JP4972341B2 - 3D fiber reinforced resin composite - Google Patents
3D fiber reinforced resin composite Download PDFInfo
- Publication number
- JP4972341B2 JP4972341B2 JP2006132691A JP2006132691A JP4972341B2 JP 4972341 B2 JP4972341 B2 JP 4972341B2 JP 2006132691 A JP2006132691 A JP 2006132691A JP 2006132691 A JP2006132691 A JP 2006132691A JP 4972341 B2 JP4972341 B2 JP 4972341B2
- Authority
- JP
- Japan
- Prior art keywords
- ear
- composite material
- resin composite
- reinforced resin
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000835 fiber Substances 0.000 title claims description 86
- 239000000805 composite resin Substances 0.000 title claims description 76
- 239000000463 material Substances 0.000 claims description 101
- 239000004020 conductor Substances 0.000 claims description 45
- 229910052751 metal Inorganic materials 0.000 claims description 42
- 239000002184 metal Substances 0.000 claims description 42
- 238000009958 sewing Methods 0.000 claims description 32
- 239000004744 fabric Substances 0.000 claims description 28
- 239000012783 reinforcing fiber Substances 0.000 claims description 27
- 239000011347 resin Substances 0.000 claims description 25
- 229920005989 resin Polymers 0.000 claims description 25
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 22
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 19
- 239000004917 carbon fiber Substances 0.000 claims description 19
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 18
- 239000003365 glass fiber Substances 0.000 claims description 14
- 229910052759 nickel Inorganic materials 0.000 claims description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 10
- 239000007769 metal material Substances 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 239000010949 copper Substances 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 239000002023 wood Substances 0.000 claims 1
- 239000002131 composite material Substances 0.000 description 34
- 238000000034 method Methods 0.000 description 18
- 239000002759 woven fabric Substances 0.000 description 9
- 238000001514 detection method Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 239000002216 antistatic agent Substances 0.000 description 4
- 229920001187 thermosetting polymer Polymers 0.000 description 4
- 229910000990 Ni alloy Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229920001230 polyarylate Polymers 0.000 description 3
- -1 polyparaphenylene benzobisoxazole Polymers 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000011151 fibre-reinforced plastic Substances 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 238000001721 transfer moulding Methods 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
Images
Landscapes
- Reinforced Plastic Materials (AREA)
- Moulding By Coating Moulds (AREA)
- Woven Fabrics (AREA)
Description
本発明は、3次元繊維強化樹脂複合材(3次元に配した強化繊維に樹脂を含浸硬化して形成した繊維強化樹脂複合材)に関する。 The present invention relates to a three-dimensional fiber reinforced resin composite (a fiber reinforced resin composite formed by impregnating and curing a resin in three-dimensional reinforcing fibers).
今日、繊維強化樹脂複合材(FRP:Fiber Reinforced Plastics)は、航空機、自動車、船舶あるいは一般産業機器の構造用部材として広く用いられている。ある基準面内で1方向に揃えられ又はある基準面内で2以上の方向に配されて布地(織布、不織布を含む)を形成する強化繊維(「面内方向糸」という。)に樹脂を含浸硬化して形成した繊維強化樹脂複合材が知られる。例えば、炭素繊維やガラス繊維等の無機物系強化繊維を縦横に配して織り込んだ織物にエポキシ樹脂などの樹脂を含浸硬化して形成したものが知られる。平板状の繊維強化樹脂複合材は、上記基準面の方向が位置によらず一定である。この基準面の方向は位置により変化するものでもよく、例えば、任意の曲面に形成された板材や筒状に巻かれた強化繊維に樹脂を含浸硬化して形成したパイプ材が知られる。 Today, fiber reinforced plastic composites (FRP: Fiber Reinforced Plastics) are widely used as structural members for aircraft, automobiles, ships or general industrial equipment. Resin to reinforcing fibers (referred to as “in-plane direction yarns”) that are aligned in one direction within a certain reference plane or arranged in two or more directions within a certain reference plane to form a fabric (including woven fabric and non-woven fabric). A fiber reinforced resin composite material formed by impregnating and curing is known. For example, a fabric formed by impregnating and curing a resin such as an epoxy resin on a woven fabric in which inorganic reinforcing fibers such as carbon fibers and glass fibers are arranged in a horizontal and vertical direction is known. In the flat fiber-reinforced resin composite material, the direction of the reference plane is constant regardless of the position. The direction of the reference surface may vary depending on the position. For example, a plate material formed by impregnating and curing a resin on a plate material formed in an arbitrary curved surface or a reinforcing fiber wound in a cylindrical shape is known.
3次元繊維強化樹脂複合材は、面内方向糸に、3次元目の方向糸として基準面に交わる方向に配される強化繊維(「面外方向糸」という。)を加えたもの(「3次元強化繊維織物」という。)に樹脂を含浸硬化して形成した繊維強化樹脂複合材である。特許文献1に3次元繊維強化樹脂複合材の例が記載されている。
The three-dimensional fiber-reinforced resin composite material is obtained by adding reinforcing fibers (referred to as “out-of-plane direction yarns”) arranged in the direction intersecting the reference surface as the third-dimensional direction yarns to the in-plane direction yarns (“3”). It is a fiber-reinforced resin composite material formed by impregnating and curing a resin to a dimension-reinforced fiber fabric.
特許文献1に記載の一の3次元繊維強化樹脂複合材は、図6に示すように、複数のたて糸1と複数のよこ糸2からなる面内方向糸3と上記面内方向糸3の基準面に対して直交する複数の面外方向糸4と上記面外方向糸4を固定する耳糸5から形成される平板状3次元織布6に、図示しない密閉治具を用いて樹脂を含浸し、平板状3次元織布6に含浸した樹脂を加熱加圧処理して硬化することで構成される。
As shown in FIG. 6, one three-dimensional fiber reinforced resin composite material described in
かかる面外方向糸4は、面内方向糸3が形成する布地に縫い込まれており、このような面外方向糸を縫い糸と呼ぶ。面内方向糸3は積層されており、その複数の面内方向糸3の層が縫い糸4により縫い合わされている。
この縫い糸4は、その折り返しでできる耳部に耳糸5が通されて係止され、同一位置で(面内方向糸3を跨がずに)布の表裏間を往復している。
The out-of-
The
繊維強化樹脂複合材に用いられる3次元強化繊維織物は、非特許文献1に紹介されている織物様式の他、非特許文献2に紹介されているステッチング形態、特許文献2に実施例として記載されているステッチング形態がある。
特許文献2の図12に記載される繊維強化樹脂複合材に用いられる3次元強化繊維織物は、上述した特許文献1記載のものと同様に、面内方向糸(経糸、経糸及びバイアス糸)と面外方向糸(縫い糸y)から構成されており、さらに、縫い糸を係止する耳糸(係止糸=P)を有している。
The three-dimensional reinforcing fiber woven fabric used for the fiber reinforced resin composite material is described in Non-Patent
The three-dimensional reinforced fiber fabric used for the fiber reinforced resin composite material described in FIG. 12 of
従来、繊維強化樹脂複合材に用いられる3次元強化繊維織物において、耳糸と縫い糸とは同じ材料が使われているのが一般的である。
一般に、航空機部品に適用される繊維強化樹脂複合材に用いられる3次元強化繊維織物にあっては、面内方向糸、面外方向糸とも炭素繊維或いは、ガラス繊維が使われており、耳糸にも縫い糸と同じ材料が使われる。
従来、この耳糸は縫い糸を係止することの目的にのみ使用され、耳糸そのものには、樹脂複合材を強化する繊維としての強度特性を含め他の特性が要求されていない。
Conventionally, in the three-dimensional reinforcing fiber fabric used for the fiber reinforced resin composite material, the same material is generally used for the ear thread and the sewing thread.
Generally, in a three-dimensional reinforcing fiber fabric used for a fiber reinforced resin composite material applied to aircraft parts, carbon fiber or glass fiber is used for both in-plane direction yarns and out-of-plane direction yarns. The same material as the sewing thread is also used.
Conventionally, the ear thread is used only for the purpose of locking the sewing thread, and the ear thread itself is not required to have other characteristics including strength characteristics as a fiber for reinforcing the resin composite material.
従来、繊維強化樹脂複合材の成形方法として、一つには、布状に形成した強化繊維に未硬化の樹脂を含浸してBステージ硬化(中間硬化)させた材料(プリプレグ)を用いた成形方法が採られている。このプリプレグを積層し、オートクレーブ(加圧加熱炉)にて加圧加熱硬化して成形する方法である。
また、強化繊維を収めた型に樹脂を注入して、型内の強化繊維に含浸した樹脂を硬化させて成形するRTM(Resin Transfer Molding)法が用いられている。
また、所定の下型治具の上に熱硬化性樹脂フィルムおよび強化繊維を順次積層し、加圧、加熱によって熱硬化性樹脂フィルムを溶融させて強化繊維に含浸硬化させるRFI(Resin Film Infusion)法が採られる。
近年、RTM法及びRFI法による部品製造が低コスト手法として注目されている。
Also, an RTM (Resin Transfer Molding) method is used in which a resin is injected into a mold containing reinforcing fibers and the resin impregnated in the reinforcing fibers in the mold is cured and molded.
Also, RFI (Resin Film Infusion), in which a thermosetting resin film and reinforcing fibers are sequentially laminated on a predetermined lower jig, and the thermosetting resin film is melted by pressurization and heating to impregnate and harden the reinforcing fibers. Law is adopted.
In recent years, parts production by the RTM method and the RFI method has attracted attention as a low-cost method.
以上の従来技術にあっても、さらに次のような問題がある。
第一に、航空機の外板に適用される繊維強化樹脂複合材には被雷対策としてその外表面に耐雷材料(導電性材料)を付設する必要がある。
Even in the above prior art, there are the following problems.
First, it is necessary to attach a lightning resistant material (conductive material) to the outer surface of the fiber reinforced resin composite material applied to the outer panel of the aircraft as a countermeasure against lightning.
第二に、非特許文献3においても説明されているように、航空機体には飛行に必要な電子機器が搭載されており、機体内外部からの障害電波を遮蔽(シールド)する必要がある。特に、離着時には地上管制官とレーダー交信しており、機体外部から侵入する電波障害(ノイズ)には特に気をつけなければならない。この機体内外部からの電波障害を排除する電波シールド材として、導電性材料を繊維強化樹脂複合材の表面の必要部位に付設する必要がある。 Secondly, as described in Non-Patent Document 3, an electronic device necessary for flight is mounted on the aircraft body, and it is necessary to shield (shield) the obstacle radio waves from the outside of the aircraft body. In particular, radar communication with the ground controller at the time of taking off and landing should be taken into consideration especially for radio interference (noise) entering from outside the aircraft. As a radio wave shielding material that eliminates radio interference from the outside of the machine body, it is necessary to attach a conductive material to a necessary portion of the surface of the fiber reinforced resin composite material.
第三に、以上の目的又は他の目的で、繊維強化樹脂複合材の表面に導電性材料を付設するには、繊維強化樹脂複合材の製造と同時あるいは後工程で導電性材料を接着する必要がある。したがって、導電性材料、接着剤等の材料の手配、接着工程、検査工程に時間と費用が掛かるという問題がある。 Third, in order to attach a conductive material to the surface of a fiber reinforced resin composite material for the above purpose or other purposes, it is necessary to bond the conductive material at the same time as the production of the fiber reinforced resin composite material or in a later process. There is. Therefore, there is a problem that it takes time and cost to arrange materials such as conductive materials and adhesives, bonding process, and inspection process.
一方、繊維強化樹脂複合材に用いられる3次元強化繊維織物において、耳糸には縫い糸を止める係止め機能のほか特に他の機能が必要とされていない。したがって、この耳糸は、複合材料成形硬化後に複合材料特性には何ら寄与しない材料として存在することになる。 On the other hand, in the three-dimensional reinforced fiber fabric used for the fiber reinforced resin composite material, the ear thread does not require any other function in addition to the locking function for stopping the sewing thread. Therefore, this ear thread exists as a material which does not contribute to the composite material property after the composite material is formed and cured.
本発明は以上の従来技術における問題に鑑みてなされたものであって、生産性を損なうことなく、繊維強化樹脂複合材に導電性を付与することを課題とする。 This invention is made | formed in view of the problem in the above prior art, Comprising: It makes it a subject to provide electroconductivity to a fiber reinforced resin composite material, without impairing productivity.
以上の課題を解決するための請求項1記載の発明は、面内方向糸が形成する布地に縫い糸が耳糸に係止されつつ縫い込まれて構成された強化繊維織物に樹脂が含浸硬化してなる3次元繊維強化樹脂複合材において、
前記耳糸が前記面内方向糸より導電性の高い導電性材料から構成され、前記縫い糸がガラス繊維、炭素繊維又は有機繊維から構成されていることを特徴とする3次元繊維強化樹脂複合材である。
In order to solve the above-mentioned problems, the invention according to
A three-dimensional fiber reinforced resin composite material, wherein the ear thread is made of a conductive material having higher conductivity than the in-plane direction thread , and the sewing thread is made of glass fiber, carbon fiber, or organic fiber. is there.
請求項2記載の発明は、前記耳糸が金属材料から構成されている請求項1に記載の3次元繊維強化樹脂複合材である。
The invention according to
請求項3記載の発明は、面内方向糸が形成する布地に縫い糸が耳糸に係止されつつ縫い込まれて構成された強化繊維織物に樹脂が含浸硬化してなる3次元繊維強化樹脂複合材において、
前記面内方向糸がガラス繊維又は炭素繊維から構成され、前記耳糸が金属材料から構成され、
前記縫い糸がガラス繊維、炭素繊維又は有機繊維から構成されている3次元繊維強化樹脂複合材である。
According to a third aspect of the present invention, there is provided a three-dimensional fiber reinforced resin composite obtained by impregnating and curing a reinforced fiber fabric in which a sewing thread is sewn to a cloth formed by in-plane direction threads while being engaged with ear threads. In the material,
The in-plane direction yarn is made of glass fiber or carbon fiber, the ear yarn is made of a metal material ,
The sewing thread is a three-dimensional fiber reinforced resin composite material made of glass fiber, carbon fiber, or organic fiber .
請求項4記載の発明は、前記耳糸が主成分として銅、アルミニウム、ニッケル、鉄又はチタンを含んで構成されていることを特徴とする請求項1から請求項3のうちいずれか一に記載の3次元繊維強化樹脂複合材である。
The invention according to
請求項5記載の発明は、前記面内方向糸が炭素繊維から構成され、前記耳糸が主成分としてニッケルを含んで構成されていることを特徴とする請求項1から請求項3のうちいずれか一に記載の3次元繊維強化樹脂複合材である。 According to a fifth aspect of the present invention, any one of the first to third aspects is characterized in that the in-plane direction yarn is composed of carbon fiber, and the ear yarn is composed of nickel as a main component. It is a three-dimensional fiber reinforced resin composite material as described in any one.
請求項6記載の発明は、前記耳糸が金属膜により被覆されている請求項1に記載の3次元繊維強化樹脂複合材である。
The invention according to
請求項7記載の発明は、間隔隔てて配置された前記耳糸同士を短絡する接続導電材を含むことを特徴とする請求項1から請求項6のうちいずれか一に記載の3次元繊維強化樹脂複合材である。
Invention of
請求項8記載の発明は、前記耳糸が間隔隔てて平行に配置され、前記耳糸の一端部同士を短絡する一の接続導電材と、この接続導電材に対し非接続で前記耳糸の他端部同士を短絡する他の接続導電材とを含むことを特徴とする請求項1から請求項6のうちいずれか一に記載の3次元繊維強化樹脂複合材である(第2実施形態参照)。
The invention according to
請求項9記載の発明は、前記耳糸が間隔隔てて平行に配置され、前記耳糸同士を短絡する一の接続導電材と、この接続導電材に対し非接続、かつ、斜めに配置され前記耳糸同士を短絡する他の接続導電材とを含むことを特徴とする請求項1から請求項6のうちいずれか一に記載の3次元繊維強化樹脂複合材である(第3実施形態参照)。
The invention according to claim 9 is characterized in that the ear threads are arranged parallel to each other at a distance, one connection conductive material that short-circuits the ear threads, and a connection conductor that is not connected to the connection conductive material, and is arranged obliquely. The three-dimensional fiber reinforced resin composite material according to any one of
請求項記10載の発明は、前記耳糸が間隔隔てて平行に配置され、前記耳糸同士を短絡可能に前記耳糸に交わるとともに、相互に導通可能に交わる2本の接続導電材を含むことを特徴とする請求項1から請求項6のうちいずれか一に記載の3次元繊維強化樹脂複合材である(第4実施形態参照)。
The invention according to
請求項11記載の発明は、前記接続導電材に導通する外部接続用の電極端子が形成されていることを特徴とする請求項7から請求項10のうちいずれか一に記載の3次元繊維強化樹脂複合材である。
The invention according to
請求項12記載の発明は、前記耳糸が間隔隔てて平行に配置され、
前記耳糸同士を短絡可能に前記耳糸に交わるとともに、相互に面外方向に離間して交わる2本の接続導電材と、
前記2本の接続導電材の一端部同士を接続する他の接続導電材と、
前記2本の接続導電材の各他端部に導通する外部接続用の電極端子とを含むことを特徴とする請求項1から請求項6のうちいずれか一に記載の3次元繊維強化樹脂複合材である(第5実施形態参照)。
The invention according to
Two connecting conductive materials that intersect the ear threads so that they can be short-circuited with each other, and that are spaced apart from each other in the out-of-plane direction;
Other connection conductive materials that connect one end portions of the two connection conductive materials;
The three-dimensional fiber reinforced resin composite according to any one of
請求項13記載の発明は、前記接続導電材が、前記強化繊維織物に織り込まれていることを特徴とする請求項7から請求項12のうちいずれか一に記載の3次元繊維強化樹脂複合材である。
The invention according to claim 13 is the three-dimensional fiber-reinforced resin composite material according to any one of
本発明によれば、耳糸を導電性材料とするので、生産性を損なうことなく、繊維強化樹脂複合材に導電性を付与するができるという効果がある。
繊維強化樹脂複合材に導電性という新たな機能が付与されたことにより、耳糸の材質、線径、本数を選択することでその電気伝導率や電気抵抗率を調整することができる。
耳糸の材質、線径、本数の選択とともに、耳糸同士を短絡する接続導電材の織成や、電極端子等の必要な加工を施すことにより、例えば、電磁シールド機能、耐雷機能、静電防止機能、耳糸の導通の有無や抵抗の変化を検知することで損傷検出機能、耳糸を電熱線としてヒータ機能、耳糸等による導電路の配置を工夫してアンテナ機能等を有した3次元繊維強化樹脂複合材を得ることができ、多用途に応用可能である。
According to the present invention, since the ear thread is made of a conductive material, there is an effect that conductivity can be imparted to the fiber-reinforced resin composite material without impairing productivity.
By adding a new function of conductivity to the fiber reinforced resin composite material, the electrical conductivity and electrical resistivity can be adjusted by selecting the material, wire diameter, and number of ear threads.
By selecting the material, wire diameter, and number of ear threads, weaving the connection conductive material that short-circuits the ear threads, and performing necessary processing such as electrode terminals, for example, electromagnetic shielding function, lightning resistance function, electrostatic It has a prevention function, damage detection function by detecting presence / absence of ear thread continuity and resistance change, heater function using ear thread as heating wire, antenna function etc. by devising arrangement of conductive path by ear thread etc. 3 A two-dimensional fiber reinforced resin composite material can be obtained, and can be applied to various applications.
本発明によれば、耳糸を導電性材料とするので、従来と同様の繊維強化樹脂複合材の製造過程で繊維強化樹脂複合材に導電性を付与することができることから、製造された繊維強化樹脂複合材に導電性材料を接着等で付設する従来技術に比べ、生産性、耐久性の向上、軽薄化、低コスト化等を実現することができる。 According to the present invention, since the ear thread is made of a conductive material, conductivity can be imparted to the fiber reinforced resin composite in the same process as the conventional fiber reinforced resin composite. Compared with the conventional technique in which a conductive material is attached to a resin composite material by bonding or the like, it is possible to improve productivity, durability, lightness, and cost.
以下に本発明の一実施の形態につき図面を参照して説明する。以下は本発明の一実施形態であって本発明を限定するものではない。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The following is one embodiment of the present invention and does not limit the present invention.
〔第1実施形態〕
まず、本発明の第1実施形態につき、図1を参照して説明する。図1は本発明の第1実施形態の3次元繊維強化樹脂複合材を示す平面図である。
[First Embodiment]
First, a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a plan view showing a three-dimensional fiber reinforced resin composite material according to a first embodiment of the present invention.
本実施形態の3次元繊維強化樹脂複合材10に使用される3次元強化繊維織物においては、面内方向糸が、ある基準面内で1方向に揃えられ又はある基準面内で2以上の方向に配されて布地(織布、不織布を含む)が形成される。この布地に縫い糸4が耳糸5に係止されつつ縫い込まれて3次元強化繊維織物が織成される。3次元強化繊維織物の断面構造例としては、例えば図6に示すものである。
In the three-dimensional reinforcing fiber fabric used for the three-dimensional fiber reinforced
3次元繊維強化樹脂複合材の成形方法としては、3次元強化繊維織物を収めた型に樹脂を注入して、型内の3次元強化繊維織物に含浸した樹脂を硬化させて成形するRTM(Resin Transfer Molding)法が好ましい。RTM法によれば、製品の品質及び生産効率が良好となり、また、縫い糸により強化繊維織物の糸のほつれが生じ難いという縫い糸を有した3次元強化繊維織物の特性が活かされて、品質及び生産効率が向上する。
その他、RFI(Resin Film Infusion)法によって製造しても良い。
また、3次元強化繊維織物を予め成形品の形状に合わせて製作しておき、これに樹脂を含浸させて硬化させれば、樹脂硬化後の整形加工量を減少させることができ、材料の無駄を抑え、作業時間を短縮することができる。
As a molding method of a three-dimensional fiber reinforced resin composite material, a resin is injected into a mold containing a three-dimensional reinforcing fiber fabric, and the resin impregnated in the three-dimensional reinforcing fiber fabric is cured and molded. The transfer molding method is preferred. According to the RTM method, the quality and production efficiency of the product is improved, and the characteristics of the three-dimensional reinforcing fiber woven fabric having the sewing thread that the thread of the reinforcing fiber woven fabric is not easily frayed by the sewing thread are utilized to improve the quality and production. Efficiency is improved.
In addition, you may manufacture by RFI (Resin Film Infusion) method.
In addition, if a three-dimensional reinforcing fiber fabric is manufactured according to the shape of the molded product in advance and is then impregnated with resin and cured, the amount of shaping after resin curing can be reduced, resulting in wasted material. Can reduce the working time.
面内方向糸の材料としては、ガラス繊維又は炭素繊維を用いれば足りる。縫い糸4の材料としては、ガラス繊維、炭素繊維のほか、ポリアリレート繊維やポリパラフェニレンベンゾビスオキサゾール繊維等の有機繊維を用いても良い。有機繊維によれば、可撓性が良く、縫い糸周辺でのクラックの発生が抑えられる。また、ポリアリレート繊維又はポリパラフェニレンベンゾビスオキサゾール繊維によれば、引張強度、熱分解温度ともに十分に高く、弾性率が十分に低く、水に分解しない性質を有するので樹脂複合材に適合する。ポリパラフェニレンベンゾビスオキサゾール繊維は、ポリアリレート繊維よりも引張強度及び熱分解温度が高く、特に引張強度は炭素繊維よりも高いが、太陽光の被照射により強度が半減することがあるので、用途により使い分けると良い。
As the material for the in-plane direction yarn, glass fiber or carbon fiber may be used. As a material of the
耳糸の材料としては、その主成分として銅、アルミニウム、ニッケル、鉄、チタン等を含んだ金属材料を用いる。この金属材料は、ガラス繊維又は炭素繊維を被覆する金属膜として使用しても良い。同様に耳糸に導電性を付与できるからである。表1にこれらの金属材料の電気抵抗率を示した。表2に炭素繊維の電気抵抗率を示した。 As the material of the ear thread, a metal material containing copper, aluminum, nickel, iron, titanium or the like as its main component is used. This metal material may be used as a metal film covering glass fiber or carbon fiber. It is because conductivity can be imparted to the ear thread similarly. Table 1 shows the electrical resistivity of these metal materials. Table 2 shows the electrical resistivity of the carbon fiber.
面内方向糸や縫い糸にガラス繊維や有機繊維を適用する場合、これらの繊維は金属との電触不具合がないことから、耳糸に適用する金属材料に限定はなく、アルミニウム、鉄、銅、ニッケル等の材料及びそれらの合金の何れも適用可能であり、機能要求に応じて任意に選定が可能である。 When glass fiber or organic fiber is applied to the in-plane direction thread or sewing thread, these fibers have no electrical contact failure with metal, so there is no limitation on the metal material applied to the ear thread, such as aluminum, iron, copper, Any material such as nickel and alloys thereof can be applied, and can be arbitrarily selected according to functional requirements.
面内方向糸や縫い糸に炭素繊維を適用する場合、炭素と金属間とにはその電位差から発生する電触不具合がある。しかし、ニッケル及びニッケル合金は炭素に対し電触不具合を起す可能性はないことから、面内方向糸や縫い糸に炭素繊維を適用する場合は、耳糸にニッケル又はニッケル合金を適用する。 When the carbon fiber is applied to the in-plane direction thread or the sewing thread, there is an electric contact defect that occurs due to the potential difference between the carbon and the metal. However, since nickel and nickel alloy have no possibility of causing an electric contact failure with respect to carbon, when carbon fiber is applied to an in-plane direction thread or sewing thread, nickel or a nickel alloy is applied to the ear thread.
なお、耳糸は、繊維強化樹脂複合材を機械的に強化する機能は元々ないから、耳糸を炭素繊維又はガラス繊維から金属繊維に代えても機械的強度を落とすことはない。
また、一般的に、耳糸の3次元強化繊維織物中を占める重量比は1%以下であり、樹脂を含めると更にこの重量比は下回る値になることから、耳糸を炭素繊維又はガラス繊維から金属繊維に代えても重量増は無視できる程度である。
In addition, since the ear thread originally does not have a function of mechanically reinforcing the fiber reinforced resin composite material, even if the ear thread is changed from carbon fiber or glass fiber to metal fiber, the mechanical strength is not lowered.
In general, the weight ratio of the ear thread in the three-dimensional reinforcing fiber fabric is 1% or less, and when the resin is included, this weight ratio is further lower. Therefore, the ear thread is made of carbon fiber or glass fiber. Therefore, the weight increase is negligible even if the metal fiber is used instead.
図1に示すように、耳糸5は間隔隔てて平行に配置される。本実施形態の複合材10を電磁シールド材や耐雷材料などの導電性を有する材料として使用することができる。
As shown in FIG. 1, the
電磁シールド性については、導電率に比例して遮蔽効果(シールド性)が高くなる性質が知られる。したがって、表1の中では、鉄よりもニッケル、ニッケルよりもアルミニウム、アルミニウムよりも銅を使用することが好ましい。
耐雷材料の用途等、外部との接続が必要になる場合には、以下の実施形態のようにすることが好ましい。
As for the electromagnetic shielding property, the property that the shielding effect (shielding property) increases in proportion to the conductivity is known. Therefore, in Table 1, it is preferable to use nickel rather than iron, aluminum rather than nickel, and copper rather than aluminum.
When connection to the outside is required, such as for lightning resistant materials, it is preferable to use the following embodiment.
〔第2実施形態〕
次に、本発明の第2実施形態につき、図2を参照して説明する。図2は本発明の第2実施形態の3次元繊維強化樹脂複合材を示す平面図である。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 2 is a plan view showing a three-dimensional fiber-reinforced resin composite material according to a second embodiment of the present invention.
本実施形態の3次元繊維強化樹脂複合材11は、上記第1実施形態の複合材10に対して、接続導電線7及び金属ファスナー8を加えた点で異なり、その他は同様である。
The three-dimensional fiber reinforced
接続導電線7は、縫い糸4と耳糸5による縫製時と同時又はその後成形前に織り込まれて付加される。その後、RTM法で成形可能である。
また、プリプレグを用いた成形方法を採用する場合に、最上層のプリプレグを、金属耳糸側を上にして積層するとともに、その上に接続導電線7を配して密着させ、それをオートクレーブ(加圧加熱炉)にて加圧加熱硬化して成形しても良い。
また、RFI法を採用する場合に、最上層の強化繊維を、金属耳糸側を上にして積層するとともに、その上に接続導電線7を配し、さらにその上に熱硬化性樹脂フィルムを積層し、加圧、加熱によって熱硬化性樹脂フィルムを溶融させて強化繊維に含浸硬化させてもよい。
The connecting
When a molding method using a prepreg is adopted, the uppermost layer of the prepreg is laminated with the metal ear yarn side facing up, and the connection
Further, when the RFI method is adopted, the uppermost reinforcing fiber is laminated with the metal ear yarn side facing up, the connection
金属ファスナー8は、成形硬化した繊維強化樹脂複合材に対し加工されて形成される。この金属ファスナー8は、航空機等の機体フレームに固定するためのものである。金属ファスナー8は、孔部と、この孔部内面に設けられ接続導電線7と接続する金属部とを有して構成される。金属ファスナー8の金属部はリベット、ボルト等の固定用金具を介して機体フレームに電気的に接続されるか、又は/及び直接機体フレームに接触して電気的に接続される。
The
接続導電線7は、間隔隔てて配置された耳糸5同士を短絡する。接続導電線7は複合材11の相対する端部に配置されている。一の接続導電線7mは、耳糸5の一端部同士を短絡する。この接続導電線7mに対し非接続の他の接続導電線7nは、耳糸5の他端部同士を短絡する。
また、一の接続導電線7mの両端部に金属ファスナー8が配置されている。同様に、他の接続導電線7nの両端部に金属ファスナー8が配置されている。
The connection
Moreover, the
本実施形態の複合材11を、電磁シールド材のほか、耐雷材料、静電防止材料、ヒータ材料などの導電性を有する材料として使用することができる。
The
必要数の複合材11を機体フレームに固定することにより、耳糸5が、接続導電線7及び金属ファスナー8を介して機体フレームに導通するとともに、さらに機体フレームを介して異なる複合材11に含まれる耳糸5同士が導通する。
機体が被雷した場合、その電気は耳糸5、接続導電線7n、金属ファスナー8、機体フレーム等の金属部分によって機体全体に伝導する。これにより、被雷による複合材11等の損傷を防止することができる。
静電気も、同様に機体全体に逃がし、局所的な蓄積を避けられる。
By fixing the required number of
When the aircraft is subjected to lightning, the electricity is conducted to the entire aircraft by metal parts such as the
Similarly, static electricity can escape to the entire aircraft and avoid local accumulation.
一方、耳糸5をヒータ線として活用することが可能である。一方の接続導電線7mと他方の接続導電線7nとを逆電極として金属ファスナー8を介して電源を接続し、両電極間に通電すれば、耳糸5が電気抵抗体として発熱し、霜取り、或いは氷結防止として機能する。金属耳糸繊維にはニッケル合金(ニッケル・クロム線、インコネル線 等)を用いる。これは、電気抵抗線、且耐熱金属繊維として有効な材料であり、CFRPとの電触の心配もない材料である。
On the other hand, the
〔第3実施形態〕
次に、本発明の第3実施形態につき、図3を参照して説明する。図3は本発明の第3実施形態の3次元繊維強化樹脂複合材を示す平面図である。
[Third Embodiment]
Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 3 is a plan view showing a three-dimensional fiber-reinforced resin composite material according to a third embodiment of the present invention.
本実施形態の3次元繊維強化樹脂複合材12は、上記第2実施形態の複合材11に対して、接続導電線7の構成が異なり、その他は同様である。
The three-dimensional fiber reinforced
図3に示すように、接続導電線7aは複合材12の端部に配置されている。接続導電線7bは、接続導電線7aに対し斜めに配置されている。接続導電線7cは、接続導電線7aと逆側の複合材12の端部に配置されている。
接続導電線7aと接続導電線7cは相対する縁に沿って互いに平行に配置され、耳糸5に対しては直交する。接続導電線7bは一の対角線に沿って配置されている。
As shown in FIG. 3, the connection
The connection
複合材12の四角に金属ファスナー8が設けられている。接続導電線7aは金属ファスナー8aに接続しており、金属ファスナー8b及び接続導電線7bを含め、他の金属ファスナー8及び接続導電線7に接続していない。
接続導電線7bは、その一端で金属ファスナー8bに接続し、他端で金属ファスナー8cに接続している。
接続導電線7cは金属ファスナー8dに接続しており、金属ファスナー8c及び接続導電線7bを含め、他の金属ファスナー8及び接続導電線7に接続していない。
The connection
The connection
本実施形態の複合材12を、上記第2実施形態と同様に、電磁シールド材のほか、耐雷材料、静電防止材料、ヒータ材料などの導電性を有する材料として使用することができる。
Similar to the second embodiment, the
また、接続導電線7a(接続導電線7c)とこれに対し斜めに配置した接続導電線7bとの間の抵抗率変化を検知することで、耳糸5を複合材12の外表面破損有無の衝撃損傷検出センサーとして機能させることが可能となる。
Further, by detecting a change in resistivity between the connecting
この複合材12は、対角線上に配置した接続導電線7bでA、B2つの区域に探傷範囲が分割さている。
以上のように構成される複合材12の耳糸5による衝撃損傷検出センサーによれば、損傷箇所がA、Bいずれの区域に属するか特定可能である。さらに、かかる衝撃損傷検出センサーによれば、斜めに配置した接続導電線7bと片端の耳糸端部の接続導電線7a(接続導電線7c)との間の耳糸5の長さが段階的になることから、この間の全体抵抗値を検出して部分的耳糸破損による微少抵抗率変化を捉らえ解析することで切断した耳糸ラインNO.(図中のA〜P、a〜p)を特定することが可能となる。
In this
According to the impact damage detection sensor using the
〔第4実施形態〕
次に、本発明の第4実施形態につき、図4を参照して説明する。図4は本発明の第4実施形態の3次元繊維強化樹脂複合材を示す平面図である。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described with reference to FIG. FIG. 4 is a plan view showing a three-dimensional fiber reinforced resin composite material according to a fourth embodiment of the present invention.
本実施形態の3次元繊維強化樹脂複合材13は、上記第2実施形態の複合材11に対して、接続導電線7の構成が異なり、その他は同様である。
The three-dimensional fiber reinforced resin composite material 13 of the present embodiment is different from the
図4に示すように、2本の接続導電線7、7は、複合材13の異なる対角線に沿ってそれぞれ配置され、この対角線上で相互に導通可能に交わる。すなわち、2本の接続導電線7、7は交点で接続している。各接続導電線7は、耳糸5に対し斜めに交わり、耳糸5同士を短絡する。各接続導電線7は、その両端部で対角に位置する金属ファスナー8に接続している。
As shown in FIG. 4, the two connection
本実施形態の複合材13を、上記第2実施形態と同様に、電磁シールド材のほか、耐雷材料、静電防止材料などの導電性を有する材料として使用することができる。 Similar to the second embodiment, the composite material 13 of the present embodiment can be used as a conductive material such as a lightning resistant material and an antistatic material in addition to the electromagnetic shielding material.
特に、耐雷材料として使用する場合、複合材13の面を対角線で4分割した形となることから、第2実施形態の複合材11の同じ面積の外表面に対し、被雷した個所と接続導電線7との位置が近くなり被雷損傷エリアを小さくする効果がある。
In particular, when used as a lightning-resistant material, the surface of the composite material 13 is divided into four diagonal lines, so that the portion subjected to lightning and the connection conductivity are applied to the outer surface of the same area of the
〔第5実施形態〕
次に、本発明の第5実施形態につき、図5を参照して説明する。図5は本発明の第5実施形態の3次元繊維強化樹脂複合材を示す平面図である。
[Fifth Embodiment]
Next, a fifth embodiment of the present invention will be described with reference to FIG. FIG. 5 is a plan view showing a three-dimensional fiber reinforced resin composite material according to a fifth embodiment of the present invention.
本実施形態の3次元繊維強化樹脂複合材14は、上記第2実施形態の複合材11に対して、接続導電線7及び外部電極端子9の構成が異なり、その他は同様である。
The three-dimensional fiber reinforced
図5に示すように、2本の接続導電線7d、7fは、複合材13の異なる対角線に沿ってそれぞれ配置され、この対角線の交差部分で相互に面外方向に離間して交わる。すなわち、2本の接続導電線7d、7fは接続していない。例えば、接続導電線7dを表面に配置し、接続導電線7fを接続導電線7dとの交差部分で面内方向糸の層間又は裏面に配置するように縫い込んで、このような構造に構成する。この2つの接続導電線7d、7fはそれぞれ、耳糸5に対し斜めに交わり、耳糸5同士を短絡する。また、接続導電線7d、7fはそれぞれ、その両端部で対角に位置する金属ファスナー8に接続している。
As shown in FIG. 5, the two connection
接続導電線7eは、複合材14の端部で縁に沿って配置されている。接続導電線7eは接続導電線7dの一端部の金属ファスナー8fと、接続導電線7fの一端部の金属ファスナー8gとを接続するとともに、耳糸5同士を短絡する。
The connection
接続導電線7gは、接続導電線7eと逆側の複合材14の端部で縁に沿って接続導電線7eと平行に配置されている。この端部には、接続導電線7dの他端部が接続する金属ファスナー8eに近接して外部電極端子9が設けられている。金属ファスナー8eと外部電極端子9は接続していない。接続導電線7gの一端は金属ファスナー8hに接続し、他端は外部電極端子9に接続する。外部電極端子9は外部接続用の電極端子である。
The connection
本実施形態の複合材13を、上記第2実施形態と同様に、電磁シールド材のほか、耐雷材料、静電防止材料などの導電性を有する材料として使用することができる。 Similar to the second embodiment, the composite material 13 of the present embodiment can be used as a conductive material such as a lightning resistant material and an antistatic material in addition to the electromagnetic shielding material.
また、金属ファスナー8e及び外部電極端子9を2つの端子としたアンテナとして複合材13を用いることができる。アンテナとされた複合材13により、縦、横、斜めのあらゆる方向から入射する電波を捕捉することが可能となる。
Further, the composite material 13 can be used as an antenna having the
3 面内方向糸
4 縫い糸
5 耳糸
7 接続導電線
8 金属ファスナー(外部電極端子)
9 外部電極端子
3 In-
9 External electrode terminal
Claims (13)
前記耳糸が前記面内方向糸より導電性の高い導電性材料から構成され、前記縫い糸がガラス繊維、炭素繊維又は有機繊維から構成されていることを特徴とする3次元繊維強化樹脂複合材。 In the three-dimensional fiber reinforced resin composite material in which a resin is impregnated and cured in a reinforced fiber fabric that is formed by sewing a sewing thread while being engaged with an ear thread into a fabric formed by an in-plane direction thread.
The three-dimensional fiber reinforced resin composite material, wherein the ear yarn is made of a conductive material having higher conductivity than the in-plane direction yarn , and the sewing yarn is made of glass fiber, carbon fiber, or organic fiber .
前記面内方向糸がガラス繊維又は炭素繊維から構成され、前記耳糸が金属材料から構成され、
前記縫い糸がガラス繊維、炭素繊維又は有機繊維から構成されている3次元繊維強化樹脂複合材。 In the three-dimensional fiber reinforced resin composite material in which a resin is impregnated and cured in a reinforced fiber fabric that is formed by sewing a sewing thread while being engaged with an ear thread into a fabric formed by an in-plane direction thread.
The in-plane direction yarn is made of glass fiber or carbon fiber, the ear yarn is made of a metal material ,
A three-dimensional fiber reinforced resin composite material in which the sewing thread is composed of glass fiber, carbon fiber, or organic fiber .
前記耳糸同士を短絡可能に前記耳糸に交わるとともに、相互に面外方向に離間して交わる2本の接続導電材と、
前記2本の接続導電材の一端部同士を接続する他の接続導電材と、
前記2本の接続導電材の各他端部に導通する外部接続用の電極端子とを含むことを特徴とする請求項1から請求項6のうちいずれか一に記載の3次元繊維強化樹脂複合材。 The ear threads are arranged in parallel and spaced apart;
Two connecting conductive materials that intersect the ear threads so that they can be short-circuited with each other, and that are spaced apart from each other in the out-of-plane direction;
Other connection conductive materials that connect one end portions of the two connection conductive materials;
The three-dimensional fiber reinforced resin composite according to any one of claims 1 to 6, further comprising an electrode terminal for external connection conducted to each other end of the two connection conductive materials. Wood.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006132691A JP4972341B2 (en) | 2006-05-11 | 2006-05-11 | 3D fiber reinforced resin composite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006132691A JP4972341B2 (en) | 2006-05-11 | 2006-05-11 | 3D fiber reinforced resin composite |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007301838A JP2007301838A (en) | 2007-11-22 |
JP4972341B2 true JP4972341B2 (en) | 2012-07-11 |
Family
ID=38836196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006132691A Active JP4972341B2 (en) | 2006-05-11 | 2006-05-11 | 3D fiber reinforced resin composite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4972341B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8446077B2 (en) | 2010-12-16 | 2013-05-21 | Honda Motor Co., Ltd. | 3-D woven active fiber composite |
WO2013146335A1 (en) | 2012-03-26 | 2013-10-03 | 三菱重工業株式会社 | Fuel tank, main wing, aircraft fuselage, aircraft, and mobile body |
RU2594417C2 (en) | 2012-03-27 | 2016-08-20 | Мицубиси Хеви Индастрис, Лтд. | Structural material for structures |
FR2988639B1 (en) | 2012-04-02 | 2014-06-13 | Hexcel Reinforcements | MATERIAL WITH IMPROVED CONDUCTIVITY PROPERTIES FOR THE PRODUCTION OF COMPOSITE PARTS IN ASSOCIATION WITH A RESIN |
JP5852255B2 (en) | 2012-10-09 | 2016-02-03 | 三菱重工業株式会社 | Structural materials, fuel tanks, main wings and aircraft |
JP6113544B2 (en) | 2013-03-26 | 2017-04-12 | 三菱重工業株式会社 | Fuel tank, main wing, aircraft fuselage, aircraft and mobile |
JP6071686B2 (en) | 2013-03-26 | 2017-02-01 | 三菱重工業株式会社 | Fuel tank, main wing, aircraft fuselage, aircraft and mobile |
JP5791062B1 (en) * | 2014-12-26 | 2015-10-07 | 三信製織株式会社 | Multicolor square camouflage belt-like woven fabric and method for producing the same |
JP7093655B2 (en) * | 2018-03-20 | 2022-06-30 | 三菱重工業株式会社 | Composite material structure and method for manufacturing composite material structure |
KR102359901B1 (en) * | 2020-07-21 | 2022-02-09 | 울산과학기술원 | Method of detecting the location of damage for composite according to fiber types using machine learning |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59116446A (en) * | 1982-12-24 | 1984-07-05 | 芦森工業株式会社 | Production of carbon fiber cloth |
JPS63264637A (en) * | 1987-04-21 | 1988-11-01 | Nisshinbo Ind Inc | Electroconductive fiber membranous structural material |
JPH0819594B2 (en) * | 1991-10-17 | 1996-02-28 | 株式会社豊田自動織機製作所 | Three-dimensional fabric for composite materials |
JPH07331556A (en) * | 1994-06-02 | 1995-12-19 | Toyota Autom Loom Works Ltd | Cylindrical yarn structure and cylindrical yarn-reinforced composite material |
JPH08103960A (en) * | 1994-10-06 | 1996-04-23 | Fuji Heavy Ind Ltd | Three-dimensional fiber reinforced composite material |
JP2001088793A (en) * | 1999-09-20 | 2001-04-03 | Mitsubishi Heavy Ind Ltd | Composite material structural body and aircraft tail unit using it |
JP4062879B2 (en) * | 2000-12-11 | 2008-03-19 | 株式会社豊田自動織機 | Three-dimensional fiber structure |
JP4019822B2 (en) * | 2002-07-05 | 2007-12-12 | 株式会社豊田自動織機 | Manufacturing method of fiber reinforced composite material |
-
2006
- 2006-05-11 JP JP2006132691A patent/JP4972341B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007301838A (en) | 2007-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4972341B2 (en) | 3D fiber reinforced resin composite | |
JP4944790B2 (en) | Reinforced panel woven in three dimensions | |
US8947847B2 (en) | Methods for forming a structure having a lightning strike protection | |
US8647070B2 (en) | Reinforced composite aerofoil blade | |
CA2775860C (en) | Electrically conductive structure | |
US20130118770A1 (en) | Method for the automated manufacture of a fibre composite component with integrated lightning protection, and also a fibre composite component | |
KR101998538B1 (en) | Woven preform, composite, and method of making thereof | |
US7997534B2 (en) | Connecting structure for an aircraft or spacecraft and method for producing the same | |
US9130363B2 (en) | Lightning strike protection means and fiber composite component | |
JP2014177125A (en) | Thin ply laminate | |
US8894013B2 (en) | Aircraft assembly and method for producing an aircraft assembly | |
US10472473B2 (en) | Enhancing z-conductivity in carbon fiber reinforced plastic composite layups | |
CN105829092A (en) | Composite structure | |
US10035323B2 (en) | Composite textiles including spread filaments | |
CN107107485A (en) | Manufacture the method for the pad of composite construction and the composite construction comprising pad | |
US9474339B2 (en) | Connecting device, assembly and method for manufacturing an assembly | |
CN105584616B (en) | Method for producing a deck plate using a composite material incorporating a lightning protection layer and deck plate | |
US9827744B2 (en) | Lightning strike protection material for dry lay-up / dry fiber placement device | |
WO2019227474A1 (en) | Thickness direction conductive laminated composite material and manufacturing method therefor | |
EP2628589B1 (en) | Composite layers with exposed reinforcement | |
JP2007152672A (en) | Three-dimensional fiber-reinforced resin composite material and three-dimensional fabric | |
JP2018047633A (en) | Conductive resin body, vehicle earth structure and method for producing conductive resin body | |
EP3388215B1 (en) | Sandwich panel, method for producing unidirectional prepreg, and method for producing sandwich panel | |
CN110741113A (en) | Woven 3D fiber reinforced structure and method of making same | |
CN110524895B (en) | Method for assembling at least two composite material parts and assembly obtained in this way |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090402 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110530 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110621 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110822 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120403 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120409 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150413 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4972341 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |