JP4972856B2 - Source identification method of electromagnetic interference signal - Google Patents

Source identification method of electromagnetic interference signal Download PDF

Info

Publication number
JP4972856B2
JP4972856B2 JP2004254782A JP2004254782A JP4972856B2 JP 4972856 B2 JP4972856 B2 JP 4972856B2 JP 2004254782 A JP2004254782 A JP 2004254782A JP 2004254782 A JP2004254782 A JP 2004254782A JP 4972856 B2 JP4972856 B2 JP 4972856B2
Authority
JP
Japan
Prior art keywords
frequency
interference signal
modulation
electromagnetic
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004254782A
Other languages
Japanese (ja)
Other versions
JP2006071428A (en
Inventor
哲司 川田
雅泰 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004254782A priority Critical patent/JP4972856B2/en
Publication of JP2006071428A publication Critical patent/JP2006071428A/en
Application granted granted Critical
Publication of JP4972856B2 publication Critical patent/JP4972856B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Monitoring And Testing Of Transmission In General (AREA)

Description

本発明はデジタル回路を有する電子機器の電磁波妨害信号の発生源を特定するのに適用して好適な電磁波妨害信号の発生源特定方法に関する。   The present invention relates to a method for specifying an electromagnetic wave interference signal generation source suitable for specifying an electromagnetic wave interference signal generation source of an electronic apparatus having a digital circuit.

一般にデジタル回路を有する電子機器の動作により生じる電磁波妨害信号(EMI)のほとんどは、クロック信号やデジタル伝送信号に代表される矩形波の基本波とその高調波に起因している。   In general, most electromagnetic interference signals (EMI) generated by the operation of an electronic device having a digital circuit are caused by a fundamental wave of a rectangular wave typified by a clock signal or a digital transmission signal and its harmonics.

近年のデジタル回路を有する電子機器は、図6に示す如く複数の機能モジュールによって構成されており、この場合複数の周波数のクロック信号により動作する。これら複数の周波数のクロック信号は、通常、ある一つの周波数を逓倍もしくは分周することで作り出されている。   An electronic device having a digital circuit in recent years is constituted by a plurality of functional modules as shown in FIG. 6, and in this case, operates with clock signals having a plurality of frequencies. These clock signals having a plurality of frequencies are usually generated by multiplying or dividing one frequency.

そのため、このデジタル回路の動作により発生する電磁波妨害信号(EMI)は複数の周波数のクロック信号もしくはそれに同期するデジタル伝送信号等による基本波やその高調波が、複雑に重畳していることが多くなっている。   For this reason, the electromagnetic wave interference signal (EMI) generated by the operation of this digital circuit is often intricately superimposed with a fundamental wave or its harmonics by a clock signal having a plurality of frequencies or a digital transmission signal synchronized therewith. ing.

一般的に、電磁波妨害対策はこの電磁波妨害信号の発生源と伝達経路を調査しながら進める。この電磁波妨害信号の発生源の調査方法としては、図6に示す如く、電界プローブや電流プローブ等の検査プローブ1を用いて、基板、シャーシ、ケーブル上に流れる電磁波妨害対策対象となる周波数の電流を観測する方法があげられる。   In general, countermeasures against electromagnetic interference proceed while investigating the source and transmission path of the electromagnetic interference signal. As a method of investigating the source of this electromagnetic interference signal, as shown in FIG. 6, a current having a frequency that is a countermeasure against electromagnetic interference flowing on a board, chassis, or cable using an inspection probe 1 such as an electric field probe or a current probe. Can be used.

また、従来特許文献1に記載の如き電磁波放射測定方法が提案されている。
特開2001−343409号公報
Further, an electromagnetic radiation measurement method as described in Patent Document 1 has been proposed.
JP 2001-343409 A

ところで、例えば図6に示すように周波数f1の電磁波妨害信号の発生源2と伝達経路を調査する場合、従来の調査方法では他の機能モジュール3、4及び5のクロック信号の周波数がf2、f3及びf4で之等の高調波がf1=2×f2=3×f3=4×f4と調査しようとする電磁波妨害信号の周波数f1と重畳している場合、この電磁波妨害信号の周波数f1とその他の高調波2×f2、3×f3、4×f4との切り分けが行えず、電磁波妨害信号の発生源や伝達経路が複数複雑に観測されて、電磁波妨害信号の主要因となっている発生源と伝達経路の特定が困難であり、この電磁波妨害信号の発生源の調査に長時間を要する不都合があった。   By the way, for example, as shown in FIG. 6, when investigating the source 2 and the transmission path of the electromagnetic wave interference signal having the frequency f1, the clock signal frequencies of the other functional modules 3, 4 and 5 are f2, f3. And f4, when the higher harmonics overlap with the frequency f1 of the electromagnetic interference signal to be investigated as f1 = 2 × f2 = 3 × f3 = 4 × f4, the frequency f1 of this electromagnetic interference signal and other It is impossible to distinguish between harmonics 2 × f2, 3 × f3, 4 × f4, and a plurality of sources of electromagnetic interference signals and transmission paths are observed in a complex manner. It is difficult to specify the transmission path, and there is a disadvantage that it takes a long time to investigate the source of the electromagnetic interference signal.

また特許文献1に記載の技術では電磁波妨害信号の測定はできるが、デジタル回路を有する電子機器の電磁波妨害信号の発生源を特定することはできない。   Moreover, although the technique of patent document 1 can measure an electromagnetic interference signal, the generation source of the electromagnetic interference signal of the electronic device which has a digital circuit cannot be specified.

本発明は斯る点に鑑み、比較的容易に且つ比較的短時間で電磁波妨害信号の発生源を特定することができるようにすることを目的とする。   SUMMARY OF THE INVENTION In view of this point, an object of the present invention is to make it possible to identify a source of an electromagnetic wave interference signal relatively easily and in a relatively short time.

本発明電磁波妨害信号の発生源特定方法は電磁波妨害信号の搬送波周波数を測定し、この電磁波妨害信号の時間領域情報を得、この時間領域情報より、周期性を検出し、この周期の周波数を演算することにより振幅変調の変調周波数を得、この変調周波数の2倍よりも大きい周波数範囲でのこの電磁波妨害信号の周波数領域情報を得、この変調周波数を示す側波帯がこの周波数領域情報に存在するかどうかをマッチングし、存在する場合は、この側波帯及びこの電磁波妨害信号の搬送波の周波数及びレベルを測定して、この周波数及びレベルを変調情報である変調度及び変調周波数に換算し、この変調情報に基づいて、この電磁波妨害信号の発生源を特定するようにしたものである。 The method for identifying the source of the electromagnetic interference signal of the present invention measures the carrier frequency of the electromagnetic interference signal, obtains the time domain information of the electromagnetic interference signal, detects the periodicity from the time domain information, and calculates the frequency of this period obtain a modulation frequency of the amplitude modulation by, resulting frequency domain information of the electromagnetic interference signal at a frequency greater range than twice the modulation frequency sidebands indicating the modulation frequency is present in the frequency area information And if present, measure the frequency and level of this sideband and the carrier wave of this electromagnetic interference signal, convert this frequency and level to the modulation degree and modulation frequency as modulation information, Based on this modulation information, the source of the electromagnetic wave interference signal is specified.

本発明によれば、電磁波妨害信号に含まれる振幅変調の変調情報を得、この変調情報に基づいて電磁波妨害信号の発生源を特定するようにしたので、この電磁波妨害信号の周波数と他の機能モジュールのクロック信号の周波数の高調波とが重畳した場合でも、電磁波妨害信号の発生源を区別することができ、比較的容易に且つ比較的短時間で電磁波妨害信号の発生源を特定することができる。   According to the present invention, the modulation information of the amplitude modulation contained in the electromagnetic interference signal is obtained, and the source of the electromagnetic interference signal is specified based on this modulation information. Even when the frequency harmonics of the module clock signal are superimposed, the source of the electromagnetic interference signal can be distinguished, and the source of the electromagnetic interference signal can be identified relatively easily and in a relatively short time. it can.

以下、図面を参照して本発明電磁波妨害信号の発生源特定方法を実施するための最良の形態の例を説明する。   Hereinafter, an example of the best mode for carrying out the electromagnetic wave interference signal generation source specifying method of the present invention will be described with reference to the drawings.

図2は、本例による電磁波妨害信号の発生源特定方法を実施するための構成例を示し、図2において、10は電磁波妨害評価や電磁波妨害対策検討を行う設備で例えば電波暗室である。   FIG. 2 shows a configuration example for carrying out the electromagnetic wave interference signal generation source specifying method according to the present example. In FIG. 2, 10 is a facility for conducting electromagnetic wave interference evaluation and electromagnetic wave interference countermeasure examination, for example, an anechoic chamber.

本例においてはこの電波暗室10の所定位置に図6に示す如き電磁波妨害信号の発生源を特定しようとする電子機器即ち被試験機器11を配する如くする。   In this example, an electronic device, that is, a device under test 11 for specifying the source of the electromagnetic wave interference signal as shown in FIG.

また、この電波暗室10の所定位置に被試験機器11が発生する電磁波妨害信号等を検出するアンテナ12が設けられており、このアンテナ12よりの電磁波妨害信号等の検出信号をこの電波暗室10の外に設けられた測定システム13に供給する。   An antenna 12 for detecting an electromagnetic interference signal generated by the device under test 11 is provided at a predetermined position in the anechoic chamber 10, and a detection signal such as an electromagnetic interference signal from the antenna 12 is supplied to the anechoic chamber 10. It supplies to the measurement system 13 provided outside.

尚、電磁波妨害対策検討においては、電磁波妨害信号をコモンモード電流やコモンモード電圧として間接的に評価する機材例えばWorkbench Faraday Cageを応用した評価装置や電流プローブ等を代用としてもよい。   In the study on countermeasures against electromagnetic interference, a device that indirectly evaluates electromagnetic interference signals as a common mode current or a common mode voltage, such as an evaluation device using a Workbench Faraday Cage or a current probe, may be used instead.

この測定システム13は、スペクトラムアナライザ、電磁波妨害信号(EMI)レシーバ、高周波(RF)アンプ、高周波(RF)スイッチ等より構成され、コンピュータ等より成る制御装置14により制御される。この場合測定システム13のインターフェースはGPIB(General Purpose Interface Bus)等を介して自動的に制御される場合が多い。   The measurement system 13 includes a spectrum analyzer, an electromagnetic wave interference signal (EMI) receiver, a high frequency (RF) amplifier, a high frequency (RF) switch, and the like, and is controlled by a control device 14 such as a computer. In this case, the interface of the measurement system 13 is often automatically controlled via a GPIB (General Purpose Interface Bus) or the like.

コンピュータ等より成る制御装置14は、GPIB等を介して電波暗室10や測定システム13を制御し、測定システム13により測定したデータの収集と解析を行うと共に本例による図1に示すフローチャートによる電磁波妨害信号の発生源特定方法を実行する。図2において、15は種々の表示を行うモニターである。   The control device 14 composed of a computer or the like controls the anechoic chamber 10 and the measurement system 13 through GPIB or the like, collects and analyzes the data measured by the measurement system 13, and uses the flowchart shown in FIG. The signal source identification method is executed. In FIG. 2, reference numeral 15 denotes a monitor for performing various displays.

この図1のフローチャートにおいては、開始後、先ずステップS1で、測定器であるスペクトラムアナライザにおいて、測定対象の電磁波妨害信号の周波数feを定義(設定)する。この電磁波妨害信号の周波数feは、図3に示す如きEMI規格に基づく通常の評価で得られるスペクトラムデータから得られる周波数データである。図3はEMI規格に基づく30MHZ〜1GHZのスペクトラムデータの例を示す。図3において、線aは規格値である。   In the flowchart of FIG. 1, after the start, first, in step S1, the frequency fe of the electromagnetic wave interference signal to be measured is defined (set) in the spectrum analyzer which is a measuring instrument. The frequency fe of the electromagnetic wave interference signal is frequency data obtained from spectrum data obtained by normal evaluation based on the EMI standard as shown in FIG. FIG. 3 shows an example of spectrum data of 30 MHZ to 1 GHz based on the EMI standard. In FIG. 3, the line a is a standard value.

また、このステップS1で、スペクトラムアナライザにおいて、側波帯測定周波数上限fsmaxと側波帯測定周波数下限fsminとを定義(設定)する。この周波数上限fsmax及び周波数下限fsminは測定器の性能と測定にかける時間から決定されるが、一般的には周波数下限fsminは数KHZ〜数10KHZ程度に、周波数上限fsmaxは数100KHZ程度に定義(設定)される。   In step S1, the spectrum analyzer defines (sets) a sideband measurement frequency upper limit fsmax and a sideband measurement frequency lower limit fsmin. The frequency upper limit fsmax and the frequency lower limit fsmin are determined from the performance of the measuring instrument and the time taken for measurement. Generally, the frequency lower limit fsmin is defined as several KHZ to several tens KHZ, and the frequency upper limit fsmax is defined as several hundred KHZ. Set).

その後、この電磁波妨害信号の搬送波周波数fcの測定を行う(ステップS2)。この搬送波周波数fcは電磁波妨害信号の周波数feの中心周波数であり、この電磁波妨害信号の周波数feを詳細に測定することで得られる。   Thereafter, the carrier frequency fc of the electromagnetic wave interference signal is measured (step S2). This carrier frequency fc is the center frequency of the frequency fe of the electromagnetic interference signal, and can be obtained by measuring the frequency fe of the electromagnetic interference signal in detail.

次にステップS3で、測定対象とする電磁波妨害信号の周波数feにおいて、スペクトラムアナライザのSPAN(スパン、測定用周波数範囲)を「0」に設定して周波数を特定し、走査時間SWT(Sweep Time)を、周波数上限fsmaxが十分測定できる任意の時間に設定する。例えば1/(2×fsmax)以上等である。   Next, in step S3, the SPAN (span, measurement frequency range) of the spectrum analyzer is set to “0” at the frequency fe of the electromagnetic wave interference signal to be measured, the frequency is specified, and the scanning time SWT (Sweep Time) Is set to an arbitrary time during which the frequency upper limit fsmax can be sufficiently measured. For example, 1 / (2 × fsmax) or more.

これは本例においては、周波数上限fsmaxが測定できる走査時間SWTから周波数下限fsminが測定できる走査時間SWTまで変化させるからであり、また、周波数下限fsminから周波数上限fsmaxに変化させて測定する場合は、まず周波数下限fsminが十分測定できる走査時間SWTに設定する。   This is because, in this example, the frequency upper limit fsmax is changed from the scan time SWT at which the frequency lower limit fsmin can be measured to the scan time SWT at which the frequency lower limit fsmin can be measured. First, the frequency lower limit fsmin is set to a scanning time SWT at which sufficient measurement is possible.

次に測定器であるスペクトラムアナライザの分解能帯域幅(Resolution Band Width)を調整して測定対象の電磁波妨害信号が最も良く測定できる値に設定する(ステップS4)。   Next, the resolution bandwidth (Resolution Band Width) of the spectrum analyzer, which is a measuring instrument, is adjusted to a value that can best measure the electromagnetic wave interference signal to be measured (step S4).

次に、測定波形のノイズの除去を行うために、このスペクトラムアナライザのVBW(Video Band Width)を例えば20÷SWTに設定する。これは1/SWT(HZ)の20倍という意味で、一般的には、10倍から40倍程度に設定する(ステップS5)。   Next, in order to remove noise from the measurement waveform, the VBW (Video Band Width) of this spectrum analyzer is set to 20 ÷ SWT, for example. This means 20 times the 1 / SWT (HZ), and is generally set to about 10 to 40 times (step S5).

上述の状態のスペクトラムアナライザにより電磁波妨害信号の時間領域情報(タイムドメインデータ)を取得する(ステップS6)。このステップS6の測定する時間幅は、設定した周波数下限fsminと周波数上限fsmaxが測定できるように設定する。   The time domain information (time domain data) of the electromagnetic wave interference signal is acquired by the spectrum analyzer in the above state (step S6). The time width measured in step S6 is set so that the set frequency lower limit fsmin and frequency upper limit fsmax can be measured.

この最も短い時間幅は例えば1/fsmax×0.8、最も長い時間幅は例えば1/fsmin×1.5といったように測定対象の電磁波妨害信号の周波数feを十分にカバーできる範囲に設定する。   The shortest time width is set to a range that can sufficiently cover the frequency fe of the electromagnetic wave interference signal to be measured, for example, 1 / fsmax × 0.8, and the longest time width, for example, 1 / fsmin × 1.5.

この場合、周波数下限fsminと周波数上限fsmaxとの両方を同時に測定できる測定器(スペクトラムアナライザ)を使用できるときは、バラツキが少なければ1回の測定で良い。   In this case, when a measuring instrument (spectrum analyzer) capable of simultaneously measuring both the lower frequency limit fsmin and the upper frequency limit fsmax can be used, one measurement may be performed if there is little variation.

しかし、これが実現できない場合は、観測時間領域を測定対象の電磁波妨害信号周波数に応じた時間幅で複数回に分けて測定する。   However, if this cannot be realized, the observation time region is divided into a plurality of times with a time width corresponding to the electromagnetic wave interference signal frequency to be measured.

このステップS6で得られる電磁波妨害信号の時間領域情報は例えば図4に示す如き横軸を時間軸とし、縦軸をレベルとした電磁波妨害信号が得られる。   For the time domain information of the electromagnetic interference signal obtained in step S6, for example, an electromagnetic interference signal having a horizontal axis as a time axis and a vertical axis as a level as shown in FIG. 4 is obtained.

次に、このステップS6で取得した図4に示す如き電磁波妨害信号の時間領域情報に周期性が有るかどうかを判断(検出)する(ステップS7)。
このステップS7で周期性が検出されたときには、その周期TSの周波数1/TS=fsを演算して振幅変調の周波数情報を得ることができ、この周波数情報を周期データとして保管する(ステップS8)。この場合、周期TSは複数ある可能性がある。このようにして、同一の発生源から生じる変調周波数(複数ある可能性もある)を認知することができる。
Next, it is determined (detected) whether the time domain information of the electromagnetic wave interference signal as shown in FIG. 4 acquired in step S6 has periodicity (step S7).
When periodicity is detected in step S7, the frequency 1 / TS = fs of the period TS can be calculated to obtain amplitude modulation frequency information, and this frequency information is stored as periodic data (step S8). . In this case, there may be a plurality of periods TS. In this way, it is possible to recognize the modulation frequency (possibly multiple) originating from the same source.

電磁波妨害信号の時間領域情報が図4例の場合周期がTS1とTS2との2個あり、この周期TS1及びTS2の夫々の変調周波数fs1=1/TS1及びfs2=1/TS2を演算し、これをメモリに記憶(保管)する。   When the time domain information of the electromagnetic wave interference signal is the example of FIG. 4, there are two periods of TS1 and TS2, and the modulation frequencies fs1 = 1 / TS1 and fs2 = 1 / TS2 of the periods TS1 and TS2 are calculated. Is stored (stored) in the memory.

その後、スペクトラムアナライザの走査時間SWTを2倍とする(ステップS9)。またステップS7で電磁波妨害信号の時間領域情報(タイムドメインデータ)に周期性が検出されないときはステップS9に移行し、その後、この2倍とした走査時間SWTが1/fsminより小さいかどうかを判断し(ステップS10)、小さいときはステップS5、ステップS6、ステップS7、ステップS8、ステップS9、ステップS10を繰り返し、周期TSの変調周波数fs=1/TSを保管する。   Thereafter, the scanning time SWT of the spectrum analyzer is doubled (step S9). If no periodicity is detected in the time domain information (time domain data) of the electromagnetic wave interference signal in step S7, the process proceeds to step S9, and then it is determined whether or not the doubled scanning time SWT is smaller than 1 / fsmin. If it is smaller, step S5, step S6, step S7, step S8, step S9, and step S10 are repeated to store the modulation frequency fs = 1 / TS of the period TS.

ステップS10でスペクトラムアナライザの走査時間SWTが1/fsminより大きくなったときは、ステップS8で保管された周期データがあるかどうかを判断し(ステップS11)、保管された周期データがないときは、変調情報無しとして終了する(ステップS12)。   When the spectrum analyzer scanning time SWT is greater than 1 / fsmin in step S10, it is determined whether there is periodic data stored in step S8 (step S11). If there is no stored periodic data, The process ends with no modulation information (step S12).

このステップS11で保管された周期TSの周期データである振幅変調の変調周波数fs=1/TSがあるときにはこのスペクトラムアナライザのSPANを2×fsよりやや大きく設定すると共に分解能帯域幅RBWをSPAN/20に設定し(ステップS13)、その後、このスペクトラムアナライザで、図5に示す如き、この電磁波妨害信号の狭帯域の周波数領域情報を取り込み、周期TSの周波数fsに対応する側波帯を抽出し、この取り込んだ電磁波妨害情報上にステップS8で保管した変調周波数fs、図4例では変調周波数fs1、fs2が例えば図5に示す如き電磁波妨害信号の周波数領域情報中に存在するかを確認する(ステップS14)。   When there is a modulation frequency fs = 1 / TS of amplitude modulation which is the periodic data of the period TS stored in step S11, the SPAN of this spectrum analyzer is set slightly larger than 2 × fs and the resolution bandwidth RBW is set to SPAN / 20. (Step S13), and then, with this spectrum analyzer, as shown in FIG. 5, the narrow-band frequency domain information of the electromagnetic wave interference signal is captured, and the sideband corresponding to the frequency fs of the period TS is extracted. It is confirmed whether or not the modulation frequency fs stored in step S8 on the acquired electromagnetic interference information, in the example of FIG. 4, the modulation frequencies fs1 and fs2 are present in the frequency domain information of the electromagnetic interference signal as shown in FIG. S14).

即ち、時間領域情報より得た変調周波数例えば変調周波数fs1、fs2を示す側波帯が周波数領域情報に存在するかどうかをマッチングする。図5例では側波帯1(fc−fs1、fc+fs1)、側波帯2(fc−fs2、fc+fs2)が存在することが確認できる。   That is, it is matched whether or not the sidebands indicating the modulation frequencies obtained from the time domain information, for example, the modulation frequencies fs1 and fs2 are present in the frequency domain information. In the example of FIG. 5, it can be confirmed that the sideband 1 (fc−fs1, fc + fs1) and the sideband 2 (fc−fs2, fc + fs2) exist.

このように周波数領域情報と時間領域情報の測定結果の変調周波数fsとのマッチングを取ることで電磁波妨害信号の変調周波数の抽出精度を向上させることができる。   Thus, by extracting the frequency domain information and the modulation frequency fs of the measurement result of the time domain information, it is possible to improve the extraction accuracy of the modulation frequency of the electromagnetic wave interference signal.

ステップS14にて、電磁波妨害信号の時間領域情報より得られた変調周波数fsを示す側波帯が、電磁波妨害信号の周波数領域情報上にも存在する場合は、その側波帯(fc−fs、fc+fs)及び搬送波fcの周波数とレベルとを詳細に測定し、変調情報である変調度及び変調周波数を換算する(ステップS15)。   In step S14, when the sideband indicating the modulation frequency fs obtained from the time domain information of the electromagnetic wave interference signal is also present on the frequency domain information of the electromagnetic wave interference signal, the sideband (fc-fs, fc + fs) and the frequency and level of the carrier wave fc are measured in detail, and the modulation degree and modulation frequency, which are modulation information, are converted (step S15).

この電磁波妨害信号の変調情報である変調度及び変調周波数を得てこの変調情報の抽出を完了する(ステップS16)。   The modulation degree and the modulation frequency, which are modulation information of the electromagnetic wave interference signal, are obtained, and the extraction of the modulation information is completed (step S16).

本例においてはこの変調情報に基づいて、図6に示す如き電子機器の電磁波妨害信号の発生源を特定するようにする。   In this example, the generation source of the electromagnetic wave interference signal of the electronic device as shown in FIG. 6 is specified based on this modulation information.

本例によれば電磁波妨害信号の時間領域情報よりこの電磁波妨害信号に含まれる振幅変調の変調情報を得、この変調情報に基づいて、電磁波妨害信号の発生源を特定するようにしたので、この電磁波妨害信号の周波数と他の機能モジュールのクロック信号の周波数の高調波とが重畳した場合でも、電磁波妨害信号の発生源を区別することができ、比較的容易に且つ比較的短時間で電磁波妨害信号の発生源を特定することができる。   According to this example, the modulation information of the amplitude modulation included in the electromagnetic wave interference signal is obtained from the time domain information of the electromagnetic wave interference signal, and the source of the electromagnetic wave interference signal is specified based on the modulation information. Even when the frequency of the electromagnetic wave interference signal and the harmonic of the frequency of the clock signal of another functional module are superimposed, the source of the electromagnetic wave interference signal can be distinguished, and the electromagnetic wave interference can be made relatively easily and in a relatively short time. The source of the signal can be identified.

尚本発明は上述例に限ることなく本発明の要旨を逸脱することなく、その他種々の構成が採り得ることは勿論である。   Of course, the present invention is not limited to the above-described examples, and various other configurations can be adopted without departing from the gist of the present invention.

本発明電磁波妨害信号の発生源特定方法を実施するための最良の形態の例の説明に供するフローチャートである。It is a flowchart with which description of the example of the best form for implementing the source identification method of the electromagnetic wave interference signal of this invention is provided. 図1を実施するための構成システムの例を示す構成図である。It is a block diagram which shows the example of the structure system for implementing FIG. 本発明の説明に供する線図である。It is a diagram with which it uses for description of this invention. 本発明の例の説明に供する線図である。It is a diagram with which it uses for description of the example of this invention. 本発明の例の説明に供する線図である。It is a diagram with which it uses for description of the example of this invention. 従来の例の説明に供する構成図である。It is a block diagram with which it uses for description of the conventional example.

符号の説明Explanation of symbols

10…電波暗室、11…被試験機器、12…アンテナ、13…測定システム、14…制御装置
DESCRIPTION OF SYMBOLS 10 ... Anechoic chamber, 11 ... Device under test, 12 ... Antenna, 13 ... Measurement system, 14 ... Control apparatus

Claims (1)

電磁波妨害信号の搬送波周波数を測定し、
該電磁波妨害信号の時間領域情報を得、
該時間領域情報より、周期性を検出し、その周期の周波数を演算することにより振幅変調の変調周波数を得、
変調周波数の2倍よりも大きい周波数範囲での前記電磁波妨害信号の周波数領域情報を得、
前記変調周波数を示す側波帯が前記周波数領域情報に存在するかどうかをマッチングし、存在する場合は、その側波帯及び前記電磁波妨害信号の搬送波の周波数及びレベルを測定して、該周波数及びレベルを変調情報である変調度及び変調周波数に換算し、
該変調情報に基づいて、前記電磁波妨害信号の発生源を特定する
電磁波妨害信号の発生源特定方法。
Measure the carrier frequency of the electromagnetic interference signal,
Obtain time domain information of the electromagnetic interference signal,
From the time domain information, the periodicity is detected, and the modulation frequency of the amplitude modulation is obtained by calculating the frequency of the period ,
The resulting frequency domain information of the electromagnetic interference signal at a frequency greater range than twice the modulation frequency,
Matching whether or not a sideband indicating the modulation frequency is present in the frequency domain information, and if present, measuring the frequency and level of the sideband and the carrier wave of the electromagnetic interference signal, The level is converted into the modulation degree and modulation frequency, which is modulation information,
An electromagnetic wave interference signal generation source specifying method for specifying an electromagnetic wave interference signal generation source based on the modulation information.
JP2004254782A 2004-09-01 2004-09-01 Source identification method of electromagnetic interference signal Expired - Fee Related JP4972856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004254782A JP4972856B2 (en) 2004-09-01 2004-09-01 Source identification method of electromagnetic interference signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004254782A JP4972856B2 (en) 2004-09-01 2004-09-01 Source identification method of electromagnetic interference signal

Publications (2)

Publication Number Publication Date
JP2006071428A JP2006071428A (en) 2006-03-16
JP4972856B2 true JP4972856B2 (en) 2012-07-11

Family

ID=36152227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004254782A Expired - Fee Related JP4972856B2 (en) 2004-09-01 2004-09-01 Source identification method of electromagnetic interference signal

Country Status (1)

Country Link
JP (1) JP4972856B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07336246A (en) * 1994-06-13 1995-12-22 Nippon Hoso Kyokai <Nhk> Method and device for detecting interference in fm signal
JP3607475B2 (en) * 1997-11-11 2005-01-05 株式会社リコー Electromagnetic interference measurement device
JP3376269B2 (en) * 1998-02-27 2003-02-10 日本電信電話株式会社 Communication performance evaluation device
JP3603143B2 (en) * 1998-05-01 2004-12-22 株式会社リコー Electromagnetic interference measuring device
JP3363808B2 (en) * 1998-11-24 2003-01-08 富士通株式会社 Simulation apparatus and method, and program recording medium
JP2002189527A (en) * 2000-12-21 2002-07-05 Copyer Co Ltd Radiation noise reducing device and its method
JP3666648B2 (en) * 2001-01-11 2005-06-29 日本電気株式会社 Clock frequency modulation circuit and electronic apparatus equipped with the modulation circuit
JP3817472B2 (en) * 2001-12-21 2006-09-06 キヤノン株式会社 Electric field measuring device

Also Published As

Publication number Publication date
JP2006071428A (en) 2006-03-16

Similar Documents

Publication Publication Date Title
JP5482078B2 (en) Partial discharge detector
US20130238264A1 (en) Measurement device for identifying electromagnetic interference source, method for estimating the same, and computer readable information recording medium enabling operations thereof
US9037438B2 (en) Device and method for detecting and processing signals relating to partial electrical discharges
US20130179100A1 (en) System for analyzing and locating partial discharges
JP5228558B2 (en) Partial discharge detection device by electromagnetic wave detection and detection method thereof
CN107076795B (en) Partial discharge position calibration device
JP2001133506A (en) Method and device for diagnosing compressed gas insulation equipment
JP2005147890A (en) Insulation abnormality diagnostic device
US8452571B2 (en) Trigger figure-of-merit indicator
JP5103715B2 (en) Method and program for identifying source of electromagnetic interference signal
JP4972856B2 (en) Source identification method of electromagnetic interference signal
JP2006084413A (en) Source identifying method for electromagnetic interference signal
US20210199707A1 (en) Method and system for condition monitoring electrical equipment
US9116186B2 (en) Detection of signals
JP2006071383A (en) Generation source specification method for electromagnetic wave interference signal
CN108279284A (en) A kind of transformer moisture tester
FI3929600T3 (en) Method for broadband ultrasonic detection of electrical discharges
KR100475739B1 (en) system for testing character of filter
US11422180B2 (en) Partial discharge detector and associated method
US20240022339A1 (en) Intermodulation measurement method, intermodulation measuring apparatus and computer program for ascertaining an intermodulation source in a transmission link
KR102582116B1 (en) Partial discharge measuring device and method
JP2654793B2 (en) Partial discharge detection device
Medler Use of FFT-based measuring instruments for EMI compliance measurements
JP2020101489A (en) Partial discharge detector and partial discharge detection method
RU2088945C1 (en) Method for spectrum analysis of broadband shf noise signals and device for its realization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120326

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees