部分と、その隣の直管部分と、の間隔は、その内側の等間隔に配列された直管部分同士の間隔よりも狭いことを特徴とする。 The ultraviolet irradiation device according to the invention described in claim 1 is an ultraviolet light source body having a straight tube portion arranged in a planar shape inside a box , and an irradiated surface arranged in parallel with the light source body. In the batch type ultraviolet irradiation device comprising the above, the light source body has a straight tube portion arranged in parallel and symmetrically in parallel with six or more facing the surface to be irradiated to form one group, In the group of pipe parts, the distance between the straight pipe part at the outermost position in the direction perpendicular to the central axis of the straight pipe part and the adjacent straight pipe part is a straight line arranged at equal intervals inside the pipe part. It is characterized by being narrower than the interval between the tube portions .

この紫外線光源体は、配置が特に限定されず、被照射面に対して上面・下面もしくは両面にも配置される。 The arrangement of the ultraviolet light source is not particularly limited, and is also arranged on the upper surface, the lower surface, or both surfaces with respect to the irradiated surface.

被照射面が紫外線光源体の下方に配置される場合、紫外線光源体から放射される紫外線はその紫外線光源体直下の被照射面だけではなく、直下周辺に向けて照射される。そのため、被照射面の中心部では、その直上の紫外線光源体の周囲にある紫外線光源体からの照射により高い照度を得ることが出来る。しかし被照射面の外側になると、直上の紫外線光源体の外側には紫外線光源体がないため、被照射面の中心部と比較して高い照度を得ることが出来ない。特に被照射面の一番外側はその外側から紫外線が照射されることがないため、照度は低くなっていた。 When the irradiated surface is arranged below the ultraviolet light source body, the ultraviolet rays emitted from the ultraviolet light source body are irradiated not only to the irradiated surface directly under the ultraviolet light source body but also toward the immediate lower periphery. Therefore, high illuminance can be obtained at the central portion of the irradiated surface by irradiation from the ultraviolet light source body around the ultraviolet light source body immediately above. However, when it is outside the irradiated surface, there is no ultraviolet light source body outside the directly above ultraviolet light source body, so that it is not possible to obtain high illuminance compared to the central portion of the irradiated surface. In particular, since the outermost surface of the irradiated surface is not irradiated with ultraviolet rays from the outer side, the illuminance is low.

そこで請求項1のように、紫外線光源体を配列することにより、被照射面の中心部では、紫外線光源体の存在が変わらないが、被照射面の縁辺側では相対的に紫外線光源体の存在が増えるため紫外線照射が全体的に増え、被照射面として全体的に均一な照度を得ることが出来る。 Therefore, as described in claim 1, by arranging the ultraviolet light source bodies, the existence of the ultraviolet light source bodies does not change at the center of the irradiated surface, but the existence of the ultraviolet light source bodies relatively on the edge side of the irradiated surface. Therefore, ultraviolet irradiation is increased as a whole, and a uniform illuminance can be obtained as a surface to be irradiated.

本発明によれば、バッチ式の紫外線照射装置において、上面・下面もしくは両面に設置される紫外線光源体の配列を光源体の形状に応じて被照射面に対し紫外線光源体を左右対称に且つ中心部が等間隔に、最外側が密に配列することにより、中心部に比べると周囲からの光が加算されず低照度となる被照射面最外側の照度を高くし、かつ均整度の高い被照射面を得ることを可能とする。これにより従来全て等間隔に配列された光源、また、直管型で平行かつ全て等間隔に配列された光源を用いたものより広い有効照射面をとることができ、処理ロットを増やし効率を上げることができる。 According to the present invention, in the batch type ultraviolet irradiation device, the arrangement of the ultraviolet light source bodies installed on the upper surface, the lower surface, or both surfaces is symmetrical and centered with respect to the irradiated surface according to the shape of the light source body. By arranging the parts evenly spaced and the outermost side densely, compared to the central part, the light from the surroundings is not added and the illuminance on the outermost surface to be illuminated is low, and the degree of coverage is high. It is possible to obtain an irradiated surface. Thereby the light source are arranged all at equal intervals conventional, also can take wide effective irradiation surface than those using light sources arranged in parallel and all at equal intervals straight tube, increase the efficiency increase process lot be able to.

次に、本発明についての実施の形態を、図面を参照して説明する。
図1はバッチ式の紫外線照射装置を示し、1は紫外線光源体、2は被照射面であり、この上にワークを乗せ、紫外線光源体からの紫外線を照射する。これらが箱体3の内部に配置され、紫外線照射装置を成している。ワークを乗せる被照射面は引き出し型になっており、ワークの出し入れが容易になるよう構成されている。
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a batch type ultraviolet irradiation device, 1 is an ultraviolet light source body, 2 is a surface to be irradiated, and a work is placed on the surface to irradiate ultraviolet rays from the ultraviolet light source body. These are arranged inside the box 3 and constitute an ultraviolet irradiation device. The irradiated surface on which the work is placed is a drawer type, and is configured so that the work can be easily taken in and out.

図4は、本発明にかかるバッチ式の紫外線照射装置の被照射面の均整度を改善するための紫外線光源体の配置図の概念を示す図である。図4において、図4(a)は理想的な紫外線光源体の配列疎密分布の概念図である。また、図4(b)は直管型の光源体を平行に複数用いて(例えば図11のように直管部が平行に並んでいる光源体を指す)、その直管の軸に対して直角方向の均整度改善を考慮した紫外線光源体の配列疎密分布の概念図である。図4(a)、図4(b)のように紫外線光源体を配列することで、被照射面の均整度が高くなり、その結果有効照射面を広く取る事が可能である。 FIG. 4 is a diagram showing the concept of an arrangement diagram of ultraviolet light source bodies for improving the uniformity of the irradiated surface of the batch type ultraviolet irradiation apparatus according to the present invention. In FIG. 4, FIG. 4 (a) is a conceptual diagram of an array density distribution of ideal ultraviolet light source bodies. 4B uses a plurality of straight tube type light source bodies in parallel (for example, a light source body in which straight tube portions are arranged in parallel as in FIG. 11), and the axis of the straight tube. It is a conceptual diagram of the arrangement | sequence dense distribution of the ultraviolet light source body which considered the uniformity improvement of the orthogonal | vertical direction. By arranging the ultraviolet light source bodies as shown in FIGS. 4A and 4B, the degree of uniformity of the irradiated surface becomes high, and as a result, a wide effective irradiated surface can be obtained.

尚、紫外線LEDを用いると図4(a)の理想的な光源配列を実現することができる。
以下、図4(b)のような均整度改善を考慮した光源の配列の具体な実施の形態を、図を用いて説明する。
If an ultraviolet LED is used, the ideal light source arrangement shown in FIG. 4A can be realized.
Hereinafter, a specific embodiment of the arrangement of light sources in consideration of the improvement in the degree of uniformity as shown in FIG. 4B will be described with reference to the drawings.

図5は、紫外線ランプの一つの形状が直管型で構成され且つそれぞれが平行に配列される場合の具体化として、外側のランプの間隔を中心部よりも狭く配列している。この様に配列された直管型の紫外線ランプの種類としては、高圧・低圧・その他の区別なく紫外線を発光する光源であれば全て均整度の高い照射面を得ること可能とする。 FIG. 5 shows an embodiment in which one of the ultraviolet lamps has a straight tube shape and each is arranged in parallel, and the intervals between the outer lamps are arranged narrower than the central portion. As the types of straight tube type ultraviolet lamps arranged in this way, it is possible to obtain an irradiation surface with a high degree of uniformity as long as the light source emits ultraviolet rays regardless of high pressure, low pressure, or the like.

図6は、一つの形状がU字型(もしくはコの字型)の紫外線ランプ3本で構成され、且つこのU字型ランプの直管部分を平行に配列し、また、中央に存在するU字型ランプより外側にあるU字型ランプの方の発光管の間隔を狭くしている。この場合対象となる紫外線ランプはアークがランプの屈曲部で内面に近接してしまうため、温度が石英管を溶かすほどに上がらない、主として低圧水銀放電のランプに関して可能となる。この様に配列により
前記同様の均整度の高い照射面を得ることを可能とする。
FIG. 6 shows that one shape is composed of three U-shaped (or U-shaped) ultraviolet lamps, and the straight tube portions of the U-shaped lamps are arranged in parallel , and the U-shaped lamp existing in the center is arranged. The space | interval of the arc_tube | light_emitting_tube in the direction of the U-shaped lamp which exists outside a character-shaped lamp is narrowed. In this case, the target ultraviolet lamp can be mainly used for a low-pressure mercury discharge lamp in which the arc is close to the inner surface at the bent portion of the lamp and the temperature does not rise so as to melt the quartz tube. In this way, it is possible to obtain an irradiation surface having a high degree of uniformity as described above by the arrangement.

図7は1本の長尺状の紫外線ランプを複数回屈曲させ、得られた直管部分を平行に配列している。そしてこの紫外線ランプは1平面状に構成されており、外側の直管部分の間隔が中心部よりも狭い間隔で構成されている。この場合対象となる紫外線ランプは前記同様に発光管に屈曲部を有するため主として低圧水銀放電のランプに関して可能となり、この様に配列により前記同様の均整度の高い照射面を得ること可能とする。 In FIG. 7, one long ultraviolet lamp is bent a plurality of times, and the obtained straight tube portions are arranged in parallel. And this ultraviolet lamp is comprised by 1 plane shape, and the space | interval of an outer straight tube | pipe part is comprised by the space | interval narrower than a center part. In this case, since the target ultraviolet lamp has a bent portion in the arc tube as described above, it can be mainly used for a lamp of low-pressure mercury discharge. In this way, it is possible to obtain an irradiation surface with a high degree of uniformity as described above.

図8は、1本の長尺状の紫外線ランプを複数回屈曲させ、得られた直管部分を平行に配列している。そしてこの直管部分の間隔は片側を狭くしている。更にこの紫外線ランプの形状と左右対称であるランプを、その直管部分が平行になる様に配列する。これら2本から構成される紫外線ランプは1平面状に構成されており、直管部分の間隔が狭いほうが外側となるように構成されている。この場合対象となる紫外線ランプは前記同様に発光管に屈曲部を有するため主として低圧水銀放電のランプに関して可能となり、この様に配列により前記同様の均整度の高い照射面を得ること可能とする。 In FIG. 8, one long ultraviolet lamp is bent a plurality of times, and the obtained straight tube portions are arranged in parallel. And the space | interval of this straight pipe part has narrowed one side. Further, lamps that are symmetrical with the shape of the ultraviolet lamp are arranged so that the straight tube portions are parallel. These two ultraviolet lamps are configured in one plane, and are configured such that the narrower the interval between the straight tube portions, the outer. In this case, since the target ultraviolet lamp has a bent portion in the arc tube as described above, it can be mainly used for a lamp of low-pressure mercury discharge. In this way, it is possible to obtain an irradiation surface with a high degree of uniformity as described above.

図9は、バッチ式の紫外線照射装置の被照射面が円形の場合、1本の紫外線ランプを輪状に形成し、この紫外線ランプと同心円上で輪の大きさの異なる紫外線ランプを同一平面状に形成している。図9の場合、これら紫外線ランプを被照射面に対して、中心部より端部側に偏倚させている。 FIG. 9 shows that when the irradiated surface of the batch type ultraviolet irradiation device is circular, one ultraviolet lamp is formed in a ring shape, and ultraviolet lamps having concentric circles and different ring sizes are formed in the same plane. Forming. In the case of FIG. 9, these ultraviolet lamps are biased from the center to the end side with respect to the irradiated surface.

この場合対象となる紫外線ランプは前記同様に発光管に曲部を有するため主として低圧水銀放電のランプに関して可能となり、この様に配列により前記同様の均整度の高い照射面を得ること可能とする。 In this case, since the target ultraviolet lamp has a curved portion in the arc tube as described above, it can be mainly used for a lamp of low-pressure mercury discharge, and in this way, it is possible to obtain an irradiation surface with the same high degree of uniformity as described above.

次に本発明による効果を証明する具体的な例を以下に示す。
低圧水銀ランプは熱陰極方式で、発光管は合成石英よりなり、図7のように、1本の発光管を5回屈曲させ、直管部分を6本設けている。その発光管の外径はφ20mm、肉厚は1.2mmで構成されている。この発光管に緩衝ガスとしてArを1.0Torr封入した。発光管の直管部分の配列を表1の条件で構成し、本発明の構成と従来の構成とで被照射面照度の比較実験を行った。なお、図2のA、B、C、D、E、Fを基に発光管直管部のピッチを示している。
Next, specific examples for proving the effects of the present invention are shown below.
The low-pressure mercury lamp is a hot cathode system, and the arc tube is made of synthetic quartz. As shown in FIG. 7, one arc tube is bent five times and six straight tube portions are provided. The arc tube has an outer diameter of 20 mm and a wall thickness of 1.2 mm. The arc tube was filled with 1.0 Torr of Ar as a buffer gas. An arrangement of straight tube portions of the arc tube was configured under the conditions shown in Table 1, and a comparative experiment of the illuminance on the irradiated surface was performed between the configuration of the present invention and the conventional configuration. The pitch of the arc tube straight tube portion is shown based on A, B, C, D, E, and F in FIG.

Figure 0004984317
Figure 0004984317

測定系を表2に示す。 Table 2 shows the measurement system.

Figure 0004984317
Figure 0004984317

上記仕様における測定結果を図10に示す。(a)は本発明の構成による測定結果であり、(b)は従来の構成による測定結果である。ランプ直管の長手方向をA方向、横手方向をB方向とした。図10では、(a)(b)それぞれ照度均整度分布図とその分布で被照射面の照度均整度が80%以上の分布のみを示す図を示しており、従来の構成に比べ、本発明の構成では被照射面の照度均整度が80%以上となる分布が広くなり、つまり有効照射面を広くとることが可能となった。特に直管部横手方向の両端ではその差が歴然である。なお、図中6が照度均整度80%以上を示している。 The measurement results in the above specifications are shown in FIG. (A) is a measurement result by the structure of this invention, (b) is a measurement result by the conventional structure. The longitudinal direction of the lamp straight tube was the A direction, and the transverse direction was the B direction. In FIG. 10, (a) and (b) each show an illuminance uniformity distribution diagram and a diagram showing only a distribution in which the illuminance uniformity of the surface to be irradiated is 80% or more. Compared to the conventional configuration, FIG. In the configuration, the distribution in which the illuminance uniformity of the irradiated surface is 80% or more is widened, that is, the effective irradiated surface can be widened. In particular, the difference is obvious at both ends in the transverse direction of the straight pipe portion. In the figure, 6 indicates an illuminance uniformity of 80% or more.

実施例では1本の低圧水銀ランプを用いて、実験を行ったが、低圧水銀ランプが複数本あっても、その直管部分の配列は、内側を等間隔に、最外側をこれよりも密にすることによって、同様の効果を得ることが出来た。 In the example, the experiment was performed using one low-pressure mercury lamp. However, even when there are a plurality of low-pressure mercury lamps, the arrangement of straight pipe portions is equally spaced on the inner side and the outermost side is more dense than this. By doing so, the same effect could be obtained.

更に実施例では直管部分を含むランプを用いて、図4の(b)の疎密分布に近づけるよう構成したが、紫外線光源体に紫外線LEDを用いる事で、図4の(a)のような疎密分布に近づける構成を得ることが出来る。その結果、中心部に比べると周囲からの光が加算されず低照度となる被照射面外側の照度を高くし、かつ均整度の高い被照射面を得ることを可能とする。これにより従来、互いにすべて等間隔に配列された直管型光源、また、直管部分を有し直管部分が互いに平行かつすべて等間隔に配列された光源を用いたものより広い有効照射面をとることができ、処理ロットを増やし効率を上げることができる。
Further, in the embodiment, a lamp including a straight tube portion is used so as to approximate the sparse / dense distribution of FIG. 4B. However, by using an ultraviolet LED as an ultraviolet light source body, as shown in FIG. A configuration close to a sparse / dense distribution can be obtained. As a result, it is possible to increase the illuminance on the outside of the irradiated surface where the light from the surroundings is not added compared to the central portion and the illuminance is low, and to obtain the irradiated surface with a high degree of uniformity. As a result, a conventional tube-type light source that is arranged at equal intervals from each other, and a wider effective irradiation surface than that using a light source having straight tube portions that are parallel to each other and arranged at equal intervals. It is possible to increase the processing lot and increase the efficiency.

バッチ式紫外線照射装置の概略図を示す図である。It is a figure which shows the schematic of a batch type ultraviolet irradiation device. 発光管直管部分を円筒と見なした模式図である。It is the schematic diagram which considered the arc tube straight tube | pipe part as the cylinder. 図2の相対照度分布を示す図である。It is a figure which shows the relative illumination intensity distribution of FIG. 本発明のバッチ式の紫外線照射装置の被照射面の均整度を改善するための光源の配列図の概念を示す図である。It is a figure which shows the concept of the light source arrangement | sequence diagram for improving the uniformity of the to-be-irradiated surface of the batch type ultraviolet irradiation device of this invention. 本発明のバッチ式の紫外線照射装置に直管型紫外線ランプを用い、それを平行に並べた場合の光源配列の実施の形態を示す図である。It is a figure which shows embodiment of the light source arrangement | sequence at the time of using a straight tube | pipe type ultraviolet lamp for the batch type ultraviolet irradiation device of this invention, and arranging it in parallel. 本発明のバッチ式の紫外線照射装置にU字型紫外線ランプを用い、それを平行に並べた場合の光源配列の実施の形態を示す図である。It is a figure which shows embodiment of the light source arrangement | sequence at the time of using a U-shaped ultraviolet lamp for the batch type ultraviolet irradiation device of this invention, and arranging it in parallel. 本発明のバッチ式の紫外線照射装置に1本の紫外線ランプを複数回屈曲させ、直管部分を平行に複数設けた場合の光源配列の実施の形態を示す図である。It is a figure which shows embodiment of the light source arrangement | sequence at the time of bending one ultraviolet lamp in the batch type ultraviolet irradiation device of this invention several times, and providing several straight tube | pipe parts in parallel. 本発明のバッチ式の紫外線照射装置に1本の紫外線ランプを複数回屈曲させ、直管部分を平行に複数設けたランプを2本使用した場合の光源配列の実施の形態を示す図である。It is a figure which shows embodiment of the light source arrangement | sequence at the time of using one lamp | ramp several times in the batch type ultraviolet irradiation device of this invention, and using two lamp | ramps which provided the straight tube | pipe part with two or more parallel. 本発明のバッチ式の紫外線照射装置の照射面が円形の場合、輪状の紫外線ランプが同心軸に複数設置される場合の実施の形態を示す図である。When the irradiation surface of the batch type ultraviolet irradiation apparatus of this invention is circular, it is a figure which shows embodiment in the case where multiple annular | circular shaped ultraviolet lamps are installed in a concentric shaft. 実施例1の被照射面における均整度分布を示す図である。(a)は本発明にかかる均整度分布を示す図であり、(b)は従来の構成による均整度分布を示す図を示す。It is a figure which shows the uniformity distribution in the to-be-irradiated surface of Example 1. FIG. (A) is a figure which shows the degree distribution according to this invention, (b) shows the figure which shows the degree distribution by the conventional structure. 従来の構成のランプを示す図である。It is a figure which shows the lamp | ramp of the conventional structure.

符号の説明Explanation of symbols

1 紫外線光源体
2 被照射面
3 箱体
4 紫外線ランプ直管部分
5 輪状の紫外線ランプ
6 有効照射面
DESCRIPTION OF SYMBOLS 1 Ultraviolet light source body 2 Irradiated surface 3 Box 4 Ultraviolet lamp straight pipe part 5 Ring-shaped ultraviolet lamp 6 Effective irradiation surface

Claims (3)

箱体の内部に平面状に配列された、直管部分を有する紫外線光源体と、該光源体と平行に配置された被照射面とからなるバッチ式の紫外線照射装置において、前記光源体は、その直管部分が、被照射面に対向して6本以上平行に且つ左右対称に配列されて、1つの群を構成し、その直管部分の群のうち、直管部分の中心軸に直交する方向で最外側に当たる位置の直管部分と、その隣の直管部分と、の間隔は、その内側の等間隔に配列された直管部分同士の間隔よりも狭いことを特徴とする紫外線照射装置。 In a batch-type ultraviolet irradiation apparatus comprising an ultraviolet light source body having a straight tube portion arranged in a flat shape inside a box and an irradiated surface arranged in parallel with the light source body, the light source body is: 6 or more of the straight pipe portions are arranged in parallel and symmetrically so as to face the irradiated surface to constitute one group, and the straight pipe portion of the group is orthogonal to the central axis of the straight pipe portion. UV irradiation , characterized in that the distance between the straight pipe portion at the outermost position and the adjacent straight pipe portion is narrower than the interval between the straight pipe portions arranged at equal intervals inside apparatus. 前記紫外線光源体は、複数の長尺状ランプにより構成されていることを特徴とする請求項1記載の紫外線照射装置。 2. The ultraviolet irradiation device according to claim 1 , wherein the ultraviolet light source body includes a plurality of long lamps. 前記紫外線光源体は、1本のランプを複数回屈曲させて構成されたランプを含むことを特徴とする請求項1記載の紫外線照射装置。2. The ultraviolet irradiation apparatus according to claim 1, wherein the ultraviolet light source body includes a lamp formed by bending one lamp a plurality of times.
JP2006114571A 2006-04-18 2006-04-18 Ultraviolet light source and ultraviolet irradiation device Active JP4984317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006114571A JP4984317B2 (en) 2006-04-18 2006-04-18 Ultraviolet light source and ultraviolet irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006114571A JP4984317B2 (en) 2006-04-18 2006-04-18 Ultraviolet light source and ultraviolet irradiation device

Publications (2)

Publication Number Publication Date
JP2007287516A JP2007287516A (en) 2007-11-01
JP4984317B2 true JP4984317B2 (en) 2012-07-25

Family

ID=38759095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006114571A Active JP4984317B2 (en) 2006-04-18 2006-04-18 Ultraviolet light source and ultraviolet irradiation device

Country Status (1)

Country Link
JP (1) JP4984317B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010029784A (en) * 2008-07-29 2010-02-12 Harison Toshiba Lighting Corp Dielectric barrier discharge lamp apparatus
KR101762372B1 (en) * 2015-06-25 2017-07-28 한국표준과학연구원 UV Irradiation Equipment With Auto Open-and-close Device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381751A (en) * 1986-09-26 1988-04-12 Semiconductor Energy Lab Co Ltd Lamp for ultraviolet light source
JPH04141944A (en) * 1990-09-30 1992-05-15 Toshiba Lighting & Technol Corp Lighting equipment
JPH07272507A (en) * 1994-03-31 1995-10-20 Nec Home Electron Ltd Backlight unit
JP2821455B2 (en) * 1997-11-04 1998-11-05 株式会社日立製作所 Fluorescent lamp
JP4366991B2 (en) * 2003-05-08 2009-11-18 株式会社ジーエス・ユアサコーポレーション lamp

Also Published As

Publication number Publication date
JP2007287516A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
EP2144275A2 (en) Light assembly having inner illumination device
JP4984317B2 (en) Ultraviolet light source and ultraviolet irradiation device
CN1929084A (en) High-brightness discharge lamp and irradiation unit using same
JP2011091007A (en) Electrodeless lamp and ultraviolet irradiation device
US20220367171A1 (en) Light irradiation device
US8400059B2 (en) Mercury-vapor discharge lamp for homogeneous, planar irradiation
US20220076938A1 (en) Vacuum ultraviolet excimer lamp with a thin wire inner electrode
TWI660397B (en) Ultraviolet lamp
JP2005222905A (en) Excimer lamp
CN111161999A (en) Three-tube type excimer lamp
JP2016072087A (en) Ultraviolet irradiation device
EP3648145B1 (en) Vacuum ultraviolet excimer lamp with an inner axially symmetric wire electrode
EP3648144A1 (en) Vacuum ultraviolet excimer lamp with uv fluorescent coating
CN111192815B (en) Long arc type discharge lamp
JP2010055782A (en) Ultraviolet-ray discharge lamp
JP6883258B2 (en) Long arc type discharge lamp
CN211858582U (en) Three-tube type excimer lamp
JP2013012379A (en) Light irradiation device
CN111739787B (en) Discharge lamp and liquid crystal panel manufacturing apparatus
RU2378736C1 (en) Low-pressure gas discharge lamp
TWI745630B (en) Long arc discharge lamp
KR102442405B1 (en) Long arc type discharge lamp
JP2022133207A (en) Fluid sterilizer, and straight tube type light source
JP4890343B2 (en) Light source device
KR20240030196A (en) Light irradiation device for surface modification

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120402

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120415

R150 Certificate of patent or registration of utility model

Ref document number: 4984317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350