JP4982450B2 - Microbubble generator - Google Patents

Microbubble generator Download PDF

Info

Publication number
JP4982450B2
JP4982450B2 JP2008217113A JP2008217113A JP4982450B2 JP 4982450 B2 JP4982450 B2 JP 4982450B2 JP 2008217113 A JP2008217113 A JP 2008217113A JP 2008217113 A JP2008217113 A JP 2008217113A JP 4982450 B2 JP4982450 B2 JP 4982450B2
Authority
JP
Japan
Prior art keywords
disk member
disk
bubble injection
microbubbles
bubble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008217113A
Other languages
Japanese (ja)
Other versions
JP2010051854A (en
Inventor
木 一 義 青
秀 雄 小見田
城 智香子 岩
岡 慎 一 師
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008217113A priority Critical patent/JP4982450B2/en
Publication of JP2010051854A publication Critical patent/JP2010051854A/en
Application granted granted Critical
Publication of JP4982450B2 publication Critical patent/JP4982450B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、マイクロバブルと呼ばれる微小気泡を発生させるための微小気泡発生装置に関するものである。   The present invention relates to a microbubble generator for generating microbubbles called microbubbles.

気泡径が100μm程度の水中に注入された微小気泡はマイクロバブルと呼ばれ、その化学的又は物理的特性に基づき、例えば、除菌効果や摩擦抵抗低減効果などの種々の効果を得ることができるため、各種産業分野での利用が期待されている。   Microbubbles injected into water with a bubble diameter of about 100 μm are called microbubbles, and based on their chemical or physical characteristics, various effects such as sterilization effects and frictional resistance reduction effects can be obtained. Therefore, it is expected to be used in various industrial fields.

このような微小気泡を発生させる微小気泡発生装置としては種々のタイプのものが知られている。例えば、特許文献1に係る装置では、コンプレッサなどの気体供給手段から水が流れる管に多孔質体を通して気体を供給することで微小気泡を発生させるようにしている。   Various types of microbubble generators that generate such microbubbles are known. For example, in the apparatus according to Patent Document 1, microbubbles are generated by supplying gas through a porous body from a gas supply means such as a compressor to a pipe through which water flows.

また、特許文献2に係る装置では、円錐形状の回転容器本体に対し、底面付近の周面部に加圧液体導入口を設けると共に、底面側に気体導入孔を設け、更に回転容器本体の頂部には旋回気液導出孔を設けた構成としている。そして、旋回しながら上記導出孔に向かう液体と気体との間の旋回速度差を利用して気泡表面に大きなせん断力を作用させ、このせん断力で気泡を導出孔から引きちぎるようにして大量の微小気泡を発生させるようにしている。
特開平8−225094号公報 特開2003−205228号公報
In addition, in the apparatus according to Patent Document 2, a pressurized liquid introduction port is provided on the peripheral surface portion near the bottom surface, a gas introduction hole is provided on the bottom surface side, and a top portion of the rotation container body is provided on the cone-shaped rotation container body. Has a structure in which a swirling gas-liquid outlet hole is provided. Then, a large shearing force is applied to the bubble surface by utilizing the difference in swirling speed between the liquid and the gas heading toward the outlet hole while turning, and a large amount of minute air is pulled off from the outlet hole by this shearing force. Air bubbles are generated.
JP-A-8-2225094 JP 2003-205228 A

しかし、特許文献1に係る装置の場合、多孔質体から気泡が離脱しにくいため、発生する気泡が多孔質体の孔径より大きくなり、充分に微小な気泡を得ることができないという欠点を有している。   However, in the case of the apparatus according to Patent Document 1, since the bubbles are difficult to separate from the porous body, the generated bubbles are larger than the pore diameter of the porous body, and there is a disadvantage that sufficiently small bubbles cannot be obtained. ing.

また、特許文献2に係る装置の場合、特許文献1の場合に比べて微小な気泡を得ることができるが、液体に旋回流を与える必要があるため圧力損失が大きくなると共に、液体中の気体の割合が特許文献1の場合に比べて低くなってしまうという欠点を有している。   In addition, in the case of the device according to Patent Document 2, fine bubbles can be obtained as compared with Patent Document 1, but since it is necessary to give a swirl flow to the liquid, the pressure loss increases and the gas in the liquid This ratio has a disadvantage that it is lower than that of Patent Document 1.

このように、一般的に従来の微小気泡発生装置では、気泡径と必要エネルギーとは所謂トレードオフの関係にある。つまり、充分に気泡径の小さな気泡を発生させようとすると大きなエネルギーを必要とせざるを得ず、一方、エネルギーを低減させようとすると気泡径の大きな気泡しか得ることができなかった。   Thus, in general, in the conventional microbubble generator, the bubble diameter and the required energy are in a so-called trade-off relationship. In other words, if it is attempted to generate bubbles having a sufficiently small bubble diameter, a large amount of energy is required. On the other hand, if energy is reduced, only bubbles having a large bubble diameter can be obtained.

本発明は上記事情に鑑みてなされたものであり、少ないエネルギーにより気泡径の充分に小さな微小気泡を効率的に発生させることが可能な微小気泡発生装置を提供することを目的としている。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a microbubble generator capable of efficiently generating microbubbles having a sufficiently small bubble diameter with a small amount of energy.

上記課題を解決するため、本発明は、
微小気泡注入対象となる水中に配置され、内部に空洞部が形成されると共に、盤面上に多数の気泡注入孔が形成されている円盤部材と、前記円盤部材の空洞部に対しエア供給ラインを介してエアを供給するエア供給手段と、前記円盤部材を回転駆動するモータ手段と、を備えており、前記円盤部材の盤面上に形成された多数の気泡注入孔は、円盤部材回転時における気泡注入孔の周速度が所定速度以上になる設定領域に形成されている微小気泡発生装置において、
前記円盤部材及び前記モータ手段は、円盤部材が下側に位置する縦置き状態に配設され、前記多数の気泡注入孔が形成された盤面は、モータ手段と対向する上面側の盤面に配されるとともに
前記水中において前記設定領域の盤面と接触した状態で摺動するように前記円盤部材の気泡注入孔に配された摺接部材を備えた
ことを特徴とする。
In order to solve the above problems, the present invention provides:
A disk member that is disposed in the water to be injected with microbubbles, has a cavity formed therein, and has a plurality of bubble injection holes formed on the disk surface, and an air supply line for the cavity of the disk member Air supply means for supplying air through, and motor means for rotationally driving the disk member, and a large number of bubble injection holes formed on the disk surface of the disk member include bubbles when the disk member rotates. In the microbubble generator formed in the setting region where the peripheral speed of the injection hole is equal to or higher than a predetermined speed,
The disk member and the motor means are disposed in a vertically placed state with the disk member positioned on the lower side, and the disk surface on which the plurality of bubble injection holes are formed is disposed on the upper surface of the disk surface facing the motor means. And
And a sliding contact member disposed in the bubble injection hole of the disk member so as to slide in contact with the disk surface of the setting region in the water .

本発明によれば、円盤部材の盤面上に形成された多数の気泡注入孔は、円盤部材回転時における気泡注入孔の周速度が所定速度以上になる設定領域に形成された構成となっているので、少ないエネルギーにより気泡径の充分に小さな微小気泡を効率的に発生させることが可能になる。   According to the present invention, a large number of bubble injection holes formed on the disk surface of the disk member are configured to be formed in a setting region where the peripheral speed of the bubble injection hole during rotation of the disk member is equal to or higher than a predetermined speed. Therefore, it is possible to efficiently generate microbubbles having a sufficiently small bubble diameter with a small amount of energy.

図1は、本発明の第1の実施形態の構成図である。床1に水槽2が設置され、この水槽2内に水3が貯溜されている。水槽2の底面には支持脚4が配設され、この支持脚4にモータ手段である水中モータ5が取り付けられている。   FIG. 1 is a configuration diagram of a first embodiment of the present invention. A water tank 2 is installed on the floor 1, and water 3 is stored in the water tank 2. A support leg 4 is disposed on the bottom surface of the water tank 2, and an underwater motor 5 as a motor means is attached to the support leg 4.

水中モータ5の回転軸6先端はロータリジョイント7の上側に取り付けられており、更に、ロータリジョイント7の下側にはエア供給パイプ8の一端側が取り付けられている。このエア供給パイプ8の他端側は円盤部材9に取り付けられている。そして、ロータリジョイント7の側面部にはエア供給ライン10の一端側が接続されている。このエア供給ライン10の他端側はエア供給手段としてのブロワ11に接続されている。そして、ブロワ11が起動すると、エアがエア供給ライン10、ロータリジョイント7、及びエア供給パイプ8を介して円盤部材9の空洞部に供給されるようになっている。   The tip of the rotating shaft 6 of the submersible motor 5 is attached to the upper side of the rotary joint 7, and one end side of the air supply pipe 8 is attached to the lower side of the rotary joint 7. The other end side of the air supply pipe 8 is attached to a disk member 9. One end side of the air supply line 10 is connected to the side surface of the rotary joint 7. The other end side of the air supply line 10 is connected to a blower 11 as air supply means. When the blower 11 is activated, air is supplied to the hollow portion of the disk member 9 via the air supply line 10, the rotary joint 7, and the air supply pipe 8.

図2は、図1における円盤部材9の構造を示す説明図であり、(a)は円盤部材9及びエア供給パイプ8の縦断面図、(b)は(a)のB−B矢視図である。   2A and 2B are explanatory views showing the structure of the disk member 9 in FIG. 1, wherein FIG. 2A is a longitudinal sectional view of the disk member 9 and the air supply pipe 8, and FIG. 2B is a view taken along the line BB in FIG. It is.

図2(a)に示すように、円盤部材9の上面側中心部には、空洞部9aと連通するエア供給パイプ8の他端側が接続されている。また、円盤部材9の上面側には多数の気泡注入孔9bが形成されている。したがって、ブロワ11からエア供給ライン10、ロータリジョイント7を経由して送られてきたエアは、このエア供給パイプ8の他端側から空洞部9a内に供給され、更に多数の気泡注入孔9bから微小気泡となって水中に注入されることになる。   As shown in FIG. 2A, the other end side of the air supply pipe 8 communicating with the hollow portion 9a is connected to the center portion on the upper surface side of the disk member 9. A large number of bubble injection holes 9 b are formed on the upper surface side of the disk member 9. Therefore, the air sent from the blower 11 via the air supply line 10 and the rotary joint 7 is supplied into the hollow portion 9a from the other end side of the air supply pipe 8, and further from a large number of bubble injection holes 9b. Microbubbles will be injected into the water.

図2(b)に示すように、多数の気泡注入孔9bは、円盤部材9の上面側の盤面周縁部付近にドーナツ状に設定された設定領域R内に形成されている。この設定領域Rは、円盤部材9の回転時における気泡注入孔9bの周速度が所定速度以上になるような領域として設定されたものである。そして、これらの気泡注入孔9bは、複数の半径R1,R2,R3毎の同一同心円上に所定のピッチPで形成されている。   As shown in FIG. 2 (b), a large number of bubble injection holes 9 b are formed in a set region R set in a donut shape near the periphery of the disk surface on the upper surface side of the disk member 9. This set region R is set as a region in which the peripheral speed of the bubble injection hole 9b during the rotation of the disk member 9 is equal to or higher than a predetermined speed. These bubble injection holes 9b are formed at a predetermined pitch P on the same concentric circle for each of a plurality of radii R1, R2, R3.

次に、図1の動作を説明する。水中モータ5が回転を開始し、ブロワ11が起動されると、大気中からブロワ11に取り込まれたエアは、エア供給ライン10、ロータリジョイント7、及びエア供給パイプ8を通って円盤部材9の空洞部9aに供給される。そして、空洞部9a内に満たされたエアは、多数の気泡注入孔9bから微小気泡として水中に注入される。   Next, the operation of FIG. 1 will be described. When the submersible motor 5 starts to rotate and the blower 11 is activated, the air taken into the blower 11 from the atmosphere passes through the air supply line 10, the rotary joint 7, and the air supply pipe 8 to the disk member 9. It is supplied to the cavity 9a. And the air with which the cavity part 9a was filled is inject | poured in water as a microbubble from many bubble injection holes 9b.

このとき、気泡注入孔9bから生成し、水中に注入されようとする微小気泡は、回転中の円盤部材9と、円盤部材9の周囲に存在する水との間の相対運動によって生じるせん断力の作用を受けて気泡注入孔9bから剥離され水中に注入される。このときのせん断力の大きさは、気泡注入孔9bが設定領域R内に形成されて高速で回転していることから大きなものとなっている。したがって、気泡注入孔9bから顔を出した状態の微小気泡は、径の大きな気泡に成長する前に、強いせん断力で気泡注入孔9bから直ちに引きちぎられ、微細な状態を維持したままで水中に注入される。すなわち、本実施形態の構成によれば、少ないエネルギーにより気泡径の充分に小さな微小気泡を効率的に発生させることが可能となる。   At this time, the microbubbles generated from the bubble injection hole 9b and about to be injected into the water have a shearing force generated by the relative motion between the rotating disk member 9 and the water existing around the disk member 9. Under the action, it is peeled off from the bubble injection hole 9b and injected into water. The magnitude of the shearing force at this time is large because the bubble injection hole 9b is formed in the set region R and rotates at a high speed. Therefore, the microbubbles in the state of being exposed from the bubble injection hole 9b are immediately torn off from the bubble injection hole 9b with a strong shearing force before growing into a bubble having a large diameter, and are kept in the water while maintaining the fine state. Injected. That is, according to the configuration of the present embodiment, it is possible to efficiently generate microbubbles having a sufficiently small bubble diameter with a small amount of energy.

次に、本実施形態における各種データの具体的数値につき説明する。本実施形態では、円盤部材9の盤面上に形成された多数の気泡注入孔9bは、円盤部材9回転時における気泡注入孔9bの周速度が所定速度以上になる設定領域Rに形成された構成となっているが、この所定速度とは本実施形態では6[m/s]である。水中モータ5の回転速度(可変速度又は一定速度のいずれでも)、及び設定領域Rの幅は、全ての気泡注入孔9bの周速度が6[m/s]以上となるように設定しておく必要がある。   Next, specific numerical values of various data in the present embodiment will be described. In the present embodiment, a large number of bubble injection holes 9b formed on the disk surface of the disk member 9 are formed in a setting region R in which the peripheral speed of the bubble injection hole 9b during rotation of the disk member 9 is equal to or higher than a predetermined speed. However, the predetermined speed is 6 [m / s] in the present embodiment. The rotation speed of the submersible motor 5 (either variable speed or constant speed) and the width of the setting region R are set so that the peripheral speed of all the bubble injection holes 9b is 6 [m / s] or more. There is a need.

本願の発明者は、気泡注入孔9bの孔径を0.1〜1ミリの範囲で種々変化させて実験してみたが、周速度が6[m/s]以上の場合には、この範囲であればいずれの孔径であっても、ほぼ100μm(0.1mm)程度の微小気泡を得ることができた。   The inventor of the present application experimented with various changes in the diameter of the bubble injection hole 9b in the range of 0.1 to 1 mm, but when the peripheral speed is 6 [m / s] or more, the range is within this range. Regardless of the pore size, microbubbles of about 100 μm (0.1 mm) could be obtained.

また、図2(b)におけるピッチPの値は15mm以上とすることが好ましい。実験結果では、これよりも小さなピッチPでは隣接する気泡注入孔9bから離脱した微小気泡同士が合体して大きな径の気泡に成長してしまうことが認められた。   Moreover, it is preferable that the value of the pitch P in FIG.2 (b) shall be 15 mm or more. As a result of the experiment, it was confirmed that, at a pitch P smaller than this, the microbubbles separated from the adjacent bubble injection holes 9b merged to grow into bubbles having a large diameter.

ところで、本実施形態では、気泡注入孔9bが0.1〜1ミリの孔径を有する円形形状の孔であることを想定しているが、これら円形形状の孔の直径に内接するn角形(つまり多角形)の形状とすることで、より径の小さな微小気泡を得ることができる。この理由を図3を用いて説明する。   By the way, in this embodiment, it is assumed that the bubble injection hole 9b is a circular hole having a hole diameter of 0.1 to 1 mm, but an n-gon (that is, a polygon) inscribed in the diameter of these circular holes. ), Microbubbles having a smaller diameter can be obtained. The reason for this will be described with reference to FIG.

図3(a)に示すように、気泡注入孔9bから微小気泡12が水中に顔を出し、剥離されようとしている寸前の状態を考えてみる。この状態では、微小気泡12に対して作用するせん断力Fと、微小気泡12の気泡注入孔9bへの付着力Fbとが釣り合い、F=Fb となっている。微小気泡12を気泡注入孔9bから剥離するための一つの手法は、せん断力Fの方に着目し、このFを増大させることによりF>Fb とすることであるが、これは既述したように気泡注入孔9bの周速度を所定速度(6[m/s])以上とすることで実現できる。   As shown in FIG. 3A, let us consider a state just before the microbubbles 12 appear in water from the bubble injection hole 9b and are about to be peeled off. In this state, the shearing force F acting on the microbubbles 12 and the adhesion force Fb of the microbubbles 12 to the bubble injection hole 9b are balanced, and F = Fb. One method for separating the microbubbles 12 from the bubble injection hole 9b is to pay attention to the shearing force F and to increase F so that F> Fb. Further, this can be realized by setting the peripheral speed of the bubble injection hole 9b to a predetermined speed (6 [m / s]) or more.

そして、微小気泡12を気泡注入孔9bから剥離するためのもう一つの手法は、付着力Fbの方に着目し、このFbを減小させることによりF>Fb とすることである。ここで、付着力Fbは、微小気泡12が付着している長さ(つまり気泡注入孔9bの内周の長さ)をP、微小気泡12の表面張力をσとすると、Fb=P*σ で表すことができる。表面張力σは水の物性値であり一定であるから、付着力Fbを小さくするためには気泡注入孔9bの内周長さPを短くしてやればよい。   Then, another method for peeling the microbubbles 12 from the bubble injection hole 9b is to pay attention to the adhesive force Fb and to reduce Fb so that F> Fb. Here, the adhesion force Fb is Fb = P * σ, where P is the length of the microbubbles 12 attached (that is, the inner circumference of the bubble injection hole 9b), and σ is the surface tension of the microbubbles 12. Can be expressed as Since the surface tension σ is a physical property value of water and is constant, the inner circumferential length P of the bubble injection hole 9b may be shortened in order to reduce the adhesive force Fb.

そこで、図3(b)に示すように、気泡注入孔9bを直径D1を有する円形形状の孔とした場合に、図3(c)に示すように、直径D1の円に内接する四角形形状(n=4)の気泡注入孔9bとすれば、この四角形形状の気泡注入孔9bの内周長さは円形形状の場合よりも短くなるので付着力Fbをより小さくすることができる。図3(c)では、n=4とした四角形形状の気泡注入孔9bの例を示したが、n=3とした三角形形状、あるいはn=5とした五角形形状であってもよい。しかし、nの値をあまりに大きくするとn角形は円形に近づいてしまい意味がなくなるので、実用的にはnの値はn=3〜6の範囲が好ましい。   Therefore, as shown in FIG. 3B, when the bubble injection hole 9b is a circular hole having a diameter D1, as shown in FIG. 3C, a rectangular shape (inscribed in a circle having a diameter D1) If the bubble injection hole 9b of n = 4) is used, the inner peripheral length of the rectangular bubble injection hole 9b is shorter than that of the circular shape, so that the adhesive force Fb can be further reduced. In FIG. 3C, an example of a rectangular bubble injection hole 9b with n = 4 is shown, but a triangular shape with n = 3 or a pentagonal shape with n = 5 may be used. However, if the value of n is too large, the n-gonal shape becomes close to a circle and is meaningless. Therefore, practically, the value of n is preferably in the range of n = 3-6.

ここで、上述した図1の構成において、円盤部材9及び水中モータ5は、円盤部材9が下側に位置する縦置き状態に配設され、多数の気泡注入孔9bが形成された盤面は、水中モータ5と対向する上面側の盤面となっている。このように、円盤部材9及び水中モータ5の双方を水槽2内に配設する構成とすることにより、構造の単純化及び省スペース化という効果を得ることができる。   Here, in the configuration of FIG. 1 described above, the disk member 9 and the submersible motor 5 are arranged in a vertically placed state in which the disk member 9 is located on the lower side, and the disk surface on which a large number of bubble injection holes 9b are formed is It is a board surface on the upper surface side facing the submersible motor 5. As described above, by providing both the disk member 9 and the submersible motor 5 in the water tank 2, the effects of simplification of the structure and space saving can be obtained.

すなわち、本願の出願以前に本願の発明者らは、円盤部材を水槽内の底部付近に配設すると共に、モータ手段を水槽底部の下方(水槽外部)に配設する構成を提案している(PCT/JP2008/59448)。しかし、このような構成では、水槽底部を貫通するモータ手段の回転軸周りの水漏れを防止しなければならないために構造が複雑化し、また、水槽底部の下方にモータ手段配設のためのスペースを確保しなければならず、設計上の自由度がある程度損なわれることになる。上述した図1の第1の実施形態の構成によれば、このような不都合を回避することができる(この後の第2の実施形態以降の構成も同様である)。   That is, prior to the filing of the present application, the inventors of the present application have proposed a configuration in which the disk member is disposed near the bottom of the water tank and the motor means is disposed below the water tank bottom (outside the water tank). PCT / JP2008 / 59448). However, in such a configuration, since the water leakage around the rotating shaft of the motor means penetrating the bottom of the water tank must be prevented, the structure is complicated, and a space for arranging the motor means is provided below the bottom of the water tank. Therefore, the degree of freedom in design is impaired to some extent. According to the configuration of the first embodiment of FIG. 1 described above, such inconvenience can be avoided (the same applies to the configurations of the second and subsequent embodiments thereafter).

図4は、本発明の第2の実施形態の構成図である。図1と同様の構成要素には同一又は類似の符号を付してある。   FIG. 4 is a configuration diagram of the second embodiment of the present invention. Components similar to those in FIG. 1 are denoted by the same or similar reference numerals.

本実施形態では、モータ手段として気中モータ5Aを用いることとしており、この気中モータ5Aを充分な高さを有する支持脚4Aの上端部に取り付けて、ロータリジョイント7と共に水槽2内の水面上方に位置するように配設している。   In the present embodiment, the air motor 5A is used as the motor means. The air motor 5A is attached to the upper end portion of the support leg 4A having a sufficient height, and above the water surface in the water tank 2 together with the rotary joint 7. It arrange | positions so that it may be located in.

但し、このように気中モータ5A及びロータリジョイント7を水面上方に配設すると、エア供給パイプ8の長さをかなり長くせざるを得ないので、エア供給パイプ8の円盤部材9のやや上方の位置を振れ止め機構13で支持し、この振れ止め機構13を支持脚4Aの下方部分に設けた取付部材14に取り付けた構成としている。   However, if the air motor 5A and the rotary joint 7 are arranged above the water surface in this way, the length of the air supply pipe 8 must be considerably increased, so that the disk member 9 of the air supply pipe 8 is slightly above. The position is supported by the steadying mechanism 13, and the steadying mechanism 13 is attached to an attachment member 14 provided in the lower part of the support leg 4A.

図1の第1の実施形態では、モータ手段として、高価でメンテナンスを頻繁に行う必要のある(特に、水3の汚損が甚だしい場合)水中モータ5を用いていたが、この第2の実施形態では気中モータ5Aを用いた構成としているので、価格的に有利になると共に、それほど頻繁にメンテナンスを行う必要がなくなる。   In the first embodiment of FIG. 1, the submersible motor 5 is used as the motor means that is expensive and requires frequent maintenance (especially when the water 3 is severely contaminated). Then, since it is set as the structure using the air motor 5A, it becomes advantageous in price, and it becomes unnecessary to perform maintenance so frequently.

図5は、本発明の第3の実施形態の説明図であり、(a)は全体の構成図、(b)は(a)のB−B矢視図である。   5A and 5B are explanatory views of a third embodiment of the present invention, in which FIG. 5A is an overall configuration diagram, and FIG. 5B is a view taken along the line B-B in FIG.

図5(a)に示すように、本実施形態では、円盤部材9及びモータ手段としての水中モータ5は、円盤部材9が上側に位置する縦置き状態に配設され、多数の気泡注入孔が形成された盤面は、水中モータ5と対向する下面側と反対側の上面側の盤面であり、更に、多数の気泡注入孔が形成された盤面の上方に、微小気泡12の集合を抑制する微小気泡集合抑制部材15が配設されている。   As shown in FIG. 5 (a), in this embodiment, the disk member 9 and the underwater motor 5 as the motor means are arranged in a vertically placed state in which the disk member 9 is located on the upper side, and a large number of bubble injection holes are provided. The formed board surface is a board surface on the upper surface side opposite to the lower surface side facing the submersible motor 5, and further, a minute surface that suppresses the aggregation of the microbubbles 12 above the board surface on which a large number of bubble injection holes are formed. A bubble aggregation suppressing member 15 is provided.

図5(b)に示すように、この微小気泡集合抑制部材15は略十字形の断面形状を有する部材である。   As shown in FIG. 5B, the microbubble aggregation suppressing member 15 is a member having a substantially cross-sectional shape.

気泡注入孔9bから剥離された多数の微小気泡12は、次第に水3の中を水面に向かって上昇していくが、その途中で複数の気泡同士が集合して接触すると、これらは合体してより大きな気泡に成長してしまう。   A large number of microbubbles 12 peeled from the bubble injection hole 9b gradually rise in the water 3 toward the surface of the water. Grows into larger bubbles.

そこで、本実施形態では円盤部材9の上方に、微小気泡12の集合を抑制するための微小気泡集合抑制部材15を配設して、複数の微小気泡12同士が集合し接触することに起因して、大きな気泡が生成されるのを極力防止するようにしている。   Therefore, in the present embodiment, the microbubble aggregation suppressing member 15 for suppressing the aggregation of the microbubbles 12 is disposed above the disk member 9, and the plurality of microbubbles 12 are aggregated and come into contact with each other. Thus, the generation of large bubbles is prevented as much as possible.

図6は、本発明の第4の実施形態の説明図であり、(a)は要部の構成図、(b)は(a)のB−B矢視図である。   6A and 6B are explanatory views of a fourth embodiment of the present invention, in which FIG. 6A is a configuration diagram of a main part, and FIG. 6B is a view taken along the line BB in FIG.

図6(a)に示すように、本実施形態は、図1の構成における円盤部材9の上面側盤面と水中モータ5との間(正確にはロータリジョイント7との間)に、円盤部材9と共に回転する拡散翼取付板17を配設したものである。そして、この拡散翼取付板17には複数の拡散翼部材16を取り付け、円盤部材9の中心側から外側へ向かう矢印方向の水の流れを誘起させるようにしている。   As shown in FIG. 6A, in the present embodiment, the disk member 9 is disposed between the upper surface side disk surface of the disk member 9 and the submersible motor 5 (specifically, between the rotary joint 7) in the configuration of FIG. A diffusion blade mounting plate 17 that rotates together with this is disposed. A plurality of diffusion blade members 16 are attached to the diffusion blade attachment plate 17 so as to induce the flow of water in the arrow direction from the center side of the disk member 9 to the outside.

図6(b)に示すように、拡散翼部材16は略三日月形状に形成されており、拡散翼取付板17が円盤部材9と共に時計方向に回転されると、中心側から外側へ向かう方向に水の流れが誘起されるようになっている。これにより、微小気泡12の気泡注入孔9bからの剥離を促進させることができる。   As shown in FIG. 6B, the diffusion blade member 16 is formed in a substantially crescent shape, and when the diffusion blade attachment plate 17 is rotated in the clockwise direction together with the disk member 9, the diffusion blade member 16 moves in the direction from the center side toward the outside. A water flow is induced. Thereby, peeling of the microbubble 12 from the bubble injection hole 9b can be promoted.

なお、拡散翼部材16の形成については、拡散翼取付板17に薄板状鋼板を用い、この鋼板の一部を切り起こすこと等により形成してもよく、あるいは、拡散翼部材16を樹脂部材等により別途製作し、これをネジ部材等により拡散翼取付板17に取り付けるようにしてもよい。   The diffusion blade member 16 may be formed by using a thin plate steel plate for the diffusion blade mounting plate 17 and cutting a part of the steel plate, or the diffusion blade member 16 may be a resin member or the like. May be separately manufactured and attached to the diffusion blade attachment plate 17 with a screw member or the like.

図7は、本発明の第5の実施形態の要部構成図である。本実施形態は、図1の構成における円盤部材9の上面側盤面と水中モータ5との間(正確にはロータリジョイント7との間)に、複数本(例えば4本)の支持棒19を介して水中モータ5に支持された円板状の渦抑制板18を配設したものである。この渦抑制板18は、円盤部材9の盤面から所定距離L(例えば5cm)だけ離間するように配設されており、円盤部材9が回転しても固定されたままである。   FIG. 7 is a main part configuration diagram of the fifth embodiment of the present invention. In the present embodiment, a plurality of (for example, four) support rods 19 are interposed between the upper surface side surface of the disk member 9 and the underwater motor 5 in the configuration of FIG. The disc-shaped vortex suppressing plate 18 supported by the underwater motor 5 is disposed. The vortex suppressing plate 18 is disposed so as to be separated from the disk surface of the disk member 9 by a predetermined distance L (for example, 5 cm), and remains fixed even when the disk member 9 rotates.

図1の構成において、円盤部材9と水面との距離がそれほど大きくない場合、円盤部材9が回転すると渦が発生して、水面上の空気を取り込んでしまう虞がある。しかし、本実施形態の構成によれば、渦抑制板18の働きにより、このような渦の発生を抑制することができるようになる。   In the configuration of FIG. 1, when the distance between the disk member 9 and the water surface is not so large, when the disk member 9 rotates, a vortex is generated and air on the water surface may be taken in. However, according to the configuration of the present embodiment, the generation of such vortices can be suppressed by the function of the vortex suppression plate 18.

また、本実施形態のように距離Lがある程度以下に小さな場合、図6の第4の実施形態と同様に、円盤部材9の中心側から外側へ向かう方向に水の流れが誘起され、これにより、微小気泡12の気泡注入孔9bからの剥離が促進される、という効果も期待できる。   In addition, when the distance L is small to some extent as in this embodiment, the flow of water is induced in the direction from the center side of the disk member 9 to the outside, as in the fourth embodiment of FIG. Moreover, the effect that peeling of the microbubbles 12 from the bubble injection hole 9b is promoted can also be expected.

図8は、本発明の第6の実施形態の構成図である。本実施形態は、円盤部材9及び水中モータ5を横置き用支持脚4Bを用いて横置き状態に配設し、更に、多数の気泡注入孔9bが形成された円盤部材9の盤面を、水中モータ5と対向する側方盤面の反対側の盤面としたものである。   FIG. 8 is a configuration diagram of the sixth embodiment of the present invention. In the present embodiment, the disk member 9 and the submersible motor 5 are disposed in a horizontal position using the horizontal support legs 4B, and the disk surface of the disk member 9 in which a number of bubble injection holes 9b are formed is A board surface opposite to the side board surface facing the motor 5 is used.

これまでの各実施形態では、円盤部材及びモータ手段は縦置き状態に配設されていたため、円盤部材と水面との間の距離が短い場合は、渦が発生しやすく水面上の空気を取り込んでしまう虞があった。しかし、本実施形態のように、円盤部材9を横向きの姿勢とすることにより、このような渦を発生しにくくすることができる。つまり、本実施形態は水槽2内の水面が浅くなる状態が生じるような場合に有効となる。   In each of the embodiments so far, the disk member and the motor means are arranged in a vertically placed state. Therefore, when the distance between the disk member and the water surface is short, a vortex is likely to occur and air on the water surface is taken in. There was a risk of it. However, such a vortex can be made difficult to occur by setting the disk member 9 in the horizontal orientation as in the present embodiment. That is, this embodiment is effective when the state where the water surface in the water tank 2 becomes shallow occurs.

図9は、本発明の第7の実施形態の構成図である。本実施形態は、図8の構成において、多数の気泡注入孔9bが形成された円盤部材9の盤面に対向する位置に渦糸付着板20を固設し、円盤部材9の回転中に発生する渦糸21の一端側をこの渦糸付着板20に付着させるようにしたものである。   FIG. 9 is a configuration diagram of the seventh embodiment of the present invention. In the present embodiment, in the configuration of FIG. 8, the vortex yarn attaching plate 20 is fixed at a position facing the disk surface of the disk member 9 in which a large number of bubble injection holes 9 b are formed, and is generated while the disk member 9 is rotating. One end side of the vortex 21 is attached to the vortex attachment plate 20.

図8の第6の実施形態のように、円盤部材9を横向きの姿勢とした場合には、水面が浅くなっても渦は発生しにくくなるが、それでも時として微小な渦糸(竜巻を小さくしたような現象)が回転中の円盤部材9の盤面から発生することがある。このような渦糸の発生をそのまま放置しておくと、やがて渦糸の一端側が水面に到達してしまい、水面上の空気が円盤部材9側に取り込まれる事態となる。   As in the sixth embodiment of FIG. 8, when the disk member 9 is in a horizontal orientation, vortices are less likely to be generated even when the water surface becomes shallow, but sometimes even a small vortex (a tornado is made smaller). May occur from the surface of the rotating disk member 9. If such generation of the vortex is left as it is, one end side of the vortex will eventually reach the water surface, and air on the water surface will be taken into the disk member 9 side.

そこで、本実施形態では、円盤部材9の盤面対向位置に渦糸付着板20を固設し、渦糸21の一端側をこの渦糸付着板20に付着させることにより、渦糸21の一端側が水面へ向かうのを防止するようにしている。   Therefore, in this embodiment, the vortex adhering plate 20 is fixed to the disk surface facing position of the disk member 9, and one end side of the vortex 21 is attached to the vortex adhering plate 20, so that one end side of the vortex 21 is It tries to prevent going to the water surface.

図10は、本発明の第8の実施形態の説明図であり、(a)は要部の構成図、(b)は(a)のB−B矢視図である。   10A and 10B are explanatory views of an eighth embodiment of the present invention, in which FIG. 10A is a configuration diagram of the main part, and FIG. 10B is a view taken along the line BB in FIG.

図10(a)に示すように、本実施形態は、図1の構成における水中モータ5の下端側に支持部材22の一端側を取り付けると共に、その他端側に取付部材23を取り付け、この取付部材23に円盤部材9の盤面と接触した状態で摺動可能な摺接部材24を取り付けたものである。摺接部材24の下端部は、円盤部材9の盤面に対する接触部となるが、この接触の程度は勿論円盤部材9の円滑な回転を阻害することのない軽い接触である。なお、摺接部材24の材質は、特に限定されないが、本実施形態では、柔らかい樹脂製プレート部材、又は柔らかい樹脂製ブラシ部材等を想定している。   As shown in FIG. 10A, in the present embodiment, one end side of the support member 22 is attached to the lower end side of the submersible motor 5 in the configuration of FIG. 1, and the attachment member 23 is attached to the other end side. A sliding contact member 24 slidable while being in contact with the disc surface of the disc member 9 is attached to the disc 23. The lower end portion of the sliding contact member 24 serves as a contact portion with respect to the disk surface of the disk member 9, but the degree of this contact is of course a light contact that does not hinder the smooth rotation of the disk member 9. In addition, although the material of the sliding contact member 24 is not specifically limited, In this embodiment, a soft resin plate member or a soft resin brush member is assumed.

また、図10(b)に示すように、摺接部材24の幅は設定領域Rの幅とほぼ同一であり、この設定領域R上に180度の間隔で2つ配設されている。したがって、円盤部材9が半回転すると、全ての気泡注入孔9bの上端は摺接部材24により拭(ぬぐ)われることになる。このように、円盤部材9の盤面に摺接部材24を配設することにより、径のより小さな微小気泡を得ることができ、更に、気泡注入孔9bを塞ぐような種々の汚濁物質等を除去できる(清掃効果)という、一石二鳥の効果を得ることができる。   Also, as shown in FIG. 10B, the width of the sliding contact member 24 is substantially the same as the width of the setting region R, and two are disposed on the setting region R at intervals of 180 degrees. Therefore, when the disk member 9 is rotated halfway, the upper ends of all the bubble injection holes 9 b are wiped (wiped) by the sliding contact member 24. Thus, by arranging the sliding contact member 24 on the disk surface of the disk member 9, it is possible to obtain microbubbles having a smaller diameter, and to remove various pollutants and the like that block the bubble injection hole 9b. You can obtain the effect of two birds with one stone, which is possible (cleaning effect).

ここで、摺接部材24を配設することにより、径のより小さな微小気泡を得ることができる理由を、図11の説明図を参照しつつ説明する。   Here, the reason why microbubbles having a smaller diameter can be obtained by arranging the sliding contact member 24 will be described with reference to the explanatory view of FIG.

まず、図11(a)に示すように、摺接部材がない場合を考えてみると、気泡注入孔9bから顔を出した状態の微小気泡12は、せん断力により盤面上から剥離するまでにある程度成長してしまうので、この場合の微小気泡12は径の大きなものとなる。   First, as shown in FIG. 11A, considering the case where there is no sliding contact member, the microbubbles 12 in the state where the face is exposed from the bubble injection hole 9b are peeled off from the board surface by the shearing force. Since it grows to some extent, the microbubbles 12 in this case have a large diameter.

ところが、図11(b)に示すように、摺接部材24が設けられている場合は、気泡注入孔9bから顔を出した状態の微小気泡12は、大きく成長する前に摺接部材24とぶつかり盤面上から剥離され離脱してしまうので、径の小さな微小気泡12を得ることができるのである。   However, as shown in FIG. 11B, in the case where the sliding contact member 24 is provided, the microbubbles 12 in the state where the face is exposed from the bubble injection hole 9b are in contact with the sliding contact member 24 before they grow greatly. Since the bumps are peeled off and separated from the surface, the microbubbles 12 having a small diameter can be obtained.

なお、図10(b)では、2つの摺接部材24が180度間隔で配設された例を示したが、この摺接部材24の数は特に限定されるものではない。例えば、3つの摺接部材24を120度間隔、あるいは4つの摺接部材24を90度間隔、のように配設数を増やしていけばその分だけ微小気泡12の径が更に小さくなることが期待できる。あるいは逆に、摺接部材24を1つに減らす構成も考えられる。この場合は、2つの場合に比べて微小気泡12の径が大きくなるが、それでも摺接部材24がない場合に比べれば充分な効果を得ることができる。   In addition, in FIG.10 (b), although the example in which the two sliding contact members 24 were arrange | positioned by the 180 degree space | interval was shown, the number of this sliding contact members 24 is not specifically limited. For example, if the number of arrangements is increased such that three sliding contact members 24 are spaced by 120 degrees or four sliding contact members 24 are spaced by 90 degrees, the diameter of the microbubbles 12 can be further reduced. I can expect. Or conversely, the structure which reduces the sliding contact member 24 to one is also considered. In this case, the diameter of the microbubbles 12 is larger than in the case of two, but still a sufficient effect can be obtained as compared with the case where the sliding contact member 24 is not provided.

図1は、本発明の第1の実施形態の構成図。FIG. 1 is a configuration diagram of a first embodiment of the present invention. 図1における円盤部材9の構造を示す説明図であり、(a)は円盤部材9及びエア供給パイプ8の縦断面図、(b)は(a)のB−B矢視図。It is explanatory drawing which shows the structure of the disk member 9 in FIG. 1, (a) is a longitudinal cross-sectional view of the disk member 9 and the air supply pipe 8, (b) is a BB arrow line view of (a). 第1の実施形態における気泡注入孔9bの形状を変えることについての説明図であり、(a)はせん断力Fと付着力Fbとの関係を説明するための断面図、(b)は気泡注入孔9bを円形とした場合の平面図、(c)は気泡注入孔9bを四角形とした場合の平面図。It is explanatory drawing about changing the shape of the bubble injection hole 9b in 1st Embodiment, (a) is sectional drawing for demonstrating the relationship between the shear force F and the adhesive force Fb, (b) is bubble injection. The top view at the time of making hole 9b circular, (c) is the top view at the time of making bubble injection hole 9b square. 本発明の第2の実施形態の構成図。The block diagram of the 2nd Embodiment of this invention. 本発明の第3の実施形態の説明図であり、(a)は全体の構成図、(b)は(a)のB−B矢視図。It is explanatory drawing of the 3rd Embodiment of this invention, (a) is a whole block diagram, (b) is a BB arrow line view of (a). 本発明の第4の実施形態の説明図であり、(a)は要部の構成図、(b)は(a)のB−B矢視図。It is explanatory drawing of the 4th Embodiment of this invention, (a) is a block diagram of the principal part, (b) is a BB arrow line view of (a). 本発明の第5の実施形態の要部構成図。The principal part block diagram of the 5th Embodiment of this invention. 本発明の第6の実施形態の構成図。The block diagram of the 6th Embodiment of this invention. 本発明の第7の実施形態の構成図。The block diagram of the 7th Embodiment of this invention. 本発明の第8の実施形態の説明図であり、(a)は要部の構成図、(b)は(a)のB−B矢視図。It is explanatory drawing of the 8th Embodiment of this invention, (a) is a block diagram of the principal part, (b) is a BB arrow line view of (a). 第8の実施形態における摺接部材24の効果についての説明図であり、(a)は摺接部材なしの場合、(b)は摺接部材を設けた場合を示す。It is explanatory drawing about the effect of the sliding contact member 24 in 8th Embodiment, (a) shows the case where a sliding contact member is provided, (b) shows the case where a sliding contact member is provided.

符号の説明Explanation of symbols

1:床
2:水槽
3:水
4,4A,4B:支持脚
5,5A:水中モータ
6:回転軸
7:ロータリジョイント
8:エア供給パイプ
9:円盤部材
9a:空洞部
9b:気泡注入孔
10:エア供給ライン
11:ブロワ
12:微小気泡
13:振れ止め機構
14:取付部材
15:微小気泡集合抑制部材
16:拡散翼部材
17:拡散翼取付板
18:渦抑制板
19:支持棒
20:渦糸付着板
21:渦糸
22:支持部材
23:取付部材
24:摺接部材
R:設定領域
1: Floor 2: Water tank 3: Water 4, 4A, 4B: Support legs 5, 5A: Underwater motor 6: Rotating shaft 7: Rotary joint 8: Air supply pipe 9: Disk member 9a: Cavity 9b: Bubble injection hole 10 : Air supply line 11: Blower 12: Microbubble 13: Stabilizing mechanism 14: Mounting member 15: Microbubble aggregation suppressing member 16: Diffusion blade member 17: Diffusion blade mounting plate 18: Vortex suppression plate 19: Support rod 20: Vortex Thread adhering plate 21: Vortex yarn 22: Support member 23: Mounting member 24: Sliding member
R: Setting area

Claims (1)

微小気泡注入対象となる水中に配置され、内部に空洞部が形成されると共に、盤面上に多数の気泡注入孔が形成されている円盤部材と、前記円盤部材の空洞部に対しエア供給ラインを介してエアを供給するエア供給手段と、前記円盤部材を回転駆動するモータ手段と、を備えており、前記円盤部材の盤面上に形成された多数の気泡注入孔は、円盤部材回転時における気泡注入孔の周速度が所定速度以上になる設定領域に形成されている微小気泡発生装置において、
前記円盤部材及び前記モータ手段は、円盤部材が下側に位置する縦置き状態に配設され、前記多数の気泡注入孔が形成された盤面は、モータ手段と対向する上面側の盤面に配されるとともに
前記水中において前記設定領域の盤面と接触した状態で摺動するように前記円盤部材の気泡注入孔に配された摺接部材を備えた
ことを特徴とする微小気泡発生装置。
A disk member that is disposed in the water to be injected with microbubbles, has a cavity formed therein, and has a plurality of bubble injection holes formed on the disk surface, and an air supply line for the cavity of the disk member Air supply means for supplying air through, and motor means for rotationally driving the disk member, and a large number of bubble injection holes formed on the disk surface of the disk member include bubbles when the disk member rotates. In the microbubble generator formed in the setting region where the peripheral speed of the injection hole is equal to or higher than a predetermined speed,
The disk member and the motor means are disposed in a vertically placed state with the disk member positioned on the lower side, and the disk surface on which the plurality of bubble injection holes are formed is disposed on the upper surface of the disk surface facing the motor means. And
A micro-bubble generating device comprising a sliding contact member disposed in a bubble injection hole of the disk member so as to slide in contact with the disk surface of the set area in the water .
JP2008217113A 2008-08-26 2008-08-26 Microbubble generator Active JP4982450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008217113A JP4982450B2 (en) 2008-08-26 2008-08-26 Microbubble generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008217113A JP4982450B2 (en) 2008-08-26 2008-08-26 Microbubble generator

Publications (2)

Publication Number Publication Date
JP2010051854A JP2010051854A (en) 2010-03-11
JP4982450B2 true JP4982450B2 (en) 2012-07-25

Family

ID=42068347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008217113A Active JP4982450B2 (en) 2008-08-26 2008-08-26 Microbubble generator

Country Status (1)

Country Link
JP (1) JP4982450B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109012452A (en) * 2018-08-28 2018-12-18 燕山大学 A kind of high-efficiency mixed flow device based on relative rotation

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101410756B1 (en) * 2013-08-22 2014-06-24 주식회사 칼라카나 bubble generating apparatus
KR101591049B1 (en) * 2014-10-30 2016-02-02 주식회사 중정 apparatus for mixing second fluid into first fluid
KR101631612B1 (en) * 2014-03-13 2016-06-20 주식회사 중정 apparatus for mixing liquid into fluid
KR101391172B1 (en) 2013-12-26 2014-05-02 (주)미시간기술 Water treating apparatus containing combined sewer overflows
JP6935949B2 (en) * 2020-02-25 2021-09-15 株式会社ニチベンハイテック Nano bubble generator
JP2022092459A (en) * 2020-12-10 2022-06-22 オウ チュン コー チー クー フェン ユー シェン コン スー Fine fluid structure generation mechanism and fine fluid structure generation device using the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52108370A (en) * 1976-03-10 1977-09-10 Tatsuya Arai Apparatus of gassliquid contact reaction without gas compresser
JPS5592000U (en) * 1978-12-21 1980-06-25
JPS59189899U (en) * 1983-06-02 1984-12-17 石川島播磨重工業株式会社 Foreign matter separation equipment for waste paper raw materials
JPH04177140A (en) * 1990-11-09 1992-06-24 Mitsubishi Heavy Ind Ltd Bubble diameter adjustment type underwater bubble producer
JP2000107792A (en) * 1998-08-05 2000-04-18 Nkk Corp Air diffusion-agitation apparatus
JP2007268376A (en) * 2006-03-30 2007-10-18 Ebara Corp Apparatus for generating minute gas bubble
JP2008023460A (en) * 2006-07-21 2008-02-07 Ugajin Denki Kk Water purification method and apparatus using ozone gas
TWI365779B (en) * 2007-05-22 2012-06-11 Toshiba Kk Microbubble generating apparatus and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109012452A (en) * 2018-08-28 2018-12-18 燕山大学 A kind of high-efficiency mixed flow device based on relative rotation

Also Published As

Publication number Publication date
JP2010051854A (en) 2010-03-11

Similar Documents

Publication Publication Date Title
JP4982450B2 (en) Microbubble generator
KR101157719B1 (en) Device and method for producing micro gas bubbles
US3650513A (en) Aeration device
US3846516A (en) Aerator device and method
JP2013521112A (en) Apparatus and method for generating foam
JP6103517B2 (en) Cross-flow pump ultrafine bubble flow supply device
JP5800185B2 (en) Microbubble generating once-through pump
JP2006116365A (en) Revolving type fine air bubble generator and fine air bubble generating method
JP2022525596A (en) Immersible nanobubble generation devices and methods
JP2014097449A5 (en)
JP2013022477A5 (en)
JP5025631B2 (en) Microbubble injection system for liquid
JP2012125690A (en) Through-flow pump aeration apparatus
JP2014517769A (en) Equipment for injecting gas into the sewage tank
US20150008191A1 (en) Low-turbulent aerator and aeration method
JP2007253000A (en) Apparatus and process for producing micro bubble
JP2013146702A (en) Microbubble generator using through-flow pump
JP2011173076A (en) Rotary blade type bubble generator
JP2007211537A (en) Micro bubble utilizing type soil improving method and micro bubble utilizing type soil improving system
JP5943316B2 (en) Water purification system using liquid film flow rising up a rotating body
JP6345546B2 (en) Power-saving aeration stirrer
KR101962903B1 (en) micro bubble generator
JP2006061780A (en) Aerator and defoaming method in the aerator
JP6912994B2 (en) Stirrer blade, stirrer and stirrer
KR200476056Y1 (en) Nano-bubble generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4982450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151