JP4980163B2 - Composite steel sheet having excellent formability and method for producing the same - Google Patents

Composite steel sheet having excellent formability and method for producing the same Download PDF

Info

Publication number
JP4980163B2
JP4980163B2 JP2007189372A JP2007189372A JP4980163B2 JP 4980163 B2 JP4980163 B2 JP 4980163B2 JP 2007189372 A JP2007189372 A JP 2007189372A JP 2007189372 A JP2007189372 A JP 2007189372A JP 4980163 B2 JP4980163 B2 JP 4980163B2
Authority
JP
Japan
Prior art keywords
phase
less
steel
formability
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007189372A
Other languages
Japanese (ja)
Other versions
JP2009024227A (en
Inventor
雄三 高橋
昌弘 小原
治 河野
徹哉 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007189372A priority Critical patent/JP4980163B2/en
Publication of JP2009024227A publication Critical patent/JP2009024227A/en
Application granted granted Critical
Publication of JP4980163B2 publication Critical patent/JP4980163B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、伸び及び打ち抜き穴広げ性等の成形性に優れた複合組織鋼板およびその製造方法に関するものである。特に、自動車の足廻り部品やロードホイール等のように成形性に加え耐久性も求められる複合組織鋼板及びその製造方法に関するものである。   The present invention relates to a composite structure steel plate excellent in formability such as elongation and punching hole expandability and a method for producing the same. In particular, the present invention relates to a composite structure steel sheet that is required to have durability in addition to formability, such as an automobile undercarriage part and a road wheel, and a manufacturing method thereof.

近年、自動車の燃費向上などのために軽量化を目的として、Al合金等の軽金属や高強度鋼板の自動車部材への適用が進められている。ただし、Al合金等の軽金属は比強度が高いという利点があるものの、鋼に比較して著しく高価であるため、その適用は特殊な用途に限られている。従って、より広い範囲で自動車の軽量化を推進するためには、安価な高強度鋼板の適用が強く求められている。   In recent years, application of light metals such as Al alloys and high-strength steel sheets to automobile members has been promoted for the purpose of reducing the weight in order to improve the fuel efficiency of automobiles. However, although light metals such as Al alloys have the advantage of high specific strength, they are extremely expensive compared to steel, so their application is limited to special applications. Therefore, in order to promote weight reduction of automobiles in a wider range, application of inexpensive high-strength steel sheets is strongly demanded.

このような高強度化の要求に対して、これまでは車体重量の1/4程度を占めるホワイトボティーやパネル類に使用される冷延鋼板の分野において、強度と深絞り性を兼ね備えた鋼板や焼付け硬化性のある鋼板等の開発が進められ、車体の軽量化に寄与してきた。ところが現在、軽量化の対象は車体重量の約20%を占める構造部材や足廻り部材にシフトしてきており、これらの部材に用いる高強度熱延鋼板の開発が急務となっている。   In response to such demands for high strength, steel sheets that have both strength and deep drawability in the field of cold rolled steel sheets used for white bodies and panels, which occupy about 1/4 of the weight of the vehicle body, The development of bake-hardening steel sheets has been promoted and contributed to the weight reduction of the car body. However, at present, the object of weight reduction has shifted to structural members and suspension members that account for about 20% of the weight of the vehicle body, and the development of high-strength hot-rolled steel sheets used for these members has become an urgent task.

ただし、高強度化は一般的に成形性(加工性)等の材料特性を劣化させるため、材料特性を劣化させずに如何に高強度化を図るかが高強度鋼板開発の鍵になる。特に構造部材や足廻り部材用鋼板に求められる特性としては、伸び、打ち抜き穴広げ性、疲労耐久性等が重要であり、高強度とこれら特性を如何に高次元でバランスさせるかが重要である。   However, increasing strength generally degrades material properties such as formability (workability), so the key to developing a high-strength steel sheet is how to increase strength without deteriorating material properties. In particular, as the properties required for structural members and steel plates for suspension members, elongation, punching hole expandability, fatigue durability, etc. are important, and it is important how to balance these properties at a high level with high strength. .

例えば、昨今普及しつつある高意匠性ロードホイールディスク用鋼板に求められる特性としては、張り出し成形性、打ち抜き穴広げ性と疲労耐久性が特に重要視されている。これは、ロードホイールディスクの成形工程の中でも、スポーク部・ハット部の張り出し成形、飾り穴近傍のバーリング加工(穴広げ加工)が特に厳しく、またホイールの部材特性で最も厳しい基準で管理されているのが疲労耐久性であるためである。   For example, as the characteristics required for steel plates for high-design road wheel discs that have become widespread these days, the stretch formability, punched hole expandability, and fatigue durability are particularly emphasized. In the road wheel disc molding process, the overhanging of spokes and hats, burring in the vicinity of decorative holes (hole expansion processing) are particularly strict, and are managed according to the strictest standards for wheel member characteristics. This is because of fatigue resistance.

現在、これらロードホイールディスク用高強度熱延鋼板として、部材での疲労耐久性を重視して疲労特性に優れる590MPa級のフェライト−マルテンサイトの複合組織鋼板(いわゆるDua1 Phase鋼)が用いられている。しかし、近年、ロードホイールディスクの高意匠化に伴い、より複雑な形状に成形する必要性が生じているため、そのための鋼板には、より高いレベルの成形性(伸び、打ち抜き穴広げ性)が求められるようになっている。打ち抜き穴広げ性とは、打ち抜きにより剪断された鋼板の打ち抜き端面の成形性であり、変形により打ち抜き端面に生じた亀裂の伝播しやすさによってその成形性が定まり、通常「打ち抜き穴広げ率(穴広げ率、λ)」により測定される。   Currently, as a high-strength hot-rolled steel sheet for road wheel discs, a 590 MPa class ferritic / martensitic composite structure steel sheet (so-called Dua1 Phase steel) is used which emphasizes fatigue durability of members and is excellent in fatigue characteristics. . However, in recent years, with the high design of road wheel discs, it has become necessary to form in more complex shapes, so the steel sheet for that purpose has a higher level of formability (elongation, punching hole expandability). It has come to be required. Punching hole expandability is the formability of the punched end face of a steel plate sheared by punching. The formability is determined by the ease of propagation of cracks generated on the punched end face due to deformation. Spreading ratio, λ) ”.

打ち抜き穴広げ率(λ)とは、図1(a)の打ち抜き金型の模式図に示すように、まず、材料4を打ち抜きダイ2及びしわ押さえ3で固定し、次に図1(b)の打ち抜き図に示すように、打ち抜きポンチ1を移動させることにより材料4を剪断部分5及び被剪断部分6に分離し、得られる被剪断部分6の打ち抜き穴を図1(c)の穴拡げ試験の図に示すようにポンチ7の移動9で押し広げて穴径の拡大10をし、打ち抜き端面8に入った亀裂が板厚貫通した時点での穴径の、初期穴径に対する拡大率である。即ち、打ち抜き穴広げ率(λ)=(d−d)/d×100(%)で表すことができる。ここで、dはポンチが移動し、打ち抜き端面8の亀裂が板厚を貫通した時点の穴径、dは初期穴径を意味する。この試験を打ち抜き穴広げ試験と呼ぶ。この打ち抜き抜き穴広げ率(λ)に対しては、打ち抜き金型のクリアランス(Cl)(図1(a)でs/t×100(%)、ここで、tは板厚、sは隙間)も重要な影響因子となっている。 As shown in the schematic diagram of the punching die in FIG. 1A, the punching hole expansion ratio (λ) is first fixed by the punching die 2 and the wrinkle presser 3, and then in FIG. As shown in FIG. 1C, the punch 4 is moved to separate the material 4 into the sheared portion 5 and the sheared portion 6, and the punched hole of the obtained sheared portion 6 is expanded as shown in FIG. 1C. As shown in the figure, the hole diameter is expanded by pushing 9 by the movement 9 of the punch 7, and the expansion ratio of the hole diameter when the crack entering the punched end face 8 penetrates the plate thickness with respect to the initial hole diameter is shown. . That is, it can be expressed by punching hole expansion rate (λ) = (d−d 0 ) / d 0 × 100 (%). Here, d means the hole diameter when the punch moves and the crack of the punched end face 8 penetrates the plate thickness, and d 0 means the initial hole diameter. This test is called a punched hole expansion test. For this punching hole expansion rate (λ), the punching die clearance (Cl) (s / t × 100 (%) in FIG. 1A, where t is the plate thickness and s is the gap) Is also an important influencing factor.

前述のニーズに対応するためには、TS590MPa級で伸び=28%、打ち抜き穴広げ率=80%以上、望ましくは110%以上の熱延鋼板が求められる。   In order to meet the above-mentioned needs, a hot rolled steel sheet having a TS590 MPa class and elongation = 28%, punching hole expansion ratio = 80% or more, desirably 110% or more is required.

更には、実際の部品の製造工程における打ち抜きは、金型の取り付け精度や金型磨耗等の問題から5〜20%の間で変動するため、そのクリアランスの範囲で上目標を達成する必要がある。   Furthermore, the punching in the actual part manufacturing process varies between 5 and 20% due to problems such as mold mounting accuracy and mold wear, so it is necessary to achieve the above target within the clearance range. .

そのような、複合組織鋼板の成形性をより改善するために、フェライト分率及び第二相の硬さを適度の範囲に制御することによりそれらの界面の歪みを制御して穴広げ成形でのミクロクラックを防止し穴広げ性を改善する発明が提案されている(例えば、特許文献1参照)。   In order to further improve the formability of such a composite steel sheet, by controlling the ferrite fraction and the hardness of the second phase to an appropriate range, the strain at the interface is controlled to expand the hole. An invention that prevents microcracks and improves hole expansibility has been proposed (see, for example, Patent Document 1).

また、380〜540MPa級の引張強度であっても軟鋼板並みのプレス成形性を得ることができる薄鋼板として、質量%にて、C:0.01〜0.1%、Si:0.6〜1.8%、Mn:0.1〜2%、P≦0.1%、S≦0.03%、Al:0.005〜1%を含み、残部がFe及び不可避的不純物からなる鋼板であって、そのミクロ組織が主にポリゴナルフェライトから成り、5μm以上の炭化物を含む第二相の体積分率が5%以下かつアスペクト比が2以下であることを特徴とする局部延性に優れる薄鋼板(例えば、特許文献2参照)や、鋼板の加工硬化性を向上させ、部品強度を著しく向上させることを可能とする加工硬化性に優れた熱延鋼板として、質量%で、C:0.01〜0.1%、Si:0.005〜1.0%、Mn:0.2〜2.5%、P:0.005〜0.05%、S:0.01%以下、Al:0.001〜0.1%、N:0.007〜0.02%を含有し、残部Feおよび不可避的不純物からなり、鋼組織が、フェライトからなる主相と、パーライト、ベイナイト、マルテンサイトのうちから選ばれた1種または2種以上からなる第二相とで構成され、該第二相は体積分率3〜30%、平均径5μm以下のものであり、かつ該第二相の平均硬度の前記主相の平均硬度に対する比が3.0以下であることを特徴とする加工硬化性に優れた熱延鋼板(例えば、特許文献3参照)が提案されている。   Further, as a thin steel plate that can obtain press formability comparable to that of a mild steel plate even at a tensile strength of 380 to 540 MPa class, C: 0.01 to 0.1%, Si: 0.6 Steel plate comprising -1.8%, Mn: 0.1-2%, P≤0.1%, S≤0.03%, Al: 0.005-1%, the balance being Fe and inevitable impurities The microstructure is mainly composed of polygonal ferrite, and the volume fraction of the second phase containing carbides of 5 μm or more is 5% or less and the aspect ratio is 2 or less, and the local ductility is excellent. As a hot-rolled steel sheet excellent in work hardenability which improves the work hardenability of a thin steel plate (for example, patent document 2) and a steel plate, and makes it possible to remarkably improve component strength, it is C: 0 by mass%. 0.01 to 0.1%, Si: 0.005 to 1.0%, Mn: 0 2 to 2.5%, P: 0.005 to 0.05%, S: 0.01% or less, Al: 0.001 to 0.1%, N: 0.007 to 0.02% The balance is composed of Fe and unavoidable impurities, and the steel structure is composed of a main phase composed of ferrite and a second phase composed of one or more selected from pearlite, bainite, and martensite, The second phase has a volume fraction of 3 to 30% and an average diameter of 5 μm or less, and the ratio of the average hardness of the second phase to the average hardness of the main phase is 3.0 or less. A hot-rolled steel sheet (for example, see Patent Document 3) excellent in work hardenability has been proposed.

しかし、鋼板の成形性を改善するには、主に鋼板の穴広げ性と伸び(El)を同時に改善する必要があるが、上記に提案されている発明等では、穴広げ性と伸びのバランスは必ずしも良好でなく、また、広い打ち抜きクリアランスの範囲で安定して打ち抜き穴広げ率を改善する技術は開示されておらず、高意匠性ホイールディスクに適した十分な材質とは言えないという問題がある。   However, in order to improve the formability of the steel sheet, it is mainly necessary to improve the hole expansibility and elongation (El) of the steel sheet at the same time. However, in the inventions proposed above, the balance between the hole expansibility and the elongation is required. Is not necessarily good, and there is no disclosure of a technique for stably improving the punching hole expansion rate within a wide punching clearance range, and there is a problem that it is not a sufficient material suitable for a high-design wheel disc. is there.

特開2001−303187号公報JP 2001-303187 A 特開2003−293082号公報JP 2003-293082 A 特開2005−298967号公報JP 2005-298967 A

本発明は、上記に鑑み、伸び及び打ち抜き穴拡げ性等の成形性に優れる複合組織鋼板およびその製造方法を提供することを目的とする。   In view of the above, an object of the present invention is to provide a composite structure steel plate excellent in formability such as elongation and punching hole expandability, and a method for producing the same.

本発明者らは、590MPa級の複合組織熱延鋼板の穴広げ性と伸び(El)の双方を同時に改善することについて鋭意研究し、穴広げ性の改善には、フェライト主相(面積分率で90%以上)とし、第二相の形状(第二相の最大の長径≦20μm)、密度(1mm 当たりに10000個未満)を最適化した上で、さらには、集合組織を制御し、板厚1/2t部の{100}面の面強度を2.5以下とすることが重要であることを知見した。このようにすることによって、打ち抜き・穴広げ成形時の端面の亀裂先端でのボイド発生を抑制し、亀裂の成長を妨げることが可能となるものである。また、伸び(El)の改善には、Si:0.8〜3.0%の添加が有効であることを知見した。即ち、Siはフェライト中に固溶することによりフェライトの加工硬化を促進するので、伸び(El)が改善されるものと推定される。
The present inventors have earnestly studied to simultaneously improve both the hole expandability and elongation (El) of a 590 MPa class composite structure hot-rolled steel sheet. For improvement of hole expandability, the ferrite main phase ( area fraction) 90% or more), and after optimizing the shape of the second phase (maximum major axis of the second phase ≦ 20 μm) and density ( less than 10,000 per 1 mm 2 ) , the texture is further controlled, It has been found that it is important to make the surface strength of the {100} plane of the plate thickness 1 / 2t part 2.5 or less. By doing so, it is possible to suppress the generation of voids at the crack tip of the end face during the punching / hole-expansion molding and to prevent the growth of the crack. Further, it has been found that Si: 0.8 to 3.0% is effective for improving the elongation (El). That is, since Si dissolves in ferrite and promotes work hardening of ferrite, it is estimated that elongation (El) is improved.

本発明は、これらの知見に基づいて完成したもので、その発明の要旨は次のとおりである。   The present invention has been completed based on these findings, and the gist of the invention is as follows.

(1)質量%で、
C:0.01〜0.2%、
Si:0.8〜3.0%、
Mn:0.5〜3%、
P≦0.1%、
S≦0.01%、
Al:0.005〜2.0%、
N≦0.02%、
を含み、
残部がFe及び不可避的不純物からなる成分の鋼板であって、面積分率が90%以上、100%未満であるフェライトを主相とし、第二相がマルテンサイト、またはベイナイトまたはその双方からなる組織であり、かつ、圧延方向に平行な断面での第二相の密度が1mm当たりに10000個未満であり、かつ第二相の最大の長径が20μm以下であり、かつ1/2t部の{100}面強度が2.5以下であることを特徴とする、成形性に優れた複合組織鋼板。
(1) In mass%,
C: 0.01 to 0.2%
Si: 0.8 to 3.0%,
Mn: 0.5-3%,
P ≦ 0.1%,
S ≦ 0.01%,
Al: 0.005 to 2.0%,
N ≦ 0.02%,
Including
The balance is a steel sheet composed of Fe and unavoidable impurities, and the main phase is ferrite with an area fraction of 90% or more and less than 100%, and the second phase is martensite, bainite, or both. And the density of the second phase in a cross section parallel to the rolling direction is less than 10,000 per 1 mm 2 , the maximum major axis of the second phase is 20 μm or less, and {1/2 t part { 100} surface strength is 2.5 or less, a composite structure steel plate excellent in formability.

(2) 前記鋼が、さらに質量%で、Cu:0.01〜2%を含有することを特徴とする、上記(1)に記載の成形性に優れた複合組織鋼板。   (2) The composite steel sheet having excellent formability as described in (1) above, wherein the steel further contains Cu: 0.01 to 2% by mass.

(3) 前記鋼が、さらに質量%で、B:0.0002〜0.003%を含有することを特徴とする、上記(1)または(2)に記載の成形性に優れた複合組織鋼板。   (3) The composite steel sheet having excellent formability as described in (1) or (2) above, wherein the steel further contains B: 0.0002 to 0.003% by mass. .

(4) 前記鋼が、さらに質量%で、Ni:0.01〜1%を含有することを特徴とする、上記(1)ないし(3)のいずれか1項に記載の成形性に優れた複合組織鋼板。   (4) The steel is further excellent in formability according to any one of the above (1) to (3), wherein the steel further contains Ni: 0.01 to 1% by mass. Composite steel sheet.

(5) 前記鋼が、さらに質量%で、Ca:0.0005〜0.01%、REM:0.0005〜0.02%の一種または二種を含有することを特徴とする、上記(1)ないし(4)のいずれか1項に記載の成形性に優れた複合組織鋼板。   (5) The above-mentioned (1), wherein the steel further contains one or two kinds of Ca: 0.0005 to 0.01% and REM: 0.0005 to 0.02% in mass%. The composite structure steel plate excellent in formability of any one of (1) thru | or (4).

(6) 前記鋼が、さらに質量%で、Ti:0.01〜0.5%、Nb:0.005〜0.5%、Mo:0.05〜1%、V:0.02〜0.5%、Cr:0.01〜1%、Zr:0.02〜0.2%の一種または二種以上を含有することを特徴とする、上記(1)ないし(5)のいずれか1項に記載の成形性に優れた複合組織鋼板。   (6) The steel is further mass%, Ti: 0.01 to 0.5%, Nb: 0.005 to 0.5%, Mo: 0.05 to 1%, V: 0.02 to 0 Any one of (1) to (5) above, characterized by containing one or more of 5%, Cr: 0.01 to 1%, Zr: 0.02 to 0.2% The composite structure steel plate excellent in the formability as described in the item.

(7)第二相の硬さの平均値をフェライトの硬さの平均値で除した値が1.5以上2以下であることを特徴とする上記(1)ないし(6)のいずれか1項に記載の成形性に優れた複合組織鋼板。   (7) Any one of the above (1) to (6), wherein a value obtained by dividing the average value of the hardness of the second phase by the average value of the hardness of the ferrite is 1.5 or more and 2 or less The composite structure steel plate excellent in the formability as described in the item.

(8)上記(1)ないし(6)のいずれか1項に記載の成分を有する鋼片の熱間圧延に際し、Ar3+250℃以上の温度で粗圧延を終了し、かつその歪速度を0.2/秒以下とし、かつAr3変態点温度+40℃以上Ar3変態点温度+140℃以下で熱間仕上圧延を終了し、次に30℃/秒以上の冷却速度で冷却し、その後650以上750℃以下の温度域で15℃/秒以下の冷却速度で5秒以上緩冷却を行い、その後、30℃/s以上の冷却速度で冷却して、340℃以下の巻取温度で巻き取ることを特徴とする成形性に優れた複合組織鋼板の製造方法。   (8) When hot-rolling the steel slab having the component described in any one of (1) to (6) above, rough rolling is finished at a temperature of Ar3 + 250 ° C. or higher, and the strain rate is 0.2. And finish the hot finish rolling at Ar3 transformation point temperature + 40 ° C. or higher and Ar3 transformation point temperature + 140 ° C. or lower, and then cool at a cooling rate of 30 ° C./second or higher, and then 650 ° C. or higher and 750 ° C. or lower. It is characterized in that it is slowly cooled for 5 seconds or more at a cooling rate of 15 ° C./second or less in a temperature range, and then cooled at a cooling rate of 30 ° C./s or more and wound at a winding temperature of 340 ° C. or less. A method for producing a composite steel sheet having excellent formability.

本発明によれば、打ち抜き穴広げ性と伸び(El)との双方に優れた複合組織鋼板を得ることができ、高意匠性ホイールディスクに適した性質を有する成形性に優れた複合組織鋼板を提供できるという顕著な効果を奏するものである。   According to the present invention, a composite structure steel plate excellent in both punching hole expandability and elongation (El) can be obtained, and a composite structure steel plate excellent in formability having properties suitable for a high-design wheel disc. There is a remarkable effect that it can be provided.

本発明の打ち抜き穴広げ性に優れる複合組織熱延鋼板の特徴とするところは、穴広げ性の改善のために、フェライト主相(面積分率で90%以上)とし、第二相の形状(第二相の最大の長径≦20μm)、密度(1mm当たりに10000個未満)を最適化した上で、さらには打ち抜き端面での亀裂の発生を抑制するために、集合組織を制御し、板厚1/2t部の{100}面の面強度を2.5以下とし、そして、伸び(El)の改善のために、Si:0.8〜3.0%を添加した点にある。
The feature of the composite structure hot-rolled steel sheet having excellent punched hole expandability according to the present invention is that the ferrite main phase (90% or more in area fraction ) is used to improve the hole expandability, and the shape of the second phase. (Maximum major axis of the second phase ≦ 20 μm), after optimizing the density (less than 10,000 per 1 mm 2 ), and further controlling the texture in order to suppress the occurrence of cracks at the punched end face, The surface strength of the {100} plane of the plate thickness 1 / 2t part is 2.5 or less, and Si: 0.8 to 3.0% is added to improve the elongation (El).

初めに以上の知見を得た経過について説明する。   First, the process of obtaining the above knowledge will be described.

表1に示す成分(鋼P)の鋼塊を用いて、実機または実験室にて、図2及び表2に示す熱延条件にて熱間圧延を行い、次に諸々のフェライト分率となるように冷却条件を変えて冷却を行い、最後にフェライト及びマルテンサイトからなる組織となるように室温まで急冷し、熱延鋼板を得た。この際粗圧延ではその最大の歪速度が0.1〜0.3/秒となるようにした。   Using the ingot of the component (steel P) shown in Table 1, hot rolling is performed under the hot rolling conditions shown in FIG. 2 and Table 2 in an actual machine or a laboratory, and then various ferrite fractions are obtained. The cooling conditions were changed as described above, and cooling was performed. Finally, the steel sheet was rapidly cooled to room temperature so as to have a structure composed of ferrite and martensite to obtain a hot-rolled steel sheet. At this time, in rough rolling, the maximum strain rate was set to 0.1 to 0.3 / second.

得られた熱延板の引張試験は、供試材の1/2W部よりJIS Z 2201記載の5号試験片を加工し、JIS Z 2241記載の試験方法に従って行った。一方、打ち抜き穴広げ率については、同じく1/2W部より150mm×150mmの試験片を3枚加工し、日本鉄鋼連盟規格JFS T 1001−1996記載の穴広げ試験方法に従って評価した。また、その際、打ち抜きクリアランスを5、15、20%の3水準として広い打ち抜きクリアランス範囲での穴広げ率を調べた。   The tensile test of the obtained hot-rolled sheet was carried out according to the test method described in JIS Z 2241 by processing No. 5 test piece described in JIS Z 2201 from 1/2 W part of the specimen. On the other hand, the punching hole expansion rate was similarly evaluated by processing three test pieces of 150 mm × 150 mm from the ½ W portion and according to the hole expansion test method described in the Japan Iron and Steel Federation Standard JFS T 1001-1996. At that time, the punching clearance was set at three levels of 5, 15, and 20%, and the hole expansion rate in a wide punching clearance range was examined.

また、幅方向1/2W部から板面方向を向いた結晶方位を観察するためのX線回折試験片を加工し、板面方向を向いた{100}方位の面強度を求めた。   Further, an X-ray diffraction test piece for observing the crystal orientation from the 1 / 2W portion in the width direction toward the plate surface direction was processed, and the surface strength in the {100} direction toward the plate surface direction was obtained.

また、幅方向1/2W部から圧延方向断面の埋め込みサンプルを作成し、研磨した後、ナイタール腐食を行い、1/4t部にて組織硬さ調査を行った。組織硬さの測定は、荷重2.5gで10点測定でビッカース硬さを測定し求めた。また、全厚で第二相の圧延方向の最大サイズを測定した。また、同じく1/4t部にて0.2mm×0.2mmの視野内で第二相の個数(円相当径1.0μm以上)を測定し、1mm当たりの個数(密度)に換算した。同じく1/4t部より、フェライト分率を測定した。フェライト分率とは、ミクロ組織中におけるフェライト組織の面積分率で定義される。第二相の分率は、100−フェライト分率(%)となる。 In addition, an embedding sample having a cross section in the rolling direction was prepared from the width direction ½ W portion, polished, and then subjected to nital corrosion, and the structure hardness was examined at the ¼ t portion. The tissue hardness was measured by measuring Vickers hardness by 10-point measurement with a load of 2.5 g. Further, the maximum size in the rolling direction of the second phase was measured with the total thickness. Similarly, the number of second phases (equivalent circle diameter of 1.0 μm or more) was measured in a field of 0.2 mm × 0.2 mm at a 1/4 t portion, and converted to the number (density) per 1 mm 2 . Similarly, the ferrite fraction was measured from the 1/4 t part. The ferrite fraction is defined as the area fraction of the ferrite structure in the microstructure. The fraction of the second phase is 100-ferrite fraction (%).

Figure 0004980163
Figure 0004980163

Figure 0004980163
Figure 0004980163

以上の結果から得られたフェライト分率、第二相の最大の長径(μm)サイズと1/2W部の打ち抜き穴広げ率の関係を図3に示す。図中には、各々材料ごとにクリアランスを変えて調べた打ち抜き穴広げ率の最大値と最小値を示している。図3から明らかなように、フェライト分率が90%以上、第二相の最大長径が20μm以下の領域において、穴広げ率が最も良好となっていることが分かる。   FIG. 3 shows the relationship between the ferrite fraction obtained from the above results, the maximum major axis (μm) size of the second phase, and the punched hole expansion ratio of the ½ W portion. In the figure, the maximum value and the minimum value of the punching hole expansion rate examined by changing the clearance for each material are shown. As is clear from FIG. 3, it can be seen that the hole expansion ratio is the best in the region where the ferrite fraction is 90% or more and the maximum major axis of the second phase is 20 μm or less.

図4に、1/2t部で測定した{100}方位の面強度と1/2W部の打ち抜き穴広げ率の関係を示す。図中には、各々材料ごとにクリアランスを変えて調べた打ち抜き穴広げ率を示している。ここでは、{100}方位は粗圧延条件が変わることにより変化しており、フェライト分率、第二相の形状は変化していない(フェライト分率=95%、第二相の最大長径長さ=17μm)。これより、打ち抜き穴広げ率を改善するには{100}方位が板面と平行になった集合組織を抑制する必要があり、板厚tの1/2t部における{100}面強度は2.5以下とする必要があることが分かる。これは、この方位の集合組織が発達することにより、変形時に板面方向に平行なクラックが発生しやすくなり穴広げ性を劣化させるためと推定される。本発明の鋼では、強度の確保のためにフェライトを微細化するため低温圧延を志向しており、そのため特に{100}方位が板面と平行になった特異な集合組織が発達しやすく、これを規制する必要がある。
FIG. 4 shows the relationship between the {100} orientation plane strength measured at 1 / 2t and the punched hole expansion ratio at 1 / 2W. In the figure, the punching hole expansion ratios obtained by changing the clearance for each material are shown. Here, the {100} orientation is changed by changing the rough rolling conditions, and the ferrite fraction and the shape of the second phase are not changed (ferrite fraction = 95%, maximum major axis length of the second phase). = 17 μm). Therefore, in order to improve the punching hole expansion ratio, it is necessary to suppress the texture in which the {100} orientation is parallel to the plate surface, and the {100} plane strength at the 1 / 2t portion of the plate thickness t is 2. It turns out that it is necessary to make it 5 or less. This is because the texture of this orientation develops, cracks parallel to the plate surface direction during deformation Ru is estimated that for degrading it hole expansion tends to occur. In the steel of the present invention, low-temperature rolling is aimed at miniaturizing ferrite in order to ensure strength, and therefore, a unique texture in which the {100} orientation is parallel to the plate surface is easily developed. Need to be regulated.

図5に、第二相の密度と1/2W部の打ち抜き穴広げ率の関係を示す。図中には、各々材料ごとにクリアランスを変えて調べた打ち抜き穴広げ率を示している。ここで、第二相密度は、圧延温度により変化しており、フェライト分率、集合組織は大きく変化していない。これより、第二相の密度が小さくなり、10000個/mm以下とすることにより所定の穴広げ率が得られることが分かる。これは、この密度が小さいほど、第二相間の間隔が大きくなるため、変形時に第二相で発生したボイドの連結が抑えられるため、端面亀裂の成長が遅くなり穴広げ性が改善されるものと考えられる。 FIG. 5 shows the relationship between the density of the second phase and the punching hole expansion ratio of the 1/2 W part. In the figure, the punching hole expansion ratios obtained by changing the clearance for each material are shown. Here, the second phase density changes with the rolling temperature, and the ferrite fraction and texture do not change greatly. From this, it can be seen that the density of the second phase is reduced, and a predetermined hole expansion rate can be obtained by setting it to 10000 / mm 2 or less. This is because the smaller the density is, the larger the interval between the second phases is, so the connection of voids generated in the second phase at the time of deformation is suppressed. it is conceivable that.

以上の組織の最適化により強度と打ち抜き穴広げ率のバランスは、広いクリアランスの範囲にわたって十分改良される(打ち抜き穴広げ率≧80%)が、厳しい加工を受ける用途が対象の場合、穴広げ率≧110%程度まで、更なる改善を行うことが望ましく、そのためは上記に加え、第二相の硬さを制御することが必要であることを本発明者らは知見した。次に、実験により、第二相の硬さの影響について調べた結果について説明する。   The balance between strength and punching hole expansion ratio is sufficiently improved over the wide clearance range by the above optimization of the structure (punching hole expansion ratio ≧ 80%). The inventors have found that it is desirable to make further improvements up to about ≧ 110%, and for that purpose, in addition to the above, it is necessary to control the hardness of the second phase. Next, the results of examining the influence of the hardness of the second phase by experiments will be described.

表1に示す成分の鋼塊を図2、表3に示す条件で熱間圧延、冷却を行い、巻き取り温度を室温から300℃の間で変え、第二相硬さのみの異なる熱延鋼板を得た。その熱延鋼板の第二相の硬さ(Hvs)とフェライト硬さ(Hvα)との比と打ち抜き穴広げ値(λ)との関係を図6に示す。図中には、各々材料ごとにクリアランスを変えて調べた打ち抜き穴広げ率を示している。ここで、得られた鋼板ではTS=590〜620MPaであり、またフェライト分率=94%、第二相長径=12.5μmの鋼について、第二相の硬さ(Hvs)とフェライト硬さ(Hvα)との比(Hvs/Hvα)を調べたものであるが、Hvs/Hvα=2以下の場合に、上記に述べたように穴広げ値(λ)が良好となることが分かる。   The steel ingots having the components shown in Table 1 are hot-rolled and cooled under the conditions shown in FIGS. 2 and 3, and the coiling temperature is changed from room temperature to 300 ° C., and only the second-phase hardness is different. Got. FIG. 6 shows the relationship between the ratio of the hardness (Hvs) and ferrite hardness (Hvα) of the second phase of the hot-rolled steel sheet and the punched hole expansion value (λ). In the figure, the punching hole expansion ratios obtained by changing the clearance for each material are shown. Here, in the obtained steel plate, TS = 590 to 620 MPa, ferrite fraction = 94%, second phase major axis = 12.5 μm, and the second phase hardness (Hvs) and ferrite hardness ( The ratio (Hvs / Hvα) to Hvα) was examined, and it can be seen that when Hvs / Hvα = 2 or less, the hole expansion value (λ) is good as described above.

Figure 0004980163
Figure 0004980163

本発明は以上を元に為されたものであり、以下に各々の要件の限定理由を説明する。   The present invention has been made based on the above, and the reasons for limiting each requirement will be described below.

まず、本発明の打ち抜き穴広げ性に優れる複合組織鋼板の成分を限定した理由について説明する。   First, the reason for limiting the components of the composite structure steel plate excellent in punching hole expandability of the present invention will be described.

Cは、強度を確保し、また疲労特性の良好な複合組織鋼とするために必要な元素であるので0.01%以上の添加を必要とする。しかし、過多にあると、第二相が増加し穴広げ性が劣化するので上限を0.2%とする。穴広げ性を最適とし、かつ疲労強度も大きく劣化させない観点からは、C量は0.03%以上0.1%以下が好ましい。   C is an element necessary for ensuring the strength and obtaining a composite structure steel having a good fatigue property, and therefore needs to be added in an amount of 0.01% or more. However, if it is excessive, the second phase increases and the hole expandability deteriorates, so the upper limit is made 0.2%. From the viewpoint of optimizing hole expansibility and not significantly degrading fatigue strength, the C content is preferably 0.03% or more and 0.1% or less.

Siは、本発明においては、強度及び伸びのバランスを良好とするために必要であり、特に、伸び(El)の改善には重要な役割を果たす元素であり、0.8%以上の添加を必要とする。その効果をROT冷却条件のばらつきがあっても確実に得るためには1.3%以上添加することが望ましい。しかし、過多になると、Ar3変態点が高くなりすぎ実際の熱間圧延工程において仕上げ圧延温度をそれ以上にすることが困難となり実際の圧延が不可能となるので、上限を3.0%とする。   In the present invention, Si is necessary for improving the balance between strength and elongation. In particular, Si is an element that plays an important role in improving elongation (El). I need. In order to reliably obtain the effect even if the ROT cooling condition varies, it is desirable to add 1.3% or more. However, if it is excessive, the Ar3 transformation point becomes too high, and it becomes difficult to make the finish rolling temperature higher in the actual hot rolling process, making actual rolling impossible, so the upper limit is made 3.0%. .

Mnは、固溶強化元素として強度上昇に有効である。所望の強度を得るためには0.5%以上必要である。また、3%超添加するとスラブ割れを生ずるため、3%以下とするが、好ましくは1.0〜3%である。   Mn is effective for increasing the strength as a solid solution strengthening element. In order to obtain a desired strength, 0.5% or more is necessary. Further, if added over 3%, slab cracking occurs, so the content is made 3% or less, but preferably 1.0 to 3%.

Pは、鋼中に不可避的に含有される不純物であり低いほど好ましく、0.1%超含有すると加工性や溶接性に悪影響を及ぼすと共に、疲労特性も低下させるので、0.1%以下とする。適用される部品によっては要求される疲労特性が厳しい場合もあるので、0.01%以下とすることが好ましい。   P is an impurity inevitably contained in the steel, and is preferably as low as possible. If contained over 0.1%, workability and weldability are adversely affected and fatigue characteristics are also reduced. To do. Depending on the applied parts, the required fatigue characteristics may be severe, so 0.01% or less is preferable.

Sは、Pと同様に鋼中に不可避的に含有される不純物であり低いほど好ましく、多すぎると穴広げ性を劣化させるA系介在物を生成するので、極力低減させるべきであるが、0.01%以下ならば許容できる範囲である。加工の厳しい部品へ適用される場合もあるので、好ましくは0.003%以下とする。   S is an impurity inevitably contained in the steel as in the case of P, and is preferably as low as possible. If it is too much, an A-based inclusion that deteriorates the hole expandability is generated, and should be reduced as much as possible. .01% or less is an acceptable range. Since it may be applied to parts with severe processing, it is preferably made 0.003% or less.

Alは、溶鋼脱酸のために0.005%以上含有させる必要がある。また、固溶強化により強度を得るためにも添加することが好ましい。しかし、コストの上昇を招くためその上限を2.0%とする。   Al needs to be contained by 0.005% or more for deoxidation of molten steel. Moreover, it is preferable to add also in order to obtain intensity | strength by solid solution strengthening. However, to raise the cost, the upper limit is made 2.0%.

Nが過多にあると時効硬化を促進し成形性を劣化させるので好ましくないが、完全に除去するのは大幅なコスト増加につながるため、0.02%を上限とする。成形性を確保する観点から、好ましくは0.005%以下とする。   Excessive N is not preferable because it promotes age hardening and deteriorates moldability, but complete removal leads to significant cost increase, so 0.02% is made the upper limit. From the viewpoint of securing moldability, it is preferably made 0.005% or less.

Cuは、固溶状態で疲労特性を改善する効果があるので、必要に応じ添加する。ただし0.01%未満ではその効果は少なく、2%を超えて含有しても効果が飽和する。そこでCuの含有量は0.01〜2%の範囲とするが、好ましくは0.1〜1%である。   Since Cu has an effect of improving fatigue properties in a solid solution state, it is added as necessary. However, if the content is less than 0.01%, the effect is small, and even if the content exceeds 2%, the effect is saturated. Therefore, the Cu content is in the range of 0.01 to 2%, preferably 0.1 to 1%.

Bは、Cuと複合添加することにより疲労限を上昇させる効果があるので、必要に応じ添加する。ただし、0.0002%未満ではその効果を得るために不十分であり、0.003%超添加するとスラブ割れが起こる。よってBの添加は0.0002%以上、0.003%以下とするが、好ましくは0.0002〜0.001%である。   B has the effect of increasing the fatigue limit by being added in combination with Cu, so is added as necessary. However, if it is less than 0.0002%, it is insufficient for obtaining the effect, and if added over 0.003%, slab cracking occurs. Therefore, the addition of B is 0.0002% or more and 0.003% or less, but preferably 0.0002 to 0.001%.

Niは、Cu含有による熱間脆性防止のために必要に応じ添加する。ただし、0.01%未満ではその効果が少なく、1%を超えて添加してもその効果が飽和するので、0.01〜1%とするが、好ましくは0.03〜0.5%とする。   Ni is added as necessary to prevent hot brittleness due to Cu inclusion. However, if less than 0.01%, the effect is small, and even if added over 1%, the effect is saturated, so 0.01 to 1%, preferably 0.03 to 0.5% To do.

CaおよびREMは、破壊の起点となったり、加工性を劣化させる非金属介在物の形態を変化させて無害化する元素である。ただし、0.0005%未満添加してもその効果がなく、Caならば0.01%超、REMならば0.02%超添加してもその効果が飽和するのでCa=0.0005〜0.01%、REM=0.0005〜0.02%添加することが好ましい。   Ca and REM are elements that are detoxified by changing the form of non-metallic inclusions that become the starting point of destruction or deteriorate workability. However, even if added less than 0.0005%, there is no effect, and if Ca exceeds 0.01%, and if REM exceeds 0.02%, the effect is saturated, so Ca = 0.005 to 0 It is preferable to add 0.01% and REM = 0.005 to 0.02%.

さらに、強度を付与するために、Ti、Nb、Mo、V、Cr、Zrの析出強化もしくは固溶強化元素の一種または二種以上を添加しても良い。ただし、それぞれ0.01%、0.005%、0.05%、0.02%、0.01%、0.02%未満ではその効果を得ることができない。また、それぞれ0.5%、0.5%、1%、0.5%、1%、0.2%を超え添加しても、その効果は飽和する。   Furthermore, in order to impart strength, one or more of precipitation strengthening or solid solution strengthening elements of Ti, Nb, Mo, V, Cr, and Zr may be added. However, if less than 0.01%, 0.005%, 0.05%, 0.02%, 0.01%, and 0.02%, respectively, the effect cannot be obtained. Moreover, the effect will be saturated even if it adds exceeding 0.5%, 0.5%, 1%, 0.5%, 1%, and 0.2%, respectively.

次に、本発明で限定したミクロ組織(複合組織)について説明する。   Next, the microstructure (composite structure) limited in the present invention will be described.

本発明の複合組織鋼板においては、穴広げ性と伸び(El)との双方を改善するために鋼板のミクロ組織を面積分率最大の相をフェライトとする必要がある。第二相は、強度を確保する観点から必要である。しかし、フェライトのみで十分な強度が得られる場合は必ずしも必要ではない。より高い強度を得るためには、第二相はできるだけ硬質とすることが好ましく、マルテンサイト、ベイナイト等の低温変態組織とする必要がある。
In the composite structure steel sheet according to the present invention, in order to improve both the hole expansibility and the elongation (El), it is necessary to make the microstructure of the steel sheet the ferrite having the maximum area fraction. The second phase is necessary from the viewpoint of securing strength. However, it is not always necessary when sufficient strength can be obtained with only ferrite. In order to obtain higher strength, the second phase is preferably as hard as possible, and needs to have a low temperature transformation structure such as martensite and bainite.

高い強度を得る観点からは最も硬質なマルテンサイトを第二相とすることが好ましい。しかし、これは硬質であるために変形時にフェライトとの界面に歪が溜まり、ボイドを発生しやすく、穴広げ値を劣化させるので、より高い穴広げ値を得る場合には、第二相にマルテンサイトよりも軟質のベイナイトを含ませる、または全てベイナイトとすることが好ましい。第二相の分率は、変形時に第二相とフェライトとの界面での歪を低減し変形時のボイドを防ぐため第二相を低減する必要があるので、10%以下とする必要がある。より厳しい要求に耐える穴広げ性を得るためには、第二相分率は好ましくは6%以下とする。一方、第二相分率が低すぎると強度が得られなくなるのに加え、C、Mn量が多い時等ではROT冷却においてフェライト変態しにくくなるため、そのためのROT冷却(緩冷却時間の確保など)を行うことが困難となるので、好ましくは2%以上とする。以上から、フェライト分率(=100−第二相分率)は、90%以上、好ましくは94%以上98%以下とする。   From the viewpoint of obtaining high strength, it is preferable to use the hardest martensite as the second phase. However, since this is hard, strain accumulates at the interface with ferrite during deformation, and voids are easily generated, and the hole expansion value is deteriorated. It is preferable to include bainite that is softer than the site or to use bainite entirely. The fraction of the second phase needs to be 10% or less because it is necessary to reduce the second phase in order to reduce strain at the interface between the second phase and ferrite during deformation and prevent voids during deformation. . In order to obtain a hole expanding property that can withstand stricter requirements, the second phase fraction is preferably 6% or less. On the other hand, if the second phase fraction is too low, strength cannot be obtained, and when there is a large amount of C and Mn, ferrite transformation is difficult in ROT cooling, so ROT cooling (to ensure a slow cooling time, etc.) ) Is difficult to perform, so the content is preferably 2% or more. From the above, the ferrite fraction (= 100−second phase fraction) is 90% or more, preferably 94% or more and 98% or less.

本発明の鋼の場合、穴広げ性は、フェライトと第二相の界面でのボイドの発生により支配される。第二相のサイズが大きいほど、それとフェライトの界面のボイドは発生しやすい。従って、穴広げ性を改善するには、第二相の中でも最大サイズの第二相を微細とする必要がある。この理由から、第二相の最大の長径は20μm以下とする。   In the case of the steel of the present invention, the hole expandability is governed by the generation of voids at the interface between the ferrite and the second phase. The larger the size of the second phase, the easier it is for voids at the interface between it and ferrite. Therefore, in order to improve hole expansibility, it is necessary to make the second phase of the maximum size among the second phases fine. For this reason, the maximum major axis of the second phase is 20 μm or less.

穴広げ性を改善するためには、フェライトと硬質相の界面で発生したボイドの成長、連結を抑制することが必要であるが、この連結を防ぐ観点からは第二相の密度を圧延方向に平行な断面での第二相の密度が1mm当たりに10000個未満と規定する。 In order to improve the hole expansion property, it is necessary to suppress the growth and connection of voids generated at the interface between the ferrite and the hard phase. From the viewpoint of preventing this connection, the density of the second phase is set in the rolling direction. The density of the second phase in the parallel cross section is defined as less than 10,000 per 1 mm 2 .

また、本発明では、{100}方位が板面と平行になった集合組織を抑制する必要があり、板厚tの1/2t部における{100}面強度は2.5以下とする。これは、この方位の集合組織が発達することにより、変形時に板面方向に平行なクラックが発生しやすくなり穴広げ性を劣化させるためである。本発明の鋼では、強度の確保のためにフェライトを微細化するため低温圧延を志向しており、そのため特に{100}方位が板面と平行になった特異な集合組織が発達しやすく、これを規制する必要がある。   Further, in the present invention, it is necessary to suppress the texture in which the {100} orientation is parallel to the plate surface, and the {100} plane strength at the 1 / 2t portion of the plate thickness t is 2.5 or less. This is because the development of the texture of this orientation makes it easier for cracks parallel to the plate surface direction to occur during deformation and deteriorates the hole expansion property. In the steel of the present invention, low-temperature rolling is aimed at miniaturizing ferrite in order to ensure strength, and therefore, a unique texture in which the {100} orientation is parallel to the plate surface is easily developed. Need to be regulated.

本発明の鋼板を適用するに当たり、より加工の厳しい部品に適用する場合は、より穴広げ性を改善する必要があり、その場合、組織硬さを調整することが好ましい。この観点から第二相及びフェライトの硬さ比(Hvs/Hvα)を2以下に限定する。一方、第二相が軟らかすぎると所定の強度を得るのが困難となるので、Hvs/Hvαは1.5以上とする。フェライト相、第二相等の組織硬さの調査は、荷重2.5g程度のミクロビッカース硬さ計で測定点数を10以上として行う。しかし、第二相が微細な場合、荷重を2.5gより小さくする必要があり、その場合ナノインデンター等を用い1.0g以下の荷重で硬さ測定を行うことが好ましい。   In applying the steel sheet of the present invention, when applied to more severely processed parts, it is necessary to further improve the hole expansion property, and in that case, it is preferable to adjust the structure hardness. From this viewpoint, the hardness ratio (Hvs / Hvα) of the second phase and ferrite is limited to 2 or less. On the other hand, if the second phase is too soft, it is difficult to obtain a predetermined strength, so Hvs / Hvα is set to 1.5 or more. The investigation of the structure hardness of the ferrite phase, the second phase, etc. is performed with a micro Vickers hardness tester with a load of about 2.5 g and a measurement point of 10 or more. However, when the second phase is fine, it is necessary to make the load smaller than 2.5 g. In that case, it is preferable to measure the hardness with a load of 1.0 g or less using a nanoindenter or the like.

次に、本発明の複合組織鋼板の製造方法について説明する。   Next, the manufacturing method of the composite structure steel plate of this invention is demonstrated.

本発明では、目的の成分含有量になるように成分調整した溶鋼を鋳込むことによって得たスラブを、高温鋳片のまま熱間圧延機に直送してもよいし、室温まで冷却後に加熱炉で再加熱した後に熱間圧延してもよい。   In the present invention, a slab obtained by casting a molten steel whose components are adjusted so as to have a desired component content may be directly sent to a hot rolling mill as a high-temperature slab, or after being cooled to room temperature, a heating furnace It may be hot-rolled after reheating at.

本発明では、特に低温での熱間圧延により強くなる{100}面が板面方向に向いた 集合組織を抑制する必要がある。これは、この集合組織の発達により、打ち抜き穴広げ成形時に打ち抜き端面の亀裂先端で板面方向に平行な得意なクラックが発生し、亀裂の伝播を促し、穴広げ性を劣化させるためである。この集合組織は、熱間圧延での歪の蓄積により生ずるため、これを抑制するためには熱間圧延の粗圧延の工程において、できるだけ高温で粗圧延を行い、かつ小さい歪速度で行うことが重要と考えられる。これにより粗圧延工程において各パスの圧下時に動的な再結晶または動的な回復が生じ、圧延による集合組織が弱められる効果が得られる。この観点から、粗圧延の条件は、全パスをAr3+250℃以上で行い、かつ、歪速度を0.2/秒以下に規定する。
尚、歪速度は下式から求める。
ε*:パス歪み速度(S-1
ε*=(v/(R×h10.5)×(1/r0.5)×ln{1/(1−r)}
ここで、h1:パス入側板厚(mm)、h2:パス出側板厚(mm)、r=(h1−h2)/h1、R:ロール径(mm)、v:パス出側速度(mm/秒)を意味する。
In the present invention, it is necessary to suppress a texture in which the {100} plane that is strengthened by hot rolling at a low temperature is directed in the plate surface direction. This is because, due to the development of this texture, a good crack parallel to the plate surface direction is generated at the crack tip of the punched end face at the time of punched hole widening molding, promoting the propagation of the crack and deteriorating the hole expandability. Since this texture is generated by accumulation of strain in hot rolling, in order to suppress this, it is necessary to perform rough rolling at a high temperature as much as possible in the hot rolling rough rolling step and at a low strain rate. Considered important. As a result, dynamic recrystallization or dynamic recovery occurs during the rolling of each pass in the rough rolling process, and the effect of weakening the texture by rolling can be obtained. From this point of view, the rough rolling conditions are such that all passes are performed at Ar3 + 250 ° C. or higher, and the strain rate is set to 0.2 / sec or lower.
The strain rate is obtained from the following equation.
ε *: path strain rate (S −1 )
ε * = (v / (R × h 1 ) 0.5 ) × (1 / r 0.5 ) × ln {1 / (1-r)}
Here, h 1 : pass entry side plate thickness (mm), h 2 : pass exit plate thickness (mm), r = (h 1 −h 2 ) / h 1 , R: roll diameter (mm), v: pass exit It means the side speed (mm / sec).

仕上げ圧延終了(最終パス)温度(FT)は、フェライト粒を微細化し、それにより第二相を微細としてそのサイズを小さくするためにAr3+140℃以下とする必要がある。しかし、仕上げ圧延終了温度が低すぎ、Ar3温度+40℃以下となると、フェライト、第二相が微細となりすぎて逆に第二相密度が過度に大きくなるのに加え、更には組織が層状組織となって第二相の最大サイズも増加し穴広げ性を劣化させる可能性もあるので、仕上げ圧延終了温度はAr3+40℃以上とする。
尚、Ar3温度は下式から求める。
Ar3=868−396×C+25×Si−68×Mn−36×Ni−21×Cu−25×Cr+30×Mo
The finish rolling end (final pass) temperature (FT) needs to be Ar 3 + 140 ° C. or lower in order to refine the ferrite grains and thereby reduce the size by making the second phase fine. However, when the finish rolling finish temperature is too low and the Ar3 temperature is 40 ° C. or lower, the ferrite and the second phase become too fine and the second phase density is excessively increased. Since the maximum size of the second phase also increases and the hole expansion property may be deteriorated, the finish rolling end temperature is set to Ar3 + 40 ° C. or higher.
The Ar3 temperature is obtained from the following equation.
Ar 3 = 868-396 × C + 25 × Si-68 × Mn-36 × Ni-21 × Cu-25 × Cr + 30 × Mo

また、フェライト粒、および第二相を細粒とするためには、以上の仕上げ圧延の後に30℃/秒以上の冷却速度でAr3温度以下の温度まで、冷却を行う必要がある。30℃/秒未満の冷却速度ではフェライト粒径を細粒とすることができない。フェライト結晶粒や第二相の形状を等方的な形状とし第二相の扁平化を防ぐためには好ましくは仕上げ圧延終了後1.5秒以内の空冷(冷却速度≦15℃/秒)を行うことが望ましい。   Further, in order to make the ferrite grains and the second phase fine, it is necessary to perform cooling to a temperature not higher than the Ar3 temperature at a cooling rate of 30 ° C./second or more after the above finish rolling. At a cooling rate of less than 30 ° C./second, the ferrite grain size cannot be made fine. In order to prevent the flattening of the second phase by making the shape of the ferrite crystal grains and the second phase isotropic, air cooling (cooling rate ≦ 15 ° C./second) is preferably performed within 1.5 seconds after finishing rolling. It is desirable.

本発明の鋼では、第二相分率を10%以下とする必要があるが、そのためには、ROT冷却の際に、650℃以上750℃以下の温度域で15℃/秒以下の冷却速度で5秒以上冷却を行い、フェライト変態を組成により定まる最大の量近くまで生じさせる必要がある。   In the steel of the present invention, the second phase fraction needs to be 10% or less, and for that purpose, at the time of ROT cooling, a cooling rate of 15 ° C./second or less in a temperature range of 650 ° C. or more and 750 ° C. or less. In this case, it is necessary to cool for 5 seconds or more to cause the ferrite transformation to occur near the maximum amount determined by the composition.

その後、バーリンク性を劣化させるパーライト等の低温変態組織を出さないためには、再び30℃/秒以上の冷却速度で巻取り温度まで冷却を行う。   Thereafter, in order not to produce a low temperature transformation structure such as pearlite which deteriorates the burring property, the cooling is performed again to the coiling temperature at a cooling rate of 30 ° C./second or more.

巻き取り温度(CT)は、適度な十分な硬さを持った下部ベイナイト、またはマルテンサイトとして強度を得るため、340℃以下とする必要がある。それ以上の巻き取り温度とした場合、第二相が上部ベイナイトまたはパーライトととなり、強度が得られずまた穴広げ性も良好でない。穴広げ性を良好とするためには、適度な硬さを有する下部ベイナイトとすることが好ましく、このためには巻き取り温度は250〜340℃の範囲が好ましい。   The coiling temperature (CT) needs to be 340 ° C. or lower in order to obtain strength as lower bainite or martensite having an appropriate and sufficient hardness. When the coiling temperature is higher than that, the second phase becomes upper bainite or pearlite, the strength cannot be obtained, and the hole expandability is not good. In order to improve the hole expanding property, it is preferable to use a lower bainite having an appropriate hardness. For this purpose, the winding temperature is preferably in the range of 250 to 340 ° C.

本発明の複合組織熱延鋼板の製造方法によれば、鋼組成と相俟って、面積分率にて90%以上のフェライトを主相とし、残部がマルテンサイト、またはベイナイトまたはその双方からなる組織であり、かつ、圧延方向に平行な断面での第二相の密度が1mm当たりに10000個未満であり、かつ、第二相の最大の長径が20μm以下であり、かつ板厚tの1/2t部の{100}面強度が2.5以下である、打ち抜き穴広げ性に優れる複合組織熱延鋼板を得ることができる。 According to the method for producing a composite structure hot rolled steel sheet of the present invention, in combination with the steel composition, 90% or more of ferrite in the area fraction is the main phase, and the balance is martensite, bainite, or both. The density of the second phase in a cross section parallel to the rolling direction is less than 10,000 per mm 2 , the maximum major axis of the second phase is 20 μm or less, and the thickness t A composite structure hot-rolled steel sheet having a {100} plane strength of ½t part of 2.5 or less and excellent punching hole expandability can be obtained.

以下実施例により本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

表4に示す化学成分を有する鋼を転炉で溶製した後、連続鋳造して製造したスラブを、表5に示す熱間圧延条件にて圧延・冷却を行い、板厚3.2〜3.9mmの熱間圧延鋼板とした。   After melting the steel having the chemical components shown in Table 4 in a converter, the slab produced by continuous casting was rolled and cooled under the hot rolling conditions shown in Table 5 to obtain a plate thickness of 3.2 to 3 A 9 mm hot-rolled steel sheet was obtained.

Figure 0004980163
Figure 0004980163

Figure 0004980163
Figure 0004980163

圧延条件の指標である温度は、コイルの幅方向の1/2W部で測定した。
得られた熱延板の引張試験は、供試材の1/2W部よりJIS Z 2201記載の5号試験片に加工し、JIS Z 2241記載の試験方法に従って行った。一方、打ち抜き穴広げ率については、同じく1/2W部より150mm×150mmの試験片を3枚加工し日本鉄鋼連盟規格JFS T 1001−1996記載の穴広げ試験方法に従って評価した。打ち抜き穴広げ試験は、打ち抜きクリアランスを、5%、15%、20%で変えて試験を行った。
The temperature, which is an index of rolling conditions, was measured at a 1/2 W portion in the coil width direction.
The tensile test of the obtained hot-rolled sheet was processed into a No. 5 test piece described in JIS Z 2201 from 1/2 W part of the test material, and was performed according to the test method described in JIS Z 2241. On the other hand, the punching hole expansion rate was evaluated in accordance with the hole expansion test method described in Japan Iron and Steel Federation Standard JFS T 1001-1996 after processing three 150 mm × 150 mm test pieces from the 1 / 2W part. The punching hole expansion test was performed by changing the punching clearance at 5%, 15%, and 20%.

また、幅方向1/2W部から板面方向を向いた結晶方位を観察するためのX線回折試験片を加工し、板面方向を向いた{100}方位の面強度を求めた。   Further, an X-ray diffraction test piece for observing the crystal orientation from the 1 / 2W portion in the width direction toward the plate surface direction was processed, and the surface strength in the {100} direction toward the plate surface direction was obtained.

また、幅方向1/2W部から圧延方向断面の埋め込みサンプルを作成し、研磨した後、ナイタール腐食を行い、1/4t部にて組織硬さ調査を行った。組織硬さの測定は、荷重2.5gで10点測定でビッカース硬さを測定し求めた。また、全厚で第二相の圧延方向の最大サイズを測定した。また、同じく1/4t部にて0.2mm×0.2mmの視野内で第二相の個数を測定し、1mm当たりの個数(密度)に換算した。同じく1/4t部より、フェライト分率を測定した。フェライト分率とは、ミクロ組織中におけるフェライト組織の面積分率で定義される。第二相の分率は、100−フェライト分率(%)となる。 In addition, an embedding sample having a cross section in the rolling direction was prepared from the width direction ½ W portion, polished, and then subjected to nital corrosion, and the structure hardness was examined at the ¼ t portion. The tissue hardness was measured by measuring Vickers hardness by 10-point measurement with a load of 2.5 g. Further, the maximum size in the rolling direction of the second phase was measured with the total thickness. Similarly, the number of second phases was measured within a visual field of 0.2 mm × 0.2 mm at the 1/4 t portion, and converted into the number (density) per 1 mm 2 . Similarly, the ferrite fraction was measured from the 1/4 t part. The ferrite fraction is defined as the area fraction of the ferrite structure in the microstructure. The fraction of the second phase is 100-ferrite fraction (%).

以上の調査結果を表6に示す。   The above survey results are shown in Table 6.

Figure 0004980163
Figure 0004980163

水準(1)、(2)、(12)、(13)、(15)〜(20)は、所定の条件を満たした本発明の鋼であり良好な強度、伸び、穴広げ率(λ)のバランスが得られている。   The levels (1), (2), (12), (13), (15) to (20) are steels of the present invention that satisfy predetermined conditions, and have good strength, elongation, and hole expansion rate (λ). The balance is obtained.

水準(3)では、粗圧延の歪速度が大きいため、{100}が大きく、穴広げ率が小さい。   At level (3), since the strain rate of rough rolling is large, {100} is large and the hole expansion rate is small.

水準(4)では、粗圧延の温度が低いため、{100}が大きく、穴広げ率が小さい。   In level (4), since the temperature of rough rolling is low, {100} is large and the hole expansion rate is small.

水準(5)では、仕上げ圧延温度が低いため第二相密度が大きすぎ、穴広げ率が低い。   In level (5), since the finish rolling temperature is low, the second phase density is too large and the hole expansion rate is low.

水準(6)では、仕上げ圧延温度が高いため、第二相が粗大となっており、穴広げ率が低い。   In level (6), since the finish rolling temperature is high, the second phase is coarse and the hole expansion rate is low.

水準(7)では、仕上げ圧延後の冷却速度が小さいため、第二相が粗大となっており、穴広げ率が低い。   In level (7), since the cooling rate after finish rolling is small, the second phase is coarse and the hole expansion rate is low.

水準(8)では、ROTでの750〜650℃での緩冷却速度が速く、また750〜650℃での緩冷却時間が短いため、第二相分率が大きく、穴広げ率が低い。   At level (8), the slow cooling rate at 750 to 650 ° C. in ROT is high, and the slow cooling time at 750 to 650 ° C. is short, so the second phase fraction is large and the hole expansion rate is low.

水準(9)では、ROTでの750〜650℃での緩冷却時間が短いため、第二相分率が大きく、穴広げ率が低い。   In level (9), since the slow cooling time at 750 to 650 ° C. in ROT is short, the second phase fraction is large and the hole expansion ratio is low.

水準(10)では、ROTでの650℃以下での冷却速度が小さいため、パーライトが生成しており穴広げ率が低い。   At the level (10), since the cooling rate at 650 ° C. or lower in the ROT is small, pearlite is generated and the hole expansion rate is low.

水準(11)ではCTが高いため、第二相が比較的軟質な上部ベイナイトとなっており強度が不十分であり、穴広げ率も低い。   Since CT is high at level (11), the second phase is relatively soft upper bainite, the strength is insufficient, and the hole expansion rate is low.

水準(14)では、粗圧延の歪速度が大きいため、{100}が大きく、穴広げ率が小さい。   At level (14), since the strain rate of rough rolling is large, {100} is large and the hole expansion rate is small.

水準(21)では、Cが所定より低いため、強度が低い。   At the level (21), C is lower than a predetermined value, so the strength is low.

水準(22)では、Si量が規定より低いため、強度と伸びのバランスが劣位である。   At level (22), the balance between strength and elongation is inferior because the amount of Si is lower than specified.

水準(23)では、Mn量が規定より低いため、十分な強度が得られていない。   In the level (23), since the amount of Mn is lower than specified, sufficient strength is not obtained.

水準(24)では、Cが高すぎるため、第二相分率が大きく、穴広げ値が低い。   In level (24), since C is too high, the second phase fraction is large and the hole expansion value is low.

打ち抜き穴広げ試験を示す図である。It is a figure which shows a punching hole expansion test. 供試鋼の熱延条件を示す図である。It is a figure which shows the hot rolling conditions of test steel. フェライト分率、第二相粒径と穴広げ率との関係を示す図である。It is a figure which shows the relationship between a ferrite fraction, a 2nd phase particle size, and a hole expansion rate. {100}面強度と穴広げ率の関係を示す図である。It is a figure which shows the relationship between {100} surface intensity | strength and a hole expansion rate. 第二相密度と穴広げ率の関係を示す図である。It is a figure which shows the relationship between a 2nd phase density and a hole expansion rate. 第二相の硬さ(Hvs)とフェライト硬さ(Hvα)との比と穴広げ値(λ)との関係を示す図である。It is a figure which shows the relationship between the ratio of the hardness (Hvs) of a 2nd phase, and ferrite hardness (Hv (alpha)), and a hole expansion value ((lambda)).

符号の説明Explanation of symbols

1ポンチ
2打ち抜きダイス
3しわ押さえ
4材料
5剪断部分
6被剪断部分
7穴拡げポンチ
8打ち抜き端面
9ポンチの移動
10穴径の拡大
t板厚
s隙間
1 punch 2 punching die 3 wrinkle retainer 4 material 5 shearing part 6 sheared part 7 hole expanding punch 8 punching end face 9 punch movement 10 hole diameter expansion t plate thickness s gap

Claims (8)

質量%で、
C:0.01〜0.2%、
Si:0.8〜3.0%、
Mn:0.5〜3%、
P≦0.1%、
S≦0.01%、
Al:0.005〜2.0%、
N≦0.02%、
を含み、
残部がFe及び不可避的不純物からなる成分の鋼板であって、面積分率が90%以上、100%未満であるフェライトを主相とし、第二相がマルテンサイト、またはベイナイトまたはその双方からなる組織であり、かつ、圧延方向に平行な断面での第二相の密度が1mm当たりに10000個未満であり、かつ第二相の最大の長径が20μm以下であり、かつ1/2t部の{100}面強度が2.5以下であることを特徴とする、成形性に優れた複合組織鋼板。
% By mass
C: 0.01 to 0.2%
Si: 0.8 to 3.0%,
Mn: 0.5-3%,
P ≦ 0.1%,
S ≦ 0.01%,
Al: 0.005 to 2.0%,
N ≦ 0.02%,
Including
The balance is a steel sheet composed of Fe and unavoidable impurities, and the main phase is ferrite with an area fraction of 90% or more and less than 100%, and the second phase is martensite, bainite, or both. And the density of the second phase in a cross section parallel to the rolling direction is less than 10,000 per 1 mm 2 , the maximum major axis of the second phase is 20 μm or less, and {1/2 t part { 100} surface strength is 2.5 or less, a composite structure steel plate excellent in formability.
前記鋼が、さらに質量%で、
Cu:0.01〜2%
を含有することを特徴とする、請求項1に記載の成形性に優れた複合組織鋼板。
The steel is further mass%,
Cu: 0.01-2%
The composite steel sheet having excellent formability according to claim 1, comprising:
前記鋼が、さらに質量%で、
B:0.0002〜0.003%
を含有することを特徴とする、請求項1または2に記載の成形性に優れた複合組織鋼板。
The steel is further mass%,
B: 0.0002 to 0.003%
The composite structure steel plate excellent in formability of Claim 1 or 2 characterized by containing.
前記鋼が、さらに質量%で、
Ni:0.01〜1%
を含有することを特徴とする、請求項1ないし3のいずれか1項に記載の成形性に優れた複合組織鋼板。
The steel is further mass%,
Ni: 0.01 to 1%
The composite structure steel plate excellent in formability of any one of Claims 1 thru | or 3 characterized by the above-mentioned.
前記鋼が、さらに質量%で、
Ca:0.0005〜0.01%、
REM:0.0005〜0.02%
の一種または二種を含有することを特徴とする、請求項1ないし4のいずれか1項に記載の成形性に優れた複合組織鋼板。
The steel is further mass%,
Ca: 0.0005 to 0.01%,
REM: 0.0005 to 0.02%
One type or two types of these are contained, The composite-structure steel plate excellent in the moldability of any one of Claims 1 thru | or 4 characterized by the above-mentioned.
前記鋼が、さらに質量%で、
Ti:0.01〜0.5%、
Nb:0.005〜0.5%、
Mo:0.05〜1%、
V:0.02〜0.5%、
Cr:0.01〜1%、
Zr:0.02〜0.2%
の一種または二種以上を含有することを特徴とする、請求項1ないし5のいずれか1項に記載の成形性に優れた複合組織鋼板。
The steel is further mass%,
Ti: 0.01 to 0.5%,
Nb: 0.005 to 0.5%,
Mo: 0.05 to 1%
V: 0.02-0.5%
Cr: 0.01-1%,
Zr: 0.02 to 0.2%
The composite structure steel plate excellent in formability of any one of Claims 1 thru | or 5 characterized by containing 1 type, or 2 or more types of these.
第二相の硬さの平均値をフェライトの硬さの平均値で除した値が1.5以上2以下であることを特徴とする請求項1ないし6のいずれか1項に記載の成形性に優れた複合組織鋼板。   The formability according to any one of claims 1 to 6, wherein a value obtained by dividing the average value of the hardness of the second phase by the average value of the hardness of the ferrite is 1.5 or more and 2 or less. Excellent composite steel sheet. 請求項1ないし6のいずれか1項に記載の成分を有する鋼片の熱間圧延に際し、Ar3+250℃以上の温度で粗圧延を終了し、かつその歪速度を0.2/秒以下とし、かつAr3変態点温度+40℃以上Ar3変態点温度+140℃以下で熱間仕上圧延を終了し、次に30℃/秒以上の冷却速度で冷却し、その後650以上750℃態点温度以下の温度域で15℃/秒以下の冷却速度で5秒以上緩冷却を行い、その後、30℃/s以上の冷却速度で冷却して、340℃以下の巻取温度で巻き取ることを特徴とする成形性に優れた複合組織鋼板の製造方法。   In hot rolling the steel slab having the component according to any one of claims 1 to 6, the rough rolling is finished at a temperature of Ar3 + 250 ° C or higher, and the strain rate is 0.2 / sec or less, and Hot finish rolling is finished at an Ar3 transformation point temperature of + 40 ° C. or more and an Ar3 transformation point temperature of + 140 ° C. or less, then cooled at a cooling rate of 30 ° C./second or more, and then in a temperature range of 650 to 750 ° C. For formability characterized by performing slow cooling for 5 seconds or more at a cooling rate of 15 ° C./second or less, then cooling at a cooling rate of 30 ° C./s or more and winding at a winding temperature of 340 ° C. or less. An excellent method of manufacturing a composite steel sheet.
JP2007189372A 2007-07-20 2007-07-20 Composite steel sheet having excellent formability and method for producing the same Active JP4980163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007189372A JP4980163B2 (en) 2007-07-20 2007-07-20 Composite steel sheet having excellent formability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007189372A JP4980163B2 (en) 2007-07-20 2007-07-20 Composite steel sheet having excellent formability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009024227A JP2009024227A (en) 2009-02-05
JP4980163B2 true JP4980163B2 (en) 2012-07-18

Family

ID=40396323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007189372A Active JP4980163B2 (en) 2007-07-20 2007-07-20 Composite steel sheet having excellent formability and method for producing the same

Country Status (1)

Country Link
JP (1) JP4980163B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5644234B2 (en) * 2010-07-28 2014-12-24 Jfeスチール株式会社 Manufacturing method of structural members with excellent punching fatigue characteristics
CN103429779B (en) * 2011-03-18 2015-06-03 新日铁住金株式会社 Hot-rolled steel sheet and process for producing same
JP6303782B2 (en) * 2014-05-08 2018-04-04 新日鐵住金株式会社 Hot-rolled steel sheet and manufacturing method thereof
KR101897932B1 (en) * 2014-07-14 2018-09-12 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel sheet
US20180023162A1 (en) * 2015-02-20 2018-01-25 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet
US11401571B2 (en) 2015-02-20 2022-08-02 Nippon Steel Corporation Hot-rolled steel sheet
WO2016132549A1 (en) 2015-02-20 2016-08-25 新日鐵住金株式会社 Hot-rolled steel sheet
WO2016135898A1 (en) 2015-02-25 2016-09-01 新日鐵住金株式会社 Hot-rolled steel sheet or plate
CN107406929B (en) 2015-02-25 2019-01-04 新日铁住金株式会社 Hot rolled steel plate
WO2018026015A1 (en) 2016-08-05 2018-02-08 新日鐵住金株式会社 Steel sheet and plated steel sheet
CN109563580A (en) 2016-08-05 2019-04-02 新日铁住金株式会社 steel sheet and plated steel sheet
BR112019002593A2 (en) * 2016-08-18 2019-05-21 Nippon Steel & Sumitomo Metal Corporation hot rolled steel sheet
CN107695099B (en) * 2017-09-20 2019-07-09 武汉钢铁有限公司 Method based on CSP process production thin gauge hot rolling DP600 steel
CN109536837B (en) * 2018-12-10 2021-03-09 钢铁研究总院 high-N-content ultrafine-grain 1200 MPa-grade cold-rolled dual-phase steel and production process thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633104A (en) * 1979-08-23 1981-04-03 Nippon Steel Corp Feeding method for cast slab to hot rolling pass
JPS63121618A (en) * 1986-11-11 1988-05-25 Sumitomo Metal Ind Ltd Manufacture of hot rolled nb added steel plate having high ductility and toughness
JPH09241790A (en) * 1996-03-07 1997-09-16 Nippon Steel Corp Hot rolled high strength steel plate of low yield ratio type, excellent in durability and fatigue characteristic, by continuous hot rolling process and its production
JP4543471B2 (en) * 2000-01-14 2010-09-15 Jfeスチール株式会社 Manufacturing method of high-strength hot-rolled steel sheet with excellent plate shape and workability
JP4405026B2 (en) * 2000-02-22 2010-01-27 新日本製鐵株式会社 Method for producing high-tensile strength steel with fine grain
JP3821036B2 (en) * 2002-04-01 2006-09-13 住友金属工業株式会社 Hot rolled steel sheet, hot rolled steel sheet and cold rolled steel sheet

Also Published As

Publication number Publication date
JP2009024227A (en) 2009-02-05

Similar Documents

Publication Publication Date Title
JP4980163B2 (en) Composite steel sheet having excellent formability and method for producing the same
JP5348268B2 (en) High-strength cold-rolled steel sheet having excellent formability and method for producing the same
JP5858174B2 (en) Low yield ratio high strength cold-rolled steel sheet and method for producing the same
KR20200011475A (en) Hot rolled steel sheet and its manufacturing method
JP5126399B2 (en) High-strength cold-rolled steel sheet with excellent stretch flangeability and manufacturing method thereof
JP4161935B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP5487984B2 (en) High-strength cold-rolled steel sheet excellent in bendability and manufacturing method thereof
JP5521444B2 (en) High-strength cold-rolled steel sheet with excellent workability and method for producing the same
JP6047983B2 (en) Method for producing high-strength cold-rolled steel sheet excellent in elongation and stretch flangeability
KR20130121940A (en) High-strength cold-rolled steel sheet having excellent processability and high yield ratio, and method for producing same
KR20210024135A (en) High-strength hot rolled steel sheet and its manufacturing method
JP4901623B2 (en) High-strength steel sheet with excellent punching hole expandability and manufacturing method thereof
JP2007154283A (en) High strength steel sheet having excellent formability and shape fixability
JP6699307B2 (en) Hot-rolled steel sheet and its manufacturing method
JP2005314798A (en) High ductility hot rolled steel sheet having excellent stretch flange property and fatigue property and its production method
JP5862052B2 (en) High-strength cold-rolled steel sheet excellent in elongation and stretch flangeability and method for producing the same
JP2014173151A (en) High strength hot rolled steel sheet excellent in processability and fatigue characteristic and its manufacturing method
KR20140098171A (en) High-yield-ratio high-strength cold-rolled steel sheet and method for producing same
JPWO2019151017A1 (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet, and methods for producing them
JP2013181208A (en) High strength hot-rolled steel sheet having excellent elongation, hole expansibility and fatigue characteristics, and method for producing the same
KR20220147687A (en) High-strength steel sheet and manufacturing method thereof
KR20130034047A (en) High-strength hot-rolled steel sheet having excellent workability, and a method for producing same
JP2001220647A (en) High strength cold rolled steel plate excellent in workability and producing method therefor
JP2001226741A (en) High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
JP4854333B2 (en) High strength steel plate, unannealed high strength steel plate and method for producing them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4980163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350