JP4972469B2 - pump - Google Patents

pump Download PDF

Info

Publication number
JP4972469B2
JP4972469B2 JP2007152645A JP2007152645A JP4972469B2 JP 4972469 B2 JP4972469 B2 JP 4972469B2 JP 2007152645 A JP2007152645 A JP 2007152645A JP 2007152645 A JP2007152645 A JP 2007152645A JP 4972469 B2 JP4972469 B2 JP 4972469B2
Authority
JP
Japan
Prior art keywords
pump
coolant
cooling liquid
heat
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007152645A
Other languages
Japanese (ja)
Other versions
JP2008303814A (en
Inventor
慎一郎 荒木
正洋 西川
雅史 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2007152645A priority Critical patent/JP4972469B2/en
Publication of JP2008303814A publication Critical patent/JP2008303814A/en
Application granted granted Critical
Publication of JP4972469B2 publication Critical patent/JP4972469B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はポンプに関する。   The present invention relates to a pump.

従来、汚水を取り扱うポンプの中で、ポンプ本体部もモータ部も水中(槽内)に設置して揚水するタイプで、乾式のモータを使用している水中ポンプにおいて、モータ部の一部または全部が気中に露出する水位での運転(気中運転)を可能にしたポンプが知られている(例えば特許文献1参照)。   Conventionally, among pumps that handle sewage, the pump body and the motor are both installed in the water (in the tank) and pumped. In submersible pumps that use dry motors, some or all of the motor There is known a pump that enables operation at a water level exposed to the air (air operation) (see, for example, Patent Document 1).

このポンプは、モータフレームの外側にウォータジャケットを設けたモータとポンプケーシングとの間に冷却水を封入した熱交換器を配置し、この熱交換器をウォータジャケットに連通するとともに、冷却水を循環させる冷却用羽根車を前記熱交換器内に設けた構造により、冷却水は、冷却用羽根車のポンプ作用によりウォータジャケットに吐出され、そこでモータから発生する熱を奪い、熱交換器を通過する際、ポンプケーシングから揚水にモータから奪った熱を放熱する。   In this pump, a heat exchanger in which cooling water is sealed is arranged between a motor provided with a water jacket on the outside of the motor frame and the pump casing, and this heat exchanger communicates with the water jacket and circulates the cooling water. Due to the structure in which the cooling impeller is provided in the heat exchanger, the cooling water is discharged to the water jacket by the pumping action of the cooling impeller, where heat generated from the motor is taken away and passes through the heat exchanger. At that time, the heat taken from the motor is radiated from the pump casing to the pumped water.

また、熱交換器内の冷却用羽根車の出口側に熱交換器の冷却水出口にかけて、例えば蛇行した冷却水通路を形成するフィンを設けた構造により、熱交換器の冷却水との接触面積を増やし、熱伝導効率を高める。
特開2002−310088号公報
In addition, the contact area with the cooling water of the heat exchanger is provided, for example, by a structure in which fins forming a meandering cooling water passage are provided on the outlet side of the cooling impeller in the heat exchanger to the cooling water outlet of the heat exchanger. Increase the heat transfer efficiency.
JP 2002-310088 A

従来のポンプの熱交換器は、冷却水の圧力上昇が冷却用羽根車だけで行われるので、冷却用羽根車出口で有していた速度エネルギの圧力エネルギへの変換効率が低く、損失となる。そのため、必要な冷却性能を得るには大きな冷却用羽根車が必要となり、熱交換器が大型化するとともに、ポンプ自体の効率も低下することにある。   In the conventional heat exchanger of the pump, since the pressure increase of the cooling water is performed only by the cooling impeller, the conversion efficiency of the velocity energy that has been at the outlet of the cooling impeller into pressure energy is low, resulting in a loss. . Therefore, in order to obtain the required cooling performance, a large cooling impeller is required, which increases the size of the heat exchanger and lowers the efficiency of the pump itself.

本発明が解決しようとする課題は、高い放熱効率を達成しながら、熱交換器の小型化とポンプ自体の高効率化を実現することにある。   The problem to be solved by the present invention is to achieve downsizing of the heat exchanger and high efficiency of the pump itself while achieving high heat radiation efficiency.

上記課題を解決するため請求項1に記載の発明のポンプは、ポンプケーシング内で回転する羽根車と、羽根車が取り付けられてモータにより駆動される主軸と、封入された冷却液をモータ部に循環させながら外部に放熱する熱交換器を備えたポンプにおいて、
前記熱交換器は、前記冷却液が収容された熱交換ケーシングと、この熱交換ケーシング内で主軸とともに回転して前記冷却液にエネルギを与える冷却液循環用羽根車と、この冷却液循環用羽根車の出口側に入口側を位置させた複数の放射状の放熱フィンとを備え、
前記放熱フィンの出口側端の間隔が入口側端の間隔より広く、
前記放熱フィンの入口は前記冷却液循環用羽根車から出た前記冷却液の絶対速度の流れ角度と略一致していることを特徴とする。
In order to solve the above-mentioned problem, the pump according to the first aspect of the present invention includes an impeller that rotates within a pump casing, a main shaft that is attached to the impeller and driven by a motor, and an enclosed cooling liquid in the motor section. In a pump with a heat exchanger that radiates heat to the outside while circulating,
The heat exchanger includes a heat exchange casing in which the cooling liquid is accommodated, a cooling liquid circulation impeller that rotates with a main shaft in the heat exchange casing to give energy to the cooling liquid, and the cooling liquid circulation blade. A plurality of radial heat dissipating fins positioned on the exit side of the car,
The distance of the outlet end of the heat dissipating fins widely than the distance between the inlet end,
The inlet of the heat dissipating fin is substantially coincident with the flow angle of the absolute speed of the cooling liquid exiting from the cooling liquid circulation impeller .

上記請求項1の構成によると、前記放熱フィンで前記熱交換ケーシングの前記冷却液との接触面積を増やして熱伝達効率すなわち放熱効率を高め、その上で前記放熱フィンが前記冷却液循環用羽根車から出た前記冷却液が有している速度エネルギを有効に圧力エネルギに変換することができる。   According to the configuration of the first aspect, the contact area of the heat exchange casing with the cooling liquid is increased by the heat radiating fins to increase heat transfer efficiency, that is, heat radiating efficiency. It is possible to effectively convert the velocity energy of the coolant that has exited the vehicle into pressure energy.

上記請求項1の構成によると、前記冷却液循環用羽根車から出た前記冷却液が有している速度エネルギを非常に効率よく圧力エネルギに変換するディフューザの役目を果たすものとすることができる。According to the structure of the said Claim 1, it can play the role of the diffuser which converts the speed energy which the said cooling liquid which came out of the said impeller for cooling liquid circulation has into pressure energy very efficiently. .

請求項2に記載の発明のポンプは、請求項1に記載のポンプにおいて、前記主軸の外周部にポンプケーシング内の液体がモータへ侵入することを防止するためのメカニカルシールを備え、前記冷却液がメカニカルシールの潤滑液であることを特徴とする。 A pump according to a second aspect of the present invention is the pump according to the first aspect, further comprising a mechanical seal for preventing liquid in the pump casing from entering the motor at an outer peripheral portion of the main shaft, and the cooling liquid. Is a lubricating liquid for mechanical seals .

上記請求項2の構成によると、メカニカルシールの潤滑液を冷却液として利用できるので、別の冷却液を準備したり、別の冷却液収容空間を確保する必要がなく、コンパクトで安価なポンプとすることができる。According to the configuration of the second aspect, since the lubricating liquid of the mechanical seal can be used as the cooling liquid, there is no need to prepare another cooling liquid or to secure another cooling liquid storage space, and a compact and inexpensive pump can do.

請求項3に記載の発明のポンプは、請求項1又は請求項2に記載のポンプにおいて、前記熱交換ケーシングはモータとポンプケーシングの間に配置され、そのポンプケーシング側の壁面が、ポンプケーシング内の液体と接する隔壁であり、前記隔壁と対向しその外周部に熱を伝える放熱板を設け、隔壁と放熱板の間に冷却液通路を形成し、前記放熱板の冷却液通路とは反対側面に前記放熱フィンを形成してあることを特徴とする。 According to a third aspect of the present invention, there is provided the pump according to the first or second aspect, wherein the heat exchange casing is disposed between the motor and the pump casing, and a wall surface on the pump casing side is disposed inside the pump casing. A heat sink is provided in contact with the liquid, and is provided with a heat radiating plate facing the partition and transmitting heat to the outer periphery thereof, forming a coolant passage between the partition and the heat radiating plate, and on the side surface opposite to the coolant passage of the heat sink. A heat dissipating fin is formed .

上記請求項3の構成によると、冷却液通路内の冷却液は隔壁を介してポンプケーシング内の液体で冷却されるので、放熱効率の高いポンプとすることができる。According to the configuration of the third aspect, the cooling liquid in the cooling liquid passage is cooled by the liquid in the pump casing via the partition wall, so that the pump with high heat dissipation efficiency can be obtained.

請求項4に記載の発明のポンプは、請求項1〜請求項3の何れか1項に記載のポンプにおいて、前記冷却液循環羽根車が斜流形羽根で構成されていることを特徴とする。 A pump according to a fourth aspect of the present invention is the pump according to any one of the first to third aspects, wherein the coolant circulation impeller is composed of mixed flow blades. .

上記請求項4の構成によると、適度な揚程と流量を確保でき、かつコンパクトな羽根とすることができるので、効率が高くコンパクトなポンプとすることができる。According to the structure of the said Claim 4, since a moderate lift and flow volume can be ensured and it can be set as a compact blade | wing, it can be set as a highly efficient and compact pump.

請求項5に記載の発明のポンプは、請求項1〜請求項4の何れか1項に記載のポンプにおいて、前記冷却液循環羽根と放熱フィンの少なくとも一方が平坦面からなることを特徴とする。 The pump according to a fifth aspect of the present invention is the pump according to any one of the first to fourth aspects, wherein at least one of the cooling liquid circulation blade and the radiating fin is a flat surface. .

請求項5の構成によると、羽根を簡単に製造できるので、安価なポンプとすることができる。According to the structure of Claim 5, since a blade | wing can be manufactured easily, it can be set as an inexpensive pump.

本発明のポンプによれば、前記放熱フィンが放熱効率を高めながら、前記冷却液循環用羽根車から出た前記冷却液が有している速度エネルギを有効に圧力エネルギに変換して損失を抑えるので、前記冷却液循環用羽根車を必要以上に大きくする必要はなく、高い放熱効率を達成しながら、前記熱交換器の小型化、ポンプ自体の高効率化を実現できるという顕著な効果を奏するものである。   According to the pump of the present invention, while the radiating fin enhances the radiating efficiency, the velocity energy of the cooling liquid coming out of the cooling liquid circulation impeller is effectively converted into pressure energy to suppress the loss. Therefore, it is not necessary to increase the size of the cooling-circulation impeller more than necessary, and there is a remarkable effect that the heat exchanger can be downsized and the pump itself can be highly efficient while achieving high heat dissipation efficiency. Is.

以下、本発明の一実施の形態を図面に基づいて詳述する。なお、汚水等を貯留する槽内(水中)に設置して汚水を揚水する水中ポンプ(実施例)で本実施の形態を説明する。図1はポンプの縦断面図であり、このポンプ1は、ポンプ本体部10と、このポンプ本体部10の上側に配置するモータ部20と、ポンプ1中心に配置してポンプ1上部のモータ部20からポンプ1下部のポンプ本体部10に挿通させる垂直なポンプ主軸30と、ポンプ本体部10とモータ部20との間に配置して中心にポンプ主軸30を貫通させるポンプ1中間部の熱交換器40と、を備えて構成される。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In addition, this Embodiment is demonstrated with the submersible pump (Example) which installs in the tank (underwater) which stores sewage etc. and pumps up sewage. FIG. 1 is a longitudinal sectional view of a pump. The pump 1 includes a pump main body 10, a motor unit 20 disposed above the pump main body 10, and a motor unit disposed at the center of the pump 1. Heat exchange between a vertical pump main shaft 30 inserted through the pump main body 10 below the pump 1 from the pump 20 and an intermediate portion of the pump 1 disposed between the pump main body 10 and the motor unit 20 and passing through the pump main shaft 30 in the center. And a container 40.

ポンプ本体部10は、遠心ポンプ構造を有し、ポンプケーシング11と、このポンプケーシング11内で回転させるポンプ羽根車12と、を備えて構成される。ポンプ1最下部となるポンプケーシング11下部に吸込口13を設け、ポンプケーシング11側部に吐出口14を設ける。ポンプケーシング11上部は円形の開口15を備えている。また、ポンプケーシング11はポンプ羽根車12をとりまく渦巻き室16を設ける。ポンプ羽根車12はポンプケーシング11内に突出したポンプ主軸30下端部に取り付けてあり、ポンプ主軸30と一体に回転させる。   The pump body 10 has a centrifugal pump structure, and includes a pump casing 11 and a pump impeller 12 that is rotated in the pump casing 11. A suction port 13 is provided at the lower part of the pump casing 11 which is the lowest part of the pump 1, and a discharge port 14 is provided at the side of the pump casing 11. The upper part of the pump casing 11 is provided with a circular opening 15. The pump casing 11 is provided with a spiral chamber 16 surrounding the pump impeller 12. The pump impeller 12 is attached to a lower end portion of the pump main shaft 30 protruding into the pump casing 11 and is rotated integrally with the pump main shaft 30.

モータ部20は、2重筒構造のモータフレーム21と、このモータフレーム21の内筒21a内に構成される乾式のモータ22と、モータフレーム21の内筒21a及び外筒21bとの間に形成してモータ22外周全体を囲う冷却液通路23と、を備えて構成される。ポンプ1最上部となるモータフレーム21上部には、吊り上げ装置・チェーン等を用いてポンプ1を昇降させるための係止金具24と、モータ22の電源ケーブル・制御用信号ケーブル等をポンプ1外部に引き出しながら止着するための蓋25とを設ける。モータ22は、モータフレーム21の内筒21a中心に挿通させたポンプ主軸30上に取り付ける回転子26と、モータフレーム21の内筒21a内面に取り付けて回転子26の外周全体をエアギャップを介して囲う固定子27と、を備えて構成され、ポンプ主軸30を回転させる。冷却液通路23は下部に冷却液入口28を設け、上部に冷却液出口29を設ける。   The motor unit 20 is formed between a motor frame 21 having a double cylinder structure, a dry motor 22 configured in an inner cylinder 21a of the motor frame 21, and an inner cylinder 21a and an outer cylinder 21b of the motor frame 21. And a coolant passage 23 that surrounds the entire outer periphery of the motor 22. On the upper part of the motor frame 21 which is the uppermost part of the pump 1, a locking bracket 24 for raising and lowering the pump 1 using a lifting device, a chain, etc., a power cable for the motor 22, a control signal cable, etc. are provided outside the pump 1. A lid 25 for fastening while being pulled out is provided. The motor 22 is attached to the rotor main shaft 30 inserted through the center of the inner cylinder 21a of the motor frame 21 and the inner surface of the inner cylinder 21a of the motor frame 21 so that the entire outer periphery of the rotor 26 is interposed through an air gap. And a stator 27 for enclosing, and the pump main shaft 30 is rotated. The coolant passage 23 is provided with a coolant inlet 28 in the lower part and a coolant outlet 29 in the upper part.

図2は図1の熱交換部の拡大図であり、熱交換器40は、ディフューザ形斜流ポンプ構造を有し、中心にポンプ主軸30を貫通させる熱交換ケーシング50と、熱交換ケーシング50内で回転させる斜流羽根車である冷却液循環用羽根車60と、ディフューザとなる放熱フィン70と、を備えて構成される。   FIG. 2 is an enlarged view of the heat exchange section of FIG. 1. The heat exchanger 40 has a diffuser-type mixed flow pump structure, and a heat exchange casing 50 that penetrates the pump main shaft 30 at the center, and the heat exchange casing 50. The cooling fluid circulation impeller 60 which is a mixed flow impeller rotated by the above-described configuration and the heat dissipating fins 70 serving as a diffuser are provided.

熱交換ケーシング50は、有天円筒状の深い(高い)上部ケーシング51と、浅い有底円筒状の下部ケーシング52と、を備えて構成され、上部ケーシング51と下部ケーシング52とを互いの開口端部を突き合わせてボルトで連結固定させた上、上部ケーシング51と下部ケーシング52との接合部をポンプケーシング11の上部にボルトで連結固定させるとともに、上部ケーシング51の上部をモータフレーム21の下部にボルトで連結固定させる。これにより、ポンプケーシング11とモータフレーム21と熱交換ケーシング50とを相互に一体に連結固定させて、ポンプ本体部10とモータ部20と熱交換器40とを一体化させる。下部ケーシング52はポンプケーシング11上部の開口15を塞ぎ、下部ケーシング52の底部52aがポンプケーシング11内部と熱交換ケーシング50内部とを仕切る隔壁となり、熱交換ケーシング50の下部(底部)をポンプケーシング11内を通過する汚水Wに接触させる。上部ケーシング51の天部51aはモータフレーム20の内筒21a下部開口を塞ぎ、モータ22の下部カバーとなる。また、熱交換ケーシング50内にポンプケーシング11内の液体が侵入することを防止するメカニカルシール57が設けられている。   The heat exchange casing 50 includes a deep (high) upper casing 51 having a cylindrical shape and a lower casing 52 having a shallow bottomed cylindrical shape, and the upper casing 51 and the lower casing 52 are connected to each other at their open ends. The joints of the upper casing 51 and the lower casing 52 are connected and fixed to the upper part of the pump casing 11 with bolts, and the upper part of the upper casing 51 is bolted to the lower part of the motor frame 21. Connect and fix with. Thereby, the pump casing 11, the motor frame 21, and the heat exchange casing 50 are integrally connected and fixed to each other, and the pump body 10, the motor unit 20, and the heat exchanger 40 are integrated. The lower casing 52 closes the opening 15 at the top of the pump casing 11, and the bottom 52 a of the lower casing 52 serves as a partition wall that partitions the inside of the pump casing 11 and the inside of the heat exchange casing 50, and the bottom (bottom) of the heat exchange casing 50 is the pump casing 11. It is made to contact the sewage W which passes through the inside. The top 51 a of the upper casing 51 closes the lower opening of the inner cylinder 21 a of the motor frame 20 and serves as a lower cover of the motor 22. Further, a mechanical seal 57 for preventing liquid in the pump casing 11 from entering the heat exchange casing 50 is provided.

熱交換ケーシング50は、上部ケーシング51の上部に冷却液吐出口53を設け、下部ケーシング52の周壁52bに冷却液吸込口54を設け、冷却液吐出口53を冷却液通路23の冷却液入口28に連通接続させるとともに、冷却液通路23の冷却液出口29を冷却液吸込口54に戻し配管55(図1参照)を介して連通接続させる。これにより、熱交換ケーシング50内部と冷却液通路23とを連通接続させて、ここに冷却液Cとして水道水や蒸留水、不凍液、これらの混合液、潤滑油等を封入してある。なお、冷却液吐出口53と冷却液入口28とを配管レスで連通接続させる構造を図示したが、冷却液吸込口54と冷却液出口29のように配管で連通接続させる構造にしてもよい。   The heat exchange casing 50 is provided with a coolant discharge port 53 in the upper part of the upper casing 51, a coolant suction port 54 is provided in the peripheral wall 52 b of the lower casing 52, and the coolant discharge port 53 is connected to the coolant inlet 28 of the coolant passage 23. In addition, the coolant outlet 29 of the coolant passage 23 is connected to the coolant suction port 54 and connected via the pipe 55 (see FIG. 1). Thereby, the inside of the heat exchange casing 50 and the coolant passage 23 are connected in communication, and as the coolant C, tap water, distilled water, antifreeze, a mixture thereof, lubricating oil, and the like are sealed. Although the structure in which the coolant discharge port 53 and the coolant inlet 28 are connected to each other without piping is illustrated, a structure in which the coolant is connected to the coolant through the coolant inlet 54 and the coolant outlet 29 may be used.

熱交換ケーシング50内のポンプ主軸30上に冷却液循環用羽根車60を取り付けるとともに、熱交換ケーシング50内の外周部には放熱フィン70を一体に設けるリング状の放熱板71を冷却液循環用羽根車60より下側で下部ケーシング52の底部52aに近付けて対向状に配置する。この放熱板71は、外周縁部を上部ケーシング51の下端開口縁部にボルトで連結固定し、放熱フィン70と熱交換ケーシング50との間でも熱が伝わるようにしている。また、放熱板71は、この内周縁部から円筒壁71aを一体に立ち上げて設け、この円筒壁71a上部を冷却液循環用羽根車60外周部に所定の隙間を設けて対向させる。これにより、冷却液循環用羽根車60と放熱板71とが熱交換ケーシング50の内部隔壁となり、これらが熱交換ケーシング50内を冷却液循環用羽根車60の入口側の下部通路55と出口側の上部通路56とに仕切るとともに、これら各通路55,56とを放熱板71の円筒壁71a上部と冷却液循環用羽根車60との隙間で連通させる。冷却液吸込口54は冷却液通路23を通過した冷却液Cを下部通路55の外周部に戻すように設け、冷却液吐出口53は冷却液Cを上部通路56の上部外周部から吐出するように設ける。   A cooling fluid circulation impeller 60 is mounted on the pump main shaft 30 in the heat exchange casing 50, and a ring-shaped heat radiation plate 71, in which heat radiation fins 70 are integrally provided on the outer periphery of the heat exchange casing 50, is used for coolant circulation. It is arranged below the impeller 60 so as to be close to the bottom 52a of the lower casing 52 and facing each other. The heat radiating plate 71 has its outer peripheral edge connected and fixed to the lower end opening edge of the upper casing 51 with a bolt so that heat can be transferred between the heat radiating fins 70 and the heat exchange casing 50. Further, the heat radiating plate 71 is provided by integrally rising a cylindrical wall 71a from the inner peripheral edge thereof, and the upper portion of the cylindrical wall 71a is opposed to the outer peripheral portion of the cooling liquid circulation impeller 60 with a predetermined gap. As a result, the coolant circulation impeller 60 and the heat radiating plate 71 serve as an internal partition wall of the heat exchange casing 50, and these flow through the heat exchange casing 50 in the lower passage 55 and the outlet side of the coolant circulation impeller 60. These passages 55 and 56 are communicated with each other through a gap between the upper portion of the cylindrical wall 71a of the heat radiating plate 71 and the impeller 60 for circulating the coolant. The coolant suction port 54 is provided so as to return the coolant C that has passed through the coolant passage 23 to the outer peripheral portion of the lower passage 55, and the coolant discharge port 53 discharges the coolant C from the upper outer periphery of the upper passage 56. Provided.

図3は下部ケーシングの平面図であり、熱交換ケーシング50の内底面、すなわち下部ケーシング52の底部52aの上表面には、下部通路55内に立ち上げる低背の底部放熱フィン52cを一体に設ける。この底部放熱フィン52cは渦巻き状に形成し、上部を放熱板71の下表面に接近又は接触させて下部ケーシング52の底部52aと放熱板71との間の下部通路55外周部を渦巻き状通路に形成する。下部通路55外周部の渦巻き上通路の外周入口部を冷却液吸込口54に連通接続させ、渦巻き状通路内周出口部を下部ケーシング52の底部52a中央部と冷却用羽根車60との間の下部通路55内周部(筒状通路)に連通接続させる。   FIG. 3 is a plan view of the lower casing. On the inner bottom surface of the heat exchange casing 50, that is, on the upper surface of the bottom portion 52a of the lower casing 52, a low-profile bottom radiating fin 52c rising in the lower passage 55 is integrally provided. . The bottom heat radiating fins 52c are formed in a spiral shape, and the upper part is brought close to or in contact with the lower surface of the heat radiating plate 71 so that the outer periphery of the lower passage 55 between the bottom 52a of the lower casing 52 and the heat radiating plate 71 becomes a spiral passage. Form. The outer peripheral inlet portion of the upper spiral portion of the lower passage 55 is connected to the coolant inlet 54, and the inner peripheral outlet portion of the spiral passage is located between the center of the bottom 52 a of the lower casing 52 and the cooling impeller 60. The lower passage 55 is connected to the inner peripheral portion (cylindrical passage).

冷却液循環用羽根車60は、外周部下表面にテーパを付けてポンプ主軸30の軸心を中心軸とする逆円錐面に形成する。これに伴って放熱板71の円筒壁71a上部にも冷却液循環用羽根車60の外周部下表面と同じテーパを付けて冷却液循環用羽根車60の外周部下表面の逆円錐面と平行な逆円錐面に形成する。   The cooling liquid circulation impeller 60 is formed in an inverted conical surface having a taper on the lower surface of the outer peripheral portion and having the axis of the pump main shaft 30 as a central axis. Accordingly, the upper part of the cylindrical wall 71a of the heat radiating plate 71 is also tapered in the same manner as the lower surface of the outer peripheral part of the cooling liquid circulation impeller 60, and is opposite to the reverse conical surface of the lower surface of the outer peripheral part of the cooling liquid circulation impeller 60. Form on a conical surface.

図4は冷却用羽根と放熱フィンの断面図であり、冷却液循環用羽根車60は、この外周部逆円錐面から放熱板71の円筒壁71a上部の逆円錐面との隙間(下部通路55と上部通路56との連通路)内に垂下する複数枚の羽根61を等間隔に一体に設ける斜流形であり、冷却液Cは、下部通路55から斜め外方に流入し、上部通路56に斜め外方に流出するとともに、冷却液循環用羽根車60の回転による遠心力と羽根61の揚力によって冷却液Cにエネルギを与えてポンプ作用を行なわしめる。   FIG. 4 is a cross-sectional view of the cooling blade and the radiating fin. The coolant circulation impeller 60 has a gap (lower passage 55) between the outer peripheral conical surface and the reverse conical surface of the upper portion of the cylindrical wall 71a of the heat radiating plate 71. And a plurality of blades 61 that hang down into the communication passage between the upper passage 56 and the upper passage 56 are integrally formed at equal intervals. The coolant C flows obliquely outward from the lower passage 55 and flows into the upper passage 56. Then, the coolant C flows out obliquely and the coolant C is energized by the centrifugal force generated by the rotation of the coolant circulation impeller 60 and the lift of the blades 61 to perform the pump action.

図4では、羽根61はその湾曲面に沿って冷却液Cを流動させる構造を図示したが、平坦面に沿って冷却液Cを流動させる構造にしてもよく、この構造の他の羽根61Aを図5に示す。図5に示す他の羽根61Aを一体に設ける他の冷却液循環用羽根車60Aは、図4に示す羽根61を一体に設ける冷却液循環用羽根車60に比べて簡単に製造でき、安価に得ることができる。   In FIG. 4, the blade 61 has a structure in which the coolant C flows along the curved surface. However, the blade 61 may have a structure in which the coolant C flows along a flat surface. As shown in FIG. The other coolant circulation impeller 60A provided integrally with the other blade 61A shown in FIG. 5 can be manufactured more easily and inexpensively than the coolant circulation impeller 60 provided integrally with the blade 61 shown in FIG. Obtainable.

放熱フィン70は、放熱板71の上表面から上部通路55内に等間隔に立設させる複数枚を設ける。放熱フィン70の高さ幅は冷却液循環用羽根車60の羽根61の高さ幅よりも高く形成し、放熱フィン70を冷却液循環用羽根車60より下側(熱交換ケーシング50の底面に近い)に配置した放熱板71の上表面から冷却液循環用羽根車60を超えてそれより高位置にまで立ち上げ、放熱フィン70を冷却液循環用羽根車60の出口側で、この冷却液循環用羽根車60と熱交換ケーシング50の胴部(上部ケーシング51の周壁)との間に等間隔に位置させる。このような高背の放熱フィン70は、下縁を放熱板71の上表面に一体に連設するとともに、内側縁の下部を放熱板71の円筒壁71a外面に一体に連設し、放熱フィン70の機械的強度を高め、厚みを増やすことなしに必要な高さ幅を得る。   The radiation fins 70 are provided with a plurality of sheets that are erected at equal intervals from the upper surface of the radiation plate 71 in the upper passage 55. The height width of the radiating fin 70 is formed higher than the height width of the blade 61 of the cooling liquid circulation impeller 60, and the radiating fin 70 is located below the cooling liquid circulation impeller 60 (on the bottom surface of the heat exchange casing 50. From the upper surface of the heat radiating plate 71 arranged in the vicinity of the cooling plate, the cooling liquid circulation impeller 60 is raised to a position higher than that, and the radiating fin 70 is placed on the outlet side of the cooling liquid circulation impeller 60. They are positioned at equal intervals between the circulation impeller 60 and the body portion of the heat exchange casing 50 (the peripheral wall of the upper casing 51). Such a high-profile heat radiating fin 70 has a lower edge integrally connected to the upper surface of the heat radiating plate 71, and a lower portion of the inner edge integrally connected to the outer surface of the cylindrical wall 71 a of the heat radiating plate 71. The mechanical strength of 70 is increased and the required height width is obtained without increasing the thickness.

図6は冷却液循環用羽根車60を通る冷却液Cの流れと放熱フィン70との関係を示す断面図であり、今、図6においてvの速度で流入した冷却液Cは、羽根61の入口Aにおいてvとなり、αの角度で流れ込むものとする。このA点の円周速度をuとして速度線図を描くと、羽根61に対する相対速度はwとなる。このwで流入した冷却液Cは羽根61に沿って流れ、羽根61の出口Bにおいてwの相対速度で流出するものとする。このB点における円周速度をuとして速度線図を描くと、wとuの合成速度、すなわち冷却液Cが冷却液循環用羽根車60から飛び出す絶対速度はvとなり、αの角度で流出することになる。 6 is a cross-sectional view showing the relationship between the flow of the coolant C passing through the coolant circulation impeller 60 and the radiation fins 70. The coolant C that has flowed in at a speed v in FIG. It is assumed that v 1 at the entrance A flows in at an angle α 1 . When the velocity diagram is drawn with the circumferential speed at point A as u 1 , the relative speed with respect to the blade 61 becomes w 1 . It is assumed that the coolant C flowing in at w 1 flows along the blade 61 and flows out at the outlet B of the blade 61 at a relative speed of w 2 . When drawing a velocity diagram circumferential speed of u 2 in the point B, the synthesis rate of w 2 and u 2, i.e. the absolute velocity of the cooling liquid C pops out from the coolant circulation impeller 60 is v 2 becomes, alpha 2 Will flow out at an angle of.

放熱フィン70は、その入口を冷却液循環用羽根車60から出る冷却液Cの絶対速度vの流れの角度αに合わせ、放熱フィン70間の断面積が入口から出口に向かって漸次拡大するように、冷却液循環用羽根車60の出口側で、この冷却液循環用羽根車60と熱交換ケーシング50の胴部との間に等間隔に位置させ、放熱フィン70に冷却液循環用羽根車60から出た冷却液Cが有している速度エネルギを有効に圧力エネルギに変換するディフューザ(案内羽根)としての機能を持たせてある。 The radiating fins 70 have their inlets aligned with the flow angle α 2 of the absolute velocity v 2 of the coolant C exiting from the coolant circulation impeller 60, and the cross-sectional area between the radiating fins 70 gradually increases from the inlet toward the outlet. As shown, on the outlet side of the cooling liquid circulation impeller 60, the cooling liquid circulation impeller 60 is positioned at an equal interval between the cooling liquid circulation impeller 60 and the body portion of the heat exchange casing 50, and the cooling fins 70 are arranged for cooling liquid circulation. A function as a diffuser (guide vane) that effectively converts the velocity energy of the coolant C from the impeller 60 into pressure energy is provided.

図4では、放熱フィン70はその湾曲面に沿って冷却液Cを流動させる構造を示したが、平坦面に沿って冷却液Cを流動させる構造にしてもよく、この構造の他の放熱フィン70Aを図5に示す。図5に示す他の放熱フィン70Aを一体に設ける他の放熱板71Aは図4に示す放熱フィン70を一体に設ける放熱板71に比べて簡単に製造でき、安価に得ることができる。図5に示す他の放熱フィン70Aにディフューザ機能を持たせる構造については図4に示す放熱フィン70のそれと同じである。   In FIG. 4, the radiating fin 70 has a structure in which the cooling liquid C flows along the curved surface. However, the radiating fin 70 may have a structure in which the cooling liquid C flows along the flat surface. 70A is shown in FIG. Other heat radiating plates 71A provided integrally with other heat radiating fins 70A shown in FIG. 5 can be manufactured more easily and cheaper than the heat radiating plates 71 provided integrally with heat radiating fins 70 shown in FIG. The structure for providing the other radiating fin 70A shown in FIG. 5 with the diffuser function is the same as that of the radiating fin 70 shown in FIG.

放熱フィン70の枚数Z'は、冷却液循環用羽根車60の羽根61の枚数をZとする時、Z'=Z−(1〜2)又はZ'=Z+(1〜2)とし、冷却液循環用羽根車60から出た冷却液Cが放熱フィン70に流れ込むとき、冷却液循環用羽根車60のある羽根61とある放熱フィン70が重なることのないようにする。こうすることで、冷却液Cの脈動を抑制し、冷却液循環用羽根車60近傍の軸封装置57等に悪影響が及ばないようにしている。   The number Z ′ of the radiating fins 70 is Z ′ = Z− (1-2) or Z ′ = Z + (1-2), where Z is the number of blades 61 of the cooling liquid circulation impeller 60, and cooling is performed. When the coolant C coming out of the liquid circulation impeller 60 flows into the radiating fins 70, the blades 61 with the cooling liquid circulation impeller 60 and the radiating fins 70 are not overlapped. By doing so, the pulsation of the coolant C is suppressed, so that the shaft seal device 57 and the like in the vicinity of the coolant circulation impeller 60 are not adversely affected.

図4,図5では、放熱フィン70の枚数Z'は、冷却液循環用羽根車60,60Aの羽根61,61Aの枚数Zが6であるので、5にしてある。このように放熱フィン70の枚数Z'は素数にすることが最も望ましい。   4 and 5, the number Z ′ of the radiating fins 70 is set to 5 because the number Z of the blades 61 and 61A of the coolant circulation impellers 60 and 60A is six. As described above, the number Z ′ of the radiating fins 70 is most desirably a prime number.

なお、ポンプ1は、モータフレーム21の内筒21a上部中心に一体に設けた図示しない上部軸受箱と、上部ケーシング51の天部51a中心に一体に設けた下部軸受箱51bとに、それぞれ図示しない玉軸受装置及びその密封装置等を装着して、ポンプ主軸30を上下二箇所で回転自在に支える構造、熱交換ケーシング50のポンプ主軸30が貫通する部分にメカニカルシール等の軸封装置57を装着するとともに、モータフレーム20と熱交換ケーシング50との接合面等の必要箇所にOリング等のパッキンを装着して、モータ部20及び熱交換器40への浸水やモータ部20及び熱交換器40からの冷却液Cの漏れを防止する構造を有する。   The pump 1 is not shown in an upper bearing box (not shown) provided integrally at the upper center of the inner cylinder 21a of the motor frame 21 and a lower bearing box 51b provided integrally at the center of the top part 51a of the upper casing 51, respectively. A ball bearing device and its sealing device are mounted to support the pump main shaft 30 so that the pump main shaft 30 can rotate freely at two locations, and a shaft sealing device 57 such as a mechanical seal is mounted to a portion of the heat exchange casing 50 through which the pump main shaft 30 penetrates. At the same time, packing such as an O-ring is attached to a necessary portion such as a joint surface between the motor frame 20 and the heat exchange casing 50, so that the motor unit 20 and the heat exchanger 40 are submerged and the motor unit 20 and the heat exchanger 40 are immersed. It has the structure which prevents the leakage of the coolant C from.

上記のように構成されたポンプ1は、汚水系の槽内に設置してモータ22を起動し、ポンプ主軸30を回転させて、汚水Wで満たされたポンプケーシング11内でポンプ羽根車12を回転させることにより、このポンプ羽根車12にて発生する遠心力によって汚水Wにエネルギを与え、揚水する。すなわちポンプ羽根車12を回転させて汚水Wを外周に流すとポンプ羽根車12の中心部の圧力が低下するので、浄化槽内の汚水Wが吸込口13からポンプケーシング11内に流入する。ポンプ羽根車12で外周に流される汚水Wはそこで急激に圧力を増加するが、それとともに速度も増加して高速度でポンプ羽根車12から出てポンプケーシング11の渦巻き室16に集まりながら速度を減じ、さらに圧力を高めて吐出口14から図示しない揚水配管に吐出される。   The pump 1 configured as described above is installed in a sewage tank, starts the motor 22, rotates the pump main shaft 30, and places the pump impeller 12 in the pump casing 11 filled with the sewage W. By rotating, energy is given to the sewage W by the centrifugal force generated by the pump impeller 12 to pump the water. That is, when the pump impeller 12 is rotated and the sewage W is caused to flow to the outer periphery, the pressure at the center of the pump impeller 12 decreases, so that the sewage W in the septic tank flows into the pump casing 11 from the suction port 13. The sewage W that flows on the outer periphery of the pump impeller 12 suddenly increases its pressure, but at the same time, the speed also increases to increase the speed while exiting the pump impeller 12 at a high speed and gathering in the spiral chamber 16 of the pump casing 11. Then, the pressure is further increased and discharged from the discharge port 14 to a pumping pipe (not shown).

また、ポンプ主軸30の回転によりポンプ羽根車12と連動して、冷却液Cで満たされた熱交換ケーシング50内で冷却液循環用羽根車60が回転する。この冷却液循環用羽根車60の回転による遠心力と羽根61の揚力によって冷却液Cにエネルギを与え、冷却液Cをモータ22の外周全体を囲む冷却液通路23に循環させる。すなわち冷却液循環用羽根車60を回転させて冷却液Cを斜め上外方に流すと冷却液循環用羽根車60の入口部の圧力が低下するので、下部通路55の冷却液Cが冷却液循環用羽根車60の羽根61間に斜め上外方に流入する。冷却液循環用羽根車60で斜め上外方に流される冷却液Cはそこで急激に圧力を増加するが、それとともに速度も増加して高速度で冷却液循環用羽根車60から斜め上外方に出て圧力を高めて冷却液吐出口53から冷却液入口28を経て冷却液通路23に揚圧送される。これにより、冷却液Cは冷却液循環用羽根車60を基点として、上部通路56→冷却液吐出口53→冷却液入口28→冷却液通路23→冷却液出口29→戻し配管55→冷却液吸込口54→下部通路55の順路で循環して、冷却液通路23を通過する時(28→29)にモータ23の熱を奪い、熱交換機40を通過する時(54→53)にモータ23から奪った熱を外部に放熱し、モータ23を冷却する。   Further, the rotation of the pump main shaft 30 causes the cooling liquid circulation impeller 60 to rotate in the heat exchange casing 50 filled with the cooling liquid C in conjunction with the pump impeller 12. Energy is imparted to the coolant C by the centrifugal force generated by the rotation of the coolant circulating impeller 60 and the lift of the blades 61, and the coolant C is circulated through the coolant passage 23 surrounding the entire outer periphery of the motor 22. That is, when the cooling liquid circulation impeller 60 is rotated and the cooling liquid C is allowed to flow obliquely upward and outward, the pressure at the inlet of the cooling liquid circulation impeller 60 decreases, so that the cooling liquid C in the lower passage 55 becomes the cooling liquid. It flows obliquely upward and outward between the blades 61 of the circulation impeller 60. The coolant C flowing obliquely upward and outward at the coolant circulation impeller 60 suddenly increases in pressure there, but at the same time, the speed increases and the coolant circulation impeller 60 obliquely upwards and outwards at a high speed. The pressure is increased, and the pressure is increased and pumped up from the coolant discharge port 53 to the coolant passage 23 through the coolant inlet 28. Thus, the coolant C starts from the coolant circulation impeller 60, and the upper passage 56 → the coolant discharge port 53 → the coolant inlet 28 → the coolant passage 23 → the coolant outlet 29 → the return pipe 55 → the coolant suction. It circulates in the normal route of the port 54 → the lower passage 55, takes the heat of the motor 23 when passing through the coolant passage 23 (28 → 29), and from the motor 23 when passing through the heat exchanger 40 (54 → 53). The taken heat is radiated to the outside, and the motor 23 is cooled.

このような熱交換器40を備えるポンプ1は気中運転を行うことができる。   The pump 1 including such a heat exchanger 40 can be operated in the air.

また、熱交換器40では、冷却液吸込口54から熱交換ケーシング50内に戻された冷却液Cを冷却液吐出口53から吐出する間に、冷却液Cがモータ23から奪った熱を熱交換ケーシング50に伝わり、熱交換ケーシング50からそれに接触しているポンプ1外部の汚水W及びポンプケーシング16内を通過する汚水Wに伝達し、高温の冷却液Cから低温の汚水Wに熱を伝達し(熱交換)、冷却液Cを冷やす。   Further, in the heat exchanger 40, while the coolant C returned from the coolant suction port 54 into the heat exchange casing 50 is discharged from the coolant discharge port 53, the heat absorbed by the coolant C from the motor 23 is heated. The heat is transferred to the exchange casing 50 and transferred from the heat exchange casing 50 to the sewage W outside the pump 1 and the sewage W passing through the pump casing 16, and heat is transferred from the high-temperature coolant C to the low-temperature sewage W. (Heat exchange) to cool the coolant C.

ここで、冷却液吸込口54から熱交換ケーシング50内に戻された冷却液Cは、下部通路55を通して冷却液循環用羽根車60に導き、そこから上部通路56を通して冷却液吐出口53から出て行くのであるが、下部通路55に底部放熱フィン52cを備え、上部通路56に放熱フィン70を備えているので、熱交換ケーシング50の冷却液Cとの接触面積が増えて熱伝達効率が高まる。また、冷却液Cが熱交換ケーシング50内に戻された直後から最後に出て行くまで冷却液Cを冷やし続けることができる。   Here, the coolant C returned from the coolant suction port 54 into the heat exchange casing 50 is guided to the coolant circulation impeller 60 through the lower passage 55, and is discharged from the coolant discharge port 53 through the upper passage 56 therefrom. However, since the lower passage 55 is provided with the bottom heat radiation fins 52c and the upper passage 56 is provided with the heat radiation fins 70, the contact area of the heat exchange casing 50 with the coolant C is increased and the heat transfer efficiency is increased. . Moreover, it is possible to continue cooling the coolant C immediately after the coolant C is returned to the heat exchange casing 50 until it finally comes out.

冷却液循環用羽根車60は斜流形であり、吐出される流れがポンプ主軸30の軸心を中心軸とする逆円錐面上にあり、軸方向の成分を含む。これにより、冷却液吸入口54を熱交換ケーシング50の下部に、冷却液吸出口53を熱交換ケーシング50の上部に備えることができ、熱交換ケーシング50の大きさを有効に利用して冷却液Cを冷やすことができる。また、熱交換ケーシング50の上部に冷却液吸出口53を備えると、冷却液通路23の冷却液入口28との接続が配管レスで行い易く、冷却液吸出口53と冷却液入口28との配管スペースが不要になり、熱交換器40、引いてはポンプ1全体の小型化することができる。熱交換器40が斜流形の冷却液循環用羽根車60を備える斜流ポンプ構造を有するので、さらなる熱交換器40の小型化、これに伴うポンプ1全体の小型化を実現することができる。このような作用効果は、冷却液循環用羽根車60に軸流形(羽根車から吐出される流れがポンプ主軸30と同心な円筒面上にある)を採用し、熱交換器40が、軸流形の冷却液循環用羽根車を備える軸流ポンプ構造を有する場合にも得ることができる。   The coolant circulation impeller 60 has a diagonal flow shape, and the flow to be discharged is on an inverted conical surface having the central axis of the pump main shaft 30 as a central axis, and includes an axial component. As a result, the coolant inlet 54 can be provided in the lower part of the heat exchange casing 50 and the coolant inlet 53 can be provided in the upper part of the heat exchange casing 50, and the size of the heat exchange casing 50 can be utilized effectively. C can be cooled. In addition, when the coolant outlet 53 is provided in the upper portion of the heat exchange casing 50, the coolant passage 23 can be easily connected to the coolant inlet 28 without a pipe, and the pipe between the coolant inlet 53 and the coolant inlet 28 can be easily connected. Space is not required, and the heat exchanger 40, and thus the pump 1 as a whole can be downsized. Since the heat exchanger 40 has a mixed flow pump structure including the mixed flow type impeller 60 for circulating coolant, it is possible to further reduce the size of the heat exchanger 40 and the size of the pump 1 as a whole. . Such an effect is obtained by adopting an axial flow type (the flow discharged from the impeller is on a cylindrical surface concentric with the pump main shaft 30) in the cooling liquid circulation impeller 60, and the heat exchanger 40 has a shaft It can also be obtained in the case of having an axial flow pump structure provided with a flow-type coolant circulation impeller.

そして、放熱フィン70は、熱交換ケーシング50の冷却液Cとの接触面積を増やして熱伝達効率を高めるだけでなく、放熱フィン70の入口を冷却液循環用羽根車60から出た冷却液Cの絶対速度vの流れの角度αに合わせ、冷却液循環用羽根車60から出た冷却液Cが有している速度エネルギを圧力エネルギに変換するディフューザ機能を持たせている。すなわち冷却液循環用羽根車60で斜め上外方に流される冷却液Cはそこで急激に圧力を増加するが、それとともに速度も増加して高速度で冷却液循環用羽根車60から斜め上外方に出て、放熱フィン70に入ることになり、そこを通過する間に放熱フィン70によって冷却液Cの速度(冷却液循環用羽根車60から出た冷却液Cが有している速度)を減じ、これを圧力に変換するのである。これにより、冷却液循環用羽根車60出口で有していた速度エネルギが損失となるのを抑制することができる。 The radiating fin 70 not only increases the contact area of the heat exchange casing 50 with the cooling liquid C to increase the heat transfer efficiency, but also the cooling liquid C exiting the cooling liquid circulation impeller 60 at the inlet of the radiating fin 70. absolute velocity v suit the angle alpha 2 of the second stream, cooling liquid coolant C exiting from circulating impeller 60 is made to have a diffuser that can convert the pressure energy of the velocity energy which has a of. In other words, the coolant C flowing obliquely upward and outward by the coolant circulation impeller 60 suddenly increases its pressure there, but at the same time the speed increases and the coolant circulation impeller 60 obliquely upwards and downwards at a high speed. And then enters the heat dissipating fins 70, and the speed of the coolant C by the heat dissipating fins 70 while passing through the heat dissipating fins 70 (the speed of the coolant C exiting from the coolant circulating impeller 60) Is converted to pressure. Thereby, it can suppress that the velocity energy which it had at the impeller 60 for coolant circulation has lost.

このように、放熱フィン70が熱伝達効率を高めながら、冷却液循環用羽根車60から出た冷却液Cが有している速度エネルギを有効に圧力エネルギに変換して損失を抑えるので、冷却液循環用羽根車60を必要以上に大きくする必要はなく、高い熱伝導効率を達成しながら、熱交換器40の小型化、ポンプ1自体の高効率化を実現することができる。   In this way, the heat radiation fin 70 increases the heat transfer efficiency, while effectively converting the speed energy of the cooling liquid C that has come out of the cooling liquid circulation impeller 60 into pressure energy to suppress the loss. It is not necessary to make the liquid circulation impeller 60 larger than necessary, and the heat exchanger 40 can be downsized and the efficiency of the pump 1 itself can be increased while achieving high heat conduction efficiency.

以上、本実施の形態は本発明に係るポンプの好適な一実施の形態を示したが、本発明はそれに限定されることなく、その要旨を逸脱しない範囲内で種々変形実施することができる。例えば、斜流ポンプ構造を有する冷却液循環羽根61に代えて上述したように軸流ポンプ構造を有する冷却液循環羽根を備えてもよい。また、封入された冷却液Cを用いてモータ22を外部から冷却するモータ冷却構造を示したが、冷却液Cをモータ22の内部に流通させ、モータ22の発熱部位(コイル,コア,磁石等)を直接冷却するモータ冷却構造としてもよい。この場合、冷却液Cには絶縁性を持たせた油を用いる。さらに上述した一実施の形態では放熱フィンの入口は、冷却液循環用羽根車から出た冷却液の絶対速度の流れ角度と略一致させた例を示したが、放熱フィンの出口側端の間隔が入口側端の間隔よりも広いものであればよい。   As mentioned above, although this Embodiment showed suitable one Embodiment of the pump which concerns on this invention, this invention is not limited to it, Various modifications can be implemented within the range which does not deviate from the summary. For example, instead of the coolant circulation blade 61 having a mixed flow pump structure, a coolant circulation blade having an axial flow pump structure as described above may be provided. In addition, the motor cooling structure in which the motor 22 is cooled from the outside using the enclosed cooling liquid C is shown. However, the cooling liquid C is circulated inside the motor 22 and the heat generation part (coil, core, magnet, etc.) of the motor 22 is shown. It is good also as a motor cooling structure which cools directly. In this case, the coolant C is made of oil having an insulating property. Further, in the embodiment described above, the example in which the inlet of the radiating fin is substantially matched with the flow angle of the absolute speed of the cooling liquid exiting from the cooling liquid circulation impeller is shown. May be wider than the distance between the inlet side ends.

封入された冷却液を発熱部に循環させながら外部に放熱する熱交換器に好適に利用することができる。   The present invention can be suitably used for a heat exchanger that radiates heat to the outside while circulating the enclosed cooling liquid to the heat generating portion.

本発明の実施の形態に係るポンプの縦断面図である。It is a longitudinal section of a pump concerning an embodiment of the invention. 図1の熱交換部の拡大図である。It is an enlarged view of the heat exchange part of FIG. 下部ケーシングの平面図である。It is a top view of a lower casing. 冷却液循環用羽根と放熱フィンの断面図である。It is sectional drawing of the blade | wing for cooling fluid circulation and a radiation fin. 他の冷却液循環用羽根と他の放熱フィンの断面図である。It is sectional drawing of the other blade | wing for cooling fluid circulation, and another radiation fin. 冷却液循環用羽根車を通る冷却液の流れと放熱フィンとの関係を示す断面図である。It is sectional drawing which shows the relationship between the flow of the cooling fluid which passes through the impeller for cooling fluid circulation, and a radiation fin.

1 ポンプ(水中ポンプ)
11 ポンプケーシング
12 ポンプ羽根車
20 モータ部
22 モータ
30 ポンプ主軸
40 熱交換器
50 熱交換ケーシング
51 上部ケーシング
52 下部ケーシング
52a 熱交換ケーシングの底部(隔壁)
55 熱交換ケーシングの下部通路(冷却液通路)
57 メカニカルシール(軸封装置)
60,60A 冷却液循環用羽根車
61,61A 冷却液循環用羽根
70 放熱フィン
71 放熱板
C 冷却液
冷却液循環用羽根車から出る冷却液の絶対速度
α 冷却液循環羽根車から出る冷却液の絶対速度の流れの角度
1 Pump (submersible pump)
DESCRIPTION OF SYMBOLS 11 Pump casing 12 Pump impeller 20 Motor part 22 Motor 30 Pump spindle 40 Heat exchanger 50 Heat exchange casing 51 Upper casing 52 Lower casing 52a Bottom part (partition wall) of heat exchange casing
55 Lower passage (coolant passage) of heat exchange casing
57 Mechanical seal (shaft seal device)
60, 60A Coolant circulation impeller 61, 61A Coolant circulation blade 70 Radiation fin 71 Radiator plate C Coolant v 2 Absolute speed of coolant exiting from coolant circulation impeller α 2 Exit from coolant circulation impeller Cooling liquid absolute velocity flow angle

Claims (5)

ポンプケーシング内で回転する羽根車と、羽根車が取り付けられてモータにより駆動される主軸と、封入された冷却液をモータ部に循環させながら外部に放熱する熱交換器を備えたポンプにおいて、
前記熱交換器は、前記冷却液が収容された熱交換ケーシングと、この熱交換ケーシング内で主軸とともに回転して前記冷却液にエネルギを与える冷却液循環用羽根車と、この冷却液循環用羽根車の出口側に入口側を位置させた複数の放熱フィンとを備え、
前記放熱フィンの出口側端の間隔が入口側端の間隔より広く、
前記放熱フィンの入口は前記冷却液循環用羽根車から出た前記冷却液の絶対速度の流れ角度と略一致しているポンプ。
In a pump provided with an impeller that rotates in a pump casing, a main shaft that is attached to the impeller and driven by a motor, and a heat exchanger that radiates heat while circulating the enclosed coolant to the motor unit,
The heat exchanger includes a heat exchange casing in which the cooling liquid is accommodated, a cooling liquid circulation impeller that rotates with a main shaft in the heat exchange casing to give energy to the cooling liquid, and the cooling liquid circulation blade. A plurality of heat dissipating fins positioned on the exit side of the car,
The distance of the outlet end of the heat dissipating fins widely than the distance between the inlet end,
A pump in which the inlet of the heat dissipating fin substantially coincides with the flow angle of the absolute speed of the cooling liquid exiting from the cooling liquid circulation impeller .
前記主軸の外周部にポンプケーシング内の液体がモータへ侵入することを防止するためのメカニカルシールを備え、前記冷却液がメカニカルシールの潤滑液である請求項1に記載のポンプ。 2. The pump according to claim 1 , further comprising a mechanical seal for preventing liquid in the pump casing from entering the motor at an outer peripheral portion of the main shaft, wherein the cooling liquid is a lubricating liquid for the mechanical seal . 前記熱交換ケーシングはモータとポンプケーシングの間に配置され、そのポンプケーシング側の壁面が、ポンプケーシング内の液体と接する隔壁であり、前記隔壁と対向しその外周部に熱を伝える放熱板を設け、隔壁と放熱板の間に冷却液通路を形成し、前記放熱板の冷却液通路とは反対側面に前記放熱フィンを形成してある請求項1又は請求項2に記載のポンプ。 The heat exchange casing is disposed between the motor and the pump casing, and the wall surface on the pump casing side is a partition wall in contact with the liquid in the pump casing, and is provided with a heat radiating plate facing the partition wall and transmitting heat to the outer periphery thereof. The pump according to claim 1 or 2 , wherein a cooling liquid passage is formed between the partition wall and the heat radiating plate, and the radiating fin is formed on a side surface of the heat radiating plate opposite to the cooling liquid passage . 前記冷却液循環羽根車が斜流形羽根で構成されている請求項1〜請求項3の何れか1項に記載のポンプ。 The pump according to any one of claims 1 to 3, wherein the coolant circulation impeller is composed of mixed flow blades . 前記冷却液循環羽根と放熱フィンの少なくとも一方が平坦面からなる請求項1〜請求項4の何れか1項に記載のポンプ。 The pump according to any one of claims 1 to 4, wherein at least one of the cooling liquid circulation blade and the radiation fin is a flat surface .
JP2007152645A 2007-06-08 2007-06-08 pump Active JP4972469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007152645A JP4972469B2 (en) 2007-06-08 2007-06-08 pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007152645A JP4972469B2 (en) 2007-06-08 2007-06-08 pump

Publications (2)

Publication Number Publication Date
JP2008303814A JP2008303814A (en) 2008-12-18
JP4972469B2 true JP4972469B2 (en) 2012-07-11

Family

ID=40232749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007152645A Active JP4972469B2 (en) 2007-06-08 2007-06-08 pump

Country Status (1)

Country Link
JP (1) JP4972469B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6001919B2 (en) * 2012-05-22 2016-10-05 株式会社久保田鉄工所 Electric water pump
EP2853749A1 (en) * 2013-09-25 2015-04-01 Siemens Aktiengesellschaft Fluid-energy-machine, method to operate
CN109555708B (en) * 2018-11-15 2021-03-12 攀枝花鑫华节能技术服务有限公司 Energy-saving water pump motor
CN114159694B (en) * 2021-12-08 2023-11-24 北京联合大学 Magnetic suspension pulsation axial flow type heart pump
CN115559911B (en) * 2022-10-18 2023-12-05 三联泵业股份有限公司 Self-priming pump with water shortage protection automatic opening and closing structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2283603A1 (en) * 1998-10-01 2000-04-01 Paul W. Behnke Forced closed-loop cooling for a submersible pump motor
EP1222393B1 (en) * 1999-10-04 2008-12-10 Lawrence Pumps Inc. Submersible motor with shaft seals

Also Published As

Publication number Publication date
JP2008303814A (en) 2008-12-18

Similar Documents

Publication Publication Date Title
US8491277B2 (en) Submersible motor pump, motor pump, and tandem mechanical seal
RU2470190C2 (en) Compressor system for marine underwater operation
KR101042028B1 (en) Motor pump
JP4972469B2 (en) pump
JP2000110768A (en) Closed loop compulsory cooling system for submarine pump motor
JP5496699B2 (en) Submersible motor pump
JP2008175095A (en) Suction nozzle and pump equipped with suction nozzle
JP2010121519A (en) Submergible pump
CN112092608A (en) Liquid-cooled heat dissipation device and vehicle
JP6157302B2 (en) Motor cooling device for vertical electric pump
JP2005282469A (en) Cooling structure for pump motor
JP5496700B2 (en) Motor pump
KR101756979B1 (en) a pump cooling performance is improved
JP5371809B2 (en) Vertical shaft pump
JP2015146716A (en) Pump and waterproof motor
CN209704683U (en) One kind is by balancing shaft-driven water pump
CN207830153U (en) Fluoroplastics lining chemical centrifugal pump
CN112160909A (en) Axial-flow type explosion-proof water pump
JP6614484B2 (en) Electric submersible pump and electric submersible pump system including the same
CN212695853U (en) Water-cooling frequency conversion all-in-one machine
JP5478290B2 (en) Tandem mechanical seal
JP4323614B2 (en) Cooling device for submersible submersible electric pump
CN110594162A (en) High-efficiency energy-saving self-priming pump
CN219282005U (en) Immersible pump with good heat dispersion
JP4323615B2 (en) Cooling system for submersible submersible electric pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4972469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150