JP4972754B2 - Seismic storage dike and its installation method - Google Patents

Seismic storage dike and its installation method Download PDF

Info

Publication number
JP4972754B2
JP4972754B2 JP2009251318A JP2009251318A JP4972754B2 JP 4972754 B2 JP4972754 B2 JP 4972754B2 JP 2009251318 A JP2009251318 A JP 2009251318A JP 2009251318 A JP2009251318 A JP 2009251318A JP 4972754 B2 JP4972754 B2 JP 4972754B2
Authority
JP
Japan
Prior art keywords
water
dike
concrete
embankment
underground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009251318A
Other languages
Japanese (ja)
Other versions
JP2010112163A5 (en
JP2010112163A (en
Inventor
親士 上村
隆 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Information Science Research Institute
Original Assignee
Information Science Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Information Science Research Institute filed Critical Information Science Research Institute
Priority to JP2009251318A priority Critical patent/JP4972754B2/en
Publication of JP2010112163A publication Critical patent/JP2010112163A/en
Publication of JP2010112163A5 publication Critical patent/JP2010112163A5/ja
Application granted granted Critical
Publication of JP4972754B2 publication Critical patent/JP4972754B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/40Protecting water resources
    • Y02A20/406Aquifer recharge

Landscapes

  • Revetment (AREA)

Description

本発明は、土砂崩れによる決壊のない貯水機能を有する堤防によって、水不足の解消と防災を行う。通常は液状化現象を起こす原因の堤防下の河川伏流水及び地下水の排水を貯水して、飲料水、工業用水、農業用水を洪水時に河川濾過水で満水貯水して乾期・干魃時に有効に用いる。耐震基盤の上に水と施設の重量で激流を阻止する機能の「耐震貯水堤防施設」に関する  In the present invention, water shortage is solved and disaster prevention is performed by a dike having a water storage function that does not break down due to landslides. Normally, river drainage water and groundwater drainage under the embankment that causes liquefaction is stored, and drinking water, industrial water, and agricultural water are filled with river filtered water during flooding and effective during the dry season and drought. Use. On the “earthquake-resistant storage embankment”, which functions to prevent torrents by the weight of water and facilities on the earthquake-resistant foundation

従来の堤防は、川底を掘り下げ、河岸にパイルを打ち込み、護岸工事を中心に土盛り、路面堅め作業により堤防嵩上げを行い、河面の表面をコンクリート壁やブロック積み上げで補強し、土手を造る通常の土木作業によって堤防を形成する技術が完成していた。
しかし、この土手方式では、大量の土砂が必要であり、常識を越える降雨量によって、オーバーフローした場合、土手の後側の土盛りの露出している部分で吸水して土手全体が水で飽和し、流動性の泥土となって崩壊が起り、決壊することがしばしばであった。
そこで、近年では河面反対の内陸側にもコンクリート壁やブロック積み上げて補強する土手面被覆技術の拡大が進められている。
しかしながら、最近は温暖化が進むに従って、局地的な降水量の変化は激しくなり、従来の常識では考えられない規模の災害が頻発している。
すなわち、大洪水により長時間オーバーフローが続いた場合は、堤防の裏側にコンクリート壁やブロックを積み上げていても、浸水して決壊する場面も見られる。
Conventional embankments are ordinary civil engineering that digs the riverbed, lays piles on the riverbank, fills the embankment mainly for revetment work, raises the embankment by tightening the road surface, and reinforces the surface of the river surface with concrete walls and blocks stacked to create a bank The technology to form a dike by work was completed.
However, this bank method requires a large amount of earth and sand, and if it overflows due to rainfall exceeding common sense, it absorbs water at the exposed part of the backside of the bank and the entire bank is saturated with water, It often broke down as fluid mud and collapsed.
Therefore, in recent years, the bank surface coating technology for reinforcing concrete walls and blocks on the inland side opposite the river surface has been expanded.
However, as global warming progresses, local precipitation changes have become intense, and disasters of a scale that cannot be considered by conventional common sense have occurred frequently.
In other words, if the flood continues for a long time due to a heavy flood, there are cases where the walls break down due to flooding even if concrete walls and blocks are piled up behind the embankment.

地球の温暖化により、海外では、暴風雨、大洪水により広大な地域が水没し、甚大な被害を受けているが、堤防が崩壊しない鉄筋コンクリートであと数メートル堤防が高ければ防がれる災害も少なくない。  Due to global warming, a vast area has been submerged and severely damaged by storms and floods overseas, but there are many disasters that can be prevented if the levee is high enough for several meters of reinforced concrete that does not collapse. .

また、海岸においても、温暖化により海面上昇が起こり、年々陸地が浸食され、人の住める場所が急速に減少している地域もあり、低開発国では殆ど為す術もない状態である。この場合も海岸周囲の堤防の設置と貯水可能な陸地の嵩上げが重要になっている。  On the coast, sea level rises due to global warming, the land is eroded year by year, and the number of places where people can live is rapidly decreasing, and there is almost no way to do it in underdeveloped countries. In this case as well, it is important to install a dike around the coast and raise the land where water can be stored.

地球温暖化は、豪雨により災害をもたらす一方で、長期日照りによる干ばつの被害をもたらせている。今後の世界は清浄な真水を如何に確保するかが重要であり、大都会の上水、工業用水、農業用水等の確保も困難になりつつあり、深刻な問題を惹起している。
現在の用水確保は、河川水、沼湖からの採水、多目的ダム、用水ダム等の山間地のダムからの採水により供給され、浄水処理場において飲料水化するケースが多い。
ダムの水は山の崩壊による土砂の堆積、水の淀みによる底質の腐敗、アオコの発生など悪い条件もあり、清浄な水が確保されているとは言い難い。
また大都会の水源は、アオコの発生するダム湖や汚れた湖沼が多く、悪臭を黴臭を発生する場合が多く、悪臭をオゾン処理で除去して浄化し、飲用水に用いているのが現状である。
While global warming causes disasters due to heavy rains, it can also cause drought damage due to long-term sunshine. In the future world, it is important how to secure clean fresh water, and it is becoming difficult to secure clean water, industrial water, agricultural water, etc. in big cities, causing serious problems.
Current irrigation is often provided by water from rivers, swamps, water from mountainous dams such as multipurpose dams and irrigation dams, and is often converted to drinking water at water treatment plants.
The water of the dam is difficult to say that clean water is secured because there are bad conditions such as sediment accumulation due to mountain collapse, decay of bottom sediment due to water stagnation, and the occurrence of blue water.
In addition, the water sources of big cities are many dam lakes and dirty lakes where blue sea bream occurs, often producing bad odors and removing bad odors by ozone treatment and purifying them and using them for drinking water. Currently.

特許文献1は、貯水槽を堤防として活用しようとするものである。河岸に設置した、連続するコンクリートの水槽を提案している点は本発明と基本的に同一の思想であるが、特許文献1は単純な構造で、堤防の破損の対応などの想定はなされて居らず、具体的な内容については、本発明と大きく異なっている。即ち、洪水時激流には、水流の動的な破壊力に加え、流木、土石流等の複雑な衝撃が加わるのであり、堤防の内側から外へ押し出す力が堤防を強化する上で必要である。特許文献1は貯水槽としての提案のみである。
詳しくは、特許文献1は、コンクリート外壁のみで防水する構造であり、外壁の破損が起こることついては顧慮していない。本発明の思想では、高い堤防に貯水した水位の差による水圧と水の重量で堤防を押さえ、堤防内部から堤防外壁を押し出す内圧が働き、外壁が洪水による動的衝撃を軽減する構造にしている。また、本発明の障壁多重構造は、内部隔壁と連動する。一部の外壁が破損しても内部障壁により2次、3次の防壁を有しているので本発明と特許文献1とは相違している。さらに、特許文献1の採水は、河川の水をそのまま採取して貯水する方式であるが、本発明では、河川底及び河川敷を巨大な濾過層に見立て、河川地下水、堤防下の地下水の清水を採水する方式であるので基本的に相違する。
Patent document 1 is going to utilize a water tank as a bank. Proposing a continuous concrete aquarium installed on the riverbank is basically the same idea as the present invention, but Patent Document 1 has a simple structure and is supposed to cope with breakage of a dike. There is no specific content, which is very different from the present invention. In other words, in addition to the dynamic destructive force of the water flow, complex impacts such as driftwood and debris flow are applied to the torrent during flooding, and a force to push out from the inside of the dike is necessary to strengthen the dike. Patent document 1 is only a proposal as a water storage tank.
In detail, patent document 1 is a structure waterproofed only with a concrete outer wall, and does not consider about the failure | damage of an outer wall. In the idea of the present invention, the dam is pressed by the water pressure and the weight of the water stored in the high levee, the inner pressure that pushes the outer wall of the dyke works from the inside of the levee, and the outer wall has a structure that reduces the dynamic impact due to flooding. . Moreover, the barrier multiple structure of the present invention works in conjunction with the internal partition. Even if a part of the outer wall is damaged, the present invention and Patent Document 1 are different because the second and third barriers are provided by the inner barrier. Further, the water sampling of Patent Document 1 is a method of collecting and storing river water as it is, but in the present invention, the river bottom and riverbed are regarded as a huge filtration layer, and river groundwater and fresh water under the levee are collected. Since it is a method of collecting water, it is basically different.

特許文献2、特許文献3、特許文献4,特許文献5は、同一出願者による関連特許で、特許文献2の部分に特許文献1と重複する貯水槽内蔵の部分がある。構造体自体が内部に河川の水を流下させる暗渠構造で、河川上に建設する建築物が主体である。堤防機能は、内部の河川水を通過させる部分のコンクリート障壁で、構造体は河川を暗渠として構造体内部を通過させる人工河川構造である。
従って、構造的には本発明と同様、支柱と隔壁で仕切られた構造物ではあるが、貯水機能を主眼としたものではない。本発明の大量貯水機能と防災を主眼としたものとは相違する。また、貯水時の採水は。河川の水をそのまま採取して貯水する方式で、本発明の河川底及び河川敷を巨大な濾過層に見立て、河川地下水、堤防下の地下水の清水を採水する方式で地盤の液状化を防止と耐震構造を目指す本特許の意図とも相違する。
Patent Literature 2, Patent Literature 3, Patent Literature 4, and Patent Literature 5 are related patents by the same applicant, and the portion of Patent Literature 2 includes a part with a built-in reservoir that overlaps with Patent Literature 1. The structure itself is a culvert structure that allows river water to flow inside, and is mainly built on the river. The embankment function is a part of concrete barrier that allows internal river water to pass through, and the structure is an artificial river structure that allows the river to pass through the inside of the structure as a culvert.
Therefore, structurally, like the present invention, it is a structure that is partitioned by a support column and a partition wall, but does not focus on the water storage function. It differs from the mass storage function and disaster prevention of the present invention. In addition, water sampling during storage. By collecting the river water as it is and storing it, the river bottom and riverbed of the present invention are regarded as a huge filtration layer, and groundwater is collected from the groundwater of the river and underground water under the dike to prevent liquefaction of the ground. It is different from the intention of this patent aiming at an earthquake-resistant structure.

特許文献6は、通常の土砂堤防上に堤防に沿って設けられる貯水槽である。当該貯水槽に設けられた取水口は、河川の水位が一定以上に上昇したとき取水できる位置に存在することを特徴とする堤防兼用の河川水の貯水施設ある。本発明に示すような水の重量で堤防全体の重量を確保して堤防機能を強化することを目指した耐震構造の貯水堤防でもない。  Patent document 6 is a water tank provided along a dike on a normal earth and sand dike. A river water storage facility also serving as a dike is characterized in that the water intake provided in the water storage tank exists at a position where water can be taken when the water level of the river rises above a certain level. It is not a seismic structure water storage dike aiming to strengthen the dike function by securing the weight of the whole dike with the weight of water as shown in the present invention.

最近の発明としては、特許文献7に示す土砂堤防上の貯水構造物の施工方法がある。
特許文献7に示した土質堤防上の貯水構造物の施工方法である。その趣旨は、堤体を長大化させずに嵩上げし、洪水水位の上昇に対抗するため、堤体の上部を掘削し、引っ張り強度特性を有する第1の保護部材を施設し、堤上部の土の堤両面を保護部材で挟み込み、水で土手が破損しないように処置している。上部に貯水構造物を設置する工法であるが、堤全体を貯水槽とした堤防の構造ではない。
As a recent invention, there is a construction method of a water storage structure on a sand and sand bank shown in Patent Document 7.
This is a construction method of a water storage structure on a soil embankment shown in Patent Document 7. The purpose is to increase the height of the levee body without lengthening it and to excavate the upper part of the dam body in order to counter the rise of the flood water level, and to provide a first protective member with tensile strength characteristics. Both sides of the bank are sandwiched between protective members, and measures are taken to prevent the bank from being damaged by water. It is a method of installing a water storage structure at the top, but it is not a dike structure with the entire bank as a water storage tank.

堤防の多くは軟弱地盤上にあり、地震による地盤の液状化は、堤防の機能を根底から破壊する。地盤の液状化防止に関する特許文献は200件を越している。その内容は、宅地、ビル建設、工場地盤の強化を主眼とした地震対策としての技術が多い。
技術的内容は、遮水壁による不透水壁の設置、コンクリートパイルの打ち込みによる地盤強化技術、格子枠の設置による地盤強化、ドレーン埋設による強制排水など、多くの技術が提案されている。
Most of the dykes are on soft ground, and the liquefaction of the ground caused by an earthquake destroys the function of the dyke from the ground up. There are over 200 patent documents related to the prevention of ground liquefaction. The contents are many technologies for earthquake countermeasures with the main purpose of strengthening residential land, building construction, and factory ground.
As for the technical contents, many technologies have been proposed, such as the installation of impermeable walls by impermeable walls, the ground reinforcement technology by placing concrete piles, the ground reinforcement by installation of lattice frames, and forced drainage by drain burial.

特許文献8は、防水堤を造るに当たって、遮水壁シートパイルの接合部を防水して、連続打ち込み挿入し、防水壁と防水ダムの間隙に防水材を圧力で深くブランチングし、これを段々に打ち込み、軟弱地盤上に堤防ダムを安定させる技術である。本発明の耐震構造では、不透水壁の設置は、矢板盤打ち込み後トレンチャー又はバックホーで溝を掘り溝の中へ不透水壁を形成し、コンクリートパイルの打ち込みによる地盤強化技術とドレーン埋設による強制排水及び採水との複合技術によって液状化防止を図るので、特許文献8とは相違する。  In Patent Document 8, when constructing a waterproof levee, the joint portion of the impermeable wall sheet pile is waterproofed, inserted continuously, and a waterproof material is deeply branched by pressure between the waterproof wall and the waterproof dam. This is a technology that stabilizes the embankment dam on soft ground. In the seismic structure of the present invention, the impervious wall is installed by digging a groove with a trencher or backhoe after driving a sheet pile, forming an impermeable wall into the groove, and forcibly draining by ground reinforcement technology by concrete pile driving and drain burial. Since the liquefaction prevention is achieved by a combined technique with water sampling, it differs from Patent Document 8.

特許文献9では、河川堤防、溜め池、防油堤など流体の貯留又は遮水を目的とする盛土構造体の下部にみず道を形成することのない液状化防止法で、鋼矢板式による連続地中壁を堤防の内外に設け、盛土構造物の下部へ向けて斜め下方にアースアンカーを配置して、連続地中壁とアースアンカーを結着し、液状化を防止する技術である。本発明の液状化防止ではアースアンカーは使用せず、防護壁も主体は鋼矢板ではなく、コンクリート防水壁であるので特許文献9とは相違する。  In patent document 9, it is a liquefaction prevention method that does not form a waterway under the embankment structure for the purpose of fluid storage or water shielding such as river dikes, reservoirs, oil breakwaters, etc. This is a technique for preventing liquefaction by providing underground walls on the inside and outside of the dike, arranging earth anchors obliquely downward toward the lower part of the embankment structure, and connecting the continuous underground walls and earth anchors. In the prevention of liquefaction according to the present invention, an earth anchor is not used, and the protective wall is not a steel sheet pile but a concrete waterproof wall, which is different from Patent Document 9.

特許文献10では、構造物の周囲を締め切り壁で液状化しない土層まで包囲し、その内部基礎杭を液状化しない支持地盤まで打ち込み、基礎杭上に構造物を設置して固化材を用い基礎杭と構造物を一体化する技術である。本発明では防水壁を基層まで設置し、基礎杭を液状化しない支持地盤まで打ち込み、基礎杭上部間をコンクリートのべた打ちでパイルの粗固定を行うまでは同様であるが、地下暗渠により液状化する土層に含まれる水を用水として採水する構造と基礎杭の間隔に合わせた周囲をクッションゴムで包囲したパネルを敷き詰め、上部にゴムクッションを載せて各基礎杭に掛かる重量を均等化する構造になっており、特許文献10とは大きな相違がある。  In Patent Document 10, the surroundings of a structure are surrounded by a dead wall to a soil layer that does not liquefy, the internal foundation pile is driven to a support ground that does not liquefy, the structure is installed on the foundation pile, and a solidified material is used. This technology integrates piles and structures. In the present invention, a waterproof wall is installed up to the base layer, the foundation pile is driven to the support ground that does not liquefy, and the pile is fixed between the upper part of the foundation pile with solid concrete, but it is liquefied by underground culvert. A structure that collects water contained in the soil layer to be used as irrigation water and a panel surrounded by cushion rubber according to the interval between the foundation piles are spread, and a rubber cushion is placed on the top to equalize the weight on each foundation pile The structure is different from that of Patent Document 10.

暗渠排水に係る液状化防止方法としては、特許文献11に見られる。内容は、堤防盛土下の液状化防止を対象とし、堤防に沿った隔壁設置とドレーン設置及び強制排水である。
特許文献11は通常の盛土堤防であり、暗渠排水も深井戸へ地下深く送り込む方式である。本発明では、河川底地下及び堤防下地下から河川土層を巨大な濾過装置として活用し、堤防下の土層の地下水を、清浄な用水として採取する構造であるので、液状化防止と濾過採水兼ねているので、特許文献11の内容とは基本的に相違する。
Patent Document 11 shows a liquefaction prevention method related to underdrainage. The contents are intended to prevent liquefaction under the embankment embankment, including bulkhead installation, drain installation and forced drainage along the embankment.
Patent document 11 is a normal embankment embankment, and is a system in which underdrainage is also sent deep underground. In the present invention, the river soil layer is utilized as a huge filtration device from the riverbed underground and under the dike, and the groundwater in the soil layer under the dike is collected as clean water. Since it also serves as water, it is basically different from the content of Patent Document 11.

特許文献12には、最近の地盤の液状化防止方法が提案されている。この発明は、液状化する地盤に構築された構造物の流動化を格子状の地盤改良壁構造の形成によって、流動化を防止する技術である。本発明の基礎杭と連結するクッションゴムで包囲したコンクリートパネル相互の支え合いによって流動化を防止する技術とは相違している。  Patent Literature 12 proposes a recent ground liquefaction prevention method. The present invention is a technique for preventing fluidization of a structure built on a liquefied ground by forming a grid-like ground improvement wall structure. This is different from the technology for preventing fluidization by mutual support of concrete panels surrounded by cushion rubber connected to the foundation pile of the present invention.

貯水堤防は長期に亘って水を貯めるので、水垢や水の腐敗が発生し易い。また、灌漑用に使用する段階で、水の性質が、作物の生育やこれを飲用する動物の成育に大きな影響を有するので、貯水期間中の水の管理が重要である。本発明の水管理と先行する水の浄化技術を比較検討する。  The reservoir dike stores water for a long period of time, so it is easy for scale and water to decay. In addition, at the stage of use for irrigation, the nature of water has a great influence on the growth of crops and the growth of animals that drink it. Therefore, management of water during the storage period is important. The water management of the present invention is compared with the preceding water purification technology.

特許文献13は、水の浄化装置の提案である。湖沼から採水した水を濾過、汚泥物凝集除去、微生物の物理化学的制御、膜分離、活性汚泥法、光触媒、固体汚濁物除去、植物プランクトンを抑制する加圧技術等で飲料水に浄化する技術である。
本発明では、静止した水は、酸素欠乏を起こし、腐敗によるヘドロの発生を促すので、地下水から採取した清水を長期保存するため、水が循環する構造とナノバブルの供給により常に酸素を多く含んだ水を循環させ、水質保存と機能性の高い水を供給するのが目的であり、貯水技術としての提案であるので本発明と特許文献13は相違する。
Patent document 13 is a proposal of the water purification apparatus. Water collected from the lake is filtered, purified by sludge flocculation, physicochemical control of microorganisms, membrane separation, activated sludge method, photocatalyst, solid contaminant removal, pressurization technology to suppress phytoplankton, etc. Technology.
In the present invention, static water causes oxygen deficiency and promotes the generation of sludge due to rot. Therefore, in order to preserve fresh water collected from groundwater for a long period of time, it always contains a lot of oxygen due to the structure of circulating water and the supply of nanobubbles. The purpose of the present invention is to circulate water and supply water with high functionality and high functionality, and the present invention is different from Patent Document 13 because it is a proposal as a water storage technique.

特許文献14は、河川浄化を低コストで行うため太陽電池とバッテリーを連慟しブロワーで微細気泡を発生させる河川浄化方法である。ブロワーによる微細気泡発生方法は気泡のサイズが大きく、浄化した水の酸素供給には効果があるが、ナノサイズの気泡発生装置ではない。本発明で必要な装置は、水の循環水路とナノサイズの気泡発生装置である。  Patent document 14 is a river purification method in which solar cells and a battery are connected together to generate fine bubbles with a blower in order to perform river purification at low cost. Although the method of generating fine bubbles by the blower has a large bubble size and is effective in supplying purified water with oxygen, it is not a nano-sized bubble generation device. The necessary devices in the present invention are a water circulation channel and a nano-sized bubble generating device.

特許文献15には、本発明者が先に開発した「溶液の還元処理方法、酸化処理方法並びに自動酸化還元処理装置」を示した。内容は水素ガスの微細気泡による還元処理、空気・酸素・オゾンの微細気泡による酸化処理技術で、微細気泡水を生成する能力は、毎分10リットルから10トンの用水に対して、マイクロバブル、ナノバブルを生成して噴射する技術である。大量の微細気泡を発生し噴射する技術は現在のところ本技術のみである。
しかし、特許文献15には本発明の貯水堤防の長期貯水を目指すこととは相違し、循環水路の設置は含まれていない。本施設を構成するナノバブル発生装置である。
Patent Document 15 shows a “solution reduction treatment method, oxidation treatment method, and automatic oxidation-reduction treatment apparatus” previously developed by the present inventors. The contents are reduction treatment with fine bubbles of hydrogen gas and oxidation treatment technology with fine bubbles of air, oxygen, and ozone. The ability to produce fine bubble water is microbubbles for 10 to 10 tons of water per minute, It is a technology that generates and injects nanobubbles. The present technology is the only technology that generates and jets a large amount of fine bubbles.
However, Patent Document 15 is different from aiming for long-term water storage of the water storage embankment of the present invention, and does not include installation of a circulation channel. It is a nanobubble generator that constitutes this facility.

特許文献16には、水路を開閉するゲートを構成する、水門に上流の水を浄化して下流へ放流する浄化処理水槽と、浄化処理水槽に微細気泡を供給する微細機保発生装置を設置して、水を浄化する技術であるが、気泡の発生装置が加圧気泡発生方法であり、装置の構造から気泡のサイズはブロアーと同様比較的大きなマイクロバブルのサイズと考えられる。
本発明は、貯水堤防内の水の腐敗防止が主眼であり、循環誘導水路と特許文献15に示すナノサイズの微細気泡を循環させる構造であるので、特許文献16とは相違している。
In Patent Document 16, a purification processing water tank that constitutes a gate that opens and closes a water channel, purifies upstream water and discharges it downstream, and a fine machine maintenance generator that supplies fine bubbles to the purification water tank are installed. Although it is a technique for purifying water, the bubble generation device is a pressurized bubble generation method, and the size of the bubbles is considered to be a relatively large microbubble size, similar to the blower, from the structure of the device.
The present invention is different from Patent Document 16 because the main object of the present invention is to prevent water decay in the reservoir dike and circulate the circulation-inducing water channel and the nano-sized fine bubbles shown in Patent Document 15.

本発明では、これら河川地下水採水の貯水堤防の構造、堤防地下の水の採取による液状化を防止する耐震構造の堤防基盤、長期清浄な機能性の高い水を保蔵する新しい貯水方法等の技術を組み合わせて、総合的システムを組み立てる。  In the present invention, technologies such as the structure of storage dikes for river groundwater sampling, seismic structure embankment that prevents liquefaction by collecting underground water, and a new water storage method for storing long-term clean and highly functional water Assemble a comprehensive system.

特許公開昭55−72504 貯水槽を兼ねる堤防Japanese Patent Publication No. 55-72504 特許公開昭61−40806 河川敷を利用した貯水装置・堤防及び共同溝の複合構造体Japanese Patent Publication No.61-40806 Water storage device using riverbed, dike and joint groove composite structure 特許公開昭61−40805 堤防構造を含んだ建築構造体Patent Publication No. Sho 61-40805 Building structure including dike structure 特許公開昭61−40808 堤防を含んだ立体建築構造物Patent Publication No. 61-40808 Three-dimensional building structure including embankment 特許公開昭61−40809 防災用強化堤防を含む耐震堤防建築構造体Patent Publication No. 61-40809 Seismic embankment building structure including reinforced embankment for disaster prevention 特許公開2002−220822 堤防兼用の貯水槽Patent Publication 2002-220822 Reservoir / Water Tank 特許公開2007−239209 土質貯水構造物の施工方法Patent Publication 2007-239209 Construction Method for Soil Storage Structure 特許公開平2−108716 不良地質の堤防ダムと遮水壁Japanese Published Patent Application No. 2-108716 Leaked dam and impermeable wall 特許公開平6−240655 堤防盛土における液状化防止構造Patent Publication No. 6-240655 Structure for preventing liquefaction in embankment embankment 特許公開平10−18310 構造物の耐震補強方法Patent Publication No. 10-18310 Seismic reinforcement method for structures 特許公開平11−1926 盛土構造物の液状化防止対策工法Patent publication 11-11926 liquefaction prevention construction method of embankment structure 特許公開2007−327209 線状構造物の流動化対策工法Patent Publication 2007-327209 Method for Measures against Fluidization of Linear Structures 特許公開平9−276847 水の浄化装置Patent Publication 9-276847 Water purification device 特許公開2001−321790 河川浄化方法Patent Publication 2001-321790 River Purification Method 特許公開2003−158698 (特許第3843361号)微細気泡による酸化還元装置Patent Publication No. 2003-158698 (Patent No. 3843361) Redox device using fine bubbles 特許公開2004−360396 水質浄化ゲートPatent Publication 2004-360396 Water Purification Gate

本発明の第1の課題は、清浄な河川地下水の堤防内の貯水施設によりきょうきゅうし、水不足解消である。
気象変化に伴う局地的異常降水量の急増に見合った河川堤防の嵩上げである。堤防基盤を堅固にし、地震や災害に対して安全な技術で、事故による一部破損でも被害を最小限に止め、工事が迅速で丈の高い貯水堤防による、新しい防災技術の提供を目指している。
第2の課題は、地球温暖化により多発する世界各地の大洪水等の災害防止、海岸の大浸食の防止並びに島嶼地域の陸地水没の防止などに係る基礎技術の提供である。
第3の課題としては、世界の各地における水不足に対応した水の新しい貯水方法と安定した水の供給方法の提案である。
貯水手段としては、ダムが挙げられるが、従来のダムには土砂崩壊による濁水発生、温度上昇による無駄な蒸発散による減水、アオコ発生や水の腐敗など問題が多い。
その貯水方法の欠陥を補い、毎年洪水を起こす流域、島嶼地域、海岸地域においても、汚染がなく蒸発散しない水瓶の確保が必要である。
特に、大量の水を長期貯留する場合は、酸素を送り流水を発生させて水の腐敗を防止し、ダム湖底、水槽底に発生するヘドロ堆積防止を解決する必要がある。
その解決を図るための技術は、堅牢な中空の堤防に水を入れ、当発明者が発明した特許第3843361号の微細気泡ナノバブルによる水の浄化環流装置で清水を維持し、貯水重量と堤防の高さで洪水の激流を堰き止め、強大な水圧でも土手が崩壊しない構造の貯水堤防を提供する。
この貯水堤防は、鉄筋コンクリートで崩壊しない急傾斜を有する構造で、狭い堤防幅が要求される場所でも設置可能である。また、貯水のため中空であるので、堤防構築に係る土砂等資材量は大幅に軽減され、堤防の高さを嵩上げすることも容易である。
さらに、強固な堤防が必要な河川地帯は、砂質の土層が多く、伏流水、地下水が浅いので地震に伴う液状化現象が起こり易い。本技術では、地中隔壁の設置、パイルの打ち込み、深層ドレンパイプ設置と揚水ポンプで地下水採水を兼ねた排水で対処する。
即ち、清浄な地下水の採取技術と液状化防止技術を重ね、堤防が水源確保と防災機能の双方を兼ねている。
具体的内容は、1貯水堤防構造、2堤防基盤の免震液状化防止地盤強化技術、3微細気泡ナノバブル水連続循環浄化型貯水堤防の提供である。
The first problem of the present invention is to solve the water shortage by using a water storage facility in a dike of clean river groundwater.
The river embankment is raised in proportion to the rapid increase in local abnormal precipitation due to weather changes. Aiming to provide new disaster prevention technology with a strong dike base, a safe technology against earthquakes and disasters, minimizing damage even in the event of partial damage due to an accident, and a quick and tall reservoir levee .
The second issue is the provision of basic technologies for preventing disasters such as major floods around the world that frequently occur due to global warming, preventing coastal erosion, and preventing land submergence in island areas.
The third issue is the proposal of a new water storage method and a stable water supply method that can cope with water shortages in various parts of the world.
Dams can be cited as a means of storing water, but conventional dams have many problems such as generation of turbid water due to sediment collapse, reduction of water due to wasteful evapotranspiration due to temperature rise, generation of blue sea bream and water decay.
It is necessary to secure water bottles that are free from pollution and evapotranspiration even in the catchment basin, islands, and coastal areas that cause floods every year.
In particular, when a large amount of water is stored for a long period of time, it is necessary to prevent oxygen from being spoiled by sending oxygen and to prevent the accumulation of sludge generated at the bottom of the dam lake and the tank.
In order to solve this problem, water is poured into a solid hollow embankment, and the fresh water is maintained with the water purification and recirculation device using the fine bubble nanobubbles of the patent No. 3843361 invented by the present inventor. It will prevent flooding at high heights and provide a dike with a structure that prevents the bank from collapsing even with strong water pressure.
This reservoir embankment has a steep slope that does not collapse with reinforced concrete, and can be installed even in places where a narrow embankment is required. Moreover, since it is hollow for storing water, the amount of materials such as earth and sand related to the embankment construction is greatly reduced, and it is easy to increase the height of the embankment.
Furthermore, river areas that require strong embankments have many sandy soil layers and shallow underground water and underground water, so liquefaction is likely to occur due to earthquakes. This technology will deal with the installation of underground bulkhead, pile driving, deep drain pipe installation and drainage that also serves as groundwater sampling with a pump.
In other words, clean groundwater collection technology and liquefaction prevention technology are repeated, and the embankment serves both as a water source and a disaster prevention function.
The specific contents are 1 reservoir dike structure, 2 seismic isolation liquefaction prevention technology for the base of dike base, and 3 micro-bubble nano bubble water continuous circulation purification type reservoir dike.

請求項1及び請求項2には地下水の貯水機能と堤防機能を両立させるため、鉄筋コンクリートの多機能の貯水可能な構造物を貯水堤防として提案した。
貯水堤防は、平野部に設置する傾斜面を有する堤防型貯水堤防(bank type pondage bank以下BtypePBと称する)と渓谷・山間部の道路の土台を形成する河岸断崖を形成する断崖型貯水堤防(clif type ponndage bannk以下CtypePBと称する)とがある。
何れも、しっかりした河岸基盤を造成し、その上に貯水堤防を築き、中に地下水を吸い上げて貯水し、鉄筋コンクリートの重量と貯水した水の重量で洪水を防止する。
Claims 1 and 2 propose a reinforced concrete multi-function water-storable structure as a storage dike in order to achieve both a groundwater storage function and a dike function.
Reservoir dike is a cliff-type reservoir (clif) that forms a riverbank cliff that forms the foundation of a valley-mountain road and a dike-type reservoir bank (hereinafter referred to as “bank type PB”) having an inclined surface to be installed in a plain. type pondage bank, hereinafter referred to as Ctype PB).
In both cases, a solid riverbank is built, a water bank is built on it, groundwater is sucked up and stored, and flooding is prevented by the weight of reinforced concrete and the weight of the stored water.

1 堤防形貯水堤防BtypePBの概要
図1には堤防型貯水堤防の俯瞰図を示した。堤防は河川に沿った一定距離毎に区画を設置して区切り、区画の一定距離毎に地下水取水、配水、貯水浄化等の水を管理する施設「コントロールセンター」CCを設置する。
即ち、流域の一定範囲、例えば100m〜2,000mの範囲を1区画として区域毎に区切って貯水する構造である。
堤防法面の外殻側壁4は斜面を利用した太陽光発電の敷地として使用が可能であり、太陽光発電の接続防水端子12を格納する施設をコントロールセンターCC付近の天端の道路面に沿って設置する。
堤防の上部は、通常は高速の幹線道路29建設が可能であるが、広大な敷地を有し都市化と防災を行う場合は、スーパー堤防と同様、住宅、ビル、商店街、大型百貨店・ショッピングセンター、駐車場、工場、公園、運動場、町造りなど複合化による総合的施設建設の基盤としても可能である。
防水河面側Iの堤防下方には河面犬走り6を設け、船着き場とその取り付け道路として、堤防下横断道路と防水扉32を設置して内外の連絡を図り、内陸側IIの堤防下方には内陸面犬走り7を設け、各地への連絡道路、作業道路の起点として機能する。
1 Outline of Levee-type Water Reservoir BtypePB Fig. 1 shows an overhead view of the dike-type storage dike. The embankment will be set up and separated by a certain distance along the river, and a facility “Control Center” CC will be installed to manage the water for groundwater intake, water distribution, storage purification, etc.
That is, it is a structure in which a predetermined range of the basin, for example, a range of 100 m to 2,000 m is defined as one section and divided and stored for each section.
The outer shell side wall 4 of the dike slope can be used as a site for photovoltaic power generation using slopes, and the facility for storing the photovoltaic waterproofing connection terminal 12 is located along the road surface at the top edge near the control center CC. Install.
In the upper part of the embankment, it is usually possible to construct a high-speed main road 29. However, in the case of urbanization and disaster prevention with a vast site, as with a super embankment, houses, buildings, shopping streets, large department stores and shopping It can also be used as a base for constructing comprehensive facilities by combining centers, parking lots, factories, parks, playgrounds, and town structures.
There is a river dog run 6 below the levee on the waterproof river side I, a crossing road under the levee and a waterproof door 32 are installed as a dock and its attachment road, and the inside and outside are connected, and the inland below the levee on the inland side II A face dog run 7 is provided, which functions as a starting point for roads and work roads to various places.

1 堤防形貯水堤防BtypePBの基本構造
図2には、コントロールセンターCC付近の堤防型貯水堤防BtypePBの横断面図を示した。
Aは河川又は海洋、Bは砂質の河床等沖積層、Cは沖積層の下の基層又は岩盤である。
構造は、河川に沿って河岸方向Iから内陸方向IIへ向け、鉄筋コンクリートによる支柱とそれに連なった幾重もの隔壁2,3を有し、法面と天端を斜行外壁4と天井盤1を鉄筋コンクリートで被覆密封し、内部空間に水を蓄える機能を有している。
堤防の天端は、通常は幹線道路の道路保護盤27を設置することが可能である。
貯水堤防内部は、隣接する貯水堤防区画とコントロールセンターCCで水のやり取りができる通水路Eと大容量貯水を可能とする貯水槽Fから成り立っている。
大容量貯水槽は、天端幅を広くすることと丈を高くすることであり、天端幅は必要に応じて支柱と隔壁の数を増大させ拡大することが可能である。
貯水する水は堤防下、河川敷地下の土砂層を巨大な濾過装置として活用し、設置した暗渠UD及び河川濾過装置AFで採水し、コントロールセンターCC地下の堤防を横断する集水ボックスCB内を負圧にして集水し、コントロールセンターCCの暗渠揚水ポンプDPと揚水パイプ8で、農業用水は河川濾過装置ポンプAFと河川揚水パイプ10で、それぞれ用途に合わせた貯水槽へ送水する。特に農業用水は洪水等の緊急時に備え、河川濾過装置AFと同ポンプAPと河川揚水パイプ10で大量の水を急速に採水して堤防重量を高める必要があるので別途に採水施設を設けている。
工業用水と飲料水は地下水のみの採水を行う。
貯水槽の中では、各水槽タンクへ給配水パイプ9を通して水の給配水を行い、堤防外へはコントロールセンターCCの配水パイプ11で用途別に配水する。
これらいずれの用水も平常は乾期の用水として活用し、雨期に満水にして水の有効利用を図る。貯水堤防の水はダムと違ってアオコの発生やヘドロの堆積が起こらない。
本貯水堤防の特徴は堤防下地下水の有効利用と幾重にも隔壁を設けて、洪水に際し、例え一箇所の外壁が破損の被害を受けても堤防の決壊が防がれることが特徴である。
図中パイプの表示は複雑さを避けるため、複数配線を書き込む必要があっても必要な配線を代表して一線にして表示した。
従って水の採水別、配水別、用途別にそれぞれ複数のパイプが存在ことを示している。
1 Basic Structure of Levee-type Reservoir Btype PB FIG. 2 shows a cross-sectional view of the dike-type reservoir dike Btype PB near the control center CC.
A is a river or ocean, B is an alluvium such as a sandy riverbed, and C is a base layer or bedrock under the alluvium.
The structure is from riverbank direction I to inland direction II along the river, and has reinforced concrete columns and multiple bulkheads 2 and 3 connected to it. And has a function of storing water in the internal space.
At the top of the embankment, a road protection panel 27 for a main road can be installed.
The interior of the reservoir dike consists of an adjacent reservoir dike section, a water passage E that allows water to be exchanged at the control center CC, and a water tank F that enables large-capacity water storage.
The large-capacity water tank is to widen the top end and increase the height, and the top end width can be increased by increasing the number of support columns and partition walls as necessary.
The water to be stored is under the levee, the sediment layer under the river premises is used as a huge filtration device, water is collected with the installed underdrain UD and the river filtration device AF, inside the water collection box CB crossing the levee under the control center CC Water is collected at a negative pressure, and agricultural water is sent to a storage tank according to the application by a culvert pumping pump DP and a pumping pipe 8 of the control center CC, and by a river filter pump AF and a river pumping pipe 10. In particular, agricultural water is prepared for emergencies such as floods, and it is necessary to rapidly collect a large amount of water with the river filtration device AF, the pump AP, and the river pumping pipe 10 to increase the weight of the dike. ing.
Industrial water and drinking water are collected only from groundwater.
In the water storage tank, water is supplied / distributed to each tank through the water supply / distribution pipe 9, and the water is distributed to the outside of the bank by the water distribution pipe 11 of the control center CC.
All of these waters are normally used as water during the dry season, and the water is filled during the rainy season for effective use. Unlike the dam, the water in the reservoir dike does not cause the formation of blue sea urchin or sludge.
The characteristics of this reservoir dike are the effective use of underground water under the dike and the provision of multiple bulkheads to prevent the breakage of the levee even in the event of a flood, even if one outer wall is damaged.
In order to avoid complexity in displaying the pipes in the figure, even if it is necessary to write a plurality of wirings, the necessary wirings are displayed as a single line.
Therefore, it is shown that a plurality of pipes exist for each water sampling, distribution, and usage.

2 断崖型貯水堤防CtypePBの構造
図3には、コントロールセンターCC付近の断崖型貯水堤防CtypePBの横断面図を示した。Aは河川又は海洋、Bは砂質の河床等沖積層、Cはの基層又は岩盤及び山地である。
堤防型貯水堤防と同様、Iは堤防の河川・海洋側に面した位置、IIは堤防の内陸側に面した位置を示す。
堤防の基本構造は、固定安定化した堤防基盤の上に、多くの内壁と連なった支柱2を立て、外殻を成す強固な側壁4と上部に道路27を載せる天井盤1で一体的に覆い、堤防内部に貯水可能な空間を設ける。外側壁はBtypePBと異なり狭小な地形に合わせ垂直に近い断崖状を形成する。貯水堤防内部は、コントロールセンターCCで水の管理を行い、通水路E・G・Iと貯水槽F・H・Jから成り立っている。
貯水する水は堤防下、河川敷地下の土砂層を巨大な濾過装置として活用し、設置した暗渠UD及び河川濾過装置AFで採水し、コントロールセンターCC地下の堤防を横断する集水ボックスCBに集水し、コントロールセンターCCの暗渠揚水ポンプDPと揚水パイプ8で、農業用水は河川濾過装置ポンプAFと河川揚水パイプ10で、それぞれ用途に合わせた貯水槽へ貯水する。特に農業用水は洪水等の緊急時に備え、河川濾過装置ポンプAFと河川揚水パイプ10で大量の水を急速に採水して堤防重量を高める必要があるので別途に採水施設を設けている。工業用水と飲料水は揚水パイプ8で地下水のみの採水を行う。
貯水槽の中では、各水槽タンクへは給配水パイプ9を通して水の給配水を行い、堤防外へはコントロールセンターCC外への配水パイプ11で用途別に配水する。
2 Structure of cliff-type reservoir dike CtypePB FIG. 3 shows a cross-sectional view of the cliff-type reservoir dike CtypePB near the control center CC. A is a river or ocean, B is an alluvium such as a sandy riverbed, and C is a base layer or bedrock and mountains.
As with the dike-type storage dike, I indicates the position facing the river / ocean side of the bank, and II indicates the position facing the inland side of the bank.
The basic structure of the levee is that the pillar 2 connected to many inner walls is placed on a fixed and stabilized levee base, and is covered with a solid side wall 4 forming an outer shell and a ceiling board 1 on which a road 27 is placed on the upper part. A space where water can be stored will be provided inside the dike. Unlike BtypePB, the outer side wall forms a cliff shape that is nearly perpendicular to the narrow topography. The inside of the dike is managed by the control center CC, and consists of water channels E, G and I and water tanks F, H and J.
The water to be stored is collected under the dike and the sediment layer under the river premises as a huge filtration device, collected by the installed culvert UD and the river filtration device AF, and collected in a water collection box CB that crosses the dike under the control center CC. Agricultural water is stored in a storage tank according to the intended use by the river filtration device pump AF and the river pumping pipe 10 using the underdrain pumping pump DP and the pumping pipe 8 of the control center CC. In particular, agricultural water is prepared for emergencies such as floods, and since a large amount of water needs to be rapidly collected by the river filtration device pump AF and the river pumping pipe 10 to increase the weight of the levee, a separate water sampling facility is provided. Industrial water and drinking water are sampled only from the groundwater through the pumping pipe 8.
In the water storage tank, water is supplied and distributed to each tank tank through a water supply and distribution pipe 9, and water is distributed outside the bank by a distribution pipe 11 outside the control center CC.

3 セル構造の多段フロアー貯水堤防の概要
請求項2には、堤防の丈が高く、天端面、法面を多目的に活用する耐震性の貯水堤防を提案した。
図4及び図5に示すとおり、堤防上に巨大な重量物を積載する大型の堤防の場合は、鉄筋コンクリートの支柱と梁を太く強化し、支柱と結続する隔壁、梁と結続する天井、床で長大なセル構造を形成し、法面を斜行梁及び外壁で密封し、多段の貯水フロアーを設け、堤防の耐震性と大型化を可能にする構造である。形状は、堤防型の場合も、断崖型の場合も、高さを30メートル以上にすることも可能である。
各フロアーは飲料水、工業用水、農業用水の用途別に貯水し、用水毎に管理する。更にスーパー堤防として上部に都市構造を計画する場合は、頻発するゲリラ的集中豪雨に伴う都市型浸水を都市構造の地下に貯え、水害の防止施設として活用することが可能である。
特に多段フロアー貯水堤防は、図1、図4に示すように堅牢で法面が広いので増水時に堤防天端に引き上げ可動の太陽光発電施設の設置が可能であり、コントロールセンターCC付近の天端の道路面に沿って接続防水端子12を格納する施設を設置する。
堤防上の幹線道路から河岸、海岸道路、内陸方面への連絡道路等との接続道路、インターチェンジの設置が可能である。
3. Outline of multi-level floor reservoir dike with cell structure Claim 2 proposed an earthquake-resistant reservoir dike with a high dike height and multi-purpose use of the top and slope.
As shown in Fig. 4 and Fig. 5, in the case of a large levee that loads huge heavy objects on the levee, the reinforced concrete columns and beams are strengthened thickly, the bulkheads connected to the columns, the ceilings connected to the beams, A long cell structure is formed on the floor, the slope is sealed with oblique beams and outer walls, and a multi-stage water storage floor is provided to enable earthquake resistance and enlargement of the dike. The shape can be 30 meters or more in both the embankment type and the cliff type.
Each floor stores water for each use of drinking water, industrial water and agricultural water, and manages it for each water. Furthermore, when planning the urban structure on the upper part as a super bank, it is possible to store urban inundation accompanying frequent guerrilla heavy rains in the basement of the urban structure and use it as a flood prevention facility.
The multi-floor water storage dike is particularly robust and has a wide slope as shown in Figs. 1 and 4, so that it is possible to install a movable photovoltaic power generation facility at the top of the dike when the water increases, and the top of the control center CC is near the top. A facility for storing the connection waterproof terminal 12 is installed along the road surface.
Connecting roads and interchanges from main roads on embankments to riverbanks, coastal roads, inland roads, etc. can be installed.

4 セル構造の多段フロアー貯水堤防の構造説明
BtypePB及びCtypePBは基本的に共通した構造であり、各部所を表示する記号も共通するので、纏めて説明を行う。
図3及び図4に示すとおり、Iは堤防の河川・海洋側に面した位置、IIは堤防の内陸側に面した位置を示す。
Aは河川又は海洋、Bは砂質の河床等沖積層、Cは沖積層の下の基層又は岩盤である。
堤防の基本構造は、堤防基盤の上に多くの内壁を有する支柱2、3を立て、上部に道路又は建造物を載せる天井盤1を有する。堤防外面は強固な斜面構造物4で外殻を形成し、上に道路保護盤29を載せ、堤防内に貯水することを可能としている。
堤防内は不測の事態に備え、中央部、斜面部それぞれの位置に区画を設け、内部を仕切る内壁、内壁と一体の支柱2及び3を岸面に沿って平行に連ね、重量を支持する構造である。この区画と内壁により、貯水を一定枠内で保持し、堤防の一部に破壊が起こっても被害を破損した一部の範囲内の最小限に止め、安全性を高める。
また、この区画及び内壁は貯水位置に応じて、飲料水、工業用水、農業用水として仕分けし、それぞれ機能別に貯水することを可能とする。
飲料水、工業用水の貯水は堤防下地下水排水暗渠UD内を負圧にして採取し、集水ボックスCBに集め、地下水揚水ポンプDPで吸い上げる。
但し、工場、病院、家庭排水、畜産排水等の水の汚染源が近くにある地域での飲料水の採水は、地下水排水暗渠UDの場所を河川底地下深層へ移して採取することが安全である。吸い上げた水は、地下水揚水パイプ8でコントロールセンターCCへ送って、用水毎に振り分けて配分し、配水パイプ9から貯水堤防各タンクへ貯水する。地下水を堤防下地下水排水暗渠UDで排水し、集水ボックスCBで採水することは、堤防下土層の地震による液状化を防止することが目的の一つでもあり極めて重要な意味を有する。
コントロールセンターCCの配水パイプ9は、各タンクへの給水と併せ需要に応じ需用者への配水する場合も用いる役割を有している。
農業用水の貯水は、平常は飲料水、工業用水と同様地下水を汲み上げて使用するが、洪水期には、河川敷地下の濾過装置AFから濾過後河川地下水揚水ポンプAPで汲み上げ、河川揚水パイプ10で農業用水タンクを満水にして堤防重量を高め、重量増加による堤防の洪水阻止力を強める。洪水期には地下水も増水するので、飲料水、工業用水も増加して満水になる。
これらいずれの用水も平常は乾期の用水として活用し、水の有効利用を図る。
河面側Iの堤防下方には河面犬走り6を設け、船着き場道路として、内陸側IIの堤防下方には内陸面犬走り7を設け、作業道路としてそれぞれの機能を有する。
また、河川水への微細気泡ナノバブル水供給パイプ31により、河川へナノバブルを連続的に放出して、積極的な河川浄化を行う。
4. Description of the structure of a multi-stage floor water storage dike with a cell structure Btype PB and Ctype PB are basically the same structure, and the symbols for indicating each part are also common, so they will be described together.
As shown in FIGS. 3 and 4, I indicates a position facing the river / ocean side of the embankment, and II indicates a position facing the inland side of the embankment.
A is a river or ocean, B is an alluvium such as a sandy riverbed, and C is a base layer or bedrock under the alluvium.
The basic structure of the levee has a ceiling board 1 on which pedestals 2 and 3 having many inner walls are set on the levee base, and a road or a building is placed on the upper part. The outer surface of the embankment forms an outer shell with a strong slope structure 4, and a road protection board 29 is placed on the outer surface so that water can be stored in the embankment.
In case of unforeseen circumstances inside the levee, a partition is provided at each position of the central part and slope part, and the inner wall that divides the interior and the pillars 2 and 3 that are integral with the inner wall are connected in parallel along the shore surface to support the weight It is. These compartments and inner walls keep the water storage within a certain frame, and even if a part of the embankment breaks down, the damage is kept to a minimum within a part of the damaged part, thereby improving safety.
In addition, the compartment and the inner wall are sorted as drinking water, industrial water, and agricultural water according to the water storage position, and can be stored for each function.
Drinking water and industrial water are collected under negative pressure in the underground water drain culvert UD under the levee, collected in a water collection box CB, and sucked up by a groundwater pumping pump DP.
However, it is safe to move the groundwater drain culvert UD to the deep underground depth of the river when drinking water in an area where water sources such as factories, hospitals, domestic wastewater and livestock wastewater are nearby. is there. The sucked-up water is sent to the control center CC through the groundwater pumping pipe 8, distributed and distributed for each irrigation water, and stored from the water distribution pipe 9 to each tank of the storage dike. Draining groundwater from the levee underground drainage culvert UD and collecting in the water collection box CB is extremely important because it is one of the purposes to prevent liquefaction of the levee subsoil layer due to earthquake.
The water distribution pipe 9 of the control center CC has a role to be used when supplying water to consumers according to demand in addition to water supply to each tank.
Agricultural water storage is normally used by pumping groundwater like drinking water and industrial water, but in the flood season, it is pumped from the filtering device AF under the river premises and then pumped by the river groundwater pumping pump AP. Fill the agricultural water tank with water, increase the embankment weight, and strengthen the embankment's ability to prevent floods by increasing the weight. During the flood season, groundwater also increases, so drinking water and industrial water increase and become full.
All of these waters are normally used as water during the dry season, and the water is used effectively.
A river dog run 6 is provided below the river side I levee, and serves as a landing road, and an inland dog run 7 is provided below the inland side II levee, each having a function as a work road.
Further, the nanobubbles are continuously discharged into the river by the fine bubble nanobubble water supply pipe 31 to the river water, and the river is positively purified.

5 堤防基盤の規模と耐重量機能の強化
貯水堤防は基盤は地盤の深い地層まで重量支持耐性を高め、完全なものにする必要がある。堤防は内部に水を貯めるので、その重量は極めて重い。建造物と水の重量は堤防の高さが10mの場合は約15トン/mで、30トン/mの地盤支持力が必要であり、高さが30mの場合は約重量が約45トン/mで、90トン/mの地盤支持力が必要である。
そのため、支持コンクリート杭16の打ち込みは、基盤又は岩盤に達する必要がある。
堤防の貯水容積の規模は、基底の幅×堤防上面の幅×高さ×堤防貯水1区画の長さの関係から割り出されるが、堤防上面に道路を設置する場合、道路幅の規模によって算定する。例えば、高さ10m、上面幅10m、下面幅30m、1区画500mの堤防の場合の貯水量は、単純計算で約10,000トン(実質7,000トン程度)の貯水が可能と考えられる。
〔堤防の高さと幅〕
堤防の高さは、通常20m程度は必要である。傾斜の角度は通常45度が目安であるが、20mの高さの場合の基底幅は堤上の必要道路幅などの堤上面幅+40m(高さの2倍)である。
仮に大河に係る貯水堤防で30の高さを要する場合の基底幅は、天端の面積幅+60m(高さの倍)の幅である。スーパー堤防と同様、堤上に建設する道路の必要幅の他に住宅地、ビル、駐車場、ショッピングモール、及び複合住宅等の用地として建設する場合の基底幅は、その必要な堤上の面積幅+60m(高さの倍)の幅である。
5 Strengthening the size and weight-proof function of the dike foundation The dike foundation needs to increase the weight support resistance to the deep ground and complete it. The dike stores water inside, so its weight is extremely heavy. The weight of the building and water is about 15 tons / m 2 when the height of the dike is 10m, and requires a ground bearing capacity of 30 tons / m 2 , and the weight is about 45 when the height is 30m. ton / m 2, it is necessary to ground the supporting force 90 ton / m 2.
Therefore, the driving of the supporting concrete pile 16 needs to reach the base or the bedrock.
The size of the dike storage volume is calculated from the relationship between the width of the base x the width of the dike upper surface x the height x the length of one section of the dike water storage. When a road is installed on the dike upper surface, it is calculated by the size of the road width. To do. For example, in the case of a dike with a height of 10 m, an upper surface width of 10 m, a lower surface width of 30 m, and a section of 500 m, it is considered that it is possible to store water of about 10,000 tons (substantially about 7,000 tons) by simple calculation.
[Height and width of the embankment]
The height of the embankment usually needs about 20m. The angle of inclination is usually 45 degrees, but the base width when the height is 20 m is the width of the upper surface of the levee such as the required road width on the levee +40 m (twice the height).
The base width in the case of requiring a height of 30 in the reservoir bank related to the big river is the area width of the top end + 60 m (double the height). Similar to the super embankment, in addition to the necessary width of the road to be constructed on the embankment, the base width in the case of construction as a site for residential areas, buildings, parking lots, shopping malls, and complex houses is the area on the necessary embankment. The width is a width of +60 m (double the height).

6 堤防の重量と貯水能力に伴う貯水堤防基盤の地盤強化技術
請求項3及び請求項4には、免震性で地盤の液状化を防止し、巨大な貯水堤防を支える総合的な耐震性基盤とその基盤整備技術を提案した。
図5には耐重、免震、液状化防止技術を施した基盤構造を工事手順に沿って示した。
1)矢板盤の打ち込みと地下隔壁の設置
河面側Iと内陸側IIの矢板鋼板13は基層Cの深さまで打ち込む。
14は鉄筋コンクリートの隔壁板で、鋼板が腐食しても堤防基盤を水蝕から保護する機能を有する。
鉄筋コンクリートの地中隔壁板14は、トレンチャー又はバックホーを用いて基層Cまで溝を掘り下げて、溝中に埋設設置する。その機能は長期経過後矢板鋼板13の腐植による崩壊後も、河面、内陸面の土層と隔離し、堤防したの地盤を地震等の液状化から保護することである。
2)暗渠ドレーンと集水ボックスの設置
また、堤防下深層へ埋設する暗渠ドレーンUD、河川水採水濾過装置AF及び集水ボックスCBは、負圧構造を完結するため、予め基盤造成の当初に所定の位置に埋設構築し、揚水ポンプDP、AP並びに揚水パイプ8、10の設備設置を可能とする基礎工事を行う。
3)鉄筋コンクリート製の杭(パイル)の打ち込み
次に隔壁板の内側へ、鉄筋コンクリート製の杭(パイル)16を基層Cまで必要数打ち込み、土圧によって鉄筋コンクリートの隔壁板14を外側の矢板鋼板13へ押しつける。
地中隔壁板14内側の鉄筋コンクリート製の杭(パイル)16の上に、貯水堤防底部に設置する免震パネル18及び重量支持基盤19を設置するので、コンクリート杭16の打ち込みは、特に荷重の大きく懸かる貯水堤防中央部を密にすることが重要である。
4)コンクリート杭(パイル)16頂部へ半球状のキャップ27を取り付ける。(図17参照)取り付けはコンクリート杭パイル)16頂部の接続凹孔部へ半球状のキャップ下の凸部28を差し込み固定して頂部半球状のコンクリート杭にする。(固定にはコンクリート杭に特注により直径と接続部のサイズが同一の接続凹孔部が必要である。)
5)地中隔壁板と接続する堤防下横断コンクリート枠による耐震舛の設置
堤防下を横断する鉄筋コンクリート枠15を設置して、堤防左右の地中隔壁板14と連結し、基盤部分に舛構造を形成する。(図7〜図9を参照)
この舛構造は、地震による左右のエネルギーを受け止める地中隔壁板14を固定強化する役割を果たし、同時に地震発生の際河川上下方向の揺れのエネルギーを受け止め、堤防を上下方向の振動から守る機能を有している。
舛構造の機能は、上下2つのスライダーを挟んで、地震により免震パネル18が動き、基盤上の堤防と地面の間ををスライドさせ、舛構造で受け止め、堤防を支える基盤への振動をゴムクッション20で衝撃を和らげる働きを有している。
6)地盤固めと基礎平盤の生コン打ち込み
コンクリート杭16の周辺を浅く掘り上げて地固めを行い、水準を合わせて栗石21を敷き詰めて地固め21する。
地固め層21の上に、コンクリート杭16を中心に連結する結着固定基盤17を施設する。コンクリート杭16の周囲は、ゴムの緩衝リング23で巻き、結着固定基盤17は生コン打ち込みを行う。
7)1次免震スライダーの設置
結着固定基盤17の上には、ゴムシート24とゴムの保護膜24でコンクリート相互の衝突を防ぎ、衝撃を吸収し、粘土・シルト・グリースによる滑り層のスライダーを設置する。
8)免震パネル設置による緩衝基盤構造
コンクリート杭16の頂部に半球状のキャップ27を固定し、上に取り付ける免震パネル18が自由に首振りをできる状態にする。キャップ上はグリースで滑りを良くする。
コンクリート杭16半球状の頂部に免震パネル18の凹部を填め込む。(図8、図10、図11参照)地震の揺れに対しこの免震パネルの首振り運動と粘性滑面によるスライドと首振り運動がスライダーとして働き地震エネルギーを逃し免震効果を発揮する。
9)2次免震スライダーと堤防基盤の設置
免震パネル18の上に厚さ0.1〜1mの耐震ゴムクッション20を介して、貯水堤防の重量を均等に支持するコンクリート堤防基盤19を設置する。鉄筋コンクリートの隔壁板14とコンクリート堤防基盤19の間に厚さ5〜30cmの厚い耐震ゴムクッション18を挟んで、上に粘土・シルト・グリースによる滑り層を設置して堤防の横揺れの緩衝を行う。
(2次免震スラーダー)
貯水堤防はその重量を均等支持するコンクリート堤防基盤17の上に建設する。
10)貯水堤防の採水と地盤の液状化防止技術
貯水堤防直下の砂質土層からは大量の伏流水の浸透がある。これを地中隔壁板で新たな水の侵入を防ぎ、地下数メートルには、1〜数十本の径0.1〜1mの多孔パイプ、多孔のコンクリート暗渠UDを設置し、侵入してくる河川伏流水、地下水を負圧で吸引し、地下水採水ボックスCBに導いて強制排水する。強制排水すると同時に貯水槽へ送る。
堤防地下への伏流水、地下水の侵入防止と強制排水を繰り返し長期継続すれば、堤防地下の自由水が減少して、地震等の揺れが起こっても地盤の液状化は防止される。
強制排水は地下水揚水パイプ8によって貯水堤防PBへ送り貯水する。この地下水は濾過した飲料水として活用し、コントロールセンターCCで管理する。
この様に本技術では、飲用水採取と液状化現象原因の土中自由水の除去を同時併行的に行って、用水確保と防災を両立させる。
6 Ground strengthening technology of the reservoir levee base according to the weight of the levee and the water storage capacity Claims 3 and 4 include a comprehensive seismic base that is seismically isolated and prevents liquefaction of the ground and supports a huge reservoir levee And its infrastructure improvement technology was proposed.
Fig. 5 shows the foundation structure with heavyweight, seismic isolation, and liquefaction prevention technology along the construction procedure.
1) Driving sheet piles and installing underground bulkheads The sheet pile steel plates 13 on the river side I and the inland side II are driven to the depth of the base layer C.
Reference numeral 14 denotes a reinforced concrete partition plate, which has a function of protecting the dike base from water erosion even when the steel plate is corroded.
The underground partition plate 14 of reinforced concrete is buried in the groove by digging the groove to the base layer C using a trencher or a backhoe. Its function is to isolate the embankment from the river and inland soil layers and protect the levee ground from liquefaction such as earthquakes, even after collapse of the sheet pile steel plate 13 due to humus after a long period of time.
2) Installation of culvert drain and water collection box In addition, the culvert drain UD, river water sampling filter AF, and water collection box CB to be buried in the deep layer under the levee will be constructed in advance in order to complete the negative pressure structure. Underground construction will be carried out at a predetermined location, and foundation work will be performed to enable installation of the pumps DP and AP and the pumping pipes 8 and 10.
3) Driving a reinforced concrete pile (pile) Next, the required number of reinforced concrete piles (pile) 16 are driven into the base layer C to the inside of the partition plate, and the reinforced concrete partition plate 14 is moved to the outer sheet pile steel plate 13 by earth pressure. Press.
Since the seismic isolation panel 18 and the weight support base 19 installed on the bottom of the reservoir bank are installed on the pile 16 made of reinforced concrete inside the underground partition plate 14, the driving of the concrete pile 16 is particularly heavy. It is important to close the central part of the suspended reservoir dike.
4) A hemispherical cap 27 is attached to the top of the concrete pile 16. (See FIG. 17) Concrete pile pile) A hemispherical concrete pile is formed by inserting and fixing the convex part 28 under the hemispherical cap into the connecting concave hole part at the top of 16. (Fixing requires a connection hole with the same diameter and connection size as a custom made concrete pile.)
5) Installation of seismic reinforced concrete with a levee-crossing concrete frame connected to the underground bulkhead plate A reinforced concrete frame 15 that crosses the levee is installed and connected to the underground bulkhead plates 14 on the left and right sides of the levee, and a base structure is built. Form. (See FIGS. 7-9)
This dredging structure plays a role to fix and strengthen the underground partition plate 14 that receives the left and right energy due to the earthquake, and at the same time, receives the energy of shaking in the vertical direction of the river when the earthquake occurs and protects the dike from vertical vibrations. Have.
The function of the dredging structure is that the seismic isolation panel 18 moves between the upper and lower sliders, slides between the embankment on the foundation and the ground, receives the seismic structure, and the vibration to the foundation that supports the embankment is rubber. The cushion 20 has a function of reducing the impact.
6) Immobilization of ground and foundation flats The concrete pile 16 is dug shallowly to consolidate it, and the ground is laid down with crushed stone 21 according to the level.
On the consolidation layer 21, a binding and fixing base 17 that connects the concrete piles 16 is provided. The circumference of the concrete pile 16 is wound with a rubber buffer ring 23, and the binding and fixing base 17 is driven with a live concrete.
7) Installation of the primary seismic isolation slider On the binding base 17, the rubber sheet 24 and the rubber protective film 24 prevent the concrete from colliding with each other, absorb the impact, and make the sliding layer of clay, silt and grease. Install a slider.
8) Buffer base structure by installing seismic isolation panels A hemispherical cap 27 is fixed to the top of the concrete pile 16 so that the seismic isolation panel 18 mounted on the top can freely swing. The cap will be slipped with grease.
The concave portion of the seismic isolation panel 18 is fitted into the top of the hemispherical concrete pile 16. (Refer to FIG. 8, FIG. 10 and FIG. 11) In response to the shaking of the earthquake, the swing motion of the seismic isolation panel and the slide and swing motion by the viscous smooth surface act as a slider to release the seismic energy and exhibit the seismic isolation effect.
9) Installation of secondary seismic isolation slider and embankment base Concrete embankment base 19 is installed on the seismic isolation panel 18 through a seismic rubber cushion 20 with a thickness of 0.1 to 1m to support the weight of the reservoir. To do. A thick earthquake-resistant rubber cushion 18 having a thickness of 5 to 30 cm is sandwiched between the reinforced concrete bulkhead plate 14 and the concrete dike base 19, and a slip layer made of clay, silt and grease is installed on the embankment to cushion the roll of the dike. .
(Secondary seismic slurder)
The reservoir dike is constructed on a concrete dike base 17 that supports its weight evenly.
10) Reservoir diversion and ground liquefaction prevention technology There is a large amount of underground water penetrating from the sandy soil layer directly under the reservoir dike. The underground partition plate prevents new water from entering, and several meters below the ground are installed with 1 to several tens of porous pipes with a diameter of 0.1 to 1 m and porous concrete underdrains UD. River underground water and groundwater are sucked in under negative pressure, and forced to groundwater sampling box CB. At the same time as forced drainage, send it to the water tank.
If repeated underground water, prevention of underground water intrusion and forced drainage are continued for a long period of time, free water in the dike underground will be reduced, and liquefaction of the ground will be prevented even if an earthquake or other shaking occurs.
The forced drainage is sent to the storage dike PB through the underground water pumping pipe 8 and stored. This groundwater is used as filtered drinking water and managed by the control center CC.
In this way, in this technology, drinking water is collected and free water in the soil that causes liquefaction is removed simultaneously, thereby ensuring both water supply and disaster prevention.

7 貯水堤防の免震技術と耐震技術
耐震構造としては、地下隔壁と連結した堤防下を横断する鉄筋コンクリート枠14・15による強力な舛構造が基本である。この舛構造は図7,図8,図9に示すように堤防内基底部を深さ1m以上の厚さで区切り、結着固定基盤17を囲み、結着固定基盤17と保護コンクリート地中隔壁板14と結合して堅牢に堤防基盤を支える。
結着固定基盤17とゴムクッション23を介して接するコンクリート杭16は、地震等の地表面の移動に際し、重量を垂直方向へ支える機能を主眼とし、杭16が多少傾斜しても、その歪みはクッション23で受け止め杭16と固定基盤17が破損することを防止する。
決着固定基盤17の上にゴムシートまたはプラスチック膜を貼り、その上に粘土・シルト・グリースによる滑面スライダー26を設置する。
コンクリート杭16の頂部の半球部27に免震パネル18の半球窪孔22を填め込んで設置する。免震パネル18の位置での堤防重量の支持は、コンクリート杭16の頂部27と滑面スライダー資材26で重量を支える構造である。
コンクリート杭16頂部の半球部27と滑面スライダー26の横断面は図10、図11に見られるように、グリース溜まり25で滑りやすくなっていて、滑面スライダー26は自由に首振りが可能である。
免震パネル18は、ゴムクッション20と粘土・シルト・グリースによるスライダー層26を介して結着固定基盤17と接し、貯水堤防の重量支持圧をこれらとコンクリート杭16に分散して支持する。
地震の揺れはコンクリート杭16と結着固定基盤17及び舛構造14・15に伝達され、免震パネル18へは、コンクリート杭16によって衝撃が伝達される。
免震パネル18は、結着固定基盤17との間に発生する歪みを滑面スライダー資材26上を滑ることにより解消し、舛構造14・15との衝突の衝撃をゴムクッション20で吸収する。即ち、区画内の歪みを舛構造の枠内の免震構造と堅牢な枠とゴムクッションでで解消する構造である。
免震パネル18の上部はゴムシートまたはプラスチックシートを貼って滑り易くし、その上に粘土・シルト・グリースによる滑面スライダー26を設置してスライダーで免震パネルを挟む構造にする。
免震パネル18上の滑面スライダー26上に貯水堤防基底盤19を設置する。上部のスライダー26は滑面スライダー26と貯水堤防基底盤の間に発生する歪みをスライドさせて解消する役割を有する。免震パネル18は上下の1次・2次のスライダーの挟み込みで自由に滑走する構造である。
地震の被害は地面が移動することによって、構造物が動き、慣性のモーメントによって巨大な重量物が急な衝撃で破壊される現象であるが、上下のスライダーで地面と免震パネル16の滑り移動によって、堤防本体の衝撃を和らげ、巨大な堤防の重量が1箇所に懸からないように、重力を分散させる。
7 Seismic isolation technology and seismic technology for water storage dike The seismic structure is basically a strong dredging structure with reinforced concrete frames 14 and 15 crossing under the dike connected to the underground bulkhead. As shown in FIGS. 7, 8 and 9, the ridge structure is formed by dividing the base portion of the dike with a thickness of 1 m or more, enclosing the binding fixing base 17, and the fixing fixing base 17 and the protective concrete underground partition. Combined with the plate 14, it firmly supports the dike base.
The concrete pile 16 that is in contact with the binding and fixing base 17 through the rubber cushion 23 focuses on the function of supporting the weight in the vertical direction when the ground surface is moved due to an earthquake or the like. The catching pile 16 and the fixed base 17 are prevented from being damaged by the cushion 23.
A rubber sheet or a plastic film is pasted on the fixed fixing base 17, and a smooth surface slider 26 made of clay, silt, or grease is installed thereon.
The hemispherical hole 22 of the seismic isolation panel 18 is fitted into the hemispherical part 27 at the top of the concrete pile 16 and installed. The support of the embankment weight at the position of the seismic isolation panel 18 is a structure in which the weight is supported by the top 27 of the concrete pile 16 and the smooth surface slider material 26.
As shown in FIGS. 10 and 11, the cross section of the hemispherical portion 27 on the top of the concrete pile 16 and the smooth slider 26 is easy to slide in the grease reservoir 25, and the smooth slider 26 can swing freely. is there.
The seismic isolation panel 18 is in contact with the binding and fixing base 17 via the rubber cushion 20 and the slider layer 26 made of clay, silt, and grease, and supports the weight support pressure of the water storage dike distributed to these and the concrete pile 16.
The shaking of the earthquake is transmitted to the concrete pile 16, the binding and fixing base 17 and the anchor structures 14 and 15, and the impact is transmitted to the seismic isolation panel 18 by the concrete pile 16.
The seismic isolation panel 18 eliminates the distortion generated between the seismic isolation panel 17 by sliding on the smooth surface slider material 26, and the impact of the collision with the heel structures 14 and 15 is absorbed by the rubber cushion 20. That is, it is a structure in which the distortion in the compartment is eliminated by the seismic isolation structure in the frame of the eaves structure, the solid frame and the rubber cushion.
A rubber sheet or a plastic sheet is attached to the upper part of the seismic isolation panel 18 to make it easy to slide, and a smooth surface slider 26 made of clay, silt, or grease is installed on the upper part, and the seismic isolation panel is sandwiched between the sliders.
A reservoir bank base 19 is installed on the smooth slider 26 on the seismic isolation panel 18. The upper slider 26 has a role of sliding and eliminating the distortion generated between the smooth surface slider 26 and the reservoir base. The seismic isolation panel 18 has a structure that freely slides between the upper and lower primary and secondary sliders.
Earthquake damage is a phenomenon in which a structure moves when the ground moves, and a massive heavy object is destroyed by a sudden impact due to a moment of inertia. To alleviate the impact of the levee body and distribute the gravity so that the weight of the huge levee does not hang in one place.

8 免震パネルの構造は図12から図16に示した。
図12は、免震パネルを上から見た平面図である。表面をゴムシート24で覆い、揺れによるパネル同志の衝突の衝撃を緩和する働きを有する。
図13は、免震パネルを下から見た底面図である。周囲をゴムシート24で覆い、揺れによるパネル同志の衝突の衝撃を緩和する働きを有する。
中心にコンクリート杭頂部の半球体を納める球面状の凹窪22があり、グリースを常時収納する突起構造25がある。免震パネル本体18は加圧コンクリートで成型されている。
図14は、免震パネル正面、背面、両側面の外観図である。全側面の表面をゴムシート24で覆い、揺れによるパネル同志の衝突の衝撃を緩和する働きを有する。
図15は、免震パネルの側面と中心の中間点の横断面図である。パネルの本体はコンクリート18であり、上面と側面は表面をゴムシート24で覆っている。
図16は、免震パネルの中心部の横断面図である。パネルの本体はコンクリート18であり、上面と側面は表面をゴムシート24で覆っている。
中心下部には半球体を納める球面状の凹窪22があり、グリースを常時収納する蓋突起構造25がある。
図17は、鉄筋コンクリート杭(パイル)16上端に接続する半球状頂部装置であり半球状頂部27と鉄筋コンクリート杭(パイル)16の接続部28から成っている。
8 The structure of the seismic isolation panel is shown in Figs.
FIG. 12 is a plan view of the seismic isolation panel as seen from above. The surface is covered with a rubber sheet 24 and has a function of mitigating the impact of collision between the panels due to shaking.
FIG. 13 is a bottom view of the seismic isolation panel as viewed from below. The periphery is covered with a rubber sheet 24 and has a function of mitigating the impact of collision between the panels due to shaking.
At the center is a spherical recess 22 that houses the hemisphere at the top of the concrete pile, and there is a protruding structure 25 that always stores grease. The seismic isolation panel body 18 is molded from pressurized concrete.
FIG. 14 is an external view of the seismic isolation panel front, back, and both sides. The surface of all sides is covered with a rubber sheet 24 and has a function of mitigating the impact of collision between the panels due to shaking.
FIG. 15 is a cross-sectional view of the midpoint between the side surface and the center of the seismic isolation panel. The main body of the panel is concrete 18, and the upper surface and side surfaces are covered with a rubber sheet 24.
FIG. 16 is a cross-sectional view of the center portion of the seismic isolation panel. The main body of the panel is concrete 18, and the upper surface and side surfaces are covered with a rubber sheet 24.
There is a spherical recess 22 for housing a hemisphere at the lower center, and a lid projection structure 25 for always storing grease.
FIG. 17 shows a hemispherical top device connected to the upper end of the reinforced concrete pile (pile) 16, which is composed of a hemispherical top portion 27 and a connecting portion 28 of the reinforced concrete pile (pile) 16.

9 微細気泡循環浄化貯水堤防
図18には請求項6に示すナノバブル循環浄化貯水堤防の平面図の一例を示した。
静止した水、酸素の欠乏した水は次第に腐敗して行くので、その水を供給すれば農作物の生育が悪く、人畜の健康を損なう上、魚も住めない水となる。
貯水堤防のような大量の水を貯水する場合は、強制的に水流の発生と、ナノバブルによる酸素の供給が重要で、水を活性化し、浄化維持する上で効率的である。ナノバブルによる水の活性化の効果については多くの研究もあり、既に実証も多くなされている。
水の浄化は微細気泡マイクロバブル、ナノバブルの生成と強制的な通水が主体である。ナノバブルの生成と強制的な水流の発生はコントロールセンターCCの飲料水コントロールシステムFC、工業用水コントロールシステムHC、農業用水コントロールシステムJCで生成し、噴射ノズル30で噴射送水し各フロアー各々にフロアー内を循環させる。
特に酸欠を起こし易い位置は、水槽底であり、この位置の流水を起こすことが重要である。また、水の酸素濃度を高める方法としては、微細な気泡を沢山含んだナノサイズのバブルが効率的であるが、微細気泡発生装置の噴射ノズル30をバブルが底面を這うようにセットする必要がある。
本技術においては、気泡のサイズが100ナノメートル以下のサイズが重要である。
何れのサイズのマイクロバブルでも、水の比重より軽いので、流動中に次第に上層へ浮き上がるので、微細なマイクロバブルも空気を極めて高濃度に水流に乗せて、貯水堤防内の貯水底を高速度で循環させなければならない。貯水は循環に際して軽いマイクロバブル水が全体の水と交わり、殺菌及び酸素の供給を行う。
マイクロバブルには殺菌機能もあるが、これより微細なナノバブルにおいてはその機能は、更に大きくなる。また、空気のナノバブルより酸素ガス、オゾンガスによるナノバブルが殺菌の効果が高い。本発明はこれらのマイクロバブルを発生する全ての装置の貯水堤防への使用を対象としている。
これらの技術による水は、機能性が高く、植物の成育が速く高品質化することと、これを飲用した家畜の成育が速く健康が良好であり、養殖漁業においても成育が極めて速く大きくなり肉質が良いなど、ナノバブルの高い効果が実証されている。
微細気泡発生装置は、発明者の提案した酸化還元処理装置(特許第3843361号)が、噴射型且つ最大処理能力毎分10トン(現状では最多処理能力)とナノバブル水を極めて多量生成するので、最適と考えられる。
図19では、Kは飲料用の上水貯水部、Lは工業用水用の貯水部、Mは農業用水用の貯水部、を示している。また、JC、HC、FCはそれぞれ、各貯水室への用水貯水供給管理、浄化水質管理及び需要需要に対する配水管理の総合コントロールシステムである。
飲用水貯蔵フロアーKでは、飲用水の供給を堤防地下水及び飲料用通導水道Eから受け、飲料用水貯水タンクFに水を蓄える。
蓄えた飲用の上水はコントロールシステムFCで管理する。FCでは、噴出型バブル処理装置で微細気泡ナノバブルを加えながら、噴射ノズル30を下方へ向けながら、貯水堤防の底辺を主体に循環させ、高速ポンプ吸引口で再度処理し循環させて、用水の需給と貯留状況、配水の管理等を行う。
工業用水貯蔵フロアーLでは、用水の供給を堤防地下水及び工業用通導水道Gから受け、工業用貯水タンクHに水を蓄える。
蓄えた水は工業用水コントロールシステムHCで管理する。HCでは、微細気泡処理装置噴出口ノズル30で微細気泡ナノバブルを加えながら、貯水堤防底辺を主体に循環させ、高速ポンプ吸引口で再度処理し循環させて、用水の需給と貯留状況、配水の管理等を行う。
農業用水貯蔵フロアーMでは、用水の供給を河川濾過装置及び農業用通導水道Iから受け、農業用貯水タンクJに水を蓄える。
蓄えた水は農業用水コントロールシステムJCで管理する。
JCでは、洪水期に濁流を濾過・採水し、用水路Iへ送り、微細気泡ナノバブルを加えながら噴出型バブル処理装置でで、貯水堤防底辺を主体に循環させ、高速ポンプ吸引口で再度処理し循環させて、用水の需給と貯留状況、配水の管理等を行う。
図に示した、Iは河川・海洋側、IIは内陸側を示している。矢印は水の流動方向を示し、高速ポンプによる微細気泡ナノバブルは、農業用水JC、工業用水HC、飲料用上水FCの噴出口ノズル30から噴出し、各用水フロアー全体に循環させて供給する。
J1、H1、F1は農業用水、工業用水、飲料用上水それぞれの上流側の循環誘導水路を示し、J2、H2、F2は同様にそれぞれの下流側の循環誘導水路を示している。
6は河川側の船着き道又は犬走りを示している。
9 Fine bubble circulation purification reservoir dike Figure 18 shows an example of a plan view of the nanobubble circulation purification reservoir dike shown in claim 6.
Still water and oxygen-deficient water will gradually rot, so if you supply that water, the crops will grow poorly, and the health of human animals will be impaired and fish will not live.
When storing a large amount of water such as a dike, it is important to forcibly generate a water flow and supply oxygen by nanobubbles, which is efficient in activating and purifying the water. There have been many studies on the effects of water activation by nanobubbles, and many have already been demonstrated.
Water purification mainly consists of the generation of microbubbles and nanobubbles and forced water flow. The generation of nanobubbles and the forced water flow are generated by the drinking water control system FC, industrial water control system HC, and agricultural water control system JC of the control center CC. Circulate.
In particular, the position where oxygen deficiency is likely to occur is the bottom of the water tank, and it is important to cause water flow at this position. In addition, as a method for increasing the oxygen concentration of water, nano-sized bubbles containing many fine bubbles are efficient, but it is necessary to set the injection nozzle 30 of the fine bubble generating device so that the bubbles crawl the bottom surface. is there.
In the present technology, it is important that the bubble size is 100 nanometers or less.
Since microbubbles of any size are lighter than the specific gravity of water, they gradually rise to the upper layer during the flow, so fine microbubbles can carry air at a very high concentration to the water flow at a high speed at the bottom of the reservoir in the reservoir dike. It must be circulated. In the water storage, light microbubble water is mixed with the whole water during circulation, and sterilization and supply of oxygen are performed.
Microbubbles also have a sterilizing function, but the function is further increased in finer nanobubbles. In addition, nanobubbles using oxygen gas or ozone gas have a higher sterilization effect than air nanobubbles. The present invention is directed to the use of all devices that generate these microbubbles in a reservoir embankment.
Water produced by these technologies has high functionality, fast growth of plants and high quality, and rapid growth of livestock that have been drunk with this, and good health. The high effect of nanobubbles has been demonstrated, such as good.
As the fine bubble generating device, the inventor's proposed oxidation-reduction treatment device (Patent No. 3843361) produces a very large amount of nanobubble water with an injection type and a maximum treatment capacity of 10 tons per minute (currently the most treatment capacity). It is considered optimal.
In FIG. 19, K indicates a drinking water reservoir for drinking, L indicates a reservoir for industrial water, and M indicates a reservoir for agricultural water. JC, HC, and FC are integrated control systems for water storage supply management, purified water quality management, and water distribution management for demand, respectively.
In the potable water storage floor K, the supply of potable water is received from the dike ground water and the drinking water tap E, and water is stored in the potable water storage tank F.
The stored drinking water is managed by the control system FC. In FC, while adding fine bubble nanobubbles with a jet type bubble treatment device, the bottom of the reservoir dike is circulated mainly while the injection nozzle 30 is directed downwards, and it is treated again and circulated at the high-speed pump suction port to supply and demand water. Management of storage status and water distribution.
The industrial water storage floor L receives supply of irrigation water from the embankment ground water and the industrial waterway G, and stores the water in the industrial water storage tank H.
The stored water is managed by the industrial water control system HC. In HC, while adding fine bubble nano bubbles at the fine bubble treatment device outlet nozzle 30 circulates mainly at the bottom of the reservoir bank, reprocesses and circulates again at the high-speed pump suction port, supply and demand of water supply, storage status, management of water distribution Etc.
In the agricultural water storage floor M, supply of water is received from the river filtration device and the agricultural waterway I, and water is stored in the agricultural water storage tank J.
The stored water is managed by the agricultural water control system JC.
In JC, the muddy stream is filtered and sampled during the flood season, sent to the canal I, added with fine bubble nanobubbles, circulated mainly on the bottom of the reservoir bank, and processed again at the high-speed pump suction port. Circulate and manage the supply and demand and storage status of water, and the distribution of water.
In the figure, I indicates the river / ocean side, and II indicates the inland side. Arrows indicate the direction of water flow, and the fine bubble nanobubbles produced by the high-speed pump are ejected from the ejection nozzles 30 of the agricultural water JC, the industrial water HC, and the drinking water FC and are circulated and supplied to the entire water floor.
J1, H1, and F1 represent upstream circulation induction channels for agricultural water, industrial water, and drinking water, and J2, H2, and F2 similarly represent downstream circulation induction channels.
6 indicates a riverside pier or dog run.

図19には貯水堤防の堤防横断面と貯水管理の方法の一例を記載した。
貯水は下から農業用水J、工業用水H、飲料用上水Fの各フロアを示している。
水域管区毎の水の管理は、当該するコントロールセンターCCで行う。
飲料水は貯水堤防地底の液状化防止暗渠から、伏流水、地下水等の川底で濾過された清水がコントロールセンターCCの揚水ポンプで地下水採取ボックスCBから組み上げられる。
洪水期には伏流水・地下水位が高まり、採水量が増大する。
汲み上げた上水及び工業用水はコントロールシステムFC、HCを通してK、Lの貯水タンクへ送られる。洪水期には上水タンクK、工業用タンクLを満水にする。
農業用水は河川水採取濾過装置Nから採水され、コントロールシステムJCの貯水タンクへ送られる。洪水期には農業用水タンクMを満水し堤防重量を高める。
CCには飲料用上水管理FC、工業用水管理HC、農業用水管理JCの施設がそれぞれあり、強力なポンプでナノバブル水の循環を行う。貯水堤防地底の液状化防止暗渠UD及び採水ボックスCBから飲料水、工業用水の汲み上げにより、堤防下の自由水が減少して、堤防下土層の液状化現象が起こり難い条件を創出することができる。
しかし、液状化防止は地下水除去と合わせ防水壁14、コンクリート杭16、重力を分散させる免震パネル(緩衝基盤)18とゴムクッション20の緩衝作用の複合化が効果的である。
図10では、Iは河川・海洋側、IIは内陸側を示し、矢印は水の吐出方向、吸水方向を示し、PBは貯水堤防を表示している。
F1、H1、J1は飲料用上水、工業用水、農業用水それぞれの給水循環通路を示し、噴出ノズル30からナノバブルを放出して循環させ防腐する。F2、H2、J2は同様にそれぞれの再処理循環の通路を示している。
6は河川側の船着き道又は犬走りを、7は内陸側の連絡道又は犬走りを示している。
コントロールセンターCCから河川への微細気泡ナノバブルの供給は水質浄化装置の供給パイプ31で行い、積極的な河川水質浄化を行う。
FIG. 19 shows an example of a dike cross section of a water storage dike and a method of water storage management.
Reservoir shows each floor of agricultural water J, industrial water H, and drinking water F from the bottom.
Management of water for each water area is performed at the relevant control center CC.
Drinking water is assembled from the groundwater collection box CB from the liquefaction prevention culvert on the bottom of the reservoir dike, and fresh water filtered at the riverbed, such as underground water and groundwater.
During the flood season, underground water level and groundwater level increase, and the amount of water collected increases.
The pumped-up water and industrial water are sent to the K and L water storage tanks through the control systems FC and HC. During the flood season, the water tank K and the industrial tank L are full.
Agricultural water is collected from the river water collecting and filtering device N and sent to the water storage tank of the control system JC. During the flood season, the agricultural water tank M is full and the embankment weight is increased.
CC has facilities for drinking water management FC, industrial water management HC, and agricultural water management JC, which circulates nanobubble water with a powerful pump. By creating drinking water and industrial water from the liquefaction prevention underdrain UD and water collection box CB at the bottom of the reservoir dike, free water under the dike will be reduced and conditions to prevent the liquefaction phenomenon of the submerged soil layer from occurring will be created. Can do.
However, in order to prevent liquefaction, it is effective to combine the buffering action of the waterproof wall 14, the concrete pile 16, the seismic isolation panel (buffer base) 18 that disperses gravity and the rubber cushion 20 together with the removal of groundwater.
In FIG. 10, I indicates the river / ocean side, II indicates the inland side, arrows indicate the water discharge direction and water absorption direction, and PB indicates the water storage dike.
F1, H1, and J1 indicate water supply circulation paths for drinking drinking water, industrial water, and agricultural water, respectively, and discharge nanobubbles from the ejection nozzle 30 to circulate and preserve them. F2, H2, and J2 similarly indicate the respective reprocessing circulation paths.
Reference numeral 6 denotes a riverside pier or dog run, and 7 denotes an inland access road or dog run.
The supply of fine bubble nano bubbles from the control center CC to the river is performed by the supply pipe 31 of the water purification device, and the river water quality is positively purified.

27 コンクリート杭頂部キャップの部分
28 コンクリート杭への頂部キャップ接続部
29 貯水堤防上の道路保護盤
30 微細気泡循環の貯水堤防内吐出ノズル
31 水質浄化装置(微細気泡ナノバブル水供給パイプ)
32 堤防下通用路開閉扉
27 Concrete Kuiitadaki unit reservoir embankment the discharge nozzle of the road protective plate 30 fine bubble circulation of the top cap connection portion 29 on the reservoir embankment to portion 28 the concrete pile cap
31 Water purification device (fine bubble nano bubble water supply pipe)
32 Levee underway doorway

堤防型貯水堤防俯瞰図Embankment type reservoir embankment overhead view 堤防型貯水堤防断面図解Cross-sectional illustration of a dike-type reservoir 絶壁型貯水堤防断面図解Cross-sectional illustration of a cliff-type reservoir 堤防型多段フロアーセル式貯水堤防断面図Embankment type multi-stage floor cell type water storage dike cross section 絶壁型多段フロアーセル式貯水堤防断面図Precipice type multi-level floor cell type water storage dike cross section 堤防基盤の地盤強化技術断面図解Cross-sectional illustration of embankment foundation ground strengthening technology パイル打ち込み基盤コンクリート設置層の平面図解Top view of pile-laid foundation concrete installation layer 免震パネル設置層の平面図解Plan view of seismic isolation panel installation layer 貯水堤防基底盤層の平面図解Top view of the reservoir basement layer 免震機構のモデル側断面図解Model side cross-sectional illustration of seismic isolation mechanism パイル、基盤コンクリート、免震パネル、基底盤の設置状況側断面図Installation side view of pile, foundation concrete, base isolation panel, base plate 免震パネル平面図Seismic isolation panel top view 免震パネル底面図Seismic isolation panel bottom view 免震パネル正面、背面、両側面図Seismic isolation panel front, back and side views 免震パネル中間位置断面図Cross section of seismic isolation panel 免震パネル中心位置断面図Seismic isolation panel center position cross section 鉄筋コンクリート杭(パイル)上端に接続する半球状頂部Hemispherical top connected to the upper end of reinforced concrete pile 水質浄化微細気泡循環施設平面説明図Water quality purification microbubble circulation facility plan explanation フロアー別水質浄化微細気泡循環施設の水供給施設関連の横断面図Water quality purification by floor Cross-sectional view of water supply facilities related to fine bubble circulation facility

記号の説明Explanation of symbols

〈堤防箇所の記号〉
I 貯水堤防の河川、海洋方面サイド
II 貯水堤防の陸地、内陸方面サイド
〈立地、施設の記号〉
A 河川、海洋
B 土砂層、沖積層
C 基盤層、岩盤
PB 堤防型貯水堤防
CP 長城型貯水堤防AF 河川水濾過装置(洪水期河川水で農業用水を満水する)
AP 河川水揚水ポンプ(濾過水を農業用水タンクに揚水)
UD 堤防下地下水排水暗渠(液状化を起こす地下水排除のドレーン)
CB 地下水集水ボックス(堤防下地下水排水暗渠の集水室)
DP 地下水揚水ポンプ(集水室内から揚水)
CC 各用水の揚水・浄化・配水コントロールセンター
E 飲料水通導水道
F 飲料水貯水タンク
F1 飲料水浄水維持循環水流入タンク及び水の循環誘導水路
F2 飲料水浄水維持循環水還流タンク及び水の循環誘導水路
FC 飲料水の貯水・浄化水質管理・需要配水を行う飲料水コントロールシステム
G 工業用水通導水道
H 工業用水貯水タンク
H1 工業用水浄水循維持環水流入タンク及び水の循環誘導水路
H2 工業用水浄水循維持環水還流タンク及び水の循環誘導水路
HC 工業用水の貯水・浄化水質管理・需要配水を行う工業用水コントロールシステム
I 農業用水通導水道
J 農業用水貯水タンク
J1 農業用水浄水循維持環水流入タンク及び水の循環誘導水路
J2 農業用水浄水循維持環水還流タンク及び水の循環誘導水路
JC 農業用水の貯水・浄化水質管理・需要配水を行う農業用水コントロールシステム
K 飲料水・上水貯水フロアー
L 工業用水貯水フロアー
M 農業用水貯水フロアー
〈堤防施設部位の記号〉
1 貯水堤防天端(道路、駐車場、住居等用途は多様)
2 貯水堤防貯水タンク中央支柱及び隔壁
3 貯水堤防貯水タンク外殻保護面支柱及び隔壁
4 貯水堤防法面外殻隔壁(堤防型では斜面形成、断崖型では外壁支柱)
5 貯水堤防補強梁兼貯水フロアー(セル構造)
6 貯水堤防河川側下方犬走り・船着き道路
7 貯水堤防内陸側下方犬走り・内陸連絡道路
8 地下水揚水パイプ
9 用水給・配水パイプ
10 河川水揚水パイプ
11 貯水堤防外への配水パイプ
12 太陽光発電接続端子格納部
13 貯水堤防着工開始時の地盤強化用の打ち込み矢板鋼板
14 打ち込み矢板鋼板直内側の保護コンクリート地中隔壁板(地震振動承盤)
15 地中隔壁と結合する堤防地下横断隔壁板(河川上下方向の地震振動承盤)
16 コンクリート杭(パイル=独立懸架方式で頂部半球形、土層基盤に達して重量を支持)
17 結着固定基盤(パイルをゴムクッションを介して耐震固定する鉄筋コンクリート盤=堤底軟弱地層へ重量の力をパイルと地層へ分散させて耐震性を強化する機能)
18 免震パネル(首振り緩衝基盤=コンクリート杭半球形部と連結して重力を分散させ地震の震動エネルギーを逃し、減衰させる=鉄筋コンクリート製・ゴムクッションで包囲)
19 コンクリート堤防基盤(貯水堤防の重量を均等支持する)
20 コンクリート保護ゴム密閉体構造(コンクリート周辺を包み、衝撃を吸収保護する)
21 栗石及び砂礫
22 免震パネルのパイル頂部挿入孔(コンクリート杭(パイル)と連結する)
23 耐震ゴムクッション(ゴムの緩衝リング)
24 ゴム製またはプラスチック製のコンクリート保護膜
25 免震パネルとコンクリート杭の潤滑グリース
26 スライダー(=粘土又はシルトをベースにグリース又はジェル練り合わせ潤滑・滑走スライダー)
27 コンクリート杭頂部キャップの部分
38 コンクリート杭への頂部キャップ接続部
30 微細気泡循環の貯水堤防内吐出ノズル
31 水質浄化装置(微細気泡ナノバブル水供給パイプ)
32 堤防下通用路開閉扉
<Symbol of embankment location>
I Reservoir River, Ocean Side II Land Reservoir Land, Inland Side <Location, Facility Symbol>
A River, Ocean B Sediment layer, Alluvium C Basement layer, Rock PB Embankment type Reservoir CP Great Wall Reservoir AF River water filtration device (Flood river water fills agricultural water)
AP River water pump (pumped filtered water to agricultural water tank)
UD Underground drainage under the levee (drainage for draining groundwater that causes liquefaction)
CB Groundwater collection box (collection room for underground water drainage under the dike)
DP Groundwater pump (pumping from the water collection chamber)
CC Pumping / Purification / Distribution Control Center for Each Water E Drinking Water Passage Water F Drinking Water Storage Tank F1 Drinking Water Purified Maintenance Circulation Water Inflow Tank and Water Circulation Guidance Channel F2 Drinking Water Purified Maintenance Circulation Water Recirculation Tank and Water Circulation Guidance channel FC Drinking water control system G for drinking water storage / purification water quality management / demand distribution Industrial water-conducting water supply H Industrial water storage tank H1 Industrial water purification cycle maintenance circulation water inflow tank and water circulation induction channel H2 Industrial water Clean water circulation maintenance circulation water recirculation tank and water circulation induction channel HC Industrial water control system for industrial water storage / purification water quality management / demand distribution I Agricultural water transfer water J Agricultural water storage tank J1 Agricultural water purification water circulation maintenance water Inflow tank and water circulation induction channel J2 Agricultural water purification circulation maintenance water recirculation tank and water circulation induction channel JC Agricultural water storage And agricultural water control system K drinking water, clean water reservoir floor for purifying water quality management and demand water distribution L industrial water reservoir floor M agricultural water reservoir floor <embankment facility site of the symbol>
1 Reservoir embankment (various uses such as roads, parking lots, and residences)
2 Reservoir dike storage tank central column and bulkhead 3 Reservoir dike storage tank outer shell protective surface column and bulkhead 4 Reservoir dike surface hull bulkhead (slope formation for levee type, outer wall column for cliff type)
5. Reservoir dike reinforcement beam and water storage floor (cell structure)
6 Reservoir river side down dog-running / ship landing road 7 Reservoir inland down-side dog-running / inland connecting road 8 Groundwater pumping pipe 9 Water supply / distribution pipe 10 River pumping pipe 11 Water distribution pipe 12 Outside the reservoir 12 Sunlight Power generation connection terminal storage part 13 Driven sheet pile steel plate 14 for ground reinforcement at the start of the reservoir embankment Protection concrete underground bulkhead plate (earthquake vibration receiving plate) directly inside the driven sheet pile steel plate
15 Levee underground transversal bulkhead plate (earthquake vibration receiving plate in the vertical direction of river) combined with underground bulkhead
16 Concrete piles (pile = independent suspension method, top hemisphere, reaching the soil foundation and supporting weight)
17 Bonding fixed base (Reinforced concrete board which fixes piles earthquake-proof through rubber cushions = Function to reinforce earthquake resistance by distributing weight force to piles and formations to soft formations at the bottom of the levee)
18 Seismic Isolation Panel (Swing cushion basement = Connected with concrete pile hemispherical part to disperse gravity and release the seismic energy of the earthquake and attenuate it = Surrounded by reinforced concrete and rubber cushion)
19 Concrete dike base (supports the weight of the water dike evenly)
20 Concrete protective rubber sealed structure (wraps around concrete to absorb and protect shock)
21 Kuriishi and gravel 22 Pile top insertion hole of seismic isolation panel (connects with concrete pile)
23 Anti-seismic rubber cushion (rubber buffer ring)
24 Rubber or plastic concrete protective film 25 Lubricating grease for seismic isolation panels and concrete piles 26 Slider (= Grease or gel kneading lubrication / sliding slider based on clay or silt)
27 Top part of concrete pile cap 38 Top cap connection part to concrete pile 30 Discharge nozzle 31 in the revetment of fine bubble circulation storage dike 31 Water purification device (fine bubble nano bubble water supply pipe)
32 Levee underway doorway

Claims (5)

土堤の土砂崩落による決壊が起こらない堤防として、
河川に平行して幾重もの内部隔壁で仕切られた空間を有する鉄筋コンクリート製の高さ3〜50mの範囲で丈の高い堤防機能を可能とする構造物で、
河床下土層を巨大な濾過層として活用し、飲料水、工業用水、農業用水を常時堤防下及び河川敷の地下から多孔暗渠と集水ボックスで地下水を採取して清水を貯水し、
構造物内部に水を運搬する通水構造と河川流域の一定範囲の区域毎に水の管理区域を設けて仕切った大容量の地下水の貯水機能と、
構造物の重量と貯水した水の重量で豪雨で増水した河川の激流が押し出す力を堰き止める機能とを併せ有することを特徴とする地下水採取貯水堤防。
As an embankment that does not break down due to landslides,
A structure made of reinforced concrete having a space parallel to the river and separated by multiple internal bulkheads, enabling a high levee function in a range of 3 to 50 m in height,
Using the riverbed subsoil layer as a huge filtration layer, drinking water, industrial water, and agricultural water are always collected under the embankment and underground from the riverbed with a porous underdrain and a collection box to store fresh water,
A water flow structure that transports water inside the structure and a large-capacity groundwater storage function that is partitioned by providing a water management area for each area of the river basin,
A groundwater sampling and dike embankment that has the function of blocking the force pushed by the torrent of a river that has increased due to heavy rain due to the weight of the structure and the weight of the stored water.
請求項1において、5m以上の丈の高い堤防では、2階以上の多段フロアーを有する多段セル構造及び法面斜行外壁による耐震性と、
丈の高い堤防の水位と河川面の水位との水位差による堤防内からの水圧で堤防外壁に懸かる土石流等の破壊力を軽減する機能と、
堤防上の天端面を幹線高速自動車道または都市生活空間スペースに活用できるスーパー堤防型機能と、
堤防法面上部に太陽光発電の防水接続端子を備えて法面を太陽光発電施設のスペースに活用できる機能とを併せ有することを特徴とするセル構造の地下水採取貯水堤防
In claim 1, in a high dike with a height of 5 m or more, seismic resistance by a multistage cell structure having two or more multistage floors and a sloped outer wall,
A function to reduce the destructive force such as debris flow hanging on the outer wall of the levee due to the water pressure from the inside of the levee due to the difference between the water level of the tall levee and the water level of the river surface,
Super embankment type function that can utilize the top end of the embankment for highway expressway or urban living space,
A cell-structured groundwater collection and storage dike, which is equipped with a waterproof connection terminal for solar power generation at the upper part of the dike slope and has a function that allows the slope to be used as a space for solar power generation facilities.
請求項1または請求項2に記載の地下水採取貯水堤防おいて、耐震性を向上させ、軟弱地盤の液状化を防止し、免震機能を有する堅牢な基盤を有し、
(1)堤防両サイドに打ち込む矢板鋼板と、
(2)矢板鋼板の内側に河川、海岸及び湿地から堤防の下の地盤へ向かう大量の浸水を防止する機能と兼ねて地震による堤防重量の外側方向への移動重圧を受け止める機能のコンクリート地下隔壁板と、
(3)コンクリート地下隔壁板と連結して堤防上下方向の地震震動受け止め枠を形成して地震振幅の重圧を受け止める耐震舛構造を形成する堤防下の基盤横断枠と、
(4)液状化防止のため、堤防直下の水を堤防に沿った3乃至30本の径0.1乃至1mの複数の多孔パイプによる排水暗渠で集水ボックスへ集め、堤防地下水を揚水ポンプによって強制排水除去する施設と、
(5)堤防直下及び河床を巨大な濾過層として活用して暗渠及び集水ボックスへ集水した水を負圧で貯水堤防へ採水する地下水の再利用を図る装置と、
(6)堤防底に直径30〜60cmの通常市販のコンクリート杭を打ち込んだ多数のパイル杭により垂直方向の地盤支持力を高める装置と、
(7)コンクリート杭の地上に出た部分の周囲をゴムクッションで取り巻くゴムリングクッションとこれと接する鉄筋コンクリートの結着固定盤で固定して地震によるパイル杭上の構造物の横揺れを肉厚のゴムクッションと連動してコンクリートの地下隔壁と堤防下基盤横断枠による舛構造で受け止めて地震エネルギーを最小限度に減衰する減震装置と、
(8)コンクリート杭の上に載せる半球状の頂端とその上に載せる免震パネルとの接合部を潤滑させるグリースを保存維持させる装置と、
(9)コンクリート保護のゴム密閉体構造によるコンクリートの破損防止装置と、
(10)免震パネルとコンクリート結着固定盤との間をゴムシートまたはプラスチック保護膜で覆い滑面膜とし、滑面膜上に粘土またはシルトを滑面素材として活用したスライダー装置とし、スライダーによる地震の揺れの力を分散する1次免震装置と、
(11)免震パネル上に免震ゴムクッションまたはプラスチックを敷き詰めた滑面処理面装置と、
(12)滑面処理面上に粘土又はシルト又は粘性ゲルを免震素材の滑面材として活用したスライダー滑面処理を加え、その上に貯水堤防基盤を載せる2次免震装置と、
(13)免震パネル上に肉厚の耐震ゴムクッションを介して、その上から全体を均平に押さえる鉄筋コンクリートの貯水堤防基盤を設置し、上下縦方向の耐震ゴムクッションと堤防両端の横方向のゴムクッションによる緩衝作用と滑面による免震作用で力を分散させてコンクリート貯水堤防基盤の揺れの減衰を図る装置
(14)コンクリート貯水堤防基盤の上に貯水堤防を載せてこれにより貯水堤防の重量を支えるメカニズムと前記各装置の同時設置により、
耐震性と堤防下地盤の液状化を防止する総合的機能並びに清浄な飲料水の採取確保を合わせ得る地下水採取・免震・耐震・液状化防止基盤を有することを特徴とする地下水採取貯水堤防
In the groundwater collection and storage embankment according to claim 1 or claim 2 , the seismic resistance is improved, the liquefaction of soft ground is prevented, and a solid base having a seismic isolation function is provided.
(1) sheet pile steel sheet driven into both sides of the dike,
(2) Concrete underground bulkhead plate that functions to prevent heavy flooding from rivers, coasts, and wetlands to the ground under the levee, and to receive the heavy movement of the levee weight due to an earthquake. When,
(3) A basement crossing frame under a dike that forms a seismic-resistant structure that receives seismic amplitude heavy pressure by forming a seismic vibration receiving frame in the vertical direction of the dike connected to a concrete underground bulkhead plate,
(4) In order to prevent liquefaction, the water directly under the levee is collected in a drainage box by 3 to 30 pipes with a diameter of 0.1 to 1 m along the levee and collected into a water collection box, and the levee groundwater is collected by a pump. A facility for forced drainage ,
(5) A device for reusing groundwater to be collected in the underground dam and water collection box under negative pressure using the riverbed directly below and the riverbed as a huge filtration layer, and to the storage levee under negative pressure;
(6) a device for increasing the vertical ground supporting force by a large number of pile piles in which a commercially available concrete pile having a diameter of 30 to 60 cm is driven into the bottom of the levee;
(7) Thicken the rolling of the structure on the pile pile due to the earthquake by fixing it with a rubber ring cushion that surrounds the part of the concrete pile that protrudes above the ground with a rubber cushion and a binding plate of reinforced concrete in contact with it. A seismic reduction device that attenuates the seismic energy to a minimum by receiving it with a vertical structure with a concrete underground bulkhead and a dike base crossing frame in conjunction with a rubber cushion,
(8) a device for preserving and maintaining grease that lubricates the joint between the hemispherical top end placed on the concrete pile and the seismic isolation panel placed thereon;
(9) Concrete breakage prevention device with concrete sealed rubber sealed structure,
(10) between the MenShinpa panel and the concrete binder fixed platen and smooth film covered with a rubber sheet or plastic protective layer, and a slider device utilizing clay or silt as smooth material on the smooth film, earthquakes by sliders A primary seismic isolation device that distributes the power of shaking,
(11) a smooth surface treatment surface device in which a seismic isolation rubber cushion or plastic is spread on the seismic isolation panel;
(12) smooth treated surface on the slider smooth process utilizing clay or silt or viscous gel as smooth surface material of the seismic isolation material added to a 2 Tsugimen Isolation System placing the reservoir embankment foundations thereon,
(13) on the seismic isolation panel through a rubber stabilizer cushion thickness, it established the reservoir embankment foundation concrete for pressing the entire Hitoshitaira thereon, lateral vertical longitudinal seismic rubber cushion and embankment ends rubber the force dispersed by the seismic isolation effect of buffer action and smooth by cushioning the device to achieve the attenuation of vibration of the concrete reservoir embankment foundation (14) by which to place the reservoir embankment on the concrete reservoir embankment foundation reservoir embankment By simultaneous installation of the mechanism supporting the weight and each of the above devices ,
Groundwater sampling and storage dyke characterized by having groundwater sampling, seismic isolation, earthquake resistance, and liquefaction prevention bases that can combine earthquake resistance and comprehensive functions to prevent liquefaction of the basement of the levee and clean drinking water.
請求項3の地下水採取貯水堤防の基盤の施工方法として
(1)河床、海床より低い位置に、河蝕、海蝕を受けない地層まで堤防の基盤幅に沿って河岸側及び内陸側の堤防両サイドに矢板鋼板を打ち込む鋼板設置工程と、
(2)河岸側及び内陸側の矢板鋼板設置の直ぐ内側に、コンクリート地下隔壁板を付設する地下工事の足場造りでトレンチャー及びまたはバックホーを用いて幅10cm〜1m、深さ1〜10mの溝を必要な深さまで掘り込む工程と、
(3)溝内部へ厚さ10〜150cm、深さ5〜10mの鉄筋コンクリート地下隔壁板の一部を地上まで出して施設する地下隔壁板設置工程と、
(4)堤防に沿って地盤の支持力強化と耐震液状化防止の目的で堤防基盤下部に幅30cm〜2m、深さ3〜10mで1〜20本の溝を掘る工程と、
(5)溝中に直径0.1〜1mの多孔パイプ又はコンクリート多孔暗渠による伏流水地下水排水用暗渠を埋設して堤防基盤の河川・海から滲み出す伏流水・浅層地下水の排除ドレーン埋設工程と、
(6)堤防下基盤横断枠を設置する足場造りでトレンチャー及び又はバックホーを用いて幅50cm〜3m、深さ1〜5mの溝を彫り込む工程と、
(7)コンクリート地下隔壁板と連結して堤防地下を横断する堤防地下基盤横断枠を設置する工程と、
(8)排水ドレーンからの清浄な地下水(真水)を採取するための内部を常圧又は負圧にする採水ドレーンボックス設置施設工程と、
(9)重量に耐える地層まで鉄筋コンクリートパイル杭を必要な本数打ち込む工程と、
(10)コンクリートパイル杭の頂部に上端が半球状のキャップを固定する工程と、
(11)掘り上げた地盤を鎮圧して固め、栗石を敷き詰め、砂礫で地盤を固める工程と、
(12)個々のコンクリート杭上部の周囲をゴムクッションリングで取り巻き、杭上部を連結固定する鉄筋コンクリートのべた打ち結着固定基盤の設置工程と、
(13)結着固定基盤のべた打ちコンクリートの上に粘土及び/又はシルトを免震素材の滑面材として活用した1次スライダー免震滑面処理工程と、
(14)個々のコンクリート杭上部へ底面に半球状の孔部を有し周囲をゴムクッションで取り巻 いた免震パネルをコンクリート杭の半球状の頂部を填め込み、潤滑処理を施して設置する工程と、
(15)杭との接触部が揺れによっても摩擦なく可動し、上部構造物の重量を全体に分配し、対応する免震パネルをコンクリート杭上に敷き詰める工程と、
(16)地震に伴うパネル同士の衝突による破損を防ぐための荷重分配の免震パネル間及び上面に防水と減震を兼ねた肉厚の耐震ゴムクッションを敷き詰める工程と、
(17)耐震ゴムクッション上に粘土及び/又はシルトを免震素材の滑面材として活用して上に設置する貯水堤防基礎と接触するように厚く積み上げる2次スライダー免震滑面処理工程と、
(18)耐震ゴムクッション上の2次スライダー上に貯水堤防基礎を設置する工程とからなり、上部の巨大な貯水堤防に対して免震・耐震性が高く液状化現象を防止して堤防崩壊を防止し、併せて地下から清浄水を得ることを特徴とする地下水採取・免震・耐震・液状化防止基盤設置工法。
As a construction method of the base of the groundwater collection and storage embankment of claim 3,
(1) A steel plate installation process in which sheet pile steel plates are driven on both the riverbank side and the inland side of the embankment along the basement width of the riverbed and the seabed at a position lower than the riverbed and the seabed, along the basement of the embankment up to the strata that are not subject to sea corrosion
(2) Grooves with a width of 10 cm to 1 m and a depth of 1 to 10 m using a trencher and / or a backhoe in the construction of an underground construction where a concrete underground partition plate is attached immediately inside the sheet pile on the river side and inland side The process of digging up to the required depth,
(3) An underground bulkhead plate installation process in which a part of a reinforced concrete underground bulkhead plate having a thickness of 10 to 150 cm and a depth of 5 to 10 m is provided to the ground and installed inside the groove;
(4) A process of digging 1 to 20 grooves with a width of 30 cm to 2 m and a depth of 3 to 10 m in the lower part of the dike base for the purpose of strengthening the supporting capacity of the ground and preventing earthquake liquefaction along the dike,
(5) Underground drainage / shallow groundwater drain drain burial process that burrows underground underground water drainage underground with a 0.1-1m diameter perforated pipe or concrete perforated underground gutter in the ditch When,
(6) A process of carving a groove having a width of 50 cm to 3 m and a depth of 1 to 5 m by using a trencher and / or a backhoe in a scaffold structure for installing a dike base crossing frame;
(7) a step of installing a dike basement crossing frame that crosses the dike basement in connection with a concrete underground partition board;
(8) A facility process for installing a drainage drain box to bring the inside to collect normal ground water (fresh water) from a drainage drain to normal pressure or negative pressure;
(9) The process of driving the required number of reinforced concrete pile piles to the stratum that can withstand the weight;
(10) fixing the hemispherical cap at the top of the concrete pile pile;
(11) crushing and solidifying the ground dug up, laying chestnut stones, and solidifying the ground with gravel;
(12) Surrounding the upper part of each concrete pile with a rubber cushion ring, and installing the solid-bonded fixed base of reinforced concrete that connects and fixes the upper part of the pile;
(13) a primary slider seismic isolation smooth surface treatment process using clay and / or silt as a base material for base isolation on the solid concrete of the fixed binding base;
(14) allowing the ambient includes the bottom surface to the individual concrete pile upper hole portion of the hemispherical base isolation panel had wound take a rubber cushion insert the hemispherical top portion of the concrete pile is placed is subjected to lubrication processing When,
(15) The contact portion with the pile can move without friction even when shaken, the weight of the superstructure is distributed to the whole, and the corresponding seismic isolation panel is laid on the concrete pile;
(16) A process of laying a thick earthquake-resistant rubber cushion that doubles as a waterproof and a vibration-reducing material between the seismic isolation panels for load distribution and the upper surface to prevent breakage due to the collision between the panels due to the earthquake;
(17) A secondary slider seismic isolation surface treatment process in which clay and / or silt is utilized as a seismic isolation material smoothing material on the seismic rubber cushion and stacked thickly so as to come into contact with the water storage levee foundation installed on top.
(18) It consists of a process of installing a reservoir dike foundation on the secondary slider on the seismic rubber cushion. Groundwater sampling, seismic isolation, seismic resistance, liquefaction prevention base installation method characterized by preventing and obtaining clean water from the underground.
請求項1または請求項2の地下水採取貯水堤防を用いて、流域を長さ0.5〜数km間の仕切によって幾つかの地域ブロックに分けて一定距離毎に貯水区域を設定して貯水管理をする方法で、
(1)飲料の上水、工業用水、農業用水それぞれを貯留配水する管理システムを設け、
(2)堤防地下の伏流水及び地下水を排除する水を排水暗渠と集水ボックスの施設で負圧として揚水ポンプによって水を採取して各種の用水として通水施設に送り、
(3)通水施設ではオゾンの微細気泡によって殺菌を行い、
(4)常時貯水堤防内を循環する流水を通水施設から貯水する循環誘導水路へ送り、
(5)貯水堤防内では循環水流発生装置と連動する微細な気泡ナノバブルを発生させる微細気泡水処理装置と噴射ノズル装置により貯水する循環誘導水路床面に向けて流水を連続的に送水循環させ、
(6)微細気泡マイクロバブル・ナノバブル水を常に循環させることによる腐敗しない水の貯水、配水を管理することを特徴とする貯水堤防を管理する方法
Using the groundwater collection and storage embankment according to claim 1 or claim 2, the watershed is divided into several regional blocks by a partition between 0.5 to several kilometers in length, and a water storage area is set at a certain distance to store water. In the way
(1) Establish a management system that stores and distributes drinking water, industrial water, and agricultural water,
(2) Underground water in the levee underground and water that excludes groundwater is taken as negative pressure in the drainage culvert and water collection box facilities, collected by a pump, and sent to the water supply facility as various types of water.
(3) In the water flow facility, sterilization is performed with fine ozone bubbles,
(4) Always send the running water that circulates in the storage dike from the water supply facility to the circulation guide channel that stores water .
(5) In the water dike, the water is continuously sent and circulated toward the floor surface of the circulation induction channel where water is stored by the fine bubble water treatment device and the injection nozzle device that generate fine bubble nanobubbles linked with the circulation water flow generator.
(6) A method of managing a storage embankment characterized by managing the storage and distribution of non-perishable water by constantly circulating microbubbles and microbubble water.
JP2009251318A 2008-10-10 2009-10-09 Seismic storage dike and its installation method Expired - Fee Related JP4972754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009251318A JP4972754B2 (en) 2008-10-10 2009-10-09 Seismic storage dike and its installation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008287146 2008-10-10
JP2008287146 2008-10-10
JP2009251318A JP4972754B2 (en) 2008-10-10 2009-10-09 Seismic storage dike and its installation method

Publications (3)

Publication Number Publication Date
JP2010112163A JP2010112163A (en) 2010-05-20
JP2010112163A5 JP2010112163A5 (en) 2010-07-29
JP4972754B2 true JP4972754B2 (en) 2012-07-11

Family

ID=42300916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009251318A Expired - Fee Related JP4972754B2 (en) 2008-10-10 2009-10-09 Seismic storage dike and its installation method

Country Status (1)

Country Link
JP (1) JP4972754B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246714A (en) * 2011-05-31 2012-12-13 Hayashi Bussan Hatsumei Kenkyusho:Kk Tsunami preventing embankment
JP5234475B1 (en) * 2012-05-28 2013-07-10 有限会社情報科学研究所 Reservoir dike with block structure and prefabricated construction method.
JP5834223B2 (en) * 2013-02-27 2015-12-16 有限会社情報科学研究所 Seismic isolation structure and material with plastic colloid of heavy structure
JP5834222B2 (en) * 2013-02-27 2015-12-16 有限会社情報科学研究所 Oil film slider isolation method and oil film slider base isolation structure
JP2015117530A (en) * 2013-12-19 2015-06-25 ハル子 網矢 River
JP2015194035A (en) * 2014-03-31 2015-11-05 株式会社 林物産発明研究所 Multipurpose levee with base isolation function
JP6269267B2 (en) * 2014-04-02 2018-01-31 新日鐵住金株式会社 Seismic structure of embankment structure
WO2016037073A2 (en) 2014-09-05 2016-03-10 Tennant Company Systems and methods for supplying treatment liquids having nanobubbles
JP2019108702A (en) * 2017-12-18 2019-07-04 有限会社久美川鉄工所 Ground, underground and ground surface
CN108951541A (en) * 2018-08-24 2018-12-07 上海市水利工程设计研究院有限公司 A kind of empty van sea wall structure and its construction method crossed over and protect underground utilities
CN113216148B (en) * 2021-05-13 2022-08-26 中建市政工程有限公司 Construction method for pile foundation of pressure-bearing underground air-raid shelter collapse section
CN114016465B (en) * 2021-11-29 2023-03-14 荆华 River levee bank protection with irrigate function
CN115162271B (en) * 2022-08-22 2023-08-04 湖南兴桂建筑工程有限公司 Water conservancy dyke slope protection structure of quick construction
CN115404816B (en) * 2022-09-30 2023-08-25 长江勘测规划设计研究有限责任公司 Embankment construction method with empty boxes inside
CN116381200B (en) * 2023-06-05 2023-08-11 成都理工大学 Test system and method for simulating reservoir bank slope under rainfall and earthquake coupling effect

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5572504A (en) * 1978-11-22 1980-05-31 Mitsuo Yasaki Water tank in embankment
JPS57193609A (en) * 1981-05-22 1982-11-29 Saburo Shibata Earthquake-proof building structure with reinforced levee for disaster countermeasure purpose
JPS57193608A (en) * 1981-05-22 1982-11-29 Saburo Shibata Three-dimensional building structure containing levee
JPS57193613A (en) * 1981-05-22 1982-11-29 Saburo Shibata Architectural structure containing levee structure
JPS57193606A (en) * 1981-05-22 1982-11-29 Saburo Shibata Composite structure for water reservoir, dam, and common trench utilizing river bed
JPH0739681B2 (en) * 1990-10-09 1995-05-01 日本地下水開発株式会社 Artificial recharge method for groundwater and its equipment
JPH111926A (en) * 1997-06-12 1999-01-06 Nkk Corp Countermeasure against liquefaction of embankment structure
JP2002220822A (en) * 2001-01-25 2002-08-09 Shinichiro Hayashi Water storage tank used in common as embankment
JP3843361B2 (en) * 2003-04-28 2006-11-08 有限会社情報科学研究所 Solution reduction treatment method, oxidation treatment method, and automatic oxidation reduction treatment apparatus
JP4696305B2 (en) * 2006-03-06 2011-06-08 独立行政法人農業・食品産業技術総合研究機構 Construction method of soil storage structure
JP2007327209A (en) * 2006-06-06 2007-12-20 Takenaka Doboku Co Ltd Fluidization countermeasure construction method for linear structure

Also Published As

Publication number Publication date
JP2010112163A (en) 2010-05-20

Similar Documents

Publication Publication Date Title
JP4972754B2 (en) Seismic storage dike and its installation method
CN211368589U (en) Compound ecological revetment structure
US8337121B2 (en) Process for in-ground water collection
CN207003363U (en) Barrier wall structure and channel revetment system
CN112391997B (en) Ecological river bank structure for sponge city construction
CN110984063B (en) Silt reducing system for drainage beach of artificial ditch
JP6183819B1 (en) Natural slope protection structure
CN113152354B (en) Structure and method for pre-positioned in-situ water ecological restoration of tidal river reach
Anderson Amphibious Architecture Living with a Rising Bay
JP2004522012A (en) Artificial island and support for artificial island and method of constructing artificial island
JP6541012B1 (en) Cross-sectional shape of tsunami disaster prevention hill and wide-area refuge area and multi-purpose function prepared inside hill
RU2291932C1 (en) Device for shore protection against erosion in the case of variable water level in water body
Sitharam et al. Geotechnical considerations for coastal reservoirs
CN111622177A (en) Bottom sealing nut block slope protection structure for sea wall ecological reconstruction and construction method thereof
Hansom et al. Managing lakeshore erosion: Impacts of bank protection on Loch Lomond, Scotland
KR20200109478A (en) System for river levee using water tank
CN105804005B (en) A kind of wall-hanging eco-concrete dyke and its construction method
JP3325924B2 (en) Structure of underground storage infiltration facility
Sitharam Sea dike construction challenges in coastal waters for storage of river flood waters: a sustainable strategy for water resource development using coastal reservoirs
CN218813472U (en) Reservoir desilting system
CN214735199U (en) Leading normal position aquatic attitude restoration structure of tidal river reach
CN213952114U (en) Combined ecological bank protection structure
Krishnan Concept of a Geotechnical Solution to Address the Issues of Sea Water Intrusion in Ashtamudi Lake, Kerala
CN115596063A (en) Large-scale near-water sewage collecting tank anti-floating device and construction method thereof
JP2012144917A (en) Quay wall structure or revetment structure

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100429

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110604

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20111028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20180420

Year of fee payment: 6

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20121013

LAPS Cancellation because of no payment of annual fees