JP3273361B2 - Solar heat collector - Google Patents

Solar heat collector

Info

Publication number
JP3273361B2
JP3273361B2 JP11406298A JP11406298A JP3273361B2 JP 3273361 B2 JP3273361 B2 JP 3273361B2 JP 11406298 A JP11406298 A JP 11406298A JP 11406298 A JP11406298 A JP 11406298A JP 3273361 B2 JP3273361 B2 JP 3273361B2
Authority
JP
Japan
Prior art keywords
heat
absorbing plate
heat absorbing
housing
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11406298A
Other languages
Japanese (ja)
Other versions
JPH11270912A (en
Inventor
俊作 中内
Original Assignee
国際技術開発株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国際技術開発株式会社 filed Critical 国際技術開発株式会社
Priority to JP11406298A priority Critical patent/JP3273361B2/en
Publication of JPH11270912A publication Critical patent/JPH11270912A/en
Application granted granted Critical
Publication of JP3273361B2 publication Critical patent/JP3273361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/75Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/50Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings
    • F24S80/56Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings characterised by means for preventing heat loss
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/50Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings
    • F24S80/54Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings using evacuated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S2025/01Special support components; Methods of use
    • F24S2025/011Arrangements for mounting elements inside solar collectors; Spacers inside solar collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は真空式の太陽熱収集
装置、特に真空式で平板型の太陽熱収集装置で100℃
を越す高温の熱出力を出し得る太陽熱収集装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum type solar heat collecting apparatus, and more particularly, to a vacuum type flat plate type solar heat collecting apparatus at 100.degree.
The present invention relates to a solar heat collecting apparatus capable of producing a high-temperature heat output exceeding the maximum.

【0002】[0002]

【従来の技術】従来の平板式の太陽熱収集装置は、太陽
光のエネルギーを吸収する吸熱板を支える熱絶縁物、或
いは吸熱板の周囲の空気、等を通しての熱損失と、吸熱
板からの赤外線放射による放射損失が大きいので、80
℃以上の高温を効率良く得ることは難しかった。
2. Description of the Related Art A conventional flat plate type solar heat collecting apparatus has a heat loss through a heat insulator supporting a heat absorbing plate for absorbing sunlight energy, or air around the heat absorbing plate, and an infrared ray from the heat absorbing plate. Since the radiation loss due to radiation is large, 80
It was difficult to efficiently obtain a high temperature of not less than ° C.

【0003】また従来の平板式の太陽熱収集装置では、
吸熱板の背面から逃げる熱を減らすために、背面を固体
の熱絶縁物で覆っていた。しかし最も優れた熱絶縁物は
真空であり、吸熱板を真空中におくのが最も良い方法で
ある。それにも拘わらず平板式のもので真空式のものが
存在しなかったのは、平板の窓及び筐体にかかる大気圧
が大きくてそれを経済的に支えることができなかった為
である。そのため真空式で平板式のものは市販されてお
らず、真空式のものは全てガラス二重管方式のものであ
った。
In a conventional flat plate type solar heat collecting apparatus,
To reduce the heat that escapes from the back of the heat sink, the back was covered with a solid thermal insulator. However, the best thermal insulator is a vacuum, and it is best to place the heat sink in a vacuum. Nevertheless, the reason why there was no flat type and no vacuum type was that the atmospheric pressure applied to the flat window and the housing was so large that it could not be supported economically. Therefore, the vacuum type flat plate type is not commercially available, and the vacuum type ones are all glass double tube type.

【0004】また従来は平板の真空式が無かったため、
真空式のときに特に問題になる、吸熱板の背面からの熱
放射による熱損失を減らすための対策はなされていなか
った。一方、真空ガラス二重管方式の欠点は、太陽光に
よって暖められたガラス管から、赤外線の二次放射によ
って外部に失われる時のガラス管の放射面積が、入射し
た太陽光の面積に対して、π/2倍≒1.6倍になると
いうことであった。平板式の場合はこの比率が1:1で
ある。太陽光に面しない背面からの二次放射による損失
もガラス管は平板の1.6倍である。
Conventionally, there was no flat plate vacuum type.
Particularly problematic when the vacuum, the measures for reducing the heat loss due to thermal radiation from the back of the heat absorbing plate has not been made. On the other hand, the drawback of the vacuum glass double tube method is that the radiation area of the glass tube when lost from the glass tube heated by sunlight to the outside due to the secondary radiation of infrared rays is smaller than the area of the incident sunlight. , Π / 2 times ≒ 1.6 times. In the case of a flat plate type, this ratio is 1: 1. The loss due to secondary radiation from the back that does not face sunlight is 1.6 times that of a flat glass tube.

【0005】[0005]

【発明が解決しようとする課題】本発明の解決しようと
する課題は、太陽熱収集装置を従来使われていた100
℃以下の熱源としてではなく100℃よりずっと高い例
えば200℃のような温度の熱源として使えるようにす
る為、或いは100℃以下の領域で従来品よりはるかに
効率のよい太陽熱収集装置を得る為に、太陽熱収集装置
の吸熱板からの熱損失を如何にして大幅に減らすかと言
うことである。
The problem to be solved by the present invention is to provide a solar heat collecting apparatus which has been used in the past.
In order to be able to use it as a heat source with a temperature much higher than 100 ° C, such as 200 ° C, instead of a heat source below 100 ° C, or to obtain a solar heat collecting device that is much more efficient than conventional products in the region below 100 ° C How to greatly reduce the heat loss from the heat absorbing plate of the solar heat collecting device.

【0006】熱損失の一つは温度の上がった吸熱板から
放射される主として赤外線の放射によって起こる。吸熱
板の温度が高い場合は、この放射損失は大きい。例えば
150℃で放射率0.9の吸熱板が30℃で放射率0.
9の周囲の灰色放射体に放射するエネルギーは吸熱板の
片面だけからでも約1kW/平方米に達する。吸熱板か
らの放射損失は吸熱板の表面から窓に向かってのもの
と、吸熱板の背面から筐体に向かってのものの二つであ
る。従って1平方米の吸熱板の放射損失は、この両面に
対するもので約2kWに達する。一方太陽から吸熱板が
貰うエネルギーは約800W/平方米である。ガラス二
重管方式の場合はこの放射面積が平板式に比較して大き
いので、更にこの放射損失の問題は深刻である。
One of the heat losses is mainly caused by infrared radiation emitted from the heated endothermic plate. When the temperature of the heat absorbing plate is high, the radiation loss is large. For example, a heat absorbing plate having an emissivity of 0.9 at 150 ° C. has an emissivity of 0.3 at 30 ° C.
The energy radiated to the gray radiator around 9 reaches about 1 kW / square meter even from only one side of the heat absorbing plate. The radiation loss from the heat absorbing plate is one from the surface of the heat absorbing plate toward the window, and the other from the back of the heat absorbing plate toward the housing. Therefore, the radiation loss of the 1 square rice heat absorbing plate reaches about 2 kW for both sides. On the other hand, the energy received from the sun from the heat absorbing plate is about 800 W / sq. In the case of the glass double tube system, since the radiation area is larger than that of the flat plate system, the problem of the radiation loss is further serious.

【0007】即ち特別な工夫をしなければ200℃のよ
うな高温度は太陽光を収束しない太陽熱収集装置では得
られないと言うことである。上述と同じ条件下での吸熱
板からの放射損失が800W/平方米位になる温度を概
略計算で求めると、80〜90℃位である。このように
放射損失は大きいからこの損失を減らすことは高温の太
陽熱収集装置を得るためには絶対必要である。
That is, a high temperature such as 200 ° C. cannot be obtained by a solar heat collecting apparatus which does not converge sunlight unless special measures are taken. When the temperature at which the radiation loss from the heat absorbing plate under the same conditions as described above becomes about 800 W / square meter is roughly calculated, it is about 80 to 90 ° C. Since the radiation loss is large, reducing this loss is essential for obtaining a high-temperature solar collector.

【0008】損失の他の一つは、吸熱板の周囲の空気の
熱伝導と、空気の対流による熱伝達と、吸熱板を支える
熱絶縁物を通しての熱伝導によるものである。吸熱板を
大気圧中におくと空気の伝導、対流による損失は放射に
よる損失とほぼ等しい大きな損失がある。即ち熱損失は
放射と熱伝導の二つによって起こる。この二つの損失は
吸熱板の表裏の両面から起こる。この二つの損失を減ら
すために吸熱板の周囲を真空に近い真空度に保つ手段
と、放射による損失の内、特に吸熱板の底面から筐体へ
の放射による損失を減らす手段を提供するのが本発明の
課題である。
Another loss is due to heat conduction of air around the heat absorbing plate, heat transfer by convection of air, and heat conduction through a thermal insulator supporting the heat absorbing plate. When the heat absorbing plate is placed at atmospheric pressure, the loss due to air conduction and convection has a large loss almost equal to the loss due to radiation. That is, heat loss is caused by radiation and heat conduction. These two losses occur from both sides of the heat absorbing plate. In order to reduce these two losses, it is necessary to provide a means for maintaining the degree of vacuum around the heat absorbing plate at a level close to vacuum, and a means for reducing the loss due to radiation from the bottom of the heat absorbing plate to the housing, particularly of the loss due to radiation. It is an object of the present invention.

【0009】[0009]

【課題を解決するための手段】空気による損失を減らす
ために、吸熱板を含む筐体内の気圧を、筐体内の残存空
気による熱伝導が自由分子条件下による熱伝導になる程
度の真空度にする。
In order to reduce the loss due to air, the air pressure in the housing including the heat absorbing plate is reduced to a degree of vacuum such that the heat conduction by the residual air in the housing becomes heat conduction under free molecular conditions. I do.

【0010】吸熱板の背面からの放射損失を減らすため
に、平板の吸熱板を使用し且つ吸熱板の面積を筐体の面
積とほぼ同じにして、吸熱板の背面を密閉空間に近い空
間にして、放射に関する形態係数を1に近い状態とす
る。そして吸熱板の背面とそれに対向する筐体底面の射
出率を減らすようにする。これらの方策によって放射損
失は減少するが、本発明は更に損失を減らす手段を提供
するもので、それは筐体内の真空度を前記のように、自
由分子条件下による熱伝導になるようにして、且つ吸熱
板と筺体の間に金属の反射面を持った隔壁を、吸熱板と
平行に一つまたは複数個設けることである。
In order to reduce radiation loss from the back of the heat absorbing plate, a flat heat absorbing plate is used, and the area of the heat absorbing plate is made almost the same as the area of the housing, so that the rear surface of the heat absorbing plate is made to be a space close to a closed space. Then, the view factor relating to radiation is brought to a state close to 1. Then, the emission ratio of the back surface of the heat absorbing plate and the bottom surface of the housing facing the heat absorbing plate is reduced. Although these measures reduce the radiation loss, the present invention provides a means of further reducing the loss, by making the degree of vacuum in the housing, as described above, heat transfer under free molecular conditions, In addition, one or more partition walls having a metal reflecting surface are provided between the heat absorbing plate and the housing in parallel with the heat absorbing plate.

【0011】このようにすると、残存空気による伝熱
と、放射による伝熱の両方が減少する。所謂スーパーイ
シュレーションと言う熱絶縁が行われる事になる。その
ためには、空気分子の平均自由行程が隔壁と隔壁、或い
は隔壁と吸熱板、或いは隔壁と筐体の間の間隔よりかな
り大きくなる程度の真空度にする。具体的には本太陽熱
収集装置の場合はこの間隔が5〜10mm見当であるか
ら、空気の平均自由行程が6cm位になる0.1パスカ
ル位以下の真空にした上で、前記のように隔壁を設置す
ると言う手段を採用する。
[0011] In this case, both the heat transfer by the residual air and the heat transfer by the radiation are reduced. Thermal insulation called so-called super insulation is performed. For this purpose, the degree of vacuum is set such that the mean free path of the air molecules is considerably larger than the distance between the partition and the partition, or between the partition and the heat absorbing plate, or between the partition and the housing. Specifically, in the case of the present solar heat collecting apparatus, since the interval is about 5 to 10 mm, the vacuum is set to about 0.1 Pascal or less at which the mean free path of air becomes about 6 cm, and then the partition wall is formed as described above. Is adopted.

【0012】[0012]

【発明の実施の形態】図1は本発明の実施形態の太陽熱
収集装置の構造の概略を示す簡略構造図で、(a)は平
面図、(b)は図(a)のA−Bで切った横断面図であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a simplified structural view showing the outline of the structure of a solar heat collecting apparatus according to an embodiment of the present invention, where (a) is a plan view and (b) is AB in FIG. It is the cross section cut.

【0013】図1で1は太陽熱収集装置、2は筺体、3
は太陽光を採り入れる窓、4は吸熱板、5は吸熱板4の
表面上に設けられた選択吸収膜、6は窓3と吸熱板4と
の間に設けられた選択フィルター、7は吸熱板の裏面に
設けられた反射膜、8は筐体2の底面に設けられた反射
膜、9は反射膜8と吸熱板4との間に吸熱板4と平行に
設けた金属の反射面を持つ隔壁、10は窓3を支えるた
めに筐体2の底面と窓3を繋ぐ柱、11は柱10が隔壁
9に触れないように隔壁9に明けられた穴、12は柱1
0が吸熱板4に触れないように吸熱板4に明けられた
穴、13は吸熱板4が吸熱した太陽熱を外部に持ち出す
ための熱媒体を通すパイプ、14は吸熱板4を支える
柱、である。
In FIG. 1, 1 is a solar heat collecting device, 2 is a housing, 3
Is a window for taking in sunlight, 4 is a heat absorbing plate, 5 is a selective absorbing film provided on the surface of the heat absorbing plate 4, 6 is a selective filter provided between the window 3 and the heat absorbing plate 4, and 7 is a heat absorbing plate. , A reflecting film provided on the bottom surface of the housing 2, and a metal reflecting surface 9 provided between the reflecting film 8 and the heat absorbing plate 4 in parallel with the heat absorbing plate 4. The partition wall 10 is a pillar connecting the bottom of the housing 2 and the window 3 to support the window 3, 11 is a hole formed in the partition wall 9 so that the pillar 10 does not touch the partition wall 9, and 12 is a pillar 1
0 is a hole formed in the heat absorbing plate 4 so as not to touch the heat absorbing plate 4, 13 is a pipe for passing a heat medium through which the heat absorbed by the heat absorbing plate 4 is taken out, and 14 is a column supporting the heat absorbing plate 4. is there.

【0014】筐体2は偏平な箱状の容器のような形状を
し、上部は透明なガラス又はガラスとプラスチックの複
合材で作られた窓3で覆われており、筺体2の底部は平
面状に作られ、窓3とほぼ平行になるように形成されて
いる。筐体2と窓3によって密閉した空間が形成され、
内部は真空に保たれると共に、その中間の位置に太陽光
をうけて熱エネルギーに変える吸熱板4が窓3とほぼ同
じ面積で且つ窓3に平行に設けられている。隔壁9は吸
熱板4の背面に平行に且つ吸熱板4に触れないように設
置される。
The housing 2 is shaped like a flat box-like container, the top is covered with a window 3 made of transparent glass or a composite material of glass and plastic, and the bottom of the housing 2 is flat. It is formed so as to be substantially parallel to the window 3. A closed space is formed by the housing 2 and the window 3,
The inside is kept in a vacuum, and a heat absorbing plate 4 which receives sunlight and converts it into heat energy is provided at an intermediate position between the window and the window 3 in substantially the same area as the window 3. The partition wall 9 is installed in parallel with the back surface of the heat absorbing plate 4 so as not to touch the heat absorbing plate 4.

【0015】柱10は太陽光を受光する窓3の全域にほ
ぼ均等に多数配置され、内部が真空のため図1(b)上
で上下から、筐体2と窓3が受けている大気圧を支えて
いる。多数の柱10で大気圧を分散して受けるので、薄
いガラスやプラスチックで窓3を構成できる。
A large number of pillars 10 are arranged almost uniformly over the entire area of the window 3 for receiving sunlight, and the inside of the housing 3 and the atmospheric pressure received by the window 3 from above and below in FIG. Support. Since the atmospheric pressure is dispersed and received by many pillars 10, the window 3 can be made of thin glass or plastic.

【0016】太陽光を吸収して吸熱板4の温度が上がっ
て高温になると、吸熱板4はその温度より低い温度の物
体に対して、それぞれの絶対温度の4乗の差に比例した
放射を行う。利用出来る吸熱板4の温度は精々300℃
以下位であるから、その放射は殆ど赤外領域の波長で行
われる。真空断熱を採用した太陽熱収集装置では、熱損
失は残存空気による伝熱と吸熱板4からの放射によって
起こる。この損失を減少させるために、隔壁9がもうけ
られている。隔壁9には、柱10が隔壁9に触れてそこ
から温度の上がっている隔壁9から熱伝導によって、熱
が無駄に筐体2等に逃げないように、柱10が隔壁9に
触れずに隔壁9を貫通できるような大きさの穴11が明
けられている。
When the temperature of the heat-absorbing plate 4 rises due to the absorption of sunlight, the heat-absorbing plate 4 emits radiation to an object having a temperature lower than that temperature in proportion to the difference between the absolute powers of the fourth power. Do. The temperature of the heat absorbing plate 4 that can be used is at most 300 ° C
Since it is of the lower order, its emission occurs almost at the wavelength in the infrared region. In a solar heat collecting apparatus employing vacuum heat insulation, heat loss occurs due to heat transfer by residual air and radiation from the heat absorbing plate 4. In order to reduce this loss, a partition 9 is provided. In order to prevent heat from being wastefully escaping to the housing 2 or the like by the heat conduction from the partition 9 where the column 10 touches the partition 9 and the temperature of which rises from the partition 9, the column 10 does not touch the partition 9. A hole 11 sized to penetrate the partition 9 is provided.

【0017】伝熱損失を減らすために、筐体の中は残存
空気の分子が自由分子条件になる真空度にまで減圧され
ている。空気分子の平均自由行程をλとすると、λはお
およそ式1で示される。 λ=0.66/p[Pa] m (1) 式1によると、0.1パスカルの気圧下での空気分子の
平均自由行程は約6.6cmである。式1に示すように
平均自由行程の値は気圧に逆比例する。
In order to reduce the heat transfer loss, the pressure in the housing is reduced to a degree of vacuum at which the molecules of the remaining air become free molecular conditions. Assuming that the mean free path of the air molecule is λ, λ is approximately expressed by Equation 1. λ = 0.66 / p [Pa] m (1) According to Equation 1, the mean free path of air molecules under a pressure of 0.1 Pascal is about 6.6 cm. As shown in Equation 1, the value of the mean free path is inversely proportional to the atmospheric pressure.

【0018】伝熱を行う2面間の距離をdとしたとき、
dと空気分子の平均自由行程λとの間に、d≫λと言う
条件が成立しているとき自由分子条件が満たされている
と言う。圧力が低く、自由分子条件が満たされている場
合は、よく知られているように、空気分子による熱エネ
ルギーの流れは温度勾配によらず、境界条件としての高
温面と低温面の温度差に比例し、これらの二つの面の距
離にはよらない。また圧力に比例する。空気分子による
熱エネルギーの流れが2面間の距離によらないことか
ら、熱の流れと垂直に多数の隔壁9を設ければ熱絶縁は
良くなる。スーパーインシュレーションと呼ばれている
熱絶縁方法である。この際使用する、隔壁9を作る材料
は金属でも、ガラスでも、紙でも、プラスチックでも良
くてその効果には殆ど差はない。
Assuming that the distance between the two surfaces performing the heat transfer is d,
When the condition of d と き λ is established between d and the mean free path λ of the air molecule, it is said that the free molecule condition is satisfied. When the pressure is low and the free molecular condition is satisfied, as is well known, the flow of thermal energy by air molecules does not depend on the temperature gradient, but depends on the temperature difference between the hot surface and the cold surface as the boundary condition. It is proportional and does not depend on the distance between these two surfaces. It is proportional to pressure. Since the flow of thermal energy by air molecules does not depend on the distance between the two surfaces, thermal insulation is improved by providing a large number of partition walls 9 perpendicular to the flow of heat. This is a thermal insulation method called super insulation. At this time, the material for forming the partition wall 9 may be metal, glass, paper, or plastic, and there is almost no difference in the effect.

【0019】吸熱板4の裏面からの赤外線を主とする放
射による損失は、その面の赤外線の反射率を上げる、換
言すれば赤外線の射出率を下げるように処理することに
よって抑制される。隔壁9も、吸熱板4からの放射を反
射して放射による損失を減らすために、同じように赤外
線の放出率を下げるように処理する。吸熱板4の裏面と
隔壁9の表面の射出率は、吸熱板4の表面の選択吸収膜
5と異なり波長依存性を必要とせず、赤外領域の波長で
射出率の少ないものならば良くて、可視光領域での射出
率の大小は殆ど問題でなく赤外領域と同じでも構わな
い。
The loss due to the radiation mainly composed of infrared rays from the back surface of the heat absorbing plate 4 is suppressed by increasing the reflectivity of the infrared rays on the surface, in other words, reducing the emission rate of the infrared rays. The partition walls 9 are similarly treated to reduce the emission rate of infrared rays in order to reflect radiation from the heat absorbing plate 4 and reduce loss due to radiation. The emission rate of the back surface of the heat absorbing plate 4 and the surface of the partition wall 9 does not need wavelength dependency unlike the selective absorption film 5 of the surface of the heat absorbing plate 4 and may be any as long as the emission rate is small at a wavelength in the infrared region. The magnitude of the emission rate in the visible light region is not a problem, and may be the same as in the infrared light region.

【0020】赤外線の放射を少なくする処理方法の代表
的な良い方法は金、銀、銅、アルミニウム等の電気の良
導体の金属を反射面として用いることである。これらの
金属の板材をそのまま反射体として用いても良いが、特
にこれらの金属を高真空中で急速に蒸着して作った真空
蒸着膜は大変反射率が高く、1ミクロンより長い波長の
赤外線に対して98%前後の反射率を示す。蒸着の変わ
りにスパッタリング、或いは化学的なメッキによって形
成された金属膜でも、真空蒸着膜ほどではないが、良く
赤外線を反射する。また隔壁9自身が金属の良導体であ
る場合は、その表面を機械的或いは化学的に研磨するこ
とによって、その表面が赤外線を良く反射するようにす
ることが出来る。
A typical good method for reducing the infrared radiation is to use a metal having good electrical conductivity such as gold, silver, copper, or aluminum as the reflection surface. These metal plates may be used as reflectors as they are, but vacuum-deposited films made by rapidly vapor-depositing these metals in a high vacuum have a very high reflectivity and are suitable for infrared rays with wavelengths longer than 1 micron. On the other hand, the reflectivity is around 98%. A metal film formed by sputtering or chemical plating instead of vapor deposition reflects infrared rays well, though not as much as a vacuum vapor deposited film. If the partition 9 itself is a good metal conductor, its surface can be mechanically or chemically polished so that the surface reflects infrared rays well.

【0021】これらの反射面のなかで最高のものは、
銀、銅または金を真空蒸着したもので、赤外線に対して
98%以上の反射率を示す。中でも銀は最高の特性を持
ち99%に近い反射率を示す。
The best of these reflecting surfaces is
Silver, copper, or gold is vacuum-deposited and has a reflectance of 98% or more to infrared rays. Among them, silver has the best characteristics and a reflectance close to 99%.

【0022】これらの金属を蒸着或いはメッキする基材
としては、金属箔或いは金属板、ガラス、プラスチック
フィルム等が適当である。高温出力の太陽熱収集装置に
用いる隔壁9は、200℃近辺の温度で用いられるの
で、基材としてプラスチックフィルムを用いる時は、ポ
リイミドフィルムのような高温に耐えられる材料を用い
る。
As a substrate on which these metals are deposited or plated, a metal foil or a metal plate, glass, a plastic film or the like is suitable. Since the partition wall 9 used in the solar heat collecting apparatus having a high temperature output is used at a temperature around 200 ° C., when a plastic film is used as a substrate, a material that can withstand high temperatures such as a polyimide film is used.

【0023】本発明の太陽熱収集装置1のように放射面
である吸熱板4の裏面と反射面である筐体2の底面と、
隔壁9の3者の面積が殆ど同じでほぼ密閉状態にあり、
放射に関する形態係数がほぼ1と見なされるような場合
は、放射による伝熱は、残存空気による伝熱のように、
放射に係わる2面間の距離にはよらず、その2面の反射
率と2面間の温度差によってきまる。
As in the solar heat collecting apparatus 1 of the present invention, the back surface of the heat absorbing plate 4 which is a radiation surface and the bottom surface of the housing 2 which is a reflection surface,
The area of the three members of the partition 9 is almost the same and almost in a closed state,
If the view factor for radiation is considered to be approximately one, then the heat transfer by radiation, like the heat transfer by residual air,
It is determined by the reflectance of the two surfaces and the temperature difference between the two surfaces without depending on the distance between the two surfaces related to radiation.

【0024】吸熱板4と筐体2の間に隔壁9を設ける
と、その隔壁9の温度は吸熱板4と筐体2の温度の中間
の温度になって2面間の温度差を分割して小さくしたこ
とになるから、上述の原理によって、吸熱板4からの放
射損失を減らすことができる。
When the partition 9 is provided between the heat absorbing plate 4 and the housing 2, the temperature of the partition 9 becomes an intermediate temperature between the temperature of the heat absorbing plate 4 and the temperature of the housing 2, and the temperature difference between the two surfaces is divided. Therefore, the radiation loss from the heat absorbing plate 4 can be reduced by the above-described principle.

【0025】即ち筐体内の気圧を十分に下げ、赤外線の
反射率の良い金属面をもつ隔壁9を設けることによっ
て、残存空気による伝熱による損失と吸熱板4と筐体2
の間の放射による損失の二つの損失を同時に減らすこと
ができるのである。例えば隔壁9を1枚設けると、損失
を半分に、2枚設けると約1/3にと言うように、劇的
に損失が減少する。
That is, by sufficiently lowering the air pressure inside the housing and providing the partition wall 9 having a metal surface having a good infrared reflectance, the loss due to the heat transfer due to the remaining air, the heat absorption plate 4 and the housing 2
Between the two radiation losses can be reduced at the same time. For example, when one partition 9 is provided, the loss is reduced to half, and when two partitions are provided, the loss is reduced to about 1/3.

【0026】本発明によれば、筐体内の気圧を自由分子
条件下になるまで減らして、且つ吸熱板の表面とそれに
対向する筐体面との間に、赤外線の射出率の少ない金属
の反射面を持つ隔壁を設けることによって、入射した太
陽エネルギーによって高温になった吸熱板から外部空間
に無駄に逃げる熱、即ち、残存空気による伝熱の損失
と、吸熱板から筐体への放射による損失を減らすことが
できる。 従って、太陽光をレンズ等で収束することなく
高温の出力温度の太陽熱収集装置を得ることが可能とな
り、太陽エネルギーを広範囲の用途に適用することが出
来て産業上の効果は多大である。
According to the present invention, the atmospheric pressure in the housing is reduced to free molecular conditions, and a metal reflecting surface having a low infrared emission rate is provided between the surface of the heat absorbing plate and the housing surface facing the heat absorbing plate. heat by providing the partition, escaping in vain from the heat absorption plate heated to a high temperature by the sun energy entering shines to the external space with, i.e., the loss of heat transfer due to the residual air
And reduce radiation loss from the heat absorbing plate to the housing.
it can. Therefore, it is possible to obtain a solar heat collecting device having a high output temperature without converging sunlight with a lens or the like, and it is possible to apply solar energy to a wide range of uses, and the industrial effect is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】太陽熱収集装置の構造を示す概略構造図FIG. 1 is a schematic structural diagram showing the structure of a solar heat collecting device.

【符号の説明】[Explanation of symbols]

1 太陽熱収集装置 2 筐体 3 窓 4 吸熱板 9 隔壁 10 穴 DESCRIPTION OF SYMBOLS 1 Solar heat collection apparatus 2 Housing 3 Window 4 Heat absorption plate 9 Partition wall 10 Hole

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 太陽光を受けて熱エネルギーに変える平
板の吸熱板を備え、筐体の内部を高い真空度にした真空
式平板型の太陽熱収集装置において、前記 吸熱板の裏面と、前記裏面に対向する前記筐体の底
面との間に、前記吸熱板の面積とほぼ同じ面積の、赤外
線の反射率の良い金属面を持つ隔壁を、前記吸熱板と平
行に設けたことを特徴とする太陽熱収集装置。
1. A flat panel that receives sunlight and converts it into heat energy.
Comprising a heat absorbing plate of the plate, the solar collector device of the vacuum plate type in which the inside of the housing to a high degree of vacuum, and the back surface of the heat absorbing plate between the bottom of the housing opposite to the back surface, the of approximately the same area as the area of the heat absorption plate, the partition walls have a good metal surface reflectance infrared solar collector device, characterized in that provided in parallel with the heat absorbing plate.
【請求項2】 前記筐体の内部の気圧を0.1パスカル
以下にしたことを特徴とする請求項1記載の太陽熱収集
装置。
2. A solar heat collecting apparatus according to claim 1, characterized in that the air pressure inside of the casing below 0.1 Pascal.
【請求項3】 前記隔壁を、金属、ガラス、プラスチッ
クの内のいずれかを基材としてその表面に電気伝導度の
良い金属を蒸着した材料で形成したことを特徴とする
求項1又は請求項2記載の太陽熱収集装置。
3. The method according to claim 1, wherein the partition is made of metal, glass, plastic, or the like.
characterized the kite forms any of a click of a material by depositing metal having excellent electrical conductivity on the surface thereof as a base material
The solar heat collection device according to claim 1 or 2 .
JP11406298A 1998-03-20 1998-03-20 Solar heat collector Expired - Fee Related JP3273361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11406298A JP3273361B2 (en) 1998-03-20 1998-03-20 Solar heat collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11406298A JP3273361B2 (en) 1998-03-20 1998-03-20 Solar heat collector

Publications (2)

Publication Number Publication Date
JPH11270912A JPH11270912A (en) 1999-10-05
JP3273361B2 true JP3273361B2 (en) 2002-04-08

Family

ID=14628087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11406298A Expired - Fee Related JP3273361B2 (en) 1998-03-20 1998-03-20 Solar heat collector

Country Status (1)

Country Link
JP (1) JP3273361B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102445008A (en) * 2011-12-08 2012-05-09 南京工业大学 Tower-type solar energy water/steam compound type plate fin hot plate type heat absorber

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2660533A3 (en) * 2012-05-02 2014-06-18 Marko Pintar Thermal solar collector
CN105716300A (en) * 2016-03-22 2016-06-29 华南理工大学 High polymer material compounded plate type solar heat collector and core veneer manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102445008A (en) * 2011-12-08 2012-05-09 南京工业大学 Tower-type solar energy water/steam compound type plate fin hot plate type heat absorber

Also Published As

Publication number Publication date
JPH11270912A (en) 1999-10-05

Similar Documents

Publication Publication Date Title
Suichi et al. Performance limit of daytime radiative cooling in warm humid environment
Gang et al. A numerical and experimental study on a heat pipe PV/T system
Mallick et al. The design and experimental characterisation of an asymmetric compound parabolic photovoltaic concentrator for building façade integration in the UK
US9297554B2 (en) Cavity receivers for parabolic solar troughs
Wang et al. Radiative cooling of commercial silicon solar cells using a pyramid-textured PDMS film
Yang et al. Bulk material based selective infrared emitter for sub-ambient daytime radiative cooling
Ustaoglu et al. Evaluation of uniformity of solar illumination on the receiver of compound parabolic concentrator (CPC)
Oommen et al. Development and performance analysis of compound parabolic solar concentrators with reduced gap losses—‘V’groove reflector
O'leary et al. Thermal-electric performance analysis for actively cooled, concentrating photovoltaic systems
US4624113A (en) Passive-solar directional-radiating cooling system
Sun et al. Radiative cooling for concentrating photovoltaic systems
Kumar et al. Simulation of metal ceramic single layer coatings for solar energy applications
JP3273361B2 (en) Solar heat collector
Cui et al. Thermal analysis of radiative cooling coating on the rear surface of photovoltaic tile
Radwan et al. A modified support pillar design for a flat vacuum-based solar thermal collectors
Ulavi et al. Analysis of a hybrid PV/T Concept based on wavelength selective films
Norton et al. Symmetric and asymmetric linear compound parabolic concentrating solar energy collectors: the state-of-the-art in optical and thermo-physical analysis
JPH1114162A (en) Solar heat collecting device
Zhou et al. Enhancing radiative cooling performance for bifacial photovoltaic module using two kinds of polycarbonate films
EP1095230A2 (en) Solar collector
JPH09145166A (en) Solar heat collecting device
WO2012097942A2 (en) Heat receiver tube, method for manufacturing the heat receiver tube, parabolic trough collector with the receiver tube and use of the parabolic trough collector
JP2004278837A (en) Solar heat collection device
JP2003161534A (en) Glazing collector
JP2008202066A (en) Vacuum processing device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees