JP4981477B2 - Vacuum processing apparatus and substrate heating method - Google Patents

Vacuum processing apparatus and substrate heating method Download PDF

Info

Publication number
JP4981477B2
JP4981477B2 JP2007036431A JP2007036431A JP4981477B2 JP 4981477 B2 JP4981477 B2 JP 4981477B2 JP 2007036431 A JP2007036431 A JP 2007036431A JP 2007036431 A JP2007036431 A JP 2007036431A JP 4981477 B2 JP4981477 B2 JP 4981477B2
Authority
JP
Japan
Prior art keywords
glass substrate
heater
plate
substrate
black
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007036431A
Other languages
Japanese (ja)
Other versions
JP2008202066A (en
Inventor
貴洋 祐延
直之 宮園
英四郎 笹川
匡史 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2007036431A priority Critical patent/JP4981477B2/en
Publication of JP2008202066A publication Critical patent/JP2008202066A/en
Application granted granted Critical
Publication of JP4981477B2 publication Critical patent/JP4981477B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は真空処理装置に関する。   The present invention relates to a vacuum processing apparatus.

光に反応して発電する太陽電池が知られている。その一つとして、アモルファスシリコンや微結晶シリコンの発電層を大型の基板に製膜した薄膜シリコン太陽電池が知られている。このような太陽電池を製造する場合、大型の基板(例示:1m×1m以上)の全面に渡って均一な薄膜シリコンを製膜することが重要である。その場合、薄膜シリコン製膜装置に搬入する基板を製膜温度付近まで予熱するにあたり基板の全面において、基板温度を均一に昇温する必要がある。しかも処理に要するタクトタイムが延長されないように短時間で急速昇温をする必要がある。そこで、製膜室に隣接するロード室にて、発熱密度が大きい赤外線ランプ型のヒータ(以下IRヒータと呼ぶ。)を用いて基板を加熱している。
特開平6−260422号公報 特開2005−231910号公報 特開平3−274275号公報
Solar cells that generate electricity in response to light are known. As one of them, a thin-film silicon solar cell in which a power generation layer of amorphous silicon or microcrystalline silicon is formed on a large substrate is known. When manufacturing such a solar cell, it is important to form a uniform thin film silicon over the entire surface of a large substrate (example: 1 m × 1 m or more). In that case, it is necessary to uniformly raise the substrate temperature over the entire surface of the substrate in order to preheat the substrate to be brought into the thin film silicon deposition apparatus to near the deposition temperature. Moreover, it is necessary to rapidly raise the temperature in a short time so that the tact time required for the treatment is not extended. Therefore, the substrate is heated in the load chamber adjacent to the film forming chamber using an infrared lamp type heater (hereinafter referred to as IR heater) having a large heat generation density.
JP-A-6-260422 JP-A-2005-231910 JP-A-3-274275

しかしながら、薄膜シリコン系太陽電池用の基板は透明導電膜(TCO膜)が形成されていて、従来のIRヒータによる透明導電膜(TCO膜)付きガラス基板加熱では、所定時間内における基板の昇温速度や加熱温度の改善に限界があった。このため、温度計測試験と熱的解析を実施したところ、ハロゲン光源による輻射加熱を主体にした投入電力のうち約20%しか基板加熱に寄与しないことが判明した。これは、透明導電膜(TCO膜)付ガラス基板の加熱は基板支持部材の影響を受けずに全体を均一に加熱するために透明導電膜(TCO膜)側に光源を設置して実施しており、透明導電膜(TCO膜)の反射とガラスの光吸収波長特性に対してIRヒータからの放出波長域が合致していないためである。この状況で更に基板の加熱昇温特性を改善するには、大容量のIRヒータを用いる必要があり、装置の大型化とコストアップに課題がある。
一方特許文献1にある、長波長型ヒータはガラス板への吸熱特性は改善されるが急速加熱するための発熱密度が不十分であると共に高価であり、特許文献2の遠赤外線放射体は構造が複雑で高価であり、特許文献3のヒータは雰囲気温度上昇を抑制する為にパルス光化する構成のため複雑で高価になる。さらには、いずれの特許文献のヒータにおいても透明導電膜(TCO膜)の吸熱・反射特性を考慮した構造ではない状況にある。
However, a transparent conductive film (TCO film) is formed on a substrate for a thin film silicon-based solar cell, and when a glass substrate with a transparent conductive film (TCO film) is heated by a conventional IR heater, the temperature of the substrate is increased within a predetermined time. There were limits to improvements in speed and heating temperature. For this reason, when a temperature measurement test and thermal analysis were performed, it was found that only about 20% of the input power mainly composed of radiant heating by a halogen light source contributes to substrate heating. This is done by installing a light source on the transparent conductive film (TCO film) side in order to heat the glass substrate with the transparent conductive film (TCO film) uniformly without being affected by the substrate support member. This is because the emission wavelength range from the IR heater does not match the reflection of the transparent conductive film (TCO film) and the light absorption wavelength characteristic of the glass. In this situation, in order to further improve the heating temperature rise characteristic of the substrate, it is necessary to use a large-capacity IR heater, and there are problems in increasing the size and cost of the apparatus.
On the other hand, the long-wavelength heater in Patent Document 1 has improved heat absorption characteristics to the glass plate, but the heat generation density for rapid heating is insufficient and expensive, and the far-infrared radiator of Patent Document 2 has a structure. However, the heater disclosed in Patent Document 3 is complicated and expensive due to the configuration in which pulse light is used to suppress an increase in ambient temperature. Furthermore, none of the heaters of the patent documents has a structure that takes into consideration the heat absorption / reflection characteristics of the transparent conductive film (TCO film).

本発明は上記事情に鑑みてなされたものであり、大型基板においても投入電力を効率的に使用して基板を急速に均一に加熱させることができる真空処理装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a vacuum processing apparatus capable of heating a substrate rapidly and uniformly by using input power efficiently even for a large substrate.

請求項1に記載の真空処理装置は、大気圧より減圧した状態でガラス基板を処理するチャンバを備え、該チャンバ内に、該ガラス基板を加熱するヒータと、該ガラス基板に対して前記ヒータとは反対側に設けられた黒色輻射板とを備え、前記黒色輻射板が、前記チャンバの壁面と離間して設けられる箔板であり、前記ヒータから発せられた輻射光線のうち、主として前記ガラス基板を透過した光により加熱されて、遠赤外線を主とする放射光を放射し前記ガラス基板を前記ヒータと反対側から加熱することを特徴とする。 The vacuum processing apparatus according to claim 1 includes a chamber for processing a glass substrate in a state where the pressure is reduced from atmospheric pressure, and a heater for heating the glass substrate in the chamber, and the heater for the glass substrate; Comprises a black radiating plate provided on the opposite side, the black radiating plate being a foil plate provided apart from the wall surface of the chamber, and mainly the glass substrate among the radiant rays emitted from the heater. permeated by Ri is heated pressurized to light, characterized in that it emits radiation of far infrared rays and a main heating the glass substrate from the side opposite to the heater.

ヒータから発せられた輻射光線は、赤外線域の波長のものが直接ガラス基板を加熱するが、1.5μm以下の波長光は多くがガラス基板を透過し、これ以上の波長においても一部の波長はガラス基板を透過する。本発明においては、主としてガラス基板を透過した輻射光線を利用して黒色輻射板を加熱する。すなわち、本発明は、黒色輻射板は単にヒータから発せられた赤外線を長波長に変換するものではなく、ガラス基板を透過した短波長側の光をガラス基板により吸収可能な波長に変換するためのものである。ガラス基板を通過しない輻射光で、真空処理室の内部構造物で反射されて黒色輻射板を加熱する輻射光もあるが、ガラス基板とヒータと黒色輻射板との位置関係から、前記ガラス基板を透過した輻射光線が前記黒色輻射板の加熱の大部分に寄与する。
このように、黒色輻射板からの輻射熱によりガラス基板が加熱される。黒色輻射板はヒータ、例えば、IRヒータによって加熱されることで、ガラス基板に吸収されやすい波長の赤外線が放出されることが好ましい。より詳細には、2.8μm以上、より好ましくは3.0μm以上の波長であり、エネルギーの高い短波長側の赤外線が放出されることが望ましい。また、略4μmの赤外線が放出されるように、黒色輻射板を略400℃に加熱することが望ましい。本構成により、黒色輻射板からの輻射によりガラス基板が裏側(ヒータとは逆の面)から加熱される。
ここで、赤外線とは、近赤外線、中赤外線、遠赤外線を含むものであり、その波長は、およそ0.8μmから100μm程度の電磁波が対象となる。
Radiation rays emitted from the heater directly heat the glass substrate with wavelengths in the infrared region, but most of light with a wavelength of 1.5 μm or less passes through the glass substrate, and some wavelengths are longer than this. Penetrates the glass substrate. In the present invention, the black radiation plate is heated mainly using radiation rays that have passed through the glass substrate. That is, in the present invention, the black radiating plate does not simply convert the infrared rays emitted from the heater into a long wavelength, but converts the light on the short wavelength side transmitted through the glass substrate into a wavelength that can be absorbed by the glass substrate. Is. Although there is radiation light that does not pass through the glass substrate and is reflected by the internal structure of the vacuum processing chamber to heat the black radiation plate, from the positional relationship between the glass substrate, the heater, and the black radiation plate, the glass substrate The transmitted radiation beam contributes most of the heating of the black radiation plate.
Thus, the glass substrate is heated by the radiant heat from the black radiation plate. The black radiation plate is preferably heated by a heater, for example, an IR heater, so that infrared rays having a wavelength that is easily absorbed by the glass substrate are emitted. More specifically, it is desirable that infrared rays having a wavelength of 2.8 μm or more, more preferably 3.0 μm or more, and a short wavelength side with high energy are emitted. Further, it is desirable to heat the black radiation plate to about 400 ° C. so that about 4 μm of infrared rays is emitted. With this configuration, the glass substrate is heated from the back side (the surface opposite to the heater) by radiation from the black radiation plate.
Here, the infrared rays include near infrared rays, middle infrared rays, and far infrared rays, and electromagnetic waves having a wavelength of about 0.8 μm to about 100 μm are targeted.

請求項2に記載の発明は、請求項1に記載の真空処理装置において、前記ガラス基板の少なくとも一部の表面に透明導電膜(TCO膜)が形成されていて、前記ヒータが発する輻射光線のうち、赤外線域にあるもっとも放射強度が高いピーク波長が、前記透明導電膜(TCO膜)によって80%以上反射されない波長であることを特徴とする。   According to a second aspect of the present invention, in the vacuum processing apparatus according to the first aspect, a transparent conductive film (TCO film) is formed on at least a part of the surface of the glass substrate, and the radiation light emitted from the heater is emitted. Among them, the peak wavelength having the highest radiation intensity in the infrared region is a wavelength that is not reflected by 80% or more by the transparent conductive film (TCO film).

より具体的には、透明導電膜(TCO膜)により反射されない波長として、3.0μm以下の波長が好ましく、より好ましくは2.8μm以下の波長とする。透明導電膜(TCO膜)が形成されたガラス基板に吸収可能な波長として、1.5μm以上が好ましい。IRヒータの照射波長のうちもっとも放射強度が高いピークは、発熱線径や長さを変更することで制御可能である。本発明により、透明導電膜(TCO膜)に反射される割合が小さくなり、投入電力のガラス基板加熱寄与率が向上する。
また、透明導電膜(TCO膜)によって反射される波長の光には、透明導電膜(TCO膜)の入射光側の表面からの反射が主体的となるものの、一部は透明導電膜(TCO膜)とガラス基板との界面からの反射もあり、この両方を含むものである。
More specifically, the wavelength that is not reflected by the transparent conductive film (TCO film) is preferably a wavelength of 3.0 μm or less, and more preferably a wavelength of 2.8 μm or less. The wavelength that can be absorbed by the glass substrate on which the transparent conductive film (TCO film) is formed is preferably 1.5 μm or more. The peak with the highest radiation intensity among the irradiation wavelengths of the IR heater can be controlled by changing the heating wire diameter and length. According to the present invention, the proportion reflected by the transparent conductive film (TCO film) is reduced, and the contribution ratio of the input power to the glass substrate heating is improved.
In addition, light having a wavelength reflected by the transparent conductive film (TCO film) mainly reflects from the surface on the incident light side of the transparent conductive film (TCO film), but a part of the light is reflected by the transparent conductive film (TCO film). There is also reflection from the interface between the film) and the glass substrate, and both of them are included.

請求項4に記載の発明は、請求項1から3のいずれかに記載の真空処理装置において、前記黒色輻射板に対して前記ガラス基板と反対側の位置に反射板が設けられていることを特徴とする。   According to a fourth aspect of the present invention, in the vacuum processing apparatus according to any one of the first to third aspects, a reflective plate is provided at a position opposite to the glass substrate with respect to the black radiation plate. Features.

本発明により、チャンバ壁面に逃げる熱量が減少し、黒色輻射板の温度を上昇させることができる。これによりガラス基板への伝熱が上昇する。黒色輻射板の温度が上昇することにより、より短波長側を放出可能となり、ガラス基板への加熱寄与率が向上する。
なお、反射板は周囲構造物の輻射率よりも低くなるように輻射率は0.2以下が望ましく、さらに反射板表面温度を高く保ちチャンバ壁面へ逃げる熱量を低減するために、反射板を2重以上設けてもよい。
According to the present invention, the amount of heat escaping to the chamber wall surface can be reduced, and the temperature of the black radiation plate can be increased. This increases the heat transfer to the glass substrate. As the temperature of the black radiation plate rises, the shorter wavelength side can be emitted, and the heating contribution rate to the glass substrate is improved.
It should be noted that the emissivity is preferably 0.2 or less so that the emissivity of the reflector is lower than the emissivity of the surrounding structure. Further, in order to reduce the amount of heat that escapes to the chamber wall surface while keeping the reflector surface temperature high. You may provide more than one.

請求項5に記載の発明は、請求項4に記載の真空処理装置において、前記ガラス基板に対面する側が前記黒色輻射板であり、前記黒色輻射板の裏側が前記反射板である、両方の機能を保有した板材を有することを特徴とする。   The invention according to claim 5 is the vacuum processing apparatus according to claim 4, wherein the side facing the glass substrate is the black radiation plate, and the back side of the black radiation plate is the reflector. It has the board | plate material which hold | maintained.

例えば、一枚の金属板(SUS材等)のガラス基板側の片側を陽極酸化法等で黒色輻射面とし、裏側を磨き加工等して反射面とする。これにより部品点数が減少し、部品本体のコストダウンに加えて、追加部品の表面積が減少するのでチャンバ内部構造物表面からの脱ガス量を抑制して真空排気速度の低減が抑えられる。   For example, one side of a single metal plate (SUS material or the like) on the glass substrate side is made a black radiation surface by anodizing or the like, and the back side is polished to make a reflection surface. As a result, the number of parts is reduced, and in addition to the cost reduction of the part main body, the surface area of the additional parts is reduced. Therefore, the amount of degassing from the surface of the internal structure of the chamber is suppressed, and the reduction of the vacuum exhaust speed can be suppressed.

請求項6に記載の発明は、請求項1から5のいずれかに記載の真空処理装置において、前記チャンバの内側壁面に、前記ヒータ、ガラス基板、および黒色輻射板を取り囲む範囲のうちで、少なくとも一部に反射板が設けられていることを特徴とする。   According to a sixth aspect of the present invention, in the vacuum processing apparatus according to any one of the first to fifth aspects, at least within a range surrounding the heater, the glass substrate, and the black radiation plate on the inner wall surface of the chamber. A reflection plate is provided in part.

これによりチャンバ壁面に逃げる熱量が減少し、黒色輻射板の温度をより上昇させることができる。これによりガラス基板への伝熱量が上昇する。黒色輻射板の温度が上昇することにより、より短波長側の赤外線を放出可能となり、ガラス基板への加熱寄与率が向上する。
また、チャンバ内壁周囲から反射光線により、ガラス基板の均一な温度分布への加熱に効果がある。特に、透明導電膜(TCO膜)から反射される波長(略3.0μm以上)をチャンバ内壁周囲から反射させることで、黒色輻射板に入射させる。これにより、ガラス基板加熱効率を上げることが可能となる。
Thereby, the amount of heat escaping to the chamber wall surface is reduced, and the temperature of the black radiation plate can be further increased. This increases the amount of heat transfer to the glass substrate. When the temperature of the black radiation plate rises, it becomes possible to emit infrared rays having shorter wavelengths, and the heating contribution ratio to the glass substrate is improved.
In addition, it is effective in heating the glass substrate to a uniform temperature distribution by the reflected light from the periphery of the inner wall of the chamber. In particular, the wavelength (approximately 3.0 μm or more) reflected from the transparent conductive film (TCO film) is reflected from the periphery of the inner wall of the chamber to be incident on the black radiation plate. Thereby, the glass substrate heating efficiency can be increased.

請求項7に記載の発明は、請求項1から6のいずれかに記載の真空処理装置において、前記ヒータに対して前記ガラス基板と反対側の位置に、第2の黒色輻射板が設けられたことを特徴とする。   The invention according to claim 7 is the vacuum processing apparatus according to any one of claims 1 to 6, wherein a second black radiation plate is provided at a position opposite to the glass substrate with respect to the heater. It is characterized by that.

特に、第2の黒色輻射板は透明導電膜(TCO膜)に吸収されずに通過して、ガラス基板で一部吸収可能な波長であり、しかも透明導電膜(TCO膜)で反射が少ない波長(2.5μm〜3.0μm)で輻射することが好ましい。本発明により、ガラス基板を表面側と裏面側の全体から加熱でき、さらにガラス基板へ入熱する赤外線量がより均一化してガラス基板がより均一な温度分布となり、ガラス基板加熱効率が向上する。これに加えてさらにガラス基板面に対して交差する方向に延在する面(横側)にも設置してもよい。   In particular, the second black radiation plate has a wavelength that passes through the transparent conductive film (TCO film) without being absorbed and can be partially absorbed by the glass substrate, and has a low reflection at the transparent conductive film (TCO film). It is preferable to radiate at (2.5 μm to 3.0 μm). According to the present invention, the glass substrate can be heated from the whole of the front surface side and the back surface side, and the amount of infrared rays input to the glass substrate is made more uniform, the glass substrate becomes more uniform temperature distribution, and the glass substrate heating efficiency is improved. In addition to this, it may also be installed on a surface (lateral side) extending in a direction intersecting the glass substrate surface.

本発明に係る真空処理装置によれば、黒色輻射板によりガラス基板を裏面からも加熱することにより、投入電力を効率的に使用してガラス基板を短時間でより均一に加熱することができる。   According to the vacuum processing apparatus according to the present invention, by heating the glass substrate from the back surface with the black radiation plate, the glass substrate can be heated more uniformly in a short time using the input power efficiently.

[第1実施形態]
図1は、シリコン太陽電池等の半導体を製造する際に、基板(ガラス基板)8にシリコン膜の製膜を行う薄膜製造装置(真空処理装置)1である。なお、基板8とはガラス板の片側面に透明導電膜(TCO膜)が形成されたガラス基板を示す。符号6は製膜室で、大気がほとんど混入することなく大気圧より減圧した状態を維持して高品質な製膜処理が可能であり、符号21は大気下にある基板8を基板搬送装置(不図示)を用いて製膜室6に対して搬入する際に、製膜室6との間を介するロード室、符号22は基板8を製膜室6から搬出するアンロード室である。基板8は、ガラス板8bの片側面に透明導電膜(TCO膜)8aが形成されている。透明導電膜(TCO膜)8aの上にさらにシリコン系薄膜による光電変換層(p層、i層、n層を積層したもの)が形成されている場合もあるが、IRヒータから放射される1.5μm以上の輻射光に対してシリコン薄膜による光電変換層の吸収はほとんど無いので、片側面に透明導電膜(TCO膜)8aが形成された基板8とほぼ同様な光吸収・反射特性を示す。製膜室6、ロード室21およびアンロード室22は、それぞれチャンバ6a、21a、22aを備え、これらチャンバ6a、21a、22aは、それぞれ粗引きポンプ23a,23b、23cおよびターボ分子ポンプ24a,24b、24cによって真空引きされることで、高真空状態とされる。また各チャンバはゲート弁25で仕切られ各チャンバでの圧力設定が可能である。また、装置全体は制御装置100により制御される。
[First Embodiment]
FIG. 1 shows a thin film manufacturing apparatus (vacuum processing apparatus) 1 that forms a silicon film on a substrate (glass substrate) 8 when a semiconductor such as a silicon solar cell is manufactured. In addition, the board | substrate 8 shows the glass substrate in which the transparent conductive film (TCO film | membrane) was formed in the single side | surface of a glass plate. Reference numeral 6 denotes a film forming chamber, which can maintain a state where the pressure is reduced from the atmospheric pressure with almost no air mixed therein, and high-quality film forming processing is possible. Reference numeral 21 denotes a substrate transfer device ( When loading into the film forming chamber 6 using a not-shown), a load chamber 22 between the film forming chamber 6 and the unload chamber 22 for unloading the substrate 8 from the film forming chamber 6 is used. The substrate 8 has a transparent conductive film (TCO film) 8a formed on one side of a glass plate 8b. In some cases, a photoelectric conversion layer (with a p-layer, i-layer, and n-layer laminated) formed of a silicon-based thin film may be formed on the transparent conductive film (TCO film) 8a. Since the photoelectric conversion layer is hardly absorbed by the silicon thin film with respect to radiated light of .5 μm or more, light absorption / reflection characteristics similar to those of the substrate 8 having the transparent conductive film (TCO film) 8a formed on one side surface are exhibited. . The film forming chamber 6, the load chamber 21 and the unload chamber 22 are provided with chambers 6a, 21a and 22a, respectively. These chambers 6a, 21a and 22a are respectively roughing pumps 23a, 23b and 23c and turbo molecular pumps 24a and 24b. , 24c, a high vacuum state is obtained. Each chamber is partitioned by a gate valve 25, and the pressure in each chamber can be set. The entire apparatus is controlled by the control apparatus 100.

図2に製膜室6の構造について示した。製膜室6内には、対向電極2、均熱板5、均熱板保持機構11、放電電極3、防着板4、支持部7、高周波給電伝送路12、整合器13、高真空排気部31、低真空排気部35、台37を具備する。なお、本図において、ガス供給に関する構成は省略している。   FIG. 2 shows the structure of the film forming chamber 6. In the film forming chamber 6, the counter electrode 2, the soaking plate 5, the soaking plate holding mechanism 11, the discharge electrode 3, the deposition preventing plate 4, the support portion 7, the high-frequency power transmission path 12, the matching unit 13, and high vacuum exhaust Part 31, a low vacuum exhaust part 35, and a base 37. In addition, in this figure, the structure regarding gas supply is abbreviate | omitted.

製膜室6は、真空容器であり、その内部で基板8に微結晶シリコンi層など製膜する。製膜室6は、台37上でz方向(鉛直方向)に対してθ=7°〜12°傾けて保持されている。このため、対向電極2の基板8の製膜処理面が、z方向に対して7°〜12°上に向く。基板8を垂直から僅かに傾けることは、装置の設置スペースの増加を抑えながら基板8の自重を利用して少ない手間で基板8を保持し、更に基板8と対向電極2の密着性を向上して基板8の温度分布と電位分布を均一化することが出来て好ましい。   The film forming chamber 6 is a vacuum container, and forms a microcrystalline silicon i layer or the like on the substrate 8 inside. The film forming chamber 6 is held on the table 37 while being inclined by θ = 7 ° to 12 ° with respect to the z direction (vertical direction). For this reason, the film-forming surface of the substrate 8 of the counter electrode 2 faces 7 ° to 12 ° above the z direction. By slightly tilting the substrate 8 from the vertical, the substrate 8 can be held with less effort using the weight of the substrate 8 while suppressing an increase in the installation space of the apparatus, and the adhesion between the substrate 8 and the counter electrode 2 is improved. This is preferable because the temperature distribution and potential distribution of the substrate 8 can be made uniform.

対向電極2は、放電電極3に対向する電極(例示:接地側)となる。対向電極2は、一方の面を均熱板5の表面に密接し、製膜時に他方の面を基板8の表面と密接する。均熱板(対向電極を温度制御する手段)5は、内部に温度制御された熱媒体を循環したり、または温度制御されたヒータを組み込むことで、自身の温度を制御して、全体が概ね均一な温度を有し、接触している対向電極2の温度を均一化及び制御する機能を有する。   The counter electrode 2 is an electrode (example: ground side) facing the discharge electrode 3. The counter electrode 2 has one surface in close contact with the surface of the soaking plate 5 and the other surface in close contact with the surface of the substrate 8 during film formation. The soaking plate (means for controlling the temperature of the counter electrode) 5 circulates a temperature-controlled heat medium inside or incorporates a temperature-controlled heater to control its own temperature, and the whole It has a uniform temperature and has a function of equalizing and controlling the temperature of the counter electrode 2 that is in contact.

均熱板保持機構11は、均熱板5および対向電極2を製膜室6の側面(図2の右側)に対して略平行となるように保持する。製膜時は、均熱板5、対向電極2および基板8を、放電電極3へ近づける。   The soaking plate holding mechanism 11 holds the soaking plate 5 and the counter electrode 2 so as to be substantially parallel to the side surface (the right side in FIG. 2) of the film forming chamber 6. During film formation, the soaking plate 5, the counter electrode 2 and the substrate 8 are brought close to the discharge electrode 3.

図3はロード室21である。本装置においては、ロード室21のチャンバ21a内に、酸化錫膜(SnO)を主成分とする、厚さ500〜800nmの透明導電膜(TCO膜)8a(図6参照)が形成された基板8が設置され、基板8に対向して設けられたIRヒータ70により加熱される。IRヒータ70は基板8が均一温度分布に加熱されるよう、基板8のサイズよりも少し大きな輻射光線の放射領域を持つことが好ましい。チャンバ21a内には、図示しない基板搬送装置により搬入した基板8を所定の位置で支持する基板支持枠71、前記のIRヒータ70、該基板8に対して前記IRヒータ70とは反対側に位置し、基板支持枠71と基板8との間に設けられた黒色輻射板72と、が設けられている。 FIG. 3 shows the load chamber 21. In this apparatus, a transparent conductive film (TCO film) 8a (see FIG. 6) having a thickness of 500 to 800 nm, which is mainly composed of a tin oxide film (SnO 2 ), is formed in the chamber 21a of the load chamber 21. The substrate 8 is installed and heated by an IR heater 70 provided to face the substrate 8. The IR heater 70 preferably has a radiation beam radiation area slightly larger than the size of the substrate 8 so that the substrate 8 is heated to a uniform temperature distribution. In the chamber 21a, a substrate support frame 71 for supporting the substrate 8 carried in by a substrate transfer device (not shown) at a predetermined position, the IR heater 70, and a position opposite to the IR heater 70 with respect to the substrate 8. A black radiation plate 72 provided between the substrate support frame 71 and the substrate 8 is provided.

IRヒータ70は、簡易に入手できるハロゲン型IRヒータを使用することができ、放出する輻射光線により基板8が加熱される構成となっている。IRヒータ70から放出された波長の一部は、基板8に吸収されずに透過する。基板8のガラス板8bおよび透明導電膜(TCO膜)8aはIRヒータ70により放出される輻射光線の波長域に対して以下の概略特性を有する。   As the IR heater 70, a readily available halogen type IR heater can be used, and the substrate 8 is heated by the emitted radiation. A part of the wavelength emitted from the IR heater 70 passes through the substrate 8 without being absorbed. The glass plate 8 b and the transparent conductive film (TCO film) 8 a of the substrate 8 have the following general characteristics with respect to the wavelength range of the radiation rays emitted by the IR heater 70.

1.5μm未満の波長は、透明導電膜(TCO膜)8aやガラス板8bを透過する。
1.5〜2.5μmの波長は、一部が透明導電膜(TCO膜)8aに吸収され、透明導電膜(TCO膜)8aが加熱される。一部が吸収されずガラス板8bを透過する。
2.5μm以下の波長は、ガラス板8bを透過する。
2.5μm以上の波長は、ガラス板8bに一部が吸収される。
2.5μm〜3.0μmの波長は、透明導電膜(TCO膜)8aとガラス板8bに一部が吸収され、一部が吸収されず透過する。
3.0μm以上の波長は、透明導電膜(TCO膜)8aに反射される。
Wavelengths less than 1.5 μm are transmitted through the transparent conductive film (TCO film) 8a and the glass plate 8b.
A part of the wavelength of 1.5 to 2.5 μm is absorbed by the transparent conductive film (TCO film) 8a, and the transparent conductive film (TCO film) 8a is heated. A part is not absorbed and passes through the glass plate 8b.
Wavelengths of 2.5 μm or less are transmitted through the glass plate 8b.
A part of the wavelength of 2.5 μm or more is absorbed by the glass plate 8b.
A part of the wavelength of 2.5 μm to 3.0 μm is absorbed by the transparent conductive film (TCO film) 8 a and the glass plate 8 b, and part of the wavelength is transmitted without being absorbed.
A wavelength of 3.0 μm or more is reflected by the transparent conductive film (TCO film) 8a.

図4はガラス板の吸収係数である。1.5μm以下の短い波長の多くはガラス板およびTCO膜に吸収されずに透過する。2.5μm以上の長い波長ではガラス板に吸収されやすいことがわかる。   FIG. 4 shows the absorption coefficient of the glass plate. Most of the short wavelengths of 1.5 μm or less are transmitted without being absorbed by the glass plate and the TCO film. It can be seen that a long wavelength of 2.5 μm or more is easily absorbed by the glass plate.

図5はSnOを主成分とする透明導電膜(TCO膜)の吸収率と反射率である。フッ素などのドーピング率や膜厚で数値は多少変動するが、3.0μm以上の波長では、透明導電膜(TCO膜)による反射が多い。1.5μm以上で3.0μm以下の波長では、透明導電膜(TCO膜)による反射が少なく、吸収されにくいことがわかる。 FIG. 5 shows the absorptance and reflectance of a transparent conductive film (TCO film) mainly composed of SnO 2 . Although the numerical value slightly varies depending on the doping rate and film thickness of fluorine or the like, reflection at the wavelength of 3.0 μm or more is often reflected by the transparent conductive film (TCO film). It can be seen that at a wavelength of 1.5 μm or more and 3.0 μm or less, reflection by the transparent conductive film (TCO film) is small and absorption is difficult.

したがって、透明導電膜(TCO膜)8a面側からIRヒータ70で基板8を加熱する際は、1.5μm以上で3.0μm以下の波長が基板加熱に有効に利用される。また2.5μm以上で3.0μm以下の波長は透明導電膜(TCO膜)8aによる反射が少なく、基板8での吸収が高いので好ましい。
一方、透明導電膜(TCO膜)8a面と反対のガラス面側からIRヒータ70で基板8を加熱する際は、3.0μm以下の波長の制限を受けずに、1.5μm以上の波長が基板加熱に有効に利用できる。しかしながら、基板支持枠71により基板8に温度分布が発生して、大型基板を均一温度分布に加熱する構造に適さない。このため、黒色輻射板72を用いた新しい構造が好ましい。
Therefore, when the substrate 8 is heated by the IR heater 70 from the surface of the transparent conductive film (TCO film) 8a, a wavelength of 1.5 μm or more and 3.0 μm or less is effectively used for substrate heating. A wavelength of 2.5 μm or more and 3.0 μm or less is preferable because there is little reflection by the transparent conductive film (TCO film) 8a and absorption at the substrate 8 is high.
On the other hand, when the substrate 8 is heated by the IR heater 70 from the glass surface opposite to the transparent conductive film (TCO film) 8a surface, the wavelength of 1.5 μm or more is not limited by the wavelength of 3.0 μm or less. It can be used effectively for substrate heating. However, the substrate support frame 71 generates a temperature distribution on the substrate 8 and is not suitable for a structure in which a large substrate is heated to a uniform temperature distribution. For this reason, a new structure using the black radiation plate 72 is preferable.

黒色輻射板72は、基板支持枠71のほぼ全体を覆う寸法であり、図3に示したように、基板8は黒色輻射板72とIRヒータ70との間に設置される。黒色輻射板72は、加熱されることで、基板8に吸収されやすい波長の赤外線が放出される。本実施形態では、少なくとも2.5μm以上、好ましくは3.0μm以上の波長であるとともに、エネルギーの高い短波長側の赤外線を放出するように加熱される。黒色輻射板72は、基板8を透過した輻射光線によって好ましくは400℃以上に加熱される。黒色輻射板72は、略400℃に加熱することにより、略4.0μmの波長を主とする輻射光が基板8に対して放射されるようになり、図4に示したように基板8に吸収されやすい。   The black radiation plate 72 has a size that covers almost the entire substrate support frame 71, and the substrate 8 is placed between the black radiation plate 72 and the IR heater 70 as shown in FIG. 3. When the black radiation plate 72 is heated, infrared rays having a wavelength that is easily absorbed by the substrate 8 are emitted. In the present embodiment, heating is performed so as to emit infrared rays having a wavelength of at least 2.5 μm or more, preferably 3.0 μm or more, and having high energy on the short wavelength side. The black radiation plate 72 is preferably heated to 400 ° C. or more by the radiation light transmitted through the substrate 8. When the black radiation plate 72 is heated to about 400 ° C., radiation light mainly having a wavelength of about 4.0 μm is emitted to the substrate 8. As shown in FIG. Easy to be absorbed.

黒色輻射板72の材料は、例えばSUS304等の通常の耐久性のよい真空材料を使用し、この表面に陽極酸化法などを用いて約1μmの酸化膜を形成することで、黒体に近い高い輻射率を有する黒色(例えば輻射率0.8以上)とする。黒色輻射板72は真空にて脱ガスが少なく500℃程度の高温でも安定していることが望ましく、陽極酸化法に限らずに、表面形状をIRヒータ70の光源の波長以下となるように細かい凹凸を設けた形状としたり、ジルコニア系の黒いセラミックス材を溶射やスラリコートなどで金属板に塗布してもよい。   The material of the black radiating plate 72 is, for example, a normal durable vacuum material such as SUS304, and an oxide film of about 1 μm is formed on the surface by using an anodic oxidation method or the like. Black having a radiation rate (for example, a radiation rate of 0.8 or more). The black radiation plate 72 is desirably degassed in a vacuum and stable even at a high temperature of about 500 ° C. The surface of the black radiation plate 72 is not limited to the anodic oxidation method, and the surface shape is fine so as to be less than the wavelength of the light source of the IR heater 70 You may make it the shape which provided the unevenness | corrugation, and may apply | coat a zirconia-type black ceramic material to a metal plate by thermal spraying, slurry coating, etc.

このように構成された本実施形態の真空処理装置では、IRヒータ70により加熱を行なうと、図6に示したように、
輻射光線の波長が3.0μm以上、詳細には2.8μm以上では、透明導電膜(TCO膜)8aに反射され、
2.5〜3.0μmでは、透明導電膜(TCO膜)8aとガラス板8bに一部が吸収されて透明導電膜(TCO膜)8aとガラス板8bを加熱し、一部が透過し、
1.5μm以下では、透明導電膜(TCO膜)8aとガラス板8bを透過し、
1.5〜2.5μmでは、透明導電膜(TCO膜)8aに一部が吸収されて透明導電膜(TCO膜)8aを加熱し、一部が透明導電膜(TCO膜)8aとガラス板8bを透過する。
基板8を一部が透過した1.5〜3.0μmの波長、およびほとんどが透過した1.5μm以下の波長の輻射光線は、黒色輻射板72を加熱する。これにより、黒色輻射板72からは少なくとも波長2.5μm以上、好ましくは2.8μm以上、より好ましくは3.0μm以上の遠赤外線を主とする輻射光が放射され、基板8を背後から加熱する。
In the vacuum processing apparatus of the present embodiment configured as described above, when heating is performed by the IR heater 70, as shown in FIG.
When the wavelength of the radiation beam is 3.0 μm or more, specifically, 2.8 μm or more, it is reflected by the transparent conductive film (TCO film) 8a,
In 2.5-3.0 micrometers, a part is absorbed by the transparent conductive film (TCO film) 8a and the glass plate 8b, the transparent conductive film (TCO film) 8a and the glass plate 8b are heated, a part permeate | transmits,
When the thickness is 1.5 μm or less, the transparent conductive film (TCO film) 8a and the glass plate 8b are transmitted.
In 1.5-2.5 micrometers, a part is absorbed by the transparent conductive film (TCO film) 8a, the transparent conductive film (TCO film) 8a is heated, and a part is transparent conductive film (TCO film) 8a and a glass plate. 8b is transmitted.
The black radiation plate 72 is heated by a radiation beam having a wavelength of 1.5 to 3.0 μm partially transmitted through the substrate 8 and a wavelength of 1.5 μm or less transmitted most. Thereby, the black radiation plate 72 emits radiation mainly including far-infrared rays having a wavelength of at least 2.5 μm or more, preferably 2.8 μm or more, more preferably 3.0 μm or more, and the substrate 8 is heated from behind. .

このように、基板8を透過した波長は、黒色輻射板72により低コストで長波長変換が行なわれる。すなわち、ガラス板8bに吸収されやすい波長に変換することで、IRヒータ70による基板8の加熱効率を向上するとともに、チャンバ21aへ逃げる熱量を抑制し、IRヒータへ投入電力量やチャンバ壁面(特にOリングなどでシールする部分)を冷却する冷却水流量を削減してランニングコストの低減が可能である。
また、基板8の両面にIRヒータを設置することなく基板8の両面を加熱することが可能となり、基板表裏の温度差を小さくできるので、基板8の表裏温度差による反り変形発生を抑制し、急速加熱の高い熱流束のもとで基板8が脱落することなく、基板支持枠71で安定して支持できる。特に基板8の板厚が厚い場合(例えば薄膜型太陽電池スーパーストレート用の4mm等)に反り防止の効果が有意義である。
これにより、熱解析の結果、IRヒータ70の投入電力の基板加熱への寄与率が22%から27%へと改善されることが確認された。
なお、透明導電膜(TCO膜)8aの形成されていないガラス単体基板(ガラス板8bのみ)においても、基板表裏方向からの有効な波長の輻射光線による加熱が行われるので、従来型の黒色輻射板72のないIRヒータ加熱システムよりも、好ましい基板加熱が行われる。
Thus, the wavelength transmitted through the substrate 8 is converted into a long wavelength by the black radiation plate 72 at a low cost. That is, by converting to a wavelength that is easily absorbed by the glass plate 8b, the heating efficiency of the substrate 8 by the IR heater 70 is improved, the amount of heat that escapes to the chamber 21a is suppressed, and the amount of power input to the IR heater and the chamber wall surface (especially The running cost can be reduced by reducing the cooling water flow rate for cooling the portion sealed with an O-ring or the like.
In addition, it becomes possible to heat both sides of the substrate 8 without installing IR heaters on both sides of the substrate 8, and the temperature difference between the front and back sides of the substrate 8 can be reduced. The substrate 8 can be stably supported by the substrate support frame 71 without dropping off under the heat flux with high rapid heating. In particular, when the thickness of the substrate 8 is thick (for example, 4 mm for a thin film solar cell superstrate), the effect of preventing warping is significant.
As a result of the thermal analysis, it was confirmed that the contribution ratio of the input power of the IR heater 70 to the substrate heating was improved from 22% to 27%.
Even in a single glass substrate (only the glass plate 8b) in which the transparent conductive film (TCO film) 8a is not formed, heating with radiation light having an effective wavelength from the front and back sides of the substrate is performed. More preferable substrate heating is performed than the IR heater heating system without the plate 72.

[第2実施形態]
従来の薄膜製造装置で透明導電膜(TCO膜)8a側からIRヒータ70で基板8を加熱する場合においては、IRヒータ70から放出される波長のうち、3.0μm以上は透明導電膜(TCO膜)8aでの反射が多くなるため有効利用されていないことが判明した。そこで、本実施形態においては、IRヒータ70の放出ピーク波長が、透明導電膜(TCO膜)8aによる反射が少ない波長となるものを使用する。すなわち、放出する輻射光線のもっとも放射強度の高いピーク波長を1.5μm以上で3μm以下、好ましくは2.8μm以下とする。透明導電膜(TCO膜)8aとガラス板8bでの吸収量を増加するには、2.5μm以上で2.8μm以下が更に好ましい。放出ピーク波長は、IRヒータ70の発熱線径や長さを変更することで制御可能である。発熱線径を太くすると、波長が長くなり、細くすると波長が短くなる。発熱線長を長くすると波長が長くなり、短くすると波長が短くなる。
他の構成は上記第1実施形態と同様であるため重複した説明を省略する。
[Second Embodiment]
In the case where the substrate 8 is heated by the IR heater 70 from the transparent conductive film (TCO film) 8a side in the conventional thin film manufacturing apparatus, 3.0 μm or more of the wavelength emitted from the IR heater 70 is not less than 3.0 μm. Membrane) It was found that the film was not effectively used because of the increased reflection at 8a. Therefore, in the present embodiment, the IR heater 70 has a peak emission wavelength at which the reflection by the transparent conductive film (TCO film) 8a is small. That is, the peak wavelength of the highest radiant intensity of the emitted radiation is set to 1.5 μm to 3 μm, preferably 2.8 μm. In order to increase the amount of absorption in the transparent conductive film (TCO film) 8a and the glass plate 8b, it is more preferably 2.5 μm or more and 2.8 μm or less. The emission peak wavelength can be controlled by changing the heating wire diameter or length of the IR heater 70. Increasing the heating wire diameter increases the wavelength, and decreasing it decreases the wavelength. Increasing the heating wire length increases the wavelength, and shortening it decreases the wavelength.
Since other configurations are the same as those of the first embodiment, a duplicate description is omitted.

これにより、透明導電膜(TCO膜)8aにより反射される割合を減少させ、透明導電膜(TCO膜)8aおよび基板8を透過した波長が上記第1実施形態のように黒色輻射板72により長波長へ反射され、基板加熱に有効に利用される。これにより、投入電力の基板加熱は熱解析の結果、寄与率22%から36%程度にさらに改善することが確認された。なお、放出輻射光線のピーク波長は、透明導電膜(TCO膜)の特性や膜厚に合わせて適宜変更できることは言うまでもない。   As a result, the proportion reflected by the transparent conductive film (TCO film) 8a is reduced, and the wavelength transmitted through the transparent conductive film (TCO film) 8a and the substrate 8 is longer by the black radiation plate 72 as in the first embodiment. Reflected to the wavelength and used effectively for substrate heating. As a result, it was confirmed that the substrate heating of the input power further improved from 22% to 36% as a result of thermal analysis. Needless to say, the peak wavelength of the emitted radiation can be appropriately changed in accordance with the characteristics and film thickness of the transparent conductive film (TCO film).

[第3実施形態]
上記各実施形態に対して、黒色輻射板72の厚さを以下のように制限してもよい。なお、他の構成は上記各実施形態と同様であるため、説明を省略する。
[Third Embodiment]
For each of the above embodiments, the thickness of the black radiation plate 72 may be limited as follows. Since other configurations are the same as those in the above embodiments, description thereof is omitted.

黒色輻射板72への輻射伝熱量は次式で表される。
Q(ヒータ→基板)=Aεεσ[(T/100)^4−(T/100)^4]
Q(黒色輻射板→基板)=Aεεσ[(T/100)^4−(T/100)^4]
:IRヒータ面積、A:基板面積、A:黒色輻射板面積
o,s,:形態係数
εo,εs,ε:輻射率
σ:ステファンボルツマン係数
:IRヒータ温度、T:基板温度、T:黒色輻射板温度
The amount of radiant heat transferred to the black radiation plate 72 is expressed by the following equation.
Q (heater → board) = A o F o ε o ε s σ [(T o / 100) ^ 4- (T s / 100) ^ 4]
Q (black radiation plate → substrate) = A b F b ε s ε b σ [(T b / 100) ^ 4- (T s / 100) ^ 4]
A o : IR heater area, A s : substrate area, A b : black radiation plate area F o, F s, F b : form factor ε o, ε s, ε b : emissivity σ: Stefan Boltzmann coefficient T o : IR heater temperature, T s : substrate temperature, T b : black radiation plate temperature

したがって、基板8への入熱量は黒色輻射板72の温度が高いほど多くなり高速加熱が可能となる。また黒色輻射板72の輻射率:εは温度が高いほど大きくなるので、さらに基板加熱に有利となる。 Therefore, the amount of heat input to the substrate 8 increases as the temperature of the black radiation plate 72 increases, and high-speed heating is possible. The emissivity of the black radiation plate 72: epsilon b is becomes larger as the temperature is high, which is advantageous for further heating the substrate.

τ時間後に黒色輻射板温度Tは、
(T’−T)/(T−T)=Exp(−hA/(CM)×τ)
’:非定常黒色輻射板温度、T:IRヒータの温度、T:黒色輻射板冷却側温度(チャンバ壁面と仮定)
C:黒色輻射板比熱、M:黒色輻射板質量、hA:熱伝達率×伝熱面積=伝熱率
After τ time, the black radiation plate temperature Tb is
(T b ′ −T w ) / (T o −T w ) = Exp (−hA / (CM) × τ)
T b ′: Unsteady black radiation plate temperature, T o : IR heater temperature, T w : Black radiation plate cooling side temperature (assuming chamber wall surface)
C: black radiant plate specific heat, M: black radiant plate mass, hA: heat transfer rate × heat transfer area = heat transfer rate

したがって、黒色輻射板温度(T’)が速く上昇するには、伝熱率:hAの増加はもちろんであるが、黒色輻射板72の比熱(C)や質量(M)の低減が効果がある。このため、SUS304を使用する場合は薄い方が望ましく、例えば厚さ0.1〜0.5mmの箔板を使用する。なお、SUSをアルミニウムに変更すればCMを約半分にして温度上昇を高速化することができるものの、500℃程度の耐力がなく、基板加熱温度を高くする場合は使用限界がある。 Therefore, in order to increase the black radiation plate temperature (T b ′) quickly, not only the heat transfer rate: hA is increased, but also the reduction of the specific heat (C) and mass (M) of the black radiation plate 72 is effective. is there. For this reason, when using SUS304, the thinner one is desirable. For example, a foil plate having a thickness of 0.1 to 0.5 mm is used. Note that if SUS is changed to aluminum, the temperature rise can be increased by halving the CM, but there is no proof strength of about 500 ° C., and there is a use limit when the substrate heating temperature is increased.

このように、黒色輻射板72の厚さを薄く設定することにより、黒色輻射板温度が速やかに上昇し、基板8の加熱も迅速に行なわれる。   Thus, by setting the thickness of the black radiation plate 72 to be thin, the temperature of the black radiation plate rises quickly and the substrate 8 is also heated quickly.

[第4実施形態]
図7に示したように、黒色輻射板72と基板支持枠71との間に、反射板73を設ける。反射板73は、不図示の締結手段等により、黒色輻射板72との接触熱伝達を低減するために、ワッシャ等を介して黒色輻射板72とは隙間を隔てて設けられる。反射板73の素材としてはアルミやアルミ合金(例えばA5052)や磨いたステンレス材やニッケル材等の反射率が高いものを使用する。より好ましくは、酸化による黒色変化がないため、アルミ合金箔やニッケル箔がよい。他の構成は上記各実施形態と同様であるため、説明を省略する。
[Fourth Embodiment]
As shown in FIG. 7, a reflection plate 73 is provided between the black radiation plate 72 and the substrate support frame 71. The reflection plate 73 is provided with a gap from the black radiation plate 72 through a washer or the like in order to reduce contact heat transfer with the black radiation plate 72 by fastening means (not shown). As the material of the reflector 73, a material having a high reflectance such as aluminum, an aluminum alloy (for example, A5052), a polished stainless material, or a nickel material is used. More preferably, an aluminum alloy foil or a nickel foil is preferable because there is no black change due to oxidation. Since other configurations are the same as those in the above embodiments, description thereof is omitted.

これにより、黒色輻射板72からチャンバ壁面Tへ逃げる熱が反射板73により反射し、黒色輻射板72を加熱して黒色輻射板72の温度を上昇させる。これにより、輻射率を向上させ、基板8への伝熱を上昇させる。特に黒色輻射板72の温度が上昇することで、より短波長側(高エネルギー)の輻射光線を放出可能となり、基板8の加熱寄与率が上昇する。
なお、反射板73は、周囲構造物(例えばSUS材)の輻射率より低くなるように、滑らかな表面性状のSUS材の輻射率相当である0.2以下であることが望ましい。さらにチャンバ壁面への熱が逃げることを抑制するには、反射板73の表面温度を高く保つとともに、反射板73の熱伝達率を低下させるために、反射板73を2重以上設けてもよい。これによりさらに上記効果を効率的に発揮することができる。
Accordingly, the heat escaping from the black radiation plate 72 to the chamber wall T w is reflected by the reflecting plate 73, by heating the black radiation plate 72 to raise the temperature of the black radiation plate 72. Thereby, the emissivity is improved and the heat transfer to the substrate 8 is increased. In particular, when the temperature of the black radiating plate 72 is increased, it becomes possible to emit a shorter wavelength (high energy) radiation beam, and the heating contribution ratio of the substrate 8 is increased.
In addition, it is desirable that the reflection plate 73 is 0.2 or less, which is equivalent to the radiation rate of the SUS material having a smooth surface property so as to be lower than the radiation rate of the surrounding structure (for example, the SUS material). Further, in order to suppress the escape of heat to the chamber wall surface, two or more reflecting plates 73 may be provided in order to keep the surface temperature of the reflecting plate 73 high and reduce the heat transfer coefficient of the reflecting plate 73. . As a result, the above-described effects can be further effectively exhibited.

[第5実施形態]
上記第4実施形態の反射板73を、前記基板8に対面する側が黒色輻射板72であり、黒色輻射板72の裏側が前記反射板である、両方の機能を保有した同一の板材となる構造としてもよい。すなわち、一枚の金属板(前述のSUS等)の基板8側の片側の面を陽極酸化法等で黒色輻射面(黒色輻射板72)とし、基板8と反対側の面を磨き加工等して反射面(反射板73)とする。これにより部品点数が減少し、部品本体のコストダウンに加えて、追加部品表面積が減少するので脱ガス量を抑制して真空排気速度の低減が抑えられる。
[Fifth Embodiment]
The structure which becomes the same board | plate material which has both the functions which the reflection plate 73 of the said 4th Embodiment has the both functions in which the side which faces the said board | substrate 8 is the black radiation plate 72, and the back side of the black radiation plate 72 is the said reflection plate. It is good. That is, the surface of one metal plate (SUS, etc.) on one side of the substrate 8 side is made a black radiation surface (black radiation plate 72) by anodizing or the like, and the surface opposite to the substrate 8 is polished. The reflection surface (reflection plate 73) is used. As a result, the number of parts is reduced, and in addition to the cost reduction of the part main body, the surface area of the additional parts is reduced.

[第6実施形態]
図8に示したように、チャンバ21aの内側の壁面に、前記IRヒータ70、基板8、および黒色輻射板72を取り囲む範囲のうちで、少なくとも一部分には反射板74を設ける。反射板74は、チャンバ21aの内壁各面に隙間を設けて、チャンバ21aの内壁各面との接触熱伝達を低減できるよう設けられ、不図示の真空排気口、基板搬送のためのGV弁等のスペース等を除いた位置に設ける。反射板74は上記第4実施形態における反射板73と同じ材料のものを使用可能である。なお、他の構成は上記各実施形態と同様であるため、説明を省略する。
[Sixth Embodiment]
As shown in FIG. 8, a reflection plate 74 is provided on at least a part of the wall surrounding the IR heater 70, the substrate 8, and the black radiation plate 72 on the inner wall surface of the chamber 21a. The reflection plate 74 is provided so as to reduce contact heat transfer with each inner wall surface of the chamber 21a by providing a gap on each inner wall surface of the chamber 21a, such as a vacuum exhaust port (not shown), a GV valve for transporting the substrate, and the like. It is provided at a position excluding the space. The reflector 74 can be made of the same material as the reflector 73 in the fourth embodiment. Since other configurations are the same as those in the above embodiments, description thereof is omitted.

これによりチャンバ21a壁面に逃げる熱量が減少し、黒色輻射板72の温度を上昇させることができる。これにより基板8への伝熱量が上昇する。黒色輻射板72の温度が上昇することにより、よりエネルギーの大きな短波長側の輻射光を放出可能となり、基板8への吸熱が多くなり、加熱寄与率が向上する。特に、透明導電膜(TCO膜)8aに反射される波長(2.8μm以上)を反射板74により反射させることで、黒色輻射板72に入射させる。これにより、基板加熱効率を上げることが可能となる。
また、基板8を加熱する輻射光線は、IRヒータから直接到達したもの以外に黒色輻射板72と反射板74からの輻射光線が利用されるので、基板8の温度分布をより均一にする効果がある。
As a result, the amount of heat escaping to the wall surface of the chamber 21a is reduced, and the temperature of the black radiation plate 72 can be raised. Thereby, the amount of heat transfer to the substrate 8 increases. As the temperature of the black radiation plate 72 rises, it becomes possible to emit radiation light on the short wavelength side with larger energy, heat absorption to the substrate 8 is increased, and the heating contribution rate is improved. In particular, the wavelength (2.8 μm or more) reflected by the transparent conductive film (TCO film) 8 a is reflected by the reflecting plate 74 so as to enter the black radiation plate 72. As a result, the substrate heating efficiency can be increased.
Further, as the radiation beam for heating the substrate 8, radiation beams from the black radiation plate 72 and the reflection plate 74 are used in addition to those directly reaching from the IR heater, so that the temperature distribution of the substrate 8 can be made more uniform. is there.

なお、上記第4実施形態のように黒色輻射板72の背面方向に反射板73を設ける場合には、さらに外側のチャンバ21a内面に反射板74を設ける必要はない。   In addition, when providing the reflective plate 73 in the back direction of the black radiation plate 72 as in the fourth embodiment, it is not necessary to provide the reflective plate 74 on the inner surface of the outer chamber 21a.

[第7実施形態]
図9に示したように、IRヒータ70の背後(IRヒータ70に対して基板8とは反対側の位置)に、第2の黒色輻射板75を設ける。なお、IRヒータ70の背後に反射板74を設け、この反射板とIRヒータ70との間に反射板74とは別体として第2の黒色輻射板75を設けてもよいし、反射板74のヒータ側表面を黒色輻射面としてもよい。これにより、基板8へ入熱する赤外線量がより均一化してより均一な温度分布となり、基板加熱効率が向上する。さらに、これに加えてIRヒータ70の基板面に対して交差する方向に延在する面(横側面)に黒色輻射板を設置してもよい。なお、他の構成は上記各実施形態と同様であるため、説明を省略する。
[Seventh Embodiment]
As shown in FIG. 9, the second black radiation plate 75 is provided behind the IR heater 70 (a position opposite to the substrate 8 with respect to the IR heater 70). A reflective plate 74 may be provided behind the IR heater 70, and a second black radiation plate 75 may be provided between the reflective plate and the IR heater 70 as a separate body, or the reflective plate 74. The heater side surface may be a black radiation surface. As a result, the amount of infrared rays entering the substrate 8 is made more uniform, resulting in a more uniform temperature distribution, and the substrate heating efficiency is improved. In addition to this, a black radiation plate may be provided on a surface (lateral side surface) extending in a direction intersecting the substrate surface of the IR heater 70. Since other configurations are the same as those in the above embodiments, description thereof is omitted.

第2の黒色輻射板75が反射する輻射光線は1.5以上3μm以下の長波長光線とし、基板8を全体から加熱できるようにする。これにより、基板8の加熱効率を向上させるとともに、基板の温度分布を均一化することができる。   The radiation beam reflected by the second black radiation plate 75 is a long wavelength beam of 1.5 to 3 μm so that the substrate 8 can be heated from the whole. Thereby, the heating efficiency of the substrate 8 can be improved and the temperature distribution of the substrate can be made uniform.

薄膜製造装置の概略構成図である。It is a schematic block diagram of a thin film manufacturing apparatus. 同薄膜製造装置が備える製膜室の断面図である。It is sectional drawing of the film forming chamber with which the same thin film manufacturing apparatus is provided. 前記薄膜製造装置が備えるロード室の斜視図である。It is a perspective view of the load chamber with which the said thin film manufacturing apparatus is provided. 基板の吸収係数を示した図である。It is the figure which showed the absorption coefficient of the board | substrate. 透明導電膜(TCO膜)の吸収率・反射率を示した図である。It is the figure which showed the absorptance and reflectance of the transparent conductive film (TCO film). 基板が透過または吸収する波長を示した模式図である。It is the schematic diagram which showed the wavelength which a board | substrate permeate | transmits or absorbs. 本発明の第4実施形態に係る薄膜製造装置のロードロック室を示した斜視図である。It is the perspective view which showed the load lock chamber of the thin film manufacturing apparatus which concerns on 4th Embodiment of this invention. 本発明の第6実施形態に係る薄膜製造装置のロードロック室を示した斜視図である。It is the perspective view which showed the load lock chamber of the thin film manufacturing apparatus which concerns on 6th Embodiment of this invention. 本発明の第7実施形態に係る薄膜製造装置のロードロック室を示した斜視図である。It is the perspective view which showed the load lock chamber of the thin film manufacturing apparatus which concerns on 7th Embodiment of this invention.

符号の説明Explanation of symbols

1 薄膜製造装置(真空処理装置)
8 基板
8a 透明導電膜(TCO膜)
8b ガラス板
21 ロード室
21a チャンバ
70 IRヒータ
71 基板支持枠
72 黒色輻射板
73 反射板
74 反射板
75 第2の黒色輻射板
1 Thin film production equipment (vacuum processing equipment)
8 Substrate 8a Transparent conductive film (TCO film)
8b Glass plate 21 Load chamber 21a Chamber 70 IR heater 71 Substrate support frame 72 Black radiation plate 73 Reflection plate 74 Reflection plate 75 Second black radiation plate

Claims (8)

大気圧より減圧した状態でガラス基板を処理するチャンバを備え、該チャンバ内に、該ガラス基板を加熱するヒータと、該ガラス基板に対して前記ヒータとは反対側に設けられた黒色輻射板とを備え、
前記黒色輻射板が、前記チャンバの壁面と離間して設けられる箔板であり、前記ヒータから発せられた輻射光線のうち、主として前記ガラス基板を透過した光により加熱されて、遠赤外線を主とする放射光を放射し前記ガラス基板を前記ヒータと反対側から加熱する真空処理装置。
A chamber for processing the glass substrate under a reduced pressure from atmospheric pressure; a heater for heating the glass substrate in the chamber; and a black radiation plate provided on the opposite side of the heater from the glass substrate; With
The black radiation plate is a foil plate provided apart from the wall surface of the chamber, and is heated mainly by the light transmitted through the glass substrate among the radiation rays emitted from the heater. A vacuum processing apparatus that emits radiated light and heats the glass substrate from a side opposite to the heater.
前記ガラス基板の少なくとも一部の表面には透明導電膜が形成されていて、前記ヒータが発する輻射光線のうち、赤外線域にあるもっとも放射強度が高いピーク波長が、前記透明導電膜によって80%以上反射されない波長である請求項1に記載の真空処理装置。   A transparent conductive film is formed on at least a part of the surface of the glass substrate, and the peak wavelength of the highest radiant intensity in the infrared region among the radiation rays emitted from the heater is 80% or more by the transparent conductive film. The vacuum processing apparatus according to claim 1, which has a wavelength that is not reflected. 前記ピーク波長は、1.5μm以上で3.0μm以下である請求項2に記載の真空処理装置。   The vacuum processing apparatus according to claim 2, wherein the peak wavelength is 1.5 μm or more and 3.0 μm or less. 前記黒色輻射板に対して前記ガラス基板とは反対側の位置に反射板が設けられている請求項1から3のいずれかに記載の真空処理装置。   The vacuum processing apparatus in any one of Claim 1 to 3 with which the reflecting plate is provided in the position on the opposite side to the said glass substrate with respect to the said black radiation board. 前記基板に対面する側が前記黒色輻射板であり、前記黒色輻射板の裏側が前記反射板である、両方の機能を保有した同一の板材を有する請求項4に記載の真空処理装置。   The vacuum processing apparatus according to claim 4, comprising the same plate member having both functions, wherein the side facing the substrate is the black radiation plate, and the back side of the black radiation plate is the reflection plate. 前記チャンバの内側壁面に、前記ヒータ、ガラス基板、および黒色輻射板を取り囲む範囲のうちで、少なくとも一部に反射板が設けられている請求項1から5のいずれかに記載の真空処理装置。   The vacuum processing apparatus according to any one of claims 1 to 5, wherein a reflection plate is provided on at least a part of a range surrounding the heater, the glass substrate, and the black radiation plate on the inner wall surface of the chamber. 前記ヒータに対して前記ガラス基板と反対側の位置に、第2の黒色輻射板が設けられた請求項1から6のいずれかに記載の真空処理装置。   The vacuum processing apparatus in any one of Claim 1 to 6 with which the 2nd black radiation board was provided in the position on the opposite side to the said glass substrate with respect to the said heater. 大気圧より減圧したチャンバ内でガラス基板に対向する位置に設けられるヒータが輻射光線を放射し、該輻射光線により前記ガラス基板が加熱されるとともに、
前記輻射光線のうち前記ガラス基板を透過した光により、前記ガラス基板に対して前記ヒータと反対側に前記チャンバの壁面と離間して設けられる黒色輻射板が加熱され、該加熱された黒色輻射板が遠赤外線を主とする放射光を放射して、前記ガラス基板を前記ヒータと反対側から加熱する基板加熱方法。
A heater provided at a position facing the glass substrate in the chamber depressurized from the atmospheric pressure emits a radiation beam, and the glass substrate is heated by the radiation beam,
The black radiation plate provided on the opposite side to the heater with respect to the glass substrate and spaced from the wall surface of the chamber is heated by the light transmitted through the glass substrate among the radiation rays, and the heated black radiation plate Emits radiant light mainly composed of far infrared rays, and heats the glass substrate from the opposite side of the heater.
JP2007036431A 2007-02-16 2007-02-16 Vacuum processing apparatus and substrate heating method Expired - Fee Related JP4981477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007036431A JP4981477B2 (en) 2007-02-16 2007-02-16 Vacuum processing apparatus and substrate heating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007036431A JP4981477B2 (en) 2007-02-16 2007-02-16 Vacuum processing apparatus and substrate heating method

Publications (2)

Publication Number Publication Date
JP2008202066A JP2008202066A (en) 2008-09-04
JP4981477B2 true JP4981477B2 (en) 2012-07-18

Family

ID=39779863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007036431A Expired - Fee Related JP4981477B2 (en) 2007-02-16 2007-02-16 Vacuum processing apparatus and substrate heating method

Country Status (1)

Country Link
JP (1) JP4981477B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128051A1 (en) * 2011-03-24 2012-09-27 三洋電機株式会社 Method for producing transparent conductive film and method for manufacturing solar cell
CN110391132B (en) * 2018-04-16 2023-05-16 芝浦机械电子株式会社 Organic film forming apparatus
JP6940541B2 (en) * 2018-04-16 2021-09-29 芝浦メカトロニクス株式会社 Organic film forming device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260422A (en) * 1993-03-08 1994-09-16 Kokusai Electric Co Ltd Method and device for heating glass substrate
JPH09162131A (en) * 1995-12-13 1997-06-20 Mitsubishi Heavy Ind Ltd Plasma cvd system
JP4549484B2 (en) * 2000-03-30 2010-09-22 東京エレクトロン株式会社 Single wafer heat treatment system
JP2002217114A (en) * 2001-01-18 2002-08-02 Mitsubishi Heavy Ind Ltd Method and apparatus for manufacturing silicon based thin film, and photovoltaic device and method for manufacturing it
JP4951840B2 (en) * 2004-03-12 2012-06-13 東京エレクトロン株式会社 Plasma film forming apparatus, heat treatment apparatus, plasma film forming method, and heat treatment method

Also Published As

Publication number Publication date
JP2008202066A (en) 2008-09-04

Similar Documents

Publication Publication Date Title
KR102121794B1 (en) Heating arrangement and method for heating substrates
JP5830468B2 (en) Power generator
US20070209658A1 (en) Solar absorber
ES2797390T3 (en) Heat receiver tube with infrared light reflective coated glass tube, procedure for making the glass tube, parabolic trough collector with the heat receiver tube, and use of parabolic trough collector
JP5368847B2 (en) Infrared radiation element
US8559101B2 (en) Reflector and apparatus including the reflector
US20090114534A1 (en) Sputtering Assembly
JP4981477B2 (en) Vacuum processing apparatus and substrate heating method
Bilokur et al. High temperature spectrally selective solar absorbers using plasmonic AuAl2: AlN nanoparticle composites
KR101720884B1 (en) Avoidance of glass bending in thermal processes
JP5624278B2 (en) Infrared radiation element
JP6164906B2 (en) Solar power module
CN105929471B (en) A kind of low-cost solar film reflecting mirror material
KR100902011B1 (en) Solar power generator using beam splitter
JP2019168174A (en) Radiation cooling device
WO2020105345A1 (en) Method for manufacturing glass article and method for heating thin sheet glass
KR102298310B1 (en) Cooling structures
CN109324362A (en) A kind of condenser mirror and preparation method
JP2909538B1 (en) Wavelength-selective heat radiation material for heating and heating
JP3273361B2 (en) Solar heat collector
JPH1114162A (en) Solar heat collecting device
WO2023101973A1 (en) Bandpass assembly for thermo-photovoltaic devices
Shimizu et al. Application of Transparent Conductive Oxides Films for High-Temperature Solar Selective Absorbers
Ahmad et al. Passive cooling of surfaces
US20180017289A1 (en) Solar heat collection tube, sunlight-to-heat conversion device and solar heat power generation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees