JP4977979B2 - Assembled battery design method, manufacturing method, and assembled battery - Google Patents

Assembled battery design method, manufacturing method, and assembled battery Download PDF

Info

Publication number
JP4977979B2
JP4977979B2 JP2005241538A JP2005241538A JP4977979B2 JP 4977979 B2 JP4977979 B2 JP 4977979B2 JP 2005241538 A JP2005241538 A JP 2005241538A JP 2005241538 A JP2005241538 A JP 2005241538A JP 4977979 B2 JP4977979 B2 JP 4977979B2
Authority
JP
Japan
Prior art keywords
safety valve
valve mechanism
assembled battery
operating pressure
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005241538A
Other languages
Japanese (ja)
Other versions
JP2007059145A (en
Inventor
智浩 松浦
豊彦 江藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005241538A priority Critical patent/JP4977979B2/en
Publication of JP2007059145A publication Critical patent/JP2007059145A/en
Application granted granted Critical
Publication of JP4977979B2 publication Critical patent/JP4977979B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、個々に安全弁を備えた単電池を複数直列に接続してなる組電池の設計方法、製造方法及び組電池に関する。   The present invention relates to an assembled battery design method, a manufacturing method, and an assembled battery in which a plurality of single cells each having a safety valve are connected in series.

単電池を複数備える組電池において、個々の単電池にそれぞれ安全弁を設け、この単電池を直列に接続して組電池としたものが知られている(特許文献1参照)。このような組電池では、過放電や過充電などによって電池の内圧が異常上昇した場合には、安全弁が開弁して内部のガスを放出し、電池の破壊(電池ケース等の破裂)を防止している。なお、単電池を直列接続をした組電池では、過充電などの異常時には、通常、直列接続されたいずれの単電池についても電池の内圧上昇が起こる。   In an assembled battery including a plurality of unit cells, there is known an individual unit cell provided with a safety valve, and the unit cells are connected in series to form an assembled battery (see Patent Document 1). In such an assembled battery, when the internal pressure of the battery rises abnormally due to overdischarge, overcharge, etc., the safety valve opens to release the internal gas, preventing battery destruction (battery case rupture). is doing. Note that, in an assembled battery in which unit cells are connected in series, the internal pressure of the unit cell is usually increased in any unit cell connected in series when an abnormality such as overcharging occurs.

特開平11−339747号公報(図2参照)JP 11-339747 A (see FIG. 2)

しかしながら、組電池においては、各単電池に取り付けされている安全弁の作動圧が同一というわけではない。安全弁の各部品の材質、寸法等のばらつきに起因して、その作動圧にもばらつきが生じるためである。従って、1つの組電池の中に、同じ構成の安全弁を用いているにも拘わらず、安全弁の作動圧が相対的に高い単電池、逆に作動圧が相対的に低い単電池が存在することとなる。さらに、多数の組電池を見た場合、単電池の組み合わせによっては、安全弁の作動圧が相対的に高い単電池ばかりが集まって構成された組電池や、逆に、安全弁の作動圧が相対的に低い単電池ばかりが集まって構成された組電池なども存在しうる。   However, in the battery pack, the operating pressure of the safety valve attached to each unit cell is not the same. This is because the operating pressure varies due to variations in the material, dimensions, etc. of the parts of the safety valve. Therefore, in one assembled battery, there is a single cell with a relatively high operating pressure of the safety valve, and conversely a single cell with a relatively low operating pressure, even though the same safety valve is used. It becomes. Furthermore, when looking at a large number of assembled batteries, depending on the combination of single cells, the assembled battery in which only the single cells having a relatively high operating pressure of the safety valve are assembled, or conversely, the operating pressure of the safety valve is relatively high. There may also be an assembled battery composed of only single cells.

組電池あるいは組電池に接続する回路に異常がある場合の中には、繰り返し内圧が異常上昇する場合もありうる。しかるに、安全弁の作動圧が相対的に低い単電池は、安全弁が開弁して内圧を低下させることができるが、安全弁の作動圧が相対的に高い単電池では、なかなか安全弁が開弁しないため、電池ケースに大きな内圧(ストレス)が掛かり、電池ケースが疲労しやすい。このため、繰り返し内圧の異常上昇が起こると、ついには電池ケースが疲労破壊する可能性がある。
従って、単電池を直列接続をした組電池において、安全弁の作動圧が相対的に高い単電池を含む組電池について、あるいは、安全弁の作動圧が相対的に高い単電池ばかりが集まって構成された組電池について、特に、考慮が必要となる。
本発明は、かかる問題点に鑑みてなされたものであって、単電池を直列接続した組電池において、繰り返し内圧の上昇が生じた場合でも、電池の破壊を生じにくい組電池、組電池の設計方法、あるいは組電池の製造方法を提供することを目的とする。
When there is an abnormality in the assembled battery or a circuit connected to the assembled battery, the internal pressure may increase abnormally repeatedly. However, a single battery with a relatively low operating pressure of the safety valve can open the safety valve to reduce the internal pressure, but a single battery with a relatively high operating pressure of the safety valve does not readily open the safety valve. A large internal pressure (stress) is applied to the battery case, and the battery case is easily fatigued. For this reason, if an abnormal increase in internal pressure occurs repeatedly, the battery case may eventually be fatigued.
Therefore, in the battery pack in which the battery cells are connected in series, the battery pack including the battery with a relatively high operating pressure of the safety valve, or only the battery cells having a relatively high operating pressure of the safety valve are assembled. In particular, it is necessary to consider the assembled battery.
The present invention has been made in view of such a problem, and in an assembled battery in which single cells are connected in series, even when an internal pressure is repeatedly increased, the assembled battery and the assembled battery are less likely to be destroyed. It is an object of the present invention to provide a method or a method for manufacturing a battery pack.

その解決手段は、複数の単電池を直列に接続した組電池の設計方法であって、第1作動圧で開弁する復帰型の第1安全弁機構を有する第1単電池であって、上記第1作動圧のばらつきの範囲が、第1下限圧力から第1上限圧力までの第1範囲である上記第1安全弁機構を有する上記第1単電池少なくとも1つと、第2作動圧で開弁する復帰型の第2安全弁機構を有する第2単電池であって、上記第2作動圧のばらつきの範囲が、第2下限圧力から上記第1上限圧力よりも高い第2上限圧力までの第2範囲である上記第2安全弁機構を有する上記第2単電池残余の数と、を組み合わせて上記組電池とし、上記第1安全弁機構は、金属バネ材を用いて弁部材を付勢し、上記金属バネ材の付勢力によって上記第1作動圧が決定される機構であり、上記第2安全弁機構は、上記金属バネ材を用いることなく、ゴム状弾性体を用いて弁部材を付勢しまたはゴム状弾性体からなる弾性体弁部材を含み、上記ゴム状弾性体の付勢力によって上記第2作動圧が決定される機構である組電池の設計方法である。 The solution is a design method of an assembled battery in which a plurality of single cells are connected in series, and is a first single cell having a return-type first safety valve mechanism that opens at a first operating pressure. At least one first cell having the first safety valve mechanism in which the range of variation in one operating pressure is a first range from a first lower limit pressure to a first upper limit pressure, and a return that opens at a second operating pressure A second cell having a second safety valve mechanism of the type, wherein a range of variation of the second operating pressure is a second range from a second lower limit pressure to a second upper limit pressure higher than the first upper limit pressure. The number of remaining second single cells having the second safety valve mechanism is combined to form the assembled battery. The first safety valve mechanism urges the valve member using a metal spring material, and the metal spring. The first operating pressure is determined by the urging force of the material. The second safety valve mechanism includes an elastic valve member that urges the valve member using a rubber-like elastic body or is made of a rubber-like elastic body without using the metal spring material, and the urging force of the rubber-like elastic body. Is a method for designing an assembled battery, which is a mechanism for determining the second operating pressure .

本発明の組電池の設計方法では、複数の単電池として、少なくとも1つの第1単電池と、残余の数の第2単電池とを用いることとする。このうち、第1単電池に用いる復帰型の第1安全弁機構では、第1作動圧のばらつきが第1範囲であり、第2単電池に用いる復帰型の第2安全弁機構では、第2作動圧のばらつきが第2下限圧力から第1上限圧力よりも高い第2上限圧力までの第2範囲である。このように作動圧を設定した第1安全弁機構を有する第1単電池、及び第2安全弁機構を有する第2単電池からなる組電池では、各単電池は直列に接続されているので、組電池を過充電した場合などには、いずれの単電池の内圧も上昇する。   In the assembled battery design method of the present invention, at least one first unit cell and the remaining number of second unit cells are used as the plurality of unit cells. Among these, in the reset-type first safety valve mechanism used for the first cell, the first operating pressure varies within the first range, and in the reset-type second safety valve mechanism used for the second cell, the second operating pressure. Is a second range from the second lower limit pressure to the second upper limit pressure higher than the first upper limit pressure. In the assembled battery composed of the first single battery having the first safety valve mechanism having the operating pressure set in this way and the second single battery having the second safety valve mechanism, the individual batteries are connected in series. When the battery is overcharged, the internal pressure of any single cell increases.

この場合において、最も好ましくないケースとして、組電池に含まれる第2単電池の第2作動圧がいずれも第1上限圧力より高い場合(例えばいずれも第2上限圧力である場合)を考える。この場合でも、本発明のように設計した組電池では、1または複数の第1単電池いずれもが第1上限圧力以下の第1作動圧で開弁する。
なお、複数の第2単電池の中に、第1上限圧力よりも低い第2作動圧を持つものが存在する場合には、そのような第2単電池も比較的低い第2作動圧で開弁することとなる。
In this case, a case where the second operating pressure of the second cell included in the assembled battery is higher than the first upper limit pressure (for example, both are the second upper limit pressure) is considered as the most unfavorable case. Even in this case, in the assembled battery designed as in the present invention, one or a plurality of first single cells are opened at the first operating pressure that is equal to or lower than the first upper limit pressure.
In addition, when a plurality of second unit cells have a second operating pressure lower than the first upper limit pressure, such second unit cells are also opened at a relatively low second operating pressure. I will speak.

ところで、単電池は、安全弁が開弁すると、内部のガスや電解液が放出され電池容量が低下する。従って、何度も開弁すると、ついには単電池として機能しなくなり、この単電池が直列に接続されている組電池全体も機能しなくなる。
従って、本発明の設計方法による組電池では、繰り返し内圧の異常上昇が起こると、第1上限圧力以下の作動圧(第1,第2作動圧)で開弁する第1単電池または第2単電池が徐々に単電池としての機能を失うので、ついには組電池全体の機能を失わせることができる。この場合において、第1単電池の第1上限圧力を適切に設定することにより、組電池の機能を失わせる時期や条件のうち、最も遅れる場合の時期や最も機能を失わせ難い条件を決めることができる。かくして、この設計方法により、各第2単電池の第2作動圧の組み合わせがどのような場合でも、第2単電池が疲労により破壊する前に、安全に組電池を機能停止させ、もって、第2単電池の破壊による不具合を防止可能に設定することができる。
また、本発明の組電池の設計方法では、第1安全弁機構としては、金属バネ材を用いて弁部材を付勢する構成のものを用いる。このため、作動圧の精度が高く、つまり第1下限圧力から第1上限圧力までの第1範囲のレンジを比較的小さくすることができる。また、作動圧の経時変化も比較的小さい。但し、この第1安全弁機構は複雑となりがちであるため、比較的高価となる。また、金属バネ材等を収容するスペースを必要とするので、第1安全弁機構の体格が大きくなりがちである。
一方、第2安全弁機構としては、金属バネ材を用いず、ゴム状弾性体を用いて弁部材を付勢する構成、またはゴム状弾性体自身を弾性体弁部材として用いる構成のものを用いる。このため、作動圧の精度は比較的低い、つまり第2下限圧力から第2上限圧力までの第2範囲のレンジが比較的大きくなる。また、作動圧の経時変化も比較的大きい。但し、機構を単純としやすいため、第2安全弁機構は比較的安価としうる。また、金属バネ材等を収容するスペースが不要で、単純な機構で済むので、第2安全弁機構の体格は比較的小さくできる。
本発明の組電池の設計方法では、このような2種類の安全弁機構を用いた第1,第2単電池を組み合わせているので、全ての単電池に第1安全弁機構を用いた場合に比して安価となる上、組電池全体の体格も小さくできる。一方、全ての単電池に第2安全弁機構を用いた場合に比して、確実に第1上限圧力以下の内圧で安全弁機構を作動させることができ、ひいては、適切に組電池全体の機能を失わせ、電池の破壊を防止できる。
なお、特に、第1単電池を1つ、第2単電池を残余の数とする組み合わせが、最も安価で体格も小さくなり好ましい。
By the way, when a safety valve is opened in a single cell, internal gas and electrolyte are released, and the battery capacity is reduced. Therefore, if the valve is opened many times, it will eventually not function as a single cell, and the entire assembled battery in which the single cells are connected in series will also not function.
Therefore, in the battery pack according to the design method of the present invention, when the internal pressure is repeatedly increased abnormally, the first battery or the second battery that opens at the operating pressure (first and second operating pressures) equal to or lower than the first upper limit pressure. Since the battery gradually loses its function as a unit cell, the function of the entire assembled battery can be finally lost. In this case, by appropriately setting the first upper limit pressure of the first unit cell, among the timing and conditions for losing the function of the assembled battery, the timing when it is most delayed and the conditions that are most difficult to lose the function are determined. Can do. Thus, according to this design method, regardless of the combination of the second operating pressures of each second unit cell, the assembled cell can be safely stopped before the second unit cell is destroyed due to fatigue. It can be set to prevent problems caused by destruction of the two unit cells.
Further, in the assembled battery design method of the present invention, the first safety valve mechanism is configured to urge the valve member using a metal spring material. For this reason, the accuracy of the operating pressure is high, that is, the range of the first range from the first lower limit pressure to the first upper limit pressure can be made relatively small. Moreover, the change with time of the operating pressure is relatively small. However, since the first safety valve mechanism tends to be complicated, it is relatively expensive. Further, since a space for accommodating the metal spring material or the like is required, the size of the first safety valve mechanism tends to be large.
On the other hand, as the second safety valve mechanism, a configuration in which the valve member is urged by using a rubber-like elastic body without using a metal spring material, or a configuration in which the rubber-like elastic body itself is used as an elastic valve member is used. For this reason, the accuracy of the operating pressure is relatively low, that is, the range of the second range from the second lower limit pressure to the second upper limit pressure is relatively large. Moreover, the change with time of the operating pressure is relatively large. However, since the mechanism is easily simplified, the second safety valve mechanism can be relatively inexpensive. Further, since a space for housing the metal spring material or the like is unnecessary and a simple mechanism is sufficient, the size of the second safety valve mechanism can be made relatively small.
In the assembled battery design method of the present invention, the first and second single cells using these two types of safety valve mechanisms are combined, so that compared to the case where the first safety valve mechanism is used for all the single cells. In addition, the overall size of the assembled battery can be reduced. On the other hand, compared to the case where the second safety valve mechanism is used for all the cells, the safety valve mechanism can be operated with an internal pressure lower than the first upper limit pressure, and the function of the entire assembled battery is appropriately lost. Battery destruction.
In particular, the combination of one first cell and the remaining number of second cells is preferable because it is the cheapest and has the smallest physique.

なお、復帰型の安全弁機構とは、電池の内圧が作動圧よりも低くなった場合には、再び電池ケースを気密に保持することができるように構成された安全弁機構であり、公知の構造を採用することができる。例えば、金属バネやゴム状弾性体等を用いて、弁体を弾性的に付勢してこの弁体で排気孔を塞ぎ、内圧の上昇により排気孔からの排気可能とすると共に、可逆的に弁体を移動可能に保持したものが挙げられる。
また、単電池としては、内圧の上昇による電池の破壊(電池ケースの破裂等)などの不具合が生じる可能性のある電池であればいずれにも適用できるが、例えば、ニッケル水素電池などのアルカリ電池や、鉛電池などの酸電池、リチウムイオン電池などの有機電解液系電池が挙げられる。
The return-type safety valve mechanism is a safety valve mechanism configured so that the battery case can be kept airtight again when the internal pressure of the battery becomes lower than the operating pressure. Can be adopted. For example, using a metal spring, rubber-like elastic body, etc., the valve body is elastically energized to close the exhaust hole, and the exhaust pressure can be exhausted by increasing the internal pressure, and reversibly What hold | maintained the valve body so that a movement is possible is mentioned.
In addition, as the unit cell, any battery can be used as long as it may cause problems such as battery destruction (battery case rupture) due to an increase in internal pressure. For example, alkaline batteries such as nickel-metal hydride batteries can be used. And an acid battery such as a lead battery, and an organic electrolyte battery such as a lithium ion battery.

また、上記組電池の設計方法であって、前記第1範囲を前記第2範囲より低くする組電池の設計方法とすると良い。   The battery pack design method may be a battery pack design method in which the first range is lower than the second range.

この組電池の設計方法によれば、各単電池の内圧が上昇すると、いずれの第2単電池の第2安全弁装置よりも先に、第1単電池の第1安全弁装置を開弁させることができる。従って、第1安全弁装置の第1範囲の設定によって、組電池の機能を失わせる時期や条件を設定することができる。   According to this battery assembly design method, when the internal pressure of each unit cell increases, the first safety valve device of the first unit cell can be opened before the second safety valve device of any second unit cell. it can. Accordingly, it is possible to set the timing and conditions for losing the function of the assembled battery by setting the first range of the first safety valve device.

また、上記いずれかに記載の組電池の設計方法であって、前記第1安全弁機構と第2安全弁機構とでは、前記第1範囲のレンジが前記第2範囲のレンジより小さくされてなる組電池の設計方法とすると良い。   Also, in any one of the above-described assembled battery design methods, the first safety valve mechanism and the second safety valve mechanism include an assembled battery in which the range of the first range is smaller than the range of the second range. The design method is good.

本発明の組電池の設計方法では、第1安全弁機構と第2安全弁機構とでは、第1範囲のレンジ(第1上限圧力と第1下限圧力との差)が第2範囲のレンジ(第2上限圧力と第2下限圧力との差)より小さくされてなる。つまり、第1安全弁機構の方が、第2安全弁機構よりも作動圧の精度が高くされている。
このような組電池では、第2範囲のレンジの大きさに拘わらず、少なくとも第1単電池が狙いの内圧に近い第1範囲内でいずれも開弁する。従って、組電池全体の機能を失わせる時期や条件のうち、この第1単電池の第1作動圧で決まる、最も遅くなる場合の時期や最も機能を失わせ難い条件を、精度良く決めることができる。かくして、高い第2作動圧を有する第2安全弁機構を有する第2単電池の破壊による不具合を適切に防止することができる。
In the assembled battery design method of the present invention, in the first safety valve mechanism and the second safety valve mechanism, the first range (the difference between the first upper limit pressure and the first lower limit pressure) is the second range (second difference). The difference between the upper limit pressure and the second lower limit pressure). That is, the first safety valve mechanism is higher in accuracy of the operating pressure than the second safety valve mechanism.
In such an assembled battery, regardless of the size of the range of the second range, at least the first single cell opens within the first range close to the target internal pressure. Accordingly, among the timing and conditions for losing the function of the entire assembled battery, the timing when it becomes the slowest and the conditions that are most difficult to lose the function, which are determined by the first operating pressure of the first cell, can be accurately determined. it can. Thus, it is possible to appropriately prevent problems caused by the destruction of the second unit cell having the second safety valve mechanism having the high second operating pressure.

他の解決手段は、複数の単電池を直列に接続した組電池の製造方法であって、第1作動圧で開弁する復帰型の第1安全弁機構を有する第1単電池であって、上記第1作動圧のばらつきの範囲が、第1下限圧力から第1上限圧力までの第1範囲である上記第1安全弁機構を有する上記第1単電池少なくとも1つと、第2作動圧で開弁する復帰型の第2安全弁機構を有する第2単電池であって、上記第2作動圧のばらつきの範囲が、第2下限圧力から上記第1上限圧力よりも高い第2上限圧力までの第2範囲である上記第2安全弁機構を有する上記第2単電池残余の数と、を組み合わせて上記組電池とし、上記第1安全弁機構は、金属バネ材を用いて弁部材を付勢し、上記金属バネ材の付勢力によって上記第1作動圧が決定される機構であり、上記第2安全弁機構は、上記金属バネ材を用いることなく、ゴム状弾性体を用いて弁部材を付勢しまたはゴム状弾性体からなる弾性体弁部材を含み、上記ゴム状弾性体の付勢力によって上記第2作動圧が決定される機構である組電池の製造方法である。 Another solution is a method of manufacturing an assembled battery in which a plurality of single cells are connected in series, the first single cell having a return-type first safety valve mechanism that opens at a first operating pressure, At least one of the first single cells having the first safety valve mechanism in which the range of variation in the first operating pressure is the first range from the first lower limit pressure to the first upper limit pressure is opened at the second operating pressure. A second cell having a return-type second safety valve mechanism, wherein the second operating pressure varies within a second range from a second lower limit pressure to a second upper limit pressure higher than the first upper limit pressure. And the number of the remaining second unit cells having the second safety valve mechanism is combined to form the assembled battery. The first safety valve mechanism uses a metal spring material to urge the valve member, The first operating pressure is determined by the biasing force of the spring material. The second safety valve mechanism includes an elastic valve member that urges the valve member using a rubber-like elastic body or is made of a rubber-like elastic body without using the metal spring material, and the urging force of the rubber-like elastic body. This is a method for manufacturing an assembled battery, which is a mechanism for determining the second operating pressure .

本発明の組電池の製造方法では、複数の単電池として、1または複数の第1単電池と、残余の数の第2単電池とを組み合わせる。このうち、第1単電池に用いる復帰型の第1安全弁機構では、第1作動圧のばらつきが第1範囲であり、第2単電池に用いる復帰型の第2安全弁機構では、第2作動圧のばらつきが第2下限圧力から第1上限圧力よりも高い第2上限圧力までの第2範囲である。このように各々の作動圧を設定した、第1安全弁機構を有する第1単電池、及び第2安全弁機構を有する第2単電池からなるように組み合わせて製造された組電池では、各単電池は直列に接続されているので、組電池を過充電した場合などには、いずれの単電池の内圧も上昇する。   In the assembled battery manufacturing method of the present invention, one or a plurality of first unit cells and the remaining number of second unit cells are combined as a plurality of unit cells. Among these, in the reset-type first safety valve mechanism used for the first cell, the first operating pressure varies within the first range, and in the reset-type second safety valve mechanism used for the second cell, the second operating pressure. Is a second range from the second lower limit pressure to the second upper limit pressure higher than the first upper limit pressure. In the assembled battery manufactured by combining the first unit cell having the first safety valve mechanism and the second unit cell having the second safety valve mechanism, each operating pressure is set as described above, each unit cell is Since they are connected in series, when the assembled battery is overcharged, the internal pressure of any single cell rises.

この場合において、最も好ましくないケースとして、組電池に含まれる第2単電池の第2作動圧がいずれも第1上限圧力より高い場合(例えばいずれも第2上限圧力である場合)を考える。この場合でも、本発明の製造方法で製造した組電池では、少なくとも1つの第1単電池いずれもが第1上限圧力以下の第1作動圧で開弁する。
なお、複数の第2単電池の中に、第1上限圧力よりも低い第2作動圧を持つものが存在する場合には、そのような第2単電池も比較的低い第2作動圧で開弁することとなる。
In this case, a case where the second operating pressure of the second cell included in the assembled battery is higher than the first upper limit pressure (for example, both are the second upper limit pressure) is considered as the most unfavorable case. Even in this case, in the assembled battery manufactured by the manufacturing method of the present invention, at least one of the first single cells is opened at the first operating pressure that is equal to or lower than the first upper limit pressure.
In addition, when a plurality of second unit cells have a second operating pressure lower than the first upper limit pressure, such second unit cells are also opened at a relatively low second operating pressure. I will speak.

ところで、単電池は、安全弁装置が開弁すると、内部のガスや電解液が放出され電池容量が低下する。従って、何度も開弁すると、ついには単電池として機能しなくなり、この単電池が直列に接続されている組電池全体も機能しなくなる。
従って、本発明の製造方法による組電池では、繰り返し内圧の異常上昇が起こると、第1上限圧力以下の作動圧(第1,第2作動圧)で開弁する第1単電池または第2単電池が徐々に単電池としての機能を失うので、ついには、組電池全体の機能を失わせることができる。この場合において、第1単電池の第1上限圧力により、組電池の機能を失わせる時期のうち、最も遅れる場合の時期や最も機能を失わせ難い条件を決めることができる。かくして、この製造方法により、各第2単電池の第2作動圧の組み合わせがどのような場合でも、第2単電池が疲労により破壊する前に、安全に組電池を機能停止させ、第2単電池の破壊による不具合を防止することができる。
また、本発明の組電池の製造方法では、第1安全弁機構としては、金属バネ材を用いて弁部材を付勢する構成のものを用いる。このため、第1作動圧の精度を高く、つまり第1下限圧力から第1上限圧力までの第1範囲のレンジを比較的小さくすることができる。また、第1作動圧の経時変化も比較的小さい。但し、この第1安全弁機構は複雑となりがちであるため、比較的高価となる。また、金属バネ材等を収容するスペースを必要とするので、第1安全弁機構の体格が大きくなりがちである。
一方、第2安全弁機構としては、金属バネ材を用いず、ゴム状弾性体を用いて弁部材を付勢する構成、またはゴム状弾性体自身を弾性体弁部材として用いる構成のものを用いる。このため、第2作動圧の精度は比較的低い、つまり第2下限圧力から第2上限圧力までの第2範囲のレンジが比較的大きくなる。また、第2作動圧の経時変化も比較的大きい。但し、機構を単純としやすいため、第2安全弁機構は比較的安価としうる。また、金属バネ材等を収容するスペースが不要で、単純な機構で済むので、第2安全弁機構の体格は比較的小さくできる。
本発明の組電池の製造方法では、このような2種類の安全弁機構を用いた第1,第2単電池を組み合わせているので、全ての単電池に第1安全弁機構を用いた場合に比して安価となる上、組電池全体の体格も小さくできる。一方、全ての単電池に第2安全弁機構を用いた場合に比して、確実に第1上限圧力以下の内圧で安全弁機構を作動させることができ、ひいては、適切に組電池全体の機能を失わせ、電池の破壊を防止できる。
なお、特に、第1単電池を1つ、第2単電池を残余の数とする組み合わせが、最も安価で体格も小さくなり好ましい。
By the way, when the safety valve device is opened in the single cell, the internal gas and electrolyte are released, and the battery capacity is reduced. Therefore, if the valve is opened many times, it will eventually not function as a single cell, and the entire assembled battery in which the single cells are connected in series will also not function.
Therefore, in the assembled battery according to the manufacturing method of the present invention, when the abnormal increase in the internal pressure repeatedly occurs, the first single battery or the second single battery that opens at the operating pressure (first and second operating pressures) below the first upper limit pressure. Since the battery gradually loses its function as a unit cell, the function of the entire assembled battery can be finally lost. In this case, among the times when the function of the assembled battery is lost, the most delayed time and the conditions where the function is hardly lost can be determined by the first upper limit pressure of the first cell. Thus, according to this manufacturing method, regardless of the combination of the second operating pressures of the respective second unit cells, the assembled cell can be safely stopped before the second unit cell is destroyed due to fatigue. Problems due to battery destruction can be prevented.
Moreover, in the manufacturing method of the assembled battery of this invention, the thing of the structure which urges | biases a valve member using a metal spring material is used as a 1st safety valve mechanism. For this reason, the accuracy of the first operating pressure is high, that is, the range of the first range from the first lower limit pressure to the first upper limit pressure can be made relatively small. Moreover, the temporal change of the first operating pressure is relatively small. However, since the first safety valve mechanism tends to be complicated, it is relatively expensive. Further, since a space for accommodating the metal spring material or the like is required, the size of the first safety valve mechanism tends to be large.
On the other hand, as the second safety valve mechanism, a configuration in which the valve member is urged by using a rubber-like elastic body without using a metal spring material, or a configuration in which the rubber-like elastic body itself is used as an elastic valve member is used. For this reason, the accuracy of the second operating pressure is relatively low, that is, the range of the second range from the second lower limit pressure to the second upper limit pressure is relatively large. Moreover, the temporal change of the second operating pressure is relatively large. However, since the mechanism is easily simplified, the second safety valve mechanism can be relatively inexpensive. Further, since a space for housing the metal spring material or the like is unnecessary and a simple mechanism is sufficient, the size of the second safety valve mechanism can be made relatively small.
In the assembled battery manufacturing method of the present invention, the first and second single cells using such two types of safety valve mechanisms are combined, so that the first safety valve mechanism is used for all the single cells. In addition, the overall size of the assembled battery can be reduced. On the other hand, compared to the case where the second safety valve mechanism is used for all the cells, the safety valve mechanism can be operated with an internal pressure lower than the first upper limit pressure, and the function of the entire assembled battery is appropriately lost. Battery destruction.
In particular, the combination of one first cell and the remaining number of second cells is preferable because it is the cheapest and has the smallest physique.

また、上記組電池の製造方法であって、前記第1安全弁機構と第2安全弁機構とでは、前記第1範囲が前記第2範囲より低くされてなる組電池の製造方法とすると良い。   In addition, in the method for manufacturing the assembled battery, the first safety valve mechanism and the second safety valve mechanism may be a method for manufacturing an assembled battery in which the first range is lower than the second range.

この組電池の製造方法によれば、製造された組電池において、各単電池の内圧が上昇すると、いずれの第2単電池の第2安全弁装置よりも先に、第1単電池の第1安全弁装置を開弁させることができる。従って、第1安全弁装置の第1範囲の設定によって、組電池の機能を失わせる条件を設定することができる。   According to this method of manufacturing an assembled battery, when the internal pressure of each unit cell increases in the manufactured assembled battery, the first safety valve of the first unit cell precedes the second safety valve device of any second unit cell. The device can be opened. Therefore, conditions for losing the function of the assembled battery can be set by setting the first range of the first safety valve device.

また、上記いずれかに記載の組電池の製造方法であって、前記第1安全弁機構と第2安全弁機構とでは、前記第1範囲のレンジが前記第2範囲のレンジより小さくされてなる組電池の製造方法とすると良い。   Moreover, it is a manufacturing method of the assembled battery in any one of the above, Comprising: In the said 1st safety valve mechanism and a 2nd safety valve mechanism, the assembled battery by which the range of the said 1st range is made smaller than the range of the said 2nd range It is good to use this manufacturing method.

本発明の組電池の製造方法では、第1安全弁機構と第2安全弁機構とでは、第1範囲のレンジが第2範囲のレンジより小さくされてなる。つまり、第1安全弁機構の方が、第2安全弁機構よりも作動圧の精度が高くされている。
このようにして製造した組電池では、第2範囲のレンジの大きさに拘わらず、少なくとも第1単電池が狙いの内圧に近い第1範囲内でいずれも開弁する。従って、組電池全体の機能を失わせる時期や条件のうち、この第1単電池の第1作動圧で決まる終期や条件を、精度良く決めることができる。かくして、高い第2作動圧を有する第2安全弁機構を有する第2単電池の破壊による不具合を適切に防止することができる。
In the assembled battery manufacturing method of the present invention, the first safety valve mechanism and the second safety valve mechanism are configured such that the range of the first range is smaller than the range of the second range. That is, the first safety valve mechanism is higher in accuracy of the operating pressure than the second safety valve mechanism.
In the assembled battery manufactured as described above, regardless of the size of the range of the second range, at least the first unit cell opens within the first range close to the target internal pressure. Therefore, among the timing and conditions for losing the function of the entire assembled battery, the final period and conditions determined by the first operating pressure of the first cell can be determined with high accuracy. Thus, it is possible to appropriately prevent problems caused by the destruction of the second unit cell having the second safety valve mechanism having the high second operating pressure.

さらに他の解決手段は、複数の単電池を直列に接続した組電池であって、第1作動圧で開弁する復帰型の第1安全弁機構を有する少なくとも1つの第1単電池、及び、第2作動圧で開弁する復帰型の第2安全弁機構を有する残余の第2単電池からなり、上記第1安全弁機構は、金属バネ材を用いて弁部材を付勢し、上記金属バネ材の付勢力によって上記第1作動圧が決定される第1安全弁機構であり、上記第2安全弁機構は、上記金属バネ材を用いることなく、ゴム状弾性体を用いて弁部材を付勢しまたはゴム状弾性体からなる弾性体弁部材を含み、上記ゴム状弾性体の付勢力によって、上記第2作動圧が決定される第2安全弁機構であり、上記組電池に含まれる第1単電池の上記第1作動圧のうちの最小値である第1最小作動圧と、上記組電池に含まれる第2単電池の上記第2作動圧のうちの最小値である第2最小作動圧とを比較したとき、上記第2最小作動圧よりも上記第1最小作動圧のほうが低い組電池である。   Still another solution is an assembled battery in which a plurality of single cells are connected in series, and has at least one first single cell having a return-type first safety valve mechanism that opens at a first operating pressure, and The remaining second unit cell having a return-type second safety valve mechanism that opens at two operating pressures, and the first safety valve mechanism uses a metal spring material to urge the valve member, The first safety valve mechanism determines the first operating pressure by an urging force, and the second safety valve mechanism urges the valve member using a rubber-like elastic body without using the metal spring material or rubber. A second safety valve mechanism including an elastic valve member made of a rubber-like elastic body, wherein the second operating pressure is determined by an urging force of the rubber-like elastic body, and the first unit cell included in the assembled battery The first minimum operating pressure, which is the minimum value of the first operating pressure, and the set The first minimum operating pressure is lower than the second minimum operating pressure when the second minimum operating pressure, which is the minimum value among the second operating pressures of the second unit cells included in the pond, is compared. It is a battery.

本発明の組電池は、第1安全弁機構を有する第1単電池、及び、第2安全弁機構を有する第2単電池を備える。このうち、第1安全弁機構は、金属バネ材を用いて弁部材を付勢する構成となっているので、第1作動圧の精度が高い。つまり実際の第1作動圧を狙いの作動圧に近い値とすることができる。また、第1作動圧の経時変化も少ない。但し、機構は複雑となりがちであるため、第1安全弁機構は比較的高価になりがちである。   The assembled battery of the present invention includes a first single battery having a first safety valve mechanism and a second single battery having a second safety valve mechanism. Among these, since the 1st safety valve mechanism has composition which energizes a valve member using a metal spring material, the precision of the 1st operation pressure is high. That is, the actual first operating pressure can be set to a value close to the target operating pressure. In addition, the temporal change of the first operating pressure is small. However, since the mechanism tends to be complicated, the first safety valve mechanism tends to be relatively expensive.

一方、第2安全弁機構は、金属バネ材を用いず、ゴム状弾性体を用いて弁部材を付勢する構成、またはゴム状弾性体自身を弾性体弁部材として用いる構成となっている。このため、第2作動圧の精度は比較的低い、つまり実際の第2作動圧が狙いの作動圧から離れた値となる場合も有りうる。また、第2作動圧の経時変化も比較的大きい。但し、機構を単純としやすいため、第2安全弁機構は比較的安価としうる。このように、第2安全弁機構を有する第2単電池では、第2作動圧のばらつきが大きい。
従って、第2単電池のみを用いて組電池を構成した場合、組電池に含まれるいずれの第2単電池の第2作動圧も、狙い値よりもかなり大きな値となってしまう場合があり得る。
On the other hand, the second safety valve mechanism is configured not to use a metal spring material but to bias the valve member using a rubber-like elastic body, or to use the rubber-like elastic body itself as an elastic valve member. For this reason, the accuracy of the second working pressure may be relatively low, that is, the actual second working pressure may be a value away from the target working pressure. Moreover, the temporal change of the second operating pressure is relatively large. However, since the mechanism is easily simplified, the second safety valve mechanism can be relatively inexpensive. As described above, in the second single battery having the second safety valve mechanism, the variation in the second operating pressure is large.
Therefore, when the assembled battery is configured using only the second single battery, the second operating pressure of any second single battery included in the assembled battery may be significantly larger than the target value. .

これに対し、本発明の組電池では、各単電池の内圧が上昇すると、いずれの第2単電池の第2安全弁装置よりも先に、第1単電池のうち少なくとも第1最小作動圧にかかる第1単電池の第1安全弁装置が開弁する。かくして、第1単電池の第1最小作動圧により、組電池の機能を失わせる時期や条件を決めることができる。
しかも、第1最小作動圧は比較的精度が高いので、組電池の機能を失わせる時期や条件を適切に設定することができる。
On the other hand, in the assembled battery of the present invention, when the internal pressure of each unit cell rises, at least the first minimum operating pressure of the first unit cell is applied before the second safety valve device of any second unit cell. The first safety valve device of the first cell is opened. Thus, the timing and conditions for losing the function of the assembled battery can be determined by the first minimum operating pressure of the first cell.
Moreover, since the first minimum operating pressure has a relatively high accuracy, it is possible to appropriately set the timing and conditions for losing the function of the assembled battery.

また、上記組電池であって、前記第1単電池を1つ有する組電池とすると良い。   The assembled battery may be an assembled battery having one first cell.

上述したように、第2安全弁機構に比して、第1安全弁機構は機構が複雑になり、高価になりがちである。本発明の組電池では、第1安全弁機構を有する第1単電池を1つとし、第2単電池を残余としているので、第1単電池を2ヶ以上有する場合に比して比較的安価である。
しかも、第1単電池を有しているので、繰り返し内圧の異常上昇が起こると、第1単電池が第1最大作動圧以下で開弁してガスや電解液を放出するので、この第1単電池が確実かつ早期に性能低下する。かくして、第2単電池のうち、第2作動圧が第2最大作動圧となっているものなど、第1最大圧力より高い第2作動圧を有する第2安全弁機構を有するものが、繰り返し内圧上昇に伴う疲労によって破壊する前に、組電池を機能停止させ、第2単電池の破壊による不具合を防止することができる。
As described above, the first safety valve mechanism tends to be complicated and expensive compared to the second safety valve mechanism. In the assembled battery according to the present invention, since the first unit cell having the first safety valve mechanism is one and the second unit cell is the remaining, it is relatively inexpensive as compared with the case of having two or more first unit cells. is there.
In addition, since the first unit cell is provided, if the internal pressure is repeatedly increased abnormally, the first unit cell opens at the first maximum operating pressure or less to release gas or electrolyte. The performance of the unit cell is reliably and quickly deteriorated. Thus, among the second unit cells, those having the second safety valve mechanism having the second operating pressure higher than the first maximum pressure, such as the second operating pressure being the second maximum operating pressure, repeatedly increase the internal pressure. Before the battery breaks down due to fatigue, the function of the battery pack can be stopped to prevent problems due to the breakage of the second cell.

さらに、上記いずれかに記載の組電池であって、前記第2安全弁機構は前記第1安全弁機構よりも小さくされてなる組電池とすると良い。   Furthermore, in any of the above-described assembled batteries, the second safety valve mechanism may be an assembled battery that is smaller than the first safety valve mechanism.

本発明の組電池では、第2安全弁機構を第1安全弁機構よりも小さくされている。従って、本発明の組電池では、第2安全弁機構を有する第2単電池を用いた分だけ、組電池の全体の大きさも小さくすることができる。つまり、組電池の体格の減少(専有体積の減少)を図ることができる。あるいは、ガス排気路部材や他の部材を第2単電池の周囲に配置しやすくなる。   In the assembled battery of the present invention, the second safety valve mechanism is made smaller than the first safety valve mechanism. Therefore, in the assembled battery of the present invention, the entire size of the assembled battery can be reduced by the amount of the second single battery having the second safety valve mechanism. That is, it is possible to reduce the physique of the assembled battery (decrease in the exclusive volume). Or it becomes easy to arrange | position a gas exhaust path member and another member around the 2nd cell.

(実施例1)
本発明の実施の形態を、図面を参照して説明する。本実施例にかかる組電池10は、図1に示すように、1つの第1単電池1と、9つの第2単電池2(2A,2B,…,2I)の合計10ヶの単電池からなり、各単電池が、図示しない端子によって互いに直列に接続されたニッケル水素電池の組電池であり、以下の設計方法により設計され、以下の構成を有するものとして製造されている。
Example 1
Embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the battery pack 10 according to the present embodiment includes a total of 10 single cells including one first single cell 1 and nine second single cells 2 (2A, 2B,..., 2I). Thus, each cell is a battery assembly of nickel metal hydride batteries connected in series by terminals (not shown), designed by the following design method, and manufactured as having the following configuration.

このうち、第1単電池1では、正極、セパレータ、及び負極からなり電解液を含ませた電池要素13が、金属からなる直方体形状の電池ケース14内に収納されている。さらにこの電池ケース14の図中上方には、復帰型の第1安全弁機構15が形成されている。具体的には、電池ケース14の上部に弁孔14Aが設けられており、この弁孔14Aの外側周囲をなす座面14Bに当接し弁孔14Aを塞ぐように、ゴムからなる弁部材16が配置されている。この弁部材16は、押え板17を介して金属つるまきバネ18によって、座面14Bに向けて付勢されて密着している。安全弁キャップ19は、これらを覆うようにして、キャップ取付面でもある座面14Bに固着され、金属つるまきバネ18等を保持している。   Among these, in the 1st cell 1, the battery element 13 which consists of a positive electrode, a separator, and the negative electrode and which contained electrolyte solution is accommodated in the rectangular parallelepiped battery case 14 which consists of metals. Further, a reset-type first safety valve mechanism 15 is formed above the battery case 14 in the figure. Specifically, a valve hole 14A is provided in the upper part of the battery case 14, and the rubber valve member 16 is in contact with a seating surface 14B that forms the outer periphery of the valve hole 14A so as to close the valve hole 14A. Has been placed. The valve member 16 is urged toward the seating surface 14 </ b> B by a metal helical spring 18 through the presser plate 17 and is in close contact therewith. The safety valve cap 19 is fixed to the seat surface 14B which is also a cap mounting surface so as to cover them, and holds the metal helical spring 18 and the like.

第1単電池1の第1安全弁機構15は、ガスによって金属つるまきバネ18の付勢力に抗して弁部材16が押し上げられて、電池ケース14内のガスを外部に放出するように、構成されている。このような構造となっているため、第1安全弁機構15は、第1単電池1の内圧Pが、第1下限圧力P1L〜第1上限圧力P1Uまでのばらつきの範囲(第1範囲)内の第1作動圧P1s(P1L≦P1s≦P1U)以上となると、開弁する。   The first safety valve mechanism 15 of the first unit cell 1 is configured so that the valve member 16 is pushed up against the urging force of the metal helical spring 18 by the gas, and the gas in the battery case 14 is released to the outside. Has been. Due to such a structure, the first safety valve mechanism 15 is configured so that the internal pressure P of the first single cell 1 is within a range (first range) of variation from the first lower limit pressure P1L to the first upper limit pressure P1U. When the pressure is equal to or higher than the first operating pressure P1s (P1L ≦ P1s ≦ P1U), the valve is opened.

一方、第2単電池2(2A〜2I)は、いずれも、第1単電池1と同じ、正極、セパレータ、及び負極からなり電解液を含ませた電池要素13が、電池ケース14と同じ、金属からなる直方体形状の電池ケース24内に収納されている。さらにこの電池ケース24の図中上方にも、復帰型の第2安全弁機構25が形成されている。具体的には、電池ケース24の上部に弁孔24Aが設けられており、この弁孔24Aの外側周囲をなす座面24Bに当接し弁孔24Aを塞ぐように、ゴムからなるゴム弁部材26が配置されている。このゴム弁部材26は、キャップ取付面でもある座面24Bに固着された安全弁キャップ29で覆われ、自身の弾性により、所定の付勢力で座面24Bに密着している。   On the other hand, each of the second unit cells 2 (2A to 2I) is the same as the first unit cell 1, and the battery element 13 including the positive electrode, the separator, and the negative electrode and containing the electrolytic solution is the same as the battery case 14. It is housed in a rectangular parallelepiped battery case 24 made of metal. Further, a return-type second safety valve mechanism 25 is also formed above the battery case 24 in the figure. Specifically, a valve hole 24A is provided in the upper part of the battery case 24, and a rubber valve member 26 made of rubber is in contact with the seating surface 24B that forms the outer periphery of the valve hole 24A and closes the valve hole 24A. Is arranged. The rubber valve member 26 is covered with a safety valve cap 29 fixed to the seat surface 24B which is also a cap mounting surface, and is in close contact with the seat surface 24B with a predetermined urging force due to its own elasticity.

第2単電池2(2A〜2I)の第2安全弁機構25は、ガスによってゴム弁部材26が自身の付勢力に抗して押し上げられて、電池ケース24内のガスを外部に放出するように構成されている。第2安全弁機構25は、内圧Pが、第2下限圧力P2L〜第2上限圧力P2Uまでのばらつきの範囲(第2範囲)内の第2作動圧P2s(P2sa,P2sb,…,P2si)以上となると、それぞれ開弁する(但し、P2L≦P2sa,P2sb,…,P2si≦P2U)。   The second safety valve mechanism 25 of the second unit cell 2 (2A to 2I) is configured such that the rubber valve member 26 is pushed up against its urging force by the gas and releases the gas in the battery case 24 to the outside. It is configured. In the second safety valve mechanism 25, the internal pressure P is equal to or higher than the second operating pressure P2s (P2sa, P2sb,..., P2si) within a range of variation from the second lower limit pressure P2L to the second upper limit pressure P2U (second range). Then, each valve opens (however, P2L ≦ P2sa, P2sb,..., P2si ≦ P2U).

この第2単電池2は、前述したように座面24Bへゴム弁部材26が密着する付勢力を、自身の弾性によって得ているため、金属つるまきバネ18を用いている第1単電池1に比して、第2作動圧P2sの精度が低い。具体的には、第1範囲と第2範囲とを比較すると、第1範囲のレンジは、第2範囲のレンジよりも小さい。つまり、P1U−P1L<P2U−P2Lである。   Since the second unit cell 2 obtains the urging force by which the rubber valve member 26 comes into close contact with the seat surface 24B as described above by its own elasticity, the first unit cell 1 using the metal helical spring 18 is used. The accuracy of the second operating pressure P2s is low compared to Specifically, when the first range and the second range are compared, the range of the first range is smaller than the range of the second range. That is, P1U-P1L <P2U-P2L.

第2単電池2の第2安全弁機構25では、ゴム弁部材26自身の弾性力を利用するため、寸法公差や材料のロット間変動などによるゴム弁部材26の弾性の変動が比較的大きくなるほか、常時、ゴム弁部材26に押圧力が掛かっているために、ゴム弁部材26にいわゆるヘタリが生じて弾性が経時的に低下するなど、経時的にも弾性力が比較的大きく変動するため、第2作動圧P2sが大きく変動する場合があるからである。
また、本実施例においては、第1単電池1の第1上限圧力P1Uと第2単電池2の第2上限圧力P2Uとを比較すると、第1上限圧力P1Uの方が小さくなるように、第1,第2安全弁機構15,25が設定されている(P1U<P2U)。
Since the second safety valve mechanism 25 of the second unit cell 2 uses the elastic force of the rubber valve member 26 itself, the elastic variation of the rubber valve member 26 due to dimensional tolerances and material-to-lot variations is relatively large. Since the rubber valve member 26 is constantly pressed, the elastic force fluctuates relatively over time, for example, so-called sag occurs in the rubber valve member 26 and the elasticity decreases over time. This is because the second operating pressure P2s may fluctuate greatly.
Further, in the present embodiment, when the first upper limit pressure P1U of the first unit cell 1 and the second upper limit pressure P2U of the second unit cell 2 are compared, the first upper limit pressure P1U is smaller. 1 and 2nd safety valve mechanisms 15 and 25 are set (P1U <P2U).

第1単電池1及び第2単電池2(2A〜2I)は、以上のような構造及び特性を有している。この第1単電池1を1つと、第2単電池2(2A〜2I)を9つ選択し、これらを直列に接続することにより、組電池10が製造される。   The first unit cell 1 and the second unit cell 2 (2A to 2I) have the structure and characteristics as described above. The assembled battery 10 is manufactured by selecting one first cell 1 and nine second cells 2 (2A to 2I) and connecting them in series.

ところで、この組電池10は、これを過充電あるいは過放電した場合など、異常駆動した場合には、各単電池1,2A〜2Iが直列に接続されているため、いずれの電池についても一斉に内圧が上昇する。このような内圧の上昇によって、電池ケース14,24は、変形し、各所に機械的応力を受ける。内圧が繰り返し上昇した場合には、繰り返し機械的応力を受けることになる。この機械的応力は、内圧の大きさが大きくなるほど大きくなるため、内圧が極端に大きくなった場合や、多数回繰り返して応力を受けた場合には、電池ケース14,24が破損する虞がある。そこで、第1,第2単電池1,2において内圧が極端に大きくなることがないように、それぞれ第1,第2安全弁機構15,25を設けている。   By the way, when the battery pack 10 is abnormally driven, such as when it is overcharged or overdischarged, the unit cells 1, 2A to 2I are connected in series. The internal pressure increases. Due to such an increase in internal pressure, the battery cases 14 and 24 are deformed and receive mechanical stress at various places. If the internal pressure rises repeatedly, it will be repeatedly subjected to mechanical stress. Since the mechanical stress increases as the internal pressure increases, the battery cases 14 and 24 may be damaged when the internal pressure becomes extremely large or when the stress is repeatedly applied many times. . Therefore, the first and second safety valve mechanisms 15 and 25 are provided so that the internal pressure of the first and second unit cells 1 and 2 does not become extremely large.

しかしながら、前述のように、第1安全弁機構15及び第2安全弁機構25共に、常に決まった第1作動圧P1sや第2作動圧P2sが得られる訳ではなく、第1作動圧P1sは、第1下限圧力P1L〜第1上限圧力P1Uまでのばらつきの範囲(第1範囲)内のいずれかの値となる。また、第2作動圧P2sも、それぞれ第2下限圧力P2L〜第2上限圧力P2Uまでのばらつきの範囲(第2範囲)内のいずれかの値となる。   However, as described above, the first operating pressure P1s and the second operating pressure P2s are not always obtained in both the first safety valve mechanism 15 and the second safety valve mechanism 25, and the first operating pressure P1s is the first operating pressure P1s. The value is any value within a range (first range) of variation from the lower limit pressure P1L to the first upper limit pressure P1U. Further, the second operating pressure P2s also takes any value within a range of variation (second range) from the second lower limit pressure P2L to the second upper limit pressure P2U.

従って、第2単電池2の組み合わせによっては、最も好ましくない場合である以下の場合、即ち、第2単電池2A〜2Iにおける各々の第2安全弁機構25の第2作動圧P2sa,P2sb,…,P2siが、いずれも第2上限圧力P2Uに等しくなる場合もあり得る。この場合には、内圧が上昇しても第2安全弁機構25が相対的に開弁し難いので、電池ケース24に掛かる内圧が高くなり大きく変形し、疲労が蓄積して電池ケース24の破壊に至る可能性が高くなるからである。
以下では、第2単電池2の組み合わせが上述のようになった組電池10について、繰り返し内圧を上昇させた場合について考察する。この場合、過充電等により、内圧が異常上昇しても、各第2単電池2は、内圧Pが第2上限圧力P2U(P=P2sa、…、P2si=P2U)となるまでいずれも開弁しないこととなる。前述したように、内圧が大きくなると受ける機械的応力も大きくなり、電池ケース24の各所に蓄積される疲労が大きくなるので、繰り返し内圧が上昇すると、比較的早期に電池ケース24の破損を生じる虞がある。
Therefore, depending on the combination of the second unit cells 2, the following case, which is the least preferable case, that is, the second operating pressures P2sa, P2sb,... Of each second safety valve mechanism 25 in the second unit cells 2A to 2I. P2si may be equal to the second upper limit pressure P2U. In this case, even if the internal pressure rises, the second safety valve mechanism 25 is relatively difficult to open, so that the internal pressure applied to the battery case 24 is increased and greatly deformed, and fatigue accumulates, causing damage to the battery case 24. This is because there is a high possibility of reaching.
Below, the case where the internal pressure is repeatedly raised about the assembled battery 10 in which the combination of the second unit cells 2 is as described above will be considered. In this case, even if the internal pressure rises abnormally due to overcharging or the like, each second cell 2 is opened until the internal pressure P reaches the second upper limit pressure P2U (P = P2sa,..., P2si = P2U). Will not. As described above, when the internal pressure increases, the mechanical stress received increases, and fatigue accumulated in various parts of the battery case 24 increases. Therefore, when the internal pressure repeatedly increases, the battery case 24 may be damaged relatively early. There is.

しかるに、本実施例の組電池10では、9ヶの第2単電池2のほかに、第1単電池1を備えている。この第1単電池1は、前述したように、第1作動圧P1sが、第1下限圧力P1L〜第1上限圧力P1Uまでのばらつきの範囲(第1範囲)内とされている。しかも、第1単電池1の第1上限圧力P1Uと第2単電池2の第2上限圧力P2Uとを比較すると、第1上限圧力P1Uの方が小さくなるように設定されている(P1s≦P1U<P2U)。このため、内圧の異常上昇が起きて、第1単電池1でも同様に内圧Pが上昇した場合、この第1単電池1では、内圧Pが第2上限圧力P2Uよりも低い第1作動圧P1sとなった時点で開弁する。つまり、第2単電池2A等に先立って開弁する。なお、内圧上昇の程度によっては、各第2単電池2A等の第2安全弁機構25も開弁する場合があり得る。しかし、そうであっても、開弁の頻度や、開弁によって放出されるガスや電解液の量は、第2単電池2A等より多くなる。   However, the assembled battery 10 of the present embodiment includes the first unit cell 1 in addition to the nine second unit cells 2. As described above, in the first unit cell 1, the first operating pressure P1s is within the range of variation (first range) from the first lower limit pressure P1L to the first upper limit pressure P1U. In addition, when the first upper limit pressure P1U of the first unit cell 1 and the second upper limit pressure P2U of the second unit cell 2 are compared, the first upper limit pressure P1U is set to be smaller (P1s ≦ P1U). <P2U). For this reason, when an abnormal increase in internal pressure occurs and the internal pressure P increases in the first unit cell 1 as well, in this first unit cell 1, the first operating pressure P1s in which the internal pressure P is lower than the second upper limit pressure P2U. When it becomes, it opens. That is, the valve is opened prior to the second unit cell 2A or the like. Note that the second safety valve mechanism 25 such as each second cell 2A may be opened depending on the degree of the increase in internal pressure. However, even if so, the frequency of valve opening and the amount of gas and electrolyte released by the valve opening are larger than those of the second unit cell 2A and the like.

ところで、単電池は、安全弁が開弁して内部のガスや電解液が放出されると、電池容量が低下する。従って、何度も開弁すると、ついには単電池として機能しなくなる。すると、この単電池が直列に接続されている組電池全体も機能しなくなる。
つまり、この組電池10は、第1上限圧力P1U以下の第1作動圧P1sで開弁する第1安全弁機構15を有する第1単電池1を含むので、過充電等の異常駆動を繰り返す等により、各単電池1,2A〜2Iの内圧が繰り返し上昇すると、少なくとも第1単電池1についてみれば、その第1安全弁機構15が第1作動圧P1sで作動して、ガスや電解液の放出を繰り返す。
By the way, when the safety valve is opened and the internal gas or electrolyte is released, the battery capacity of the single battery decreases. Therefore, if the valve is opened many times, it will eventually stop functioning as a single cell. Then, the whole assembled battery in which the unit cells are connected in series also does not function.
That is, the assembled battery 10 includes the first single cell 1 having the first safety valve mechanism 15 that opens at the first operating pressure P1s that is equal to or lower than the first upper limit pressure P1U. Therefore, by repeatedly performing abnormal driving such as overcharging. When the internal pressure of each of the single cells 1, 2A to 2I repeatedly increases, at least for the first single cell 1, the first safety valve mechanism 15 operates at the first operating pressure P1s to release gas and electrolyte. repeat.

このため、各第2単電池2よりも先に、第1単電池1の電池容量が低下し、単電池としての機能を失う。すると、他の単電池(第2単電池2A等)の電池容量が未だ残存していても、組電池10全体としても機能を失う。さすれば、もはや第2単電池2A等に過充電することも不能となり、第2単電池2A等について内圧が上昇することもない。
かくして、第1上限圧力P1Uより高い第2作動圧P2s(P2sa,…,P2si)を有する第2安全弁機構25を有する第2単電池の電池ケース24が、疲労により破壊する前に、安全に組電池10を機能停止させ、第2単電池2A等の破壊による不具合を防止するように設定できる。
なお、以上では、第2単電池2A〜2Iにおける各々の第2安全弁機構25の第2作動圧P2sa,P2sb,…,P2siが、いずれも第2上限圧力P2Uに等しくなる場合について考察した。
For this reason, the battery capacity of the 1st single cell 1 falls before each 2nd single cell 2, and the function as a single cell is lost. Then, even if the battery capacity of other unit cells (the second unit cell 2A, etc.) still remains, the function of the assembled battery 10 as a whole is lost. Then, it is no longer possible to overcharge the second unit cell 2A or the like, and the internal pressure of the second unit cell 2A or the like does not increase.
Thus, the battery case 24 of the second unit cell having the second safety valve mechanism 25 having the second operating pressure P2s (P2sa,..., P2si) higher than the first upper limit pressure P1U can be assembled safely before it breaks down due to fatigue. The battery 10 can be set to stop functioning and prevent problems due to destruction of the second cell 2A or the like.
In the above, the case where the second operating pressures P2sa, P2sb,..., P2si of the second safety valve mechanisms 25 in the second unit cells 2A to 2I are all equal to the second upper limit pressure P2U has been considered.

しかし、複数の第2単電池2A等の中に、第1上限圧力P1Uよりも低い第2作動圧P2sを持つ第2単電池2が存在する場合もありうる。例えば、第2単電池2Aの第2作動圧P2saが、第1上限圧力P1Uよりも小さい(P2sa<P1U)であったとする。この場合には、第1単電池1のみならず、このような低い第2作動圧を有する第2単電池2(上記例では2A)も開弁する。従って、第1単電池1及び低い第2作動圧を持つ第2単電池2(上記例では2A)は、他の高い第2作動圧を有する第2単電池2(上記例では2B〜2I)よりも先に、単電池として機能低下を生じ、ついには、第1単電池1及び低い第2作動圧を持つ第2単電池2(上記例では2A)のいずれかが単電池としての機能を失う。
従って、この場合でも、組電池10全体としてその機能を失わせ、第1上限圧力P1Uより高い第2作動圧P2sを有する第2安全弁機構25を有する第2単電池2(上記例では2B〜2I)が疲労により破壊する前に、安全に組電池10を機能停止させ、もって、第2単電池2(上記例では2B〜2I)の破壊による不具合を防止することができる。
However, there may be a second unit cell 2 having a second operating pressure P2s lower than the first upper limit pressure P1U among the plurality of second unit cells 2A and the like. For example, it is assumed that the second operating pressure P2sa of the second unit cell 2A is smaller than the first upper limit pressure P1U (P2sa <P1U). In this case, not only the first cell 1 but also the second cell 2 (2A in the above example) having such a low second operating pressure is opened. Accordingly, the first single cell 1 and the second single cell 2 having a low second operating pressure (2A in the above example) are the second single cells 2 having another high second operating pressure (2B to 2I in the above example). Before that, the function of the unit cell is deteriorated. Finally, either the first unit cell 1 or the second unit cell 2 having a low second operating pressure (2A in the above example) functions as the unit cell. lose.
Accordingly, even in this case, the function of the assembled battery 10 as a whole is lost, and the second single battery 2 having the second safety valve mechanism 25 having the second operating pressure P2s higher than the first upper limit pressure P1U (in the above example, 2B to 2I). ) Can be safely stopped before the battery breaks down due to fatigue, so that a failure due to the breakage of the second cell 2 (2B to 2I in the above example) can be prevented.

上述の場合、第1作動圧P1sを有する第1単電池1と、比較的低い第2作動圧を有する第2単電池2(上記例では2A)とでは、より作動圧の低い方の単電池が、先に機能を失うこととなる。第2単電池2(上記例では2A)の第2作動圧P2s(上記例ではP2sa)が、第1単電池1の第1作動圧P1sよりも低い場合には、第1単電池1よりも先に、これよりも低い第2作動圧を持つ第2単電池2(上記例では2A)の機能が失われる。このように、各組電池10における第2単電池2の第2作動圧P2sの組み合わせにより、個々の組電池10についてみれば、第1単電池1を用いたことの利点が見出せない場合も有りうる。   In the case described above, the unit cell having the lower operating pressure is the first unit cell 1 having the first operating pressure P1s and the second unit cell 2 having the relatively low second operating pressure (2A in the above example). However, the function will be lost first. When the second operating pressure P2s (P2sa in the above example) of the second unit cell 2 (2A in the above example) is lower than the first operating pressure P1s of the first unit cell 1, it is higher than that of the first unit cell 1. First, the function of the second cell 2 (2A in the above example) having the second operating pressure lower than this is lost. As described above, there is a case where the advantages of using the first unit cell 1 cannot be found from the combination of the second operating pressure P2s of the second unit cell 2 in each of the assembled cells 10 with respect to the individual unit cell 10. sell.

しかし、安全弁機構25の第2作動圧P2sが、それぞれ第2下限圧力P2L〜第2上限圧力P2Uまでのばらつきの範囲(第2範囲)に拡がっている第2単電池2A等を組み合わせて用いる場合には、本実施例のように、第1単電池1を組み合わせた組電池とするのが適切である。第2単電池2の第2作動圧P2sの組み合わせがどのような場合であっても、第1単電池1では、内圧が第1上限圧力P1U以下の第1作動圧P1sとなると第1安全弁機構15が開弁する。従って、組電池10について過充電など異常駆動が繰り返し行われても、遅くとも、第1単電池1が単電池としての機能を失うまでの期間で、組電池10の機能を失わせることができる。つまり、複数の単電池の一部に、第1単電池1を用いる設計とすることで、第2単電池2のどのような組み合わせであっても、第2単電池2が疲労により破壊する前に、確実に組電池10を機能停止させるように設定することができる。   However, when the second operating pressure P2s of the safety valve mechanism 25 is used in combination with the second unit cell 2A or the like that has expanded within the range of variation (second range) from the second lower limit pressure P2L to the second upper limit pressure P2U, respectively. For this, it is appropriate to use an assembled battery in which the first unit cells 1 are combined as in this embodiment. Whatever the combination of the second operating pressure P2s of the second unit cell 2, in the first unit cell 1, when the internal pressure becomes the first operating pressure P1s equal to or lower than the first upper limit pressure P1U, the first safety valve mechanism 15 opens. Therefore, even if abnormal driving such as overcharging is repeatedly performed on the assembled battery 10, the function of the assembled battery 10 can be lost during the period until the first single battery 1 loses its function as a single battery at the latest. That is, by designing the first unit cell 1 as a part of the plurality of unit cells, any combination of the second unit cells 2 before the second unit cell 2 is destroyed due to fatigue. In addition, the battery pack 10 can be set to reliably stop the function.

特に本実施例では、第1単電池1の第1安全弁機構15において金属つるまきバネ18を用いることで、第2安全弁機構25における第2作動圧P2sのばらつきのレンジよりも、第1安全弁機構15の第1作動圧P1sのばらつきのレンジを小さくしている。従って、一部の単電池が機能を失うことによって組電池10全体の機能を失わせる時期や条件のうち、この第1単電池の第1作動圧で決まる最も遅くなる場合の時期や最も機能を失わせ難い条件を、精度良く決めることができる。   In particular, in this embodiment, by using the metal helical spring 18 in the first safety valve mechanism 15 of the first unit cell 1, the first safety valve mechanism is more than the range of variation of the second operating pressure P2s in the second safety valve mechanism 25. The range of variation of the 15 first operating pressure P1s is reduced. Therefore, among the timings and conditions in which the function of the entire assembled battery 10 is lost due to the loss of the function of some of the cells, the most timed and most functional time determined by the first operating pressure of the first cell Conditions that are difficult to lose can be accurately determined.

さらに、組電池10において、第1作動圧P1sのばらつきの範囲(第1範囲)を、第2作動圧P2sのばらつきの範囲(第2範囲)より低くする、つまり、第1上限圧力P1Uを第2下限圧力P2Lよりも低く設定(P1U<P2L)しておくと良い。
このように設定した第1単電池1及び第2単電池2を用いた組電池10では、第2単電池2の第2作動圧P2sの組み合わせに拘わらず、組電池10について過充電など異常駆動が繰り返し行われれば、第1単電池1が最も早く開弁する。従って、この第1単電池1がその機能を失うまでの期間や条件で、組電池10の機能を失わせる期間や条件を決定できる。
Further, in the assembled battery 10, the variation range (first range) of the first operating pressure P1s is made lower than the variation range (second range) of the second operating pressure P2s, that is, the first upper limit pressure P1U is set to the first range. It is good to set lower than 2 lower limit pressure P2L (P1U <P2L).
In the battery pack 10 using the first battery cell 1 and the second battery cell 2 set as described above, the battery pack 10 is abnormally driven such as overcharge regardless of the combination of the second operating pressures P2s of the second battery cell 2. Is repeatedly performed, the first cell 1 opens the earliest. Therefore, the period and conditions for losing the function of the assembled battery 10 can be determined by the period and conditions until the first cell 1 loses its function.

さらに、本実施例1の組電池10では、第2単電池2に比して、比較的高価になる第1単電池1を1つのみ用いているので、第1単電池を複数用いた場合よりも組電池10全体として安価とすることができる。
また、第2安全弁機構25に比して体格の大きな第1安全弁機構15を備える第1単電池1を、1つだけ用いているので、第1単電池を複数用いた場合よりも組電池10全体の体格をも小さくすることができる。
Furthermore, in the assembled battery 10 of the first embodiment, only one first unit cell 1 that is relatively expensive compared to the second unit cell 2 is used. Therefore, when a plurality of first unit cells are used. As a result, the entire assembled battery 10 can be made inexpensive.
Further, since only one first unit cell 1 including the first safety valve mechanism 15 having a larger physique than the second safety valve mechanism 25 is used, the assembled battery 10 is more than the case where a plurality of first unit cells are used. The overall physique can also be reduced.

(実施例2)
上記実施例1では、組電池10の設計方法、及び製造方法について説明した。これに対し、本実施例2では、現実に製造された組電池20について説明する。この組電池20は、実施例1の組電池10と同一の構成を有し、現実に製造された組電池である(図1参照)。
組電池20を現実に製造した場合、個々の現実の組電池20においては、各単電池の安全弁機構における作動圧は、ばらつきの範囲で考察するものではなく、現実に測定できるものである。以下では、組電池20における第1単電池1の第1作動圧をRP1sとし、第2単電池2(2A〜2I)の第2作動圧をRP2s(RP2sa〜RP2si)とし、9つの第2作動圧のうち最小値を第2最小作動圧RP2sminとする。
(Example 2)
In the first embodiment, the design method and the manufacturing method of the assembled battery 10 have been described. On the other hand, in the second embodiment, the assembled battery 20 actually manufactured will be described. This assembled battery 20 has the same configuration as the assembled battery 10 of Example 1, and is an assembled battery actually manufactured (see FIG. 1).
When the assembled battery 20 is actually manufactured, in each actual assembled battery 20, the operating pressure in the safety valve mechanism of each single battery is not considered in the range of variation but can be actually measured. Hereinafter, the first operating pressure of the first cell 1 in the assembled battery 20 is RP1s, the second operating pressure of the second cell 2 (2A to 2I) is RP2s (RP2sa to RP2si), and nine second operations are performed. The minimum value among the pressures is set as the second minimum operating pressure RP2smin.

本実施例2に係る組電池20では、これに含まれる第1単電池1の第1作動圧RP1sと、組電池20に含まれる第2単電池2A〜2Iの第2作動圧RP2sa〜RP2siのうちの最小値である第2最小作動圧RP2sminとを比較したとき、第2最小作動圧RP2sminよりも第1作動圧RP1sのほうが低い関係となっている(RP1s<RP2smin)。なお、組電池20においては、第1単電池1を1つしか有していないので、第1作動圧のうちの最小値である第1最小作動圧RP1sminは、第1作動圧RP1sに一致する。   In the assembled battery 20 according to the second embodiment, the first operating pressure RP1s of the first single cell 1 included therein and the second operating pressures RP2sa to RP2si of the second single cells 2A to 2I included in the assembled battery 20 are included. When the second minimum operating pressure RP2smin, which is the minimum value, is compared, the first operating pressure RP1s is lower than the second minimum operating pressure RP2smin (RP1s <RP2smin). Since the assembled battery 20 has only one first cell 1, the first minimum operating pressure RP1smin, which is the minimum value of the first operating pressure, matches the first operating pressure RP1s. .

本実施例2の組電池20は、第1安全弁機構15を有する第1単電池1、及び、第2安全弁機構25を有する第2単電池2を備える。このうち、第1安全弁機構15は、金属つるまきバネ材18を用いて弁部材16を付勢する構成となっているので、第1作動圧RP1sの精度が高い。また第1作動圧RP1sの経時変化も少ない。
一方、第2安全弁機構25は、ゴム状弾性体自身をゴム弁部材26として用いる構成となっている。このため、第2作動圧RP2sa〜RP2siの精度はいずれも比較的低い。
従って、組電池20に含まれる第2単電池2A〜2Iの第2作動圧RP2sa〜RP2siがいずれも、狙い値よりもかなり大きな値となってしまう場合があり得る。
The assembled battery 20 of the second embodiment includes the first single battery 1 having the first safety valve mechanism 15 and the second single battery 2 having the second safety valve mechanism 25. Among these, since the 1st safety valve mechanism 15 becomes a structure which urges | biases the valve member 16 using the metal helical spring material 18, the precision of 1st operating pressure RP1s is high. Further, the change with time of the first operating pressure RP1s is small.
On the other hand, the second safety valve mechanism 25 uses a rubber-like elastic body itself as the rubber valve member 26. For this reason, the accuracy of the second operating pressures RP2sa to RP2si is relatively low.
Accordingly, the second operating pressures RP2sa to RP2si of the second unit cells 2A to 2I included in the assembled battery 20 may all be considerably larger than the target values.

これに対し、本実施例2の組電池20では、第1単電池1を備えており、各単電池の内圧が上昇すると、いずれの第2単電池2A〜2Iの第2安全弁装置25よりも先に、第1単電池1の第1安全弁装置15が開弁する。かくして、この組電池20では、第1単電池1の第1作動圧RP1s(第1最小作動圧RP1smin)により、組電池20の機能が失われる時期や条件が決定される。
しかも、第1作動圧RP1sは比較的その精度が高いので、組電池20の機能を失われる時期や条件を適切に設定することができる。
On the other hand, the assembled battery 20 of the second embodiment includes the first unit cell 1, and when the internal pressure of each unit cell rises, it is more than the second safety valve device 25 of any of the second unit cells 2A to 2I. First, the first safety valve device 15 of the first cell 1 is opened. Thus, in this assembled battery 20, the timing and conditions at which the function of the assembled battery 20 is lost are determined by the first operating pressure RP1s (first minimum operating pressure RP1smin) of the first unit cell 1.
Moreover, since the first operating pressure RP1s has a relatively high accuracy, it is possible to appropriately set the timing and conditions at which the function of the assembled battery 20 is lost.

さらに、本実施例2の組電池20では、第2単電池2に比して、比較的高価になる第1単電池1を1つのみ用いているので、第1単電池を複数用いた場合よりも組電池20全体として安価である。
また、第2安全弁機構25に比して体格の大きな第1安全弁機構15を備える第1単電池1を、1つだけ用いているので、第1単電池を複数用いた場合よりも組電池20全体の体格をも小さくなっている。
Furthermore, in the assembled battery 20 of the second embodiment, only one first unit cell 1 that is relatively expensive compared to the second unit cell 2 is used. Therefore, when a plurality of first unit cells are used. As a whole, the assembled battery 20 is inexpensive.
Further, since only one first cell 1 including the first safety valve mechanism 15 having a larger physique than the second safety valve mechanism 25 is used, the assembled battery 20 is more than in the case where a plurality of first cells are used. The overall physique is also getting smaller.

本実施例2の組電池20は、使用する第1単電池1の第1作動圧RP1s及び第2単電池2の第2作動圧RP2sを測定しておき、RP1s<RP2sとなる1つの第1単電池1と9つの第2単電池を選択し、これらを組み合わせて組電池20とすることで得られる。
また、第1単電池1の第1作動圧RP1sのばらつきの範囲の第1上限圧力RP1smaxが、第2単電池2の第2作動圧RP2sのばらつきの範囲の第2下限圧力RP2sminよりも小さいという関係とした第1単電池の集合と第2単電池の集合とを用意する。そして、これらから1つの第1単電池1と9つの第2単電池を選択し、これらを組み合わせて組電池20とすることもできる。
The assembled battery 20 of the second embodiment measures the first operating pressure RP1s of the first unit cell 1 and the second operating pressure RP2s of the second unit cell 2 to be used, and is one first RP1s <RP2s. It is obtained by selecting the unit cell 1 and the nine second unit cells and combining them into the assembled battery 20.
Further, the first upper limit pressure RP1smax in the range of variation of the first operating pressure RP1s of the first unit cell 1 is smaller than the second lower limit pressure RP2smin in the range of variation of the second operating pressure RP2s of the second unit cell 2. A set of related first cells and a set of second cells are prepared. And one 1st unit cell 1 and nine 2nd unit cells can be selected from these, and these can also be combined to make the assembled battery 20.

以上において、本発明を実施例1,2に即して説明したが、本発明は上記実施例に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。
例えば、前述の実施例では、第1単電池1を1つのみ用いたが、2つ以上の第1単電池を用いることもできる。但し、第1単電池1は、比較的高価であり体格も大きいので、実施例1のように1つのみ用いるのが、安価で小体積とできる点で有利である。
In the above, the present invention has been described with reference to the first and second embodiments. However, the present invention is not limited to the above-described embodiments, and it can be applied as appropriate without departing from the scope of the present invention. Nor.
For example, in the above-described embodiment, only one first unit cell 1 is used, but two or more first unit cells can be used. However, since the first cell 1 is relatively expensive and has a large physique, it is advantageous to use only one first cell 1 as in the first embodiment because it is inexpensive and can have a small volume.

実施例に係る組電池の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the assembled battery which concerns on an Example.

10 組電池
1,2,2A,2B,2I 単電池
1 第1単電池
2 第2単電池
13 電池要素
14,24 電池ケース
14A,24A 弁孔
14B,24B 座面(キャップ取付面)
15 第1安全弁機構
16 弁部材
17 押え板
18 金属つるまきバネ
19 安全弁キャップ
25 第2安全弁機構
26 ゴム弁部材(弾性体弁部材)
29 安全弁キャップ
10 battery packs 1, 2, 2A, 2B, 2I cell 1 first cell 2 second cell 13 battery element 14, 24 battery case 14A, 24A valve hole 14B, 24B seat surface (cap mounting surface)
15 First safety valve mechanism 16 Valve member 17 Presser plate 18 Metal helical spring 19 Safety valve cap 25 Second safety valve mechanism 26 Rubber valve member (elastic valve member)
29 Safety valve cap

Claims (9)

複数の単電池を直列に接続した組電池の設計方法であって、
第1作動圧で開弁する復帰型の第1安全弁機構を有する第1単電池であって、
上記第1作動圧のばらつきの範囲が、第1下限圧力から第1上限圧力までの第1範囲である上記第1安全弁機構を有する上記第1単電池少なくとも1つと、
第2作動圧で開弁する復帰型の第2安全弁機構を有する第2単電池であって、
上記第2作動圧のばらつきの範囲が、第2下限圧力から上記第1上限圧力よりも高い第2上限圧力までの第2範囲である上記第2安全弁機構を有する上記第2単電池残余の数と、を組み合わせて上記組電池とし、
上記第1安全弁機構は、
金属バネ材を用いて弁部材を付勢し、上記金属バネ材の付勢力によって上記第1作動圧が決定される機構であり、
上記第2安全弁機構は、
上記金属バネ材を用いることなく、ゴム状弾性体を用いて弁部材を付勢しまたはゴム状弾性体からなる弾性体弁部材を含み、上記ゴム状弾性体の付勢力によって上記第2作動圧が決定される機構である
組電池の設計方法。
A method for designing an assembled battery in which a plurality of cells are connected in series,
A first cell having a reset-type first safety valve mechanism that opens at a first operating pressure,
At least one of the first single cells having the first safety valve mechanism, wherein a range of variation in the first operating pressure is a first range from a first lower limit pressure to a first upper limit pressure;
A second unit cell having a reset-type second safety valve mechanism that opens at a second operating pressure;
The number of remaining second unit cells having the second safety valve mechanism in which the range of variation in the second operating pressure is a second range from a second lower limit pressure to a second upper limit pressure higher than the first upper limit pressure. And the above assembled battery ,
The first safety valve mechanism is
A mechanism for urging the valve member using a metal spring material, wherein the first operating pressure is determined by the urging force of the metal spring material;
The second safety valve mechanism is
Without using the metal spring material, it includes an elastic valve member that urges the valve member using a rubber-like elastic body or is made of a rubber-like elastic body, and the second operating pressure is applied by the urging force of the rubber-like elastic body. Is a mechanism for determining the battery pack design method.
請求項1に記載の組電池の設計方法であって、
前記第1範囲を前記第2範囲より低くする
組電池の設計方法。
A method for designing an assembled battery according to claim 1,
An assembled battery design method in which the first range is lower than the second range.
請求項1または請求項2に記載の組電池の設計方法であって、
前記第1安全弁機構と第2安全弁機構とでは、
前記第1範囲のレンジが前記第2範囲のレンジより小さくされてなる
組電池の設計方法。
A method for designing an assembled battery according to claim 1 or 2,
In the first safety valve mechanism and the second safety valve mechanism,
An assembled battery design method in which the range of the first range is smaller than the range of the second range.
複数の単電池を直列に接続した組電池の製造方法であって、
第1作動圧で開弁する復帰型の第1安全弁機構を有する第1単電池であって、
上記第1作動圧のばらつきの範囲が、第1下限圧力から第1上限圧力までの第1範囲である上記第1安全弁機構を有する上記第1単電池少なくとも1つと、
第2作動圧で開弁する復帰型の第2安全弁機構を有する第2単電池であって、
上記第2作動圧のばらつきの範囲が、第2下限圧力から上記第1上限圧力よりも高い第2上限圧力までの第2範囲である上記第2安全弁機構を有する上記第2単電池残余の数と、を組み合わせて上記組電池とし、
上記第1安全弁機構は、
金属バネ材を用いて弁部材を付勢し、上記金属バネ材の付勢力によって上記第1作動圧が決定される機構であり、
上記第2安全弁機構は、
上記金属バネ材を用いることなく、ゴム状弾性体を用いて弁部材を付勢しまたはゴム状弾性体からなる弾性体弁部材を含み、上記ゴム状弾性体の付勢力によって上記第2作動圧が決定される機構である
組電池の製造方法。
A method for producing an assembled battery in which a plurality of cells are connected in series,
A first cell having a reset-type first safety valve mechanism that opens at a first operating pressure,
At least one of the first single cells having the first safety valve mechanism, wherein a range of variation in the first operating pressure is a first range from a first lower limit pressure to a first upper limit pressure;
A second unit cell having a reset-type second safety valve mechanism that opens at a second operating pressure;
The number of remaining second unit cells having the second safety valve mechanism in which the range of variation in the second operating pressure is a second range from a second lower limit pressure to a second upper limit pressure higher than the first upper limit pressure. And the above assembled battery ,
The first safety valve mechanism is
A mechanism for urging the valve member using a metal spring material, wherein the first operating pressure is determined by the urging force of the metal spring material;
The second safety valve mechanism is
Without using the metal spring material, it includes an elastic valve member that urges the valve member using a rubber-like elastic body or is made of a rubber-like elastic body, and the second operating pressure is applied by the urging force of the rubber-like elastic body. A method of manufacturing an assembled battery which is a mechanism for determining the battery.
請求項に記載の組電池の製造方法であって、
前記第1安全弁機構と第2安全弁機構とでは、
前記第1範囲が前記第2範囲より低くされてなる
組電池の製造方法。
It is a manufacturing method of the assembled battery according to claim 4 ,
In the first safety valve mechanism and the second safety valve mechanism,
A method for producing an assembled battery, wherein the first range is lower than the second range.
請求項または請求項に記載の組電池の製造方法であって、
前記第1安全弁機構と第2安全弁機構とでは、
前記第1範囲のレンジが前記第2範囲のレンジより小さくされてなる
組電池の製造方法。
It is a manufacturing method of the assembled battery according to claim 4 or 5 ,
In the first safety valve mechanism and the second safety valve mechanism,
A method for manufacturing an assembled battery, wherein the range of the first range is smaller than the range of the second range.
複数の単電池を直列に接続した組電池であって、
第1作動圧で開弁する復帰型の第1安全弁機構を有する少なくとも1つの第1単電池、及び、
第2作動圧で開弁する復帰型の第2安全弁機構を有する残余の第2単電池からなり、
上記第1安全弁機構は、
金属バネ材を用いて弁部材を付勢し、上記金属バネ材の付勢力によって上記第1作動圧が決定される第1安全弁機構であり、
上記第2安全弁機構は、
上記金属バネ材を用いることなく、ゴム状弾性体を用いて弁部材を付勢しまたはゴム状弾性体からなる弾性体弁部材を含み、上記ゴム状弾性体の付勢力によって、上記第2作動圧が決定される第2安全弁機構であり、
上記組電池に含まれる第1単電池の上記第1作動圧のうちの最小値である第1最小作動圧と、上記組電池に含まれる第2単電池の上記第2作動圧のうちの最小値である第2最小作動圧とを比較したとき、上記第2最小作動圧よりも上記第1最小作動圧のほうが低い
組電池。
An assembled battery in which a plurality of cells are connected in series,
At least one first cell having a return-type first safety valve mechanism that opens at a first operating pressure; and
The remaining second unit cell having a return-type second safety valve mechanism that opens at the second operating pressure,
The first safety valve mechanism is
A first safety valve mechanism in which a valve member is biased using a metal spring material, and the first operating pressure is determined by a biasing force of the metal spring material;
The second safety valve mechanism is
Without using the metal spring material, it includes an elastic valve member that urges the valve member using a rubber-like elastic body or is made of a rubber-like elastic body, and the second operation is performed by the urging force of the rubber-like elastic body. A second safety valve mechanism in which the pressure is determined;
The first minimum operating pressure that is the minimum value among the first operating pressures of the first unit cells included in the assembled battery, and the minimum of the second operating pressures of the second unit cells included in the assembled battery. A battery pack in which the first minimum operating pressure is lower than the second minimum operating pressure when compared with a second minimum operating pressure that is a value.
請求項に記載の組電池であって、
前記第1単電池を1つ有する
組電池。
The assembled battery according to claim 7 ,
A battery pack having one first cell.
請求項または請求項に記載の組電池であって、
前記第2安全弁機構は前記第1安全弁機構よりも小さくされてなる
組電池。
The assembled battery according to claim 7 or claim 8 ,
The assembled battery in which the second safety valve mechanism is smaller than the first safety valve mechanism.
JP2005241538A 2005-08-23 2005-08-23 Assembled battery design method, manufacturing method, and assembled battery Expired - Fee Related JP4977979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005241538A JP4977979B2 (en) 2005-08-23 2005-08-23 Assembled battery design method, manufacturing method, and assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005241538A JP4977979B2 (en) 2005-08-23 2005-08-23 Assembled battery design method, manufacturing method, and assembled battery

Publications (2)

Publication Number Publication Date
JP2007059145A JP2007059145A (en) 2007-03-08
JP4977979B2 true JP4977979B2 (en) 2012-07-18

Family

ID=37922462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005241538A Expired - Fee Related JP4977979B2 (en) 2005-08-23 2005-08-23 Assembled battery design method, manufacturing method, and assembled battery

Country Status (1)

Country Link
JP (1) JP4977979B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5823604B2 (en) 2012-03-13 2015-11-25 株式会社東芝 Battery and battery pack
EP2827434A4 (en) 2012-03-13 2015-10-28 Toshiba Kk Battery manufacturing method
EP4064435A4 (en) * 2020-09-30 2024-04-24 Contemporary Amperex Technology Co Ltd Battery, device, and preparation method and preparation device for battery
WO2023004774A1 (en) 2021-07-30 2023-02-02 宁德时代新能源科技股份有限公司 Battery group, battery pack and electric apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312159U (en) * 1986-07-09 1988-01-26
JP4572019B2 (en) * 1999-10-08 2010-10-27 パナソニック株式会社 Assembled battery
JP5047412B2 (en) * 2000-04-28 2012-10-10 パナソニック株式会社 Assembled battery
JP3895905B2 (en) * 2000-05-31 2007-03-22 三洋電機株式会社 Assembled battery
JP2002056836A (en) * 2000-08-11 2002-02-22 Denso Corp Battery
JP3728254B2 (en) * 2002-01-31 2005-12-21 三洋電機株式会社 Assembled battery
JP4107163B2 (en) * 2003-05-28 2008-06-25 トヨタ自動車株式会社 Assembled battery

Also Published As

Publication number Publication date
JP2007059145A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
US10461288B2 (en) Battery module and battery pack including same
KR100814778B1 (en) Pressure-discharged venting system for rechargable battery
JP5084205B2 (en) Nonaqueous electrolyte secondary battery
US20060117701A1 (en) Battery and battery pack
KR20130043154A (en) Cell module
JP4977979B2 (en) Assembled battery design method, manufacturing method, and assembled battery
CN106887539B (en) Sealed battery, sealing body, and electric vehicle
JP2013157157A (en) Sealed battery
KR20160051037A (en) Cap assembly and secondary battery including the same
JP6719504B2 (en) Feedthroughs, gas relief valves and associated storage batteries forming terminals for metal ion electrochemical storage batteries
JP2021086718A (en) Nonaqueous electrolyte secondary battery
JP2016139484A (en) Secondary battery system
EP1132982B1 (en) Vent device for sealed alkaline storage battery
JP2006040626A (en) Sealed secondary battery
JP5372480B2 (en) safety valve
US6893771B2 (en) Battery assembly
KR101130097B1 (en) Electric energy storage device having safety device
JP2000300311A (en) Band structure for portable electronic equipment
JPH10334883A (en) Safety structure for sealed battery
JP2012195219A (en) Safety valve and battery provided with safety valve
JP2014072063A (en) Power source module
US20160204482A1 (en) Rechargeable battery
JP2006066175A (en) Sealed storage battery
JPH11111244A (en) Sealed storage battery
JP3552454B2 (en) Prismatic sealed battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4977979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees