JP4970778B2 - Lubricating oil for copper pipe processing and method for producing copper pipe using the same - Google Patents

Lubricating oil for copper pipe processing and method for producing copper pipe using the same Download PDF

Info

Publication number
JP4970778B2
JP4970778B2 JP2005351754A JP2005351754A JP4970778B2 JP 4970778 B2 JP4970778 B2 JP 4970778B2 JP 2005351754 A JP2005351754 A JP 2005351754A JP 2005351754 A JP2005351754 A JP 2005351754A JP 4970778 B2 JP4970778 B2 JP 4970778B2
Authority
JP
Japan
Prior art keywords
copper
processing
lubricating oil
copper pipe
copper tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005351754A
Other languages
Japanese (ja)
Other versions
JP2007154054A (en
Inventor
和弘 細見
貴道 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2005351754A priority Critical patent/JP4970778B2/en
Publication of JP2007154054A publication Critical patent/JP2007154054A/en
Application granted granted Critical
Publication of JP4970778B2 publication Critical patent/JP4970778B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Extraction Processes (AREA)
  • Lubricants (AREA)

Description

本発明は、空調機器、冷凍・冷蔵機器の熱交換等に使用される銅あるいは銅合金からなる銅管の製造に使用される銅管加工用潤滑油に関する。   The present invention relates to a lubricating oil for copper pipe processing used for manufacturing a copper pipe made of copper or a copper alloy used for heat exchange or the like of an air conditioner or a refrigerator / refrigerator.

従来より、ルームエアコン等の空調機、冷蔵庫、冷凍庫等の冷凍機の熱交換器には伝熱管が使用されている。伝熱管には、伝熱性、加工性、耐食性に優れた銅及び銅合金(以下、銅と称する。)管が用いられている。該銅管は、内面及び外面に潤滑油を供して、所定の寸法、内面形状になるよう抽伸あるいは転造し、数1000mに及ぶ銅管を整列巻きにしたレベルワウンドコイルにする。その後、所定の調質になるよう必要に応じて焼鈍処理が施される。実際、焼鈍処理を行う場合には、銅管内を窒素ガスや水素ガスなどの非酸化性ガスで置換した後、約500℃で約1時間焼鈍される。   Conventionally, heat transfer tubes have been used in heat exchangers of air conditioners such as room air conditioners and refrigerators such as refrigerators and freezers. Copper and copper alloy (hereinafter referred to as copper) pipes excellent in heat transfer, workability, and corrosion resistance are used for the heat transfer pipes. The copper tube is provided with lubricating oil on the inner surface and the outer surface, and is drawn or rolled so as to have a predetermined size and inner surface shape, thereby forming a level-wound coil in which copper tubes of several thousand meters are aligned and wound. Thereafter, an annealing treatment is performed as necessary to achieve a predetermined tempering. Actually, when annealing is performed, the inside of the copper tube is replaced with a non-oxidizing gas such as nitrogen gas or hydrogen gas and then annealed at about 500 ° C. for about 1 hour.

従来の銅管の抽伸あるいは転造加工では、工具の焼き付き防止や所定の溝形状を形成し易くするために、高粘度の高分子合成炭化水素に脂肪酸エステルあるいはアルコール、ポリオールエステル等の油性剤が添加された潤滑油が、銅管内外面に供給される。抽伸及び転造加工後においては、銅管内面に潤滑油が付着した状態になるが、その付着潤滑油は、非酸化性ガス内での焼鈍により、気化あるいは熱分解する。それら気化物質は、体積膨張だけでは銅管外に放出されず、銅管冷却時に凝集し、銅管内面に油分として残留する。その量は、潤滑油の種類、置換ガス、あるいは銅管の長さ、コイルの大きさ、さらには、焼鈍速度、冷却速度によって左右される。   In conventional drawing or rolling of copper pipes, an oily agent such as a fatty acid ester, alcohol, polyol ester or the like is added to a high-viscosity polymer synthetic hydrocarbon in order to prevent seizure of the tool and to easily form a predetermined groove shape. The added lubricating oil is supplied to the inner and outer surfaces of the copper pipe. After drawing and rolling, the lubricating oil is attached to the inner surface of the copper tube, but the attached lubricating oil is vaporized or thermally decomposed by annealing in a non-oxidizing gas. These vaporized substances are not released to the outside of the copper tube only by volume expansion, but are aggregated when the copper tube is cooled, and remain as oil on the inner surface of the copper tube. The amount depends on the type of lubricating oil, the replacement gas, or the length of the copper tube, the size of the coil, the annealing rate, and the cooling rate.

銅管に残油が多いと、機器組み立て時に行われるろう付け接合において接合不良が生じ易くなる。また、近年のフロン使用規制にともなって、塩素フリーの代替フロン冷媒が使用されるが、それらは、銅管残留油との相溶し難い。その結果、コンタミネーションによりキャピラリー部が閉塞や冷凍機の性能が低下するという問題が生じるため、残油を極力減らすべく、その対策が検討されている。   When there is much residual oil in a copper pipe, it will become easy to produce the joining defect in the brazing joining performed at the time of apparatus assembly. In addition, chlorine-free alternative chlorofluorocarbon refrigerants are used in accordance with regulations on the use of chlorofluorocarbons in recent years, but they are hardly compatible with copper pipe residual oil. As a result, problems such as clogging of the capillary part and deterioration of the performance of the refrigerator occur due to contamination, and countermeasures have been studied to reduce residual oil as much as possible.

例えば、加工後の銅管内面を洗浄する方法や、銅管を真空中で焼鈍する方法(特許文献1)、焼鈍時にDXガスを通しながら焼鈍し、気化あるいは熱分解気化した物質を銅管外に排出し、残留油を最小限にする方法(特許文献2)等が報告されている。
しかしながら、これらの従来技術では、生産性の低下、莫大な設備費や設備設置スペースが必要となる欠点がある。
また、潤滑油の種類によっては、焼鈍時に浮遊した熱分解成分が銅管外周表面(外面)に再付着し、外面変色する場合もあった。
For example, a method of cleaning the inner surface of a copper tube after processing, a method of annealing a copper tube in a vacuum (Patent Document 1), a material that has been vaporized or pyrolyzed and vaporized by annealing while passing DX gas during annealing. And a method for minimizing residual oil (Patent Document 2) has been reported.
However, these conventional techniques have the drawbacks that productivity is reduced and a huge facility cost and facility installation space are required.
Further, depending on the type of lubricating oil, the thermal decomposition component that floated during annealing may reattach to the outer peripheral surface (outer surface) of the copper tube and discolor the outer surface.

特開平1−287258号公報JP-A-1-287258 特開平6−170348号公報JP-A-6-170348

本発明は、かかる従来の問題点に鑑みてなされたもので、転造加工での成形性に優れ、焼鈍時に焼き付きや外面変色がなく、焼鈍後の残油量が少ない銅管加工用潤滑油を提供しようとするものである。 The present invention, such conventional been made in view of the problems, rolling excellent in moldability in forming machining, without seizure and outer surface discoloration during annealing, the residual oil amount is small copper tube processing lubricating oil after annealing Is to provide.

第1の発明は、銅又は銅合金よりなる銅管を加工するための銅管加工用潤滑油であって、
上記銅管の内面を加工する際に該内面に供給され、上記銅管の内面に凹凸形状を設ける転造加工用の銅管加工用潤滑油において、
添加剤として、アルコールを5〜40%(重量%、以下同じ)と、リン酸トリトリルを1〜20%とを含有し、
残部に、基油として、平均分子量30000〜60000のポリイソブチレンの1種又は2種以上と、平均分子量80〜400イソパラフィン又はポリイソブチレンの1種又は2種以上とを含有し、
動粘度が100〜1000cSt(at40℃)であることを特徴とする銅管加工用潤滑油にある(請求項1)。
1st invention is the lubricating oil for copper pipe processing for processing the copper pipe which consists of copper or a copper alloy,
In the lubricating oil for copper tube processing for rolling processing, which is supplied to the inner surface when processing the inner surface of the copper tube and has an uneven shape on the inner surface of the copper tube,
As an additive, alcohol contains 5-40% (weight%, the same below) and tolyl phosphate 1-20%,
The balance contains, as a base oil, one or more types of polyisobutylene having an average molecular weight of 30,000 to 60,000, and one or more types of isoparaffin or polyisobutylene having an average molecular weight of 80 to 400,
A kinematic viscosity is 100 to 1000 cSt (at 40 ° C.).

本発明の銅管加工用潤滑油は、添加剤と基油の成分を選定し、動粘度を調整することにより、成形性に優れ、焼鈍時に焼き付きや外面変色がなく、焼鈍後の残油量が少ない銅管加工用潤滑油を得ることができる。
すなわち、上記添加剤の必須成分として、アルコールを5〜40%と、リン酸トリトリルを1〜20%含有する。これにより、成形性を向上させることができ、過酷な加工条件下でも使用することができ、焼鈍時の焼き付きや外面変色を抑制することができる。
また、残部に、基油として、平均分子量30000以上のポリイソブチレン1種又は2種以上と、平均分子量400以下のイソパラフィン又はポリイソブチレンの1種又は2種以上とを組み合わせて含有し、その組合せの割合を調整することによって、潤滑油全体の動粘度が100〜1000cStとなるように調整する。これにより、優れた成形性を維持し、かつ焼鈍後の残油量を少なくすることができる。
The lubricating oil for copper tube processing of the present invention is excellent in formability by selecting additives and base oil components and adjusting kinematic viscosity, there is no seizure or discoloration on the outer surface during annealing, and the amount of residual oil after annealing Therefore, it is possible to obtain a lubricating oil for copper pipe processing with a small amount.
That is, as an essential component of the additive, 5 to 40% of alcohol and 1 to 20% of tolyl phosphate are contained. Thereby, moldability can be improved, it can be used even under severe processing conditions, and seizure and outer surface discoloration during annealing can be suppressed.
Further, the balance contains, as a base oil, one or more polyisobutylenes having an average molecular weight of 30,000 or more and one or more kinds of isoparaffins or polyisobutylenes having an average molecular weight of 400 or less in combination. By adjusting the ratio, the kinematic viscosity of the entire lubricating oil is adjusted to be 100 to 1000 cSt. Thereby, the outstanding moldability can be maintained and the amount of residual oil after annealing can be reduced.

第2の発明は、銅又は銅合金からなる銅管の少なくとも内面に、上記銅管加工用潤滑油を供給し、転造加工を施すことを特徴とする銅管の製造方法にある(請求項4)。
本発明の銅管の製造方法は、転造加工において、第1の発明の上記銅管加工用潤滑油を用いることで、優れた内面形状を有し、焼鈍時に焼き付きや外面変色がなく、成形後に焼鈍した場合の焼鈍後の残油量が少ない銅管を作製することが可能である。
The second invention, at least the inner surface of the copper tube made of copper or a copper alloy, is supplied on Kidokan working lubricants, in the manufacturing method of the copper tube, characterized in that performing the roll forming process (according Item 4).
Method for manufacturing a copper tube of the present invention, in the roll forming process, by using the copper tube processing lubricating oil of the first aspect of the invention, having excellent inner surface shape, there is no seizure or outer surface discoloration during annealing, molding It is possible to produce a copper tube with a small amount of residual oil after annealing when annealed later.

第1の発明の銅管加工用潤滑油においては、上述したように、添加剤として、アルコールを5〜40%(重量%、以下同じ)、リン酸トリトリルを1〜20%含有する。
上記アルコールの含有量が5%未満の場合には、潤滑性が不足し、成形性が低下するという問題があり、一方、上記アルコールの含有量が40%を超える場合には、焼鈍後の残油量が多くなるという問題がある。
また、リン酸トリトリルの含有量が1%未満の場合には、連続加工した場合に、成形性が悪くなるという問題があり、一方、リン酸トリトリルの含有量が20%を超える場合には、コストの増加や、焼鈍後の残油量が増加するという問題や、焼鈍後の分解生成物量が多くなり、該分解生成物が銅管外周面に付着し、外面変色が発生するという問題がある。
In the lubricating oil for copper pipe processing according to the first aspect of the invention, as described above, the alcohol contains 5 to 40% (wt%, the same applies hereinafter) and 1 to 20% tritryl phosphate.
When the alcohol content is less than 5%, there is a problem that the lubricity is insufficient and the moldability is deteriorated. On the other hand, when the alcohol content exceeds 40%, the residual after annealing is present. There is a problem that the amount of oil increases.
In addition, when the content of tolyl phosphate is less than 1%, there is a problem that the formability deteriorates when continuously processed, whereas when the content of tolyl phosphate exceeds 20%, There is a problem that the cost increases, the amount of residual oil after annealing increases, the amount of decomposition products after annealing increases, the decomposition products adhere to the outer peripheral surface of the copper tube, and the outer surface is discolored. .

また、残部に、基油として、平均分子量30000以上のポリイソブチレンの1種又は2種以上と、平均分子量400以下のイソパラフィン又はポリイソブチレンの1種又は2種以上とを含有する。
上記平均分子量30000以上のポリイソブチレンが含まれない場合には、摩擦面へ導入される油量が少なく潤滑不足となるという問題があり、一方、平均分子量400以下のイソパラフィン又はポリイソブチレンが含まれない場合には、高粘度となり、取り扱いが困難で作業性を悪化させるという問題がある。
また、上記基油の含有量は、基本的に、上記添加剤の含有量が確保できる範囲とし、潤滑不足を防ぎ、適正な成形性を確保する。
Moreover, 1 type, 2 or more types of polyisobutylene whose average molecular weight is 30000 or more, and 1 type or 2 types or more of isoparaffin or polyisobutylene whose average molecular weight is 400 or less are contained in the remainder as a base oil.
When polyisobutylene having an average molecular weight of 30000 or more is not included, there is a problem that the amount of oil introduced to the friction surface is small and lubrication is insufficient, while isoparaffin or polyisobutylene having an average molecular weight of 400 or less is not included. In such a case, there is a problem that the viscosity becomes high, handling is difficult, and workability is deteriorated.
In addition, the content of the base oil is basically in a range in which the content of the additive can be ensured to prevent insufficient lubrication and ensure proper moldability.

また、上記平均分子量30000以上のポリイソブチレンとしては、工業的に入手することが可能な範囲である、平均分子量30000〜平均分子量60000のポリイソブチレンであることが好ましい。
また、平均分子量400以下のイソパラフィン又はポリイソブチレンとしては、引火する危険性や、潤滑油の臭気を考慮すると、平均分子量80〜平均分子量400のイソパラフィン又はポリイソブチレンであることが好ましい。
The polyisobutylene having an average molecular weight of 30,000 or more is preferably a polyisobutylene having an average molecular weight of 30,000 to an average molecular weight of 60000, which is an industrially available range.
In addition, the isoparaffin or polyisobutylene having an average molecular weight of 400 or less is preferably an isoparaffin or polyisobutylene having an average molecular weight of 80 to an average molecular weight of 400 in consideration of the danger of ignition and the odor of the lubricating oil.

また、上記銅管加工用潤滑油は、動粘度が100〜1000cSt(at40℃)である。
上記動粘度が100cSt未満の場合には、潤滑性が不足するという問題があり、一方、上記動粘度が1000cStを超える場合には、動粘度が増加し取り扱いが困難になるという問題や、焼鈍後の残油が増加するという問題がある。
上記動粘度は、JIS K 2283の「原油及び石油製品の動粘度試験方法」に準拠して40℃における動粘度を測定し、測定器具としては、JIS K 2839の「石油類試験用ガラス器具」のキャノン−フェンスケ粘度計を用いて測定することができる。
Moreover, the lubricating oil for copper pipe processing has a kinematic viscosity of 100 to 1000 cSt (at 40 ° C.).
When the kinematic viscosity is less than 100 cSt, there is a problem that the lubricity is insufficient. On the other hand, when the kinematic viscosity exceeds 1000 cSt, the kinematic viscosity increases and handling becomes difficult. There is a problem that the residual oil increases.
The kinematic viscosity is measured in accordance with JIS K 2283 “Kinematic Viscosity Test Method for Crude Oil and Petroleum Products” at 40 ° C. The measuring instrument is JIS K 2839 “Petroleum equipment for petroleum testing”. This can be measured using a Canon-Fenske viscometer.

なお、添加剤として上記アルコール及び上記リン酸トリトリルのみを含有する場合、上記基油の合計含有量は、40〜94%の範囲となる。しかし、後述する添加剤をさらに加えた場合には、添加剤の含有量に応じて、添加剤と基油との合計が100%となるように、基油の合計含有量が変化する。
また、本発明の銅管加工用潤滑油は、上記基油と添加剤とにより100%になるものであるが、実使用に際して、上述の優れた効果を安定的に操業するために、上記100%の外に、必要に応じて、酸化防止剤、錆止め剤、腐食防止剤、消泡剤等の一種又は二種以上をさらに添加することも勿論可能である。
In addition, when only the said alcohol and the said tolyl phosphate are contained as an additive, the total content of the said base oil will be the range of 40 to 94%. However, when the additive mentioned later is further added, the total content of the base oil changes so that the total of the additive and the base oil becomes 100% according to the content of the additive.
Further, the lubricating oil for copper pipe processing of the present invention is 100% due to the above base oil and additives, but in order to stably operate the above-mentioned excellent effects in actual use, the above-mentioned 100 Of course, it is possible to further add one or more of an antioxidant, a rust inhibitor, a corrosion inhibitor, an antifoaming agent, and the like, if necessary.

上記酸化防止剤としては、例えば、DBPC(2,6−ジターシャリーブチル−P−クレゾール)等のフェノール系化合物、フェニル−α−ナフチルアミン等の芳香族アミン、ソルビタンモノオレート等の多価アルコールの部分エステル、リン酸エステル及びその誘導体等が挙げられる。
上記錆止め剤としては、例えば、ジノニルナフタレンスルホン酸バリウム等が挙げられる。
上記腐食防止剤としては、例えば、ベンゾトリアゾール等が挙げられる。
上記消泡剤としては、例えば、シリコン系のものが挙げられる。
Examples of the antioxidant include phenolic compounds such as DBPC (2,6-ditertiarybutyl-P-cresol), aromatic amines such as phenyl-α-naphthylamine, and polyhydric alcohol moieties such as sorbitan monooleate. Examples thereof include esters, phosphate esters and derivatives thereof.
Examples of the rust inhibitor include barium dinonylnaphthalene sulfonate.
Examples of the corrosion inhibitor include benzotriazole.
Examples of the antifoaming agent include silicon-based ones.

上記アルコールは、下記の一般式(1)で表されることが好ましい(請求項2)。

Figure 0004970778
(但し、R1は、炭素数9〜18の炭化水素基である。) The alcohol is preferably represented by the following general formula (1) (claim 2).
Figure 0004970778
(However, R 1 is a hydrocarbon group having 9 to 18 carbon atoms.)

上記アルコールの炭化水素基の炭素数が8以下の場合には、潤滑性が劣るという問題があり、一方、上記炭化水素基の炭素数が19以上の場合には、潤滑油が残留し易くなるという問題がある。そのため、上記アルコールの炭化水素基の炭素数は12〜15であることがより好ましい。
また、上記炭化水素基R1としては、具体的に、例えば、アルキル基及びアルケニル基等がある。より好ましくは、上記アルコールの炭化水素基R1は、アルキル基又はアルケニル基である。
When the number of carbon atoms of the hydrocarbon group of the alcohol is 8 or less, there is a problem that the lubricity is poor. On the other hand, when the number of carbon atoms of the hydrocarbon group is 19 or more, the lubricating oil tends to remain. There is a problem. Therefore, it is more preferable that the hydrocarbon group of the alcohol has 12 to 15 carbon atoms.
Specific examples of the hydrocarbon group R 1 include an alkyl group and an alkenyl group. More preferably, the hydrocarbon group R 1 of the alcohol is an alkyl group or an alkenyl group.

上記銅管加工用潤滑油は、添加剤として、さらに、芳香族炭化水素を1〜10%含有することが好ましい(請求項3)。
この場合には、成形性をさらに向上させるという効果を得ることができる。
上記芳香族炭化水素の含有量が1%未満である場合には、効果が現れず、一方、上記芳香族炭化水素の含有量が10%を超える場合には、残油量が増加するおそれや、臭気が発生するおそれがある。
The copper pipe lubricating oil preferably further contains 1 to 10% aromatic hydrocarbon as an additive.
In this case, the effect of further improving the moldability can be obtained.
When the content of the aromatic hydrocarbon is less than 1%, no effect appears. On the other hand, when the content of the aromatic hydrocarbon exceeds 10%, the residual oil amount may increase. Odor may be generated.

また、上記銅管加工用潤滑油は、上記銅管の内面を加工する際に該内面に供給される内面加工用であることが好ましい
銅管の内面に残留した潤滑油を除去することは外面に比べ相当困難である。すなわち、この場合には、残油量が少ないことが重要となるため、特に有効である。上記銅管は、ルームエアコン等の空調機、冷蔵庫、冷凍庫等の冷凍機の熱交換器に用いられる伝熱管として、特に好適に使用することができる。なお、加工の種類を特定することなく、多目的に利用が可能であることは言うまでもない。
Moreover, it is preferable that the said lubricating oil for copper pipe processing is an inner surface process supplied to this inner surface, when processing the inner surface of the said copper pipe .
It is considerably difficult to remove the lubricating oil remaining on the inner surface of the copper tube compared to the outer surface. That is, in this case, since it is important that the amount of residual oil is small, it is particularly effective. The said copper pipe can be used especially suitably as a heat exchanger tube used for air conditioners, such as a room air conditioner, and heat exchangers of refrigerators, such as a refrigerator and a freezer. Needless to say, it can be used for multiple purposes without specifying the type of processing.

上記内面加工は、上記銅管の内面に凹凸形状を設ける転造加工であることが好ましい
上記転造加工は、銅管内にプラグを入れて、外面から、例えば、回転ボールで圧下することによって、銅管内面に複雑なリップルフィンを付与する、非常に過酷な加工である。また、内面形状が複雑となる分だけ残油しやすくなる。このような転造加工においても、上記潤滑油は、優れた成形性を有し、焼鈍後の残油量を少なくすることができ、特に有効である。
The inner surface processing is preferably a rolling process in which an uneven shape is provided on the inner surface of the copper tube .
The rolling process is a very severe process in which a complicated ripple fin is applied to the inner surface of the copper pipe by inserting a plug in the copper pipe and reducing the outer surface with, for example, a rotating ball. Moreover, it becomes easy to leave residual oil by the complexity of the inner surface shape. Even in such a rolling process, the lubricating oil is particularly effective because it has excellent formability and can reduce the amount of residual oil after annealing.

第2の発明の銅管の製造方法において、上記転造加工を施した後に焼鈍を行う場合には、上記抽伸加工あるいは上記転造加工を施した上記銅管の管内雰囲気を非酸化性ガスで置換し、焼鈍を行うことが好ましい
この場合には、焼鈍後の上記銅管の内面に残留する潤滑油の量の低減に非常に有効である。
The method of manufacturing a copper tube of the second aspect of the invention, the upper SL when performing annealing after performing rolling, said drawing processing or non-oxidizing gas in the tube atmosphere of the copper tube subjected to the rolling process It is preferable to carry out the annealing with substitution .
In this case, it is very effective in reducing the amount of lubricating oil remaining on the inner surface of the copper tube after annealing.

以下、本発明の実施例を比較例と対比して説明する。なお、これらの実施例は、本発明の1実施様態を示すものであり、本発明はこれらに限定されるものではない。   Examples of the present invention will be described below in comparison with comparative examples. In addition, these Examples show one embodiment of this invention, and this invention is not limited to these.

本例では、本発明の実施例及び比較例として、総重量500kgのリン脱銅管を、表1及び表2に示す組成の潤滑油(試料E1〜試料E14、試料C1〜試料C13)を使用して転造加工を行い、銅管外径φ7.00mm、銅管内径φ6.35mm、肉厚0.25mm、長さ約5000mとし、切断及び整列巻取りして重量250kgのレベルワウンドコイル状の銅管を作製した。
なお、転造加工では、フィン高さ0.24mm、フィン頂角10°、リード角30°の条件で加工を行うことにより、図1に示すごとく、内側に突出した多数のリップルフィンを有する断面形状に成形した。
In this example, as examples and comparative examples of the present invention, phosphorus-decopper pipes having a total weight of 500 kg are used, and lubricating oils (samples E1 to E14, samples C1 to C13) having the compositions shown in Tables 1 and 2 are used. Then, the rolling process was performed, and the copper pipe outer diameter φ7.00 mm, the copper pipe inner diameter φ6.35 mm, the wall thickness 0.25 mm, and the length of about 5000 m were cut, aligned and wound to form a level-wound coil having a weight of 250 kg. A copper tube was produced.
In the rolling process, a cross section having a large number of ripple fins protruding inward as shown in FIG. 1 by performing the process under the conditions of a fin height of 0.24 mm, a fin apex angle of 10 °, and a lead angle of 30 °. Molded into shape.

Figure 0004970778
Figure 0004970778

Figure 0004970778
Figure 0004970778

表1及び表2の記号を説明する。
A1:平均分子量60000のポリイソブチレン
A2:平均分子量30000のポリイソブチレン
A3:平均分子量3700のポリイソブチレン
B1:平均分子量120のイソパラフィン
B2:平均分子量270のポリイソブチレン
C1:ヘキサデシルアルコール
C2:ドデシルアルコール
C3:オクチルアルコール
C4:エイコシルアルコール
D1:リン酸トリトリル
The symbols in Table 1 and Table 2 will be described.
A1: Polyisobutylene having an average molecular weight of 60000 A2: Polyisobutylene having an average molecular weight of 30000 A3: Polyisobutylene having an average molecular weight of 3700 B1: Isoparaffin having an average molecular weight of 120 B2: Polyisobutylene having an average molecular weight of 270 C1: Hexadecyl alcohol C2: Dodecyl alcohol C3: Octyl alcohol C4: Eicosyl alcohol D1: Tritolyl phosphate

得られた各試料を用い、以下の評価試験を行った。結果を表3及び表4に示す。
<リップルフィン高さ>
リップルフィン高さH(図1)は、転造加工直後の銅管長手方向における、転造開始より100mの位置の断面を、拡大鏡を用いて観察し、存在する全てのリップルフィンの高さを測定し、それらの平均値を求めることにより評価した。
(評価基準)
5:0.235mm以上
4:0.230mm以上0.235mm未満
3:0.225mm以上0.230mm未満
2:0.220mm以上0.225mm未満
1:0.220mm未満
The following evaluation tests were performed using the obtained samples. The results are shown in Tables 3 and 4.
<Ripple fin height>
Ripple fin height H (Fig. 1) is the height of all the existing ripple fins, using a magnifying glass to observe a cross section at a position 100 m from the start of rolling in the longitudinal direction of the copper tube immediately after the rolling process. Were measured and evaluated by obtaining an average value thereof.
(Evaluation criteria)
5: 0.235 mm or more 4: 0.230 mm or more and less than 0.235 mm 3: 0.225 mm or more and less than 0.230 mm 2: 0.220 mm or more and less than 0.225 mm 1: less than 0.220 mm

<リップルフィン高さ維持性>
リップルフィン高さ維持性は、転造直後の銅管長手における転造開始より100m、及び転造終了100m手前の2ヵ所の位置での、リップルフィン高さを上記リップルフィン高さHと同様にして測定し、両測定値の差分より評価した。
(評価基準)
5:0.005mm以下
4:0.005mm超え0.010mm以下
3:0.010mm超え0.015mm以下
2:0.015mm超え0.020mm以下
1:0.020mm超え
<Ripple fin height maintainability>
The ripple fin height maintainability is the same as the above-mentioned ripple fin height H at two positions 100 m before the start of rolling in the length of the copper pipe immediately after rolling and 100 m before the end of rolling. And evaluated from the difference between the two measured values.
(Evaluation criteria)
5: 0.005 mm or less 4: 0.005 mm or more and 0.010 mm or less 3: 0.010 mm or more and 0.015 mm or less 2: 0.015 mm or more and 0.020 mm or less 1: 0.020 mm or more

次に、上記レベルワウンドコイル状の銅管の銅管内雰囲気を、水素混合ガス(H2:5%、N2:95%)により置換した後、量産用のローラーハース型焼鈍炉を用いて、銅管の両端を封止することなく、DXガス雰囲気中において軟質材の焼鈍条件に従って530℃で1時間焼鈍処理を施した。
また、焼鈍処理後の各試料について以下の残油量、及び相溶性試験を行った。結果を表3及び表4に示す。
Next, the atmosphere in the copper pipe of the level-wound coil-shaped copper pipe is replaced with a hydrogen mixed gas (H 2 : 5%, N 2 : 95%), and then a roller hearth type annealing furnace for mass production is used. The copper tube was annealed at 530 ° C. for 1 hour according to the annealing conditions of the soft material in a DX gas atmosphere without sealing both ends of the copper tube.
Moreover, the following residual oil amount and the compatibility test were done about each sample after an annealing process. The results are shown in Tables 3 and 4.

<残油量>
残油量は、焼鈍処理後、上記レベルワウンドコイル上面に相当する銅管をコイルの入り口端から出側端までの各段について1m長さで残油測定用銅管を採取し、有機溶剤で抽出洗浄し、赤外分光分析法によって3000〜2800cm-1における赤外吸光度を測定した。事前に作成しておいた検量線を元に、銅管内に残留する焼鈍残油量を求め、評価した。
(評価基準)
5:0.03mg/m以下
4:0.03mg/m超え0.05mg/m以下
3:0.05mg/m超え0.07mg/m以下
2:0.07mg/m超え0.10mg/m以下
1:0.10mg/m超え
<Residual oil amount>
After the annealing treatment, the amount of residual oil is 1m long for each stage from the coil entrance end to the exit end of the copper pipe corresponding to the upper surface of the levelwound coil. After extraction and washing, the infrared absorbance at 3000 to 2800 cm −1 was measured by infrared spectroscopy. Based on a calibration curve prepared in advance, the amount of residual oil remaining in the copper pipe was determined and evaluated.
(Evaluation criteria)
5: 0.03 mg / m or less 4: 0.03 mg / m or more 0.05 mg / m or less 3: 0.05 mg / m or more 0.07 mg / m or less 2: 0.07 mg / m or more 0.10 mg / m or less 1: Over 0.10 mg / m

<相溶性>
相溶性は、JIS K 2211「冷凍機油」の付属書2「冷媒との化学安定性試験方法(シールドチューブテスト)」に準拠して、シールドチューブテストを実施し、得られた焼鈍残油が冷凍システムに与える影響を調査することで評価した。
上記シールドチューブテストは以下のように行った。内径がφ10mmであるガラス管に10mLの冷媒と、1mLの試験油と、太さが1.6mm、長さ50mmである金属線からなる触媒とを入れた後、ガラス管の上部を溶融して密閉した。次に、ガラス管を170℃の温度で14日間保持した後に、液層の状態変化を観察し、相溶性を評価した。
(評価基準)
○:変化がない場合
×:触媒の劣化、液層の変色、白濁もしくは析出物が存在する場合
<Compatibility>
For compatibility, in accordance with JIS K 2211 “Refrigerator Oil” Annex 2 “Chemical Stability Test Method with Refrigerant (Shield Tube Test)”, a shield tube test was conducted, and the resulting annealed residual oil was frozen. It was evaluated by investigating the impact on the system.
The shield tube test was performed as follows. A glass tube having an inner diameter of φ10 mm is charged with 10 mL of refrigerant, 1 mL of test oil, and a catalyst made of a metal wire having a thickness of 1.6 mm and a length of 50 mm, and then the upper part of the glass tube is melted. Sealed. Next, after holding the glass tube at a temperature of 170 ° C. for 14 days, the change in the state of the liquid layer was observed to evaluate the compatibility.
(Evaluation criteria)
○: No change ×: Deterioration of catalyst, discoloration of liquid layer, cloudiness or precipitates present

<外面変色>
外面変色は、直径50mm、長さ150mmのN2雰囲気下の加熱炉中に、供試油0.1g及び0.5mmt×10mmw×70mmLのリン脱酸銅を入れ、560℃で1時間加熱した。その後、リン脱酸銅の外観を目視にて観察し、外面変色を評価した。
(評価基準)
○:リン脱酸銅の外観に変色が確認されない場合
×:リン脱酸銅の外観に変色が確認される場合
<External color change>
To change the outer surface color, 0.1 g of test oil and 0.5 mmt × 10 mmw × 70 mmL of phosphorous deoxidized copper were placed in a heating furnace in a N 2 atmosphere having a diameter of 50 mm and a length of 150 mm, and heated at 560 ° C. for 1 hour. . Thereafter, the appearance of the phosphorous deoxidized copper was visually observed to evaluate discoloration on the outer surface.
(Evaluation criteria)
○: When discoloration is not confirmed in the appearance of phosphorous deoxidized copper ×: When discoloration is confirmed in the appearance of phosphorous deoxidized copper

本実施例に置いて、試料としては、焼鈍残油0.01gと、冷凍機油1.0gとを混合したものを使用し、触媒としては、鉄、銅、及びアルミニウムの線材を用いた。また、冷媒としては、R410Aを使用し、冷凍機油としてはエステル油を用いた。
リップルフィン高さ、リップルフィン高さ維持性、残油性とも、評価1以下を不合格、評価2以上を合格、相溶性、外面変色は評価×を不合格、評価○を合格とした。
In this example, a mixture of 0.01 g of residual annealing oil and 1.0 g of refrigerating machine oil was used as the sample, and iron, copper, and aluminum wires were used as the catalyst. Further, R410A was used as the refrigerant, and ester oil was used as the refrigerating machine oil.
Ripple fin height, ripple fin height maintainability, and residual oil property were both evaluated as 1 or less, passed 2 or more, compatibility and discoloration were evaluated as x and evaluation ○ was accepted.

Figure 0004970778
Figure 0004970778

Figure 0004970778
Figure 0004970778

表3より知られるごとく、本発明の実施例である試料E1〜試料E14は、リップルフィン高さ、リップルフィン高さ維持性、残油量、相溶性、及び外面変色のいずれの項目においても、良好な結果を示した。
また、試料E1及び試料E2はアルコールのアルキル基の炭素数が本発明の好ましい範囲内にあり、優れた潤滑性を有するため、アルコールのアルキル基の炭素数が本発明の好ましい範囲の下限を下回る試料E9と比較すると、リップルフィン高さがより優れている。
As is known from Table 3, the samples E1 to E14, which are examples of the present invention, have any of the items of ripple fin height, ripple fin height maintainability, residual oil amount, compatibility, and external color change. Good results were shown.
Moreover, since carbon number of the alkyl group of alcohol is in the preferable range of this invention, and sample E1 and sample E2 have the outstanding lubricity, carbon number of the alkyl group of alcohol is less than the minimum of the preferable range of this invention. Compared with sample E9, the ripple fin height is more excellent.

また、試料E1及び試料E2はアルコールのアルキル基の炭素数が本発明の好ましい範囲内にあり、残油量を抑制することができるため、アルコールのアルキル基の炭素数が本発明の好ましい範囲の上限を上回る試料E10と比較すると、残油量がより優れている。
また、試料E13及び試料E14は、芳香族炭化水素の含有量が本発明の好ましい範囲内であり、さらに成形性を向上することができるため、芳香族炭化水素の含有量が本発明の好ましい範囲外にある試料と比較すると、リップルフィン高さがより優れている。
Moreover, since carbon number of the alkyl group of alcohol is in the preferable range of the present invention and sample E1 and sample E2 can suppress the amount of residual oil, the carbon number of the alkyl group of alcohol is within the preferable range of the present invention. Compared with the sample E10 exceeding the upper limit, the residual oil amount is more excellent.
Sample E13 and sample E14 have an aromatic hydrocarbon content within the preferred range of the present invention, and can further improve moldability. Therefore, the aromatic hydrocarbon content is within the preferred range of the present invention. Compared to the sample outside, the ripple fin height is better.

表4より知られるごとく、本発明の比較例である試料C1及び試料C2は、基油として平均分子量30000以上のポリイソブチレンが含有されていないため、潤滑性が劣り、成形性が低下したため、リップルフィン高さが不合格であった。
また、本発明の比較例である試料C3は、潤滑油全体の動粘度が本発明の下限を下回っているため、潤滑性が劣り、成形性が低下したため、リップルフィン高さが不合格であった。
また、本発明の比較例である試料C4は潤滑油全体の動粘度が本発明の上限を上回っており、動粘度が高いため、残油量及びリップルフィン高さが不合格であった。
As can be seen from Table 4, sample C1 and sample C2, which are comparative examples of the present invention, do not contain polyisobutylene having an average molecular weight of 30000 or more as a base oil, so that the lubricity is inferior and the moldability is reduced. The fin height was unacceptable.
In addition, Sample C3, which is a comparative example of the present invention, was found to have failed the ripple fin height because the kinematic viscosity of the entire lubricating oil was below the lower limit of the present invention, resulting in poor lubricity and reduced moldability. It was.
In addition, Sample C4, which is a comparative example of the present invention, had a kinematic viscosity of the entire lubricating oil that exceeded the upper limit of the present invention, and because the kinematic viscosity was high, the residual oil amount and the ripple fin height were not acceptable.

また、本発明の比較例である試料C5、試料C7、試料C9、試料C11は、アルコールの含有量が本発明の上限を上回るため、焼鈍後の銅管内残油量が多くなり、冷媒への不溶解生成物が増加するため、残油量及び相溶性が不合格であった。   Moreover, since the content of alcohol exceeds the upper limit of the present invention, Sample C5, Sample C7, Sample C9, and Sample C11, which are comparative examples of the present invention, increase the amount of residual oil in the copper tube after annealing, and to the refrigerant Since the insoluble product increased, the amount of residual oil and the compatibility were unacceptable.

また、本発明の比較例である試料C6、試料C8、試料C10、試料C12は、アルコールの含有量が本発明の下限を下回るため、潤滑性が劣り成形性が低下し、リップルフィン高さが不合格であった。   Samples C6, C8, C10, and C12, which are comparative examples of the present invention, have an alcohol content that is lower than the lower limit of the present invention. It was a failure.

また、本発明の比較例である試料C13は、アルコールの含有量が本発明の上限を上回るため、焼鈍後の銅管内残油量が多くなり、冷媒への不溶解生成物が増加し、また、リン酸トリトリルの含有量が本発明の上限を上回るため、焼鈍後の分解生成物量が多くなり、該分解生成物がリン脱酸銅表面に付着するという理由により、残油量、相溶性、及び外面変色が不合格であった。   Sample C13, which is a comparative example of the present invention, has an alcohol content that exceeds the upper limit of the present invention, so the amount of residual oil in the copper tube after annealing increases, and the insoluble product in the refrigerant increases. In addition, since the content of tolyl phosphate exceeds the upper limit of the present invention, the amount of decomposition products after annealing increases, and because the decomposition products adhere to the phosphorous deoxidized copper surface, the amount of residual oil, compatibility And discoloration of the outer surface was unacceptable.

転造後の銅管の断面図。Sectional drawing of the copper pipe after rolling.

符号の説明Explanation of symbols

1 銅管
2 リップルフィン
1 Copper tube 2 Ripple fin

Claims (5)

銅又は銅合金よりなる銅管を加工するための銅管加工用潤滑油であって、
上記銅管の内面を加工する際に該内面に供給され、上記銅管の内面に凹凸形状を設ける転造加工用の銅管加工用潤滑油において、
添加剤として、アルコールを5〜40%(重量%、以下同じ)と、リン酸トリトリルを1〜20%とを含有し、
残部に、基油として、平均分子量30000〜60000のポリイソブチレンの1種又は2種以上と、平均分子量80〜400イソパラフィン又はポリイソブチレンの1種又は2種以上とを含有し、
動粘度が100〜1000cSt(at40℃)であることを特徴とする銅管加工用潤滑油。
A lubricating oil for copper pipe processing for processing a copper pipe made of copper or a copper alloy,
In the lubricating oil for copper tube processing for rolling processing, which is supplied to the inner surface when processing the inner surface of the copper tube and has an uneven shape on the inner surface of the copper tube,
As an additive, alcohol contains 5-40% (weight%, the same below) and tolyl phosphate 1-20%,
The balance contains, as a base oil, one or more types of polyisobutylene having an average molecular weight of 30,000 to 60,000, and one or more types of isoparaffin or polyisobutylene having an average molecular weight of 80 to 400,
A lubricating oil for copper tube processing characterized by a kinematic viscosity of 100 to 1000 cSt (at 40 ° C.).
請求項1において、上記アルコールは、下記の一般式(1)で表されることを特徴とする銅管加工用潤滑油。
Figure 0004970778
(但し、R1は、炭素数9〜18の炭化水素基である。)
In Claim 1, The said alcohol is represented by the following general formula (1), The lubricating oil for copper pipe processing characterized by the above-mentioned.
Figure 0004970778
(However, R 1 is a hydrocarbon group having 9 to 18 carbon atoms.)
請求項1又は2において、添加剤として、さらに、芳香族炭化水素を1〜10%含有することを特徴とする銅管加工用潤滑油。   The lubricating oil for copper pipe processing according to claim 1 or 2, further comprising 1 to 10% of an aromatic hydrocarbon as an additive. 銅又は銅合金からなる銅管の少なくとも内面に、請求項1〜3のいずれか一項に記載の上記銅管加工用潤滑油を供給し、転造加工を施すことを特徴とする銅管の製造方法 A copper tube characterized in that the copper tube processing lubricant according to any one of claims 1 to 3 is supplied to at least an inner surface of a copper tube made of copper or a copper alloy, and subjected to a rolling process. Manufacturing method . 請求項4において、上記転造加工を施した上記銅管の管内雰囲気を非酸化性ガスで置換し、焼鈍を行うことを特徴とする銅管の製造方法 5. The method of manufacturing a copper pipe according to claim 4, wherein an atmosphere in the pipe of the copper pipe subjected to the rolling process is replaced with a non-oxidizing gas and annealing is performed .
JP2005351754A 2005-12-06 2005-12-06 Lubricating oil for copper pipe processing and method for producing copper pipe using the same Active JP4970778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005351754A JP4970778B2 (en) 2005-12-06 2005-12-06 Lubricating oil for copper pipe processing and method for producing copper pipe using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005351754A JP4970778B2 (en) 2005-12-06 2005-12-06 Lubricating oil for copper pipe processing and method for producing copper pipe using the same

Publications (2)

Publication Number Publication Date
JP2007154054A JP2007154054A (en) 2007-06-21
JP4970778B2 true JP4970778B2 (en) 2012-07-11

Family

ID=38238827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005351754A Active JP4970778B2 (en) 2005-12-06 2005-12-06 Lubricating oil for copper pipe processing and method for producing copper pipe using the same

Country Status (1)

Country Link
JP (1) JP4970778B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103968252B (en) * 2014-04-30 2016-09-14 陕西延长石油(集团)有限责任公司研究院 A kind of note alcohol process of mesolow natural gas collecting

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2701120B2 (en) * 1993-05-17 1998-01-21 住友軽金属工業株式会社 Manufacturing method of cold water resistant pitting copper tube
JPH09316478A (en) * 1996-05-28 1997-12-09 Nippon Oil Co Ltd Drawing processing oil composition
JPH10130674A (en) * 1996-10-25 1998-05-19 Kobe Steel Ltd Lubricant for reduction processing
JPH10298583A (en) * 1997-04-30 1998-11-10 Kobe Steel Ltd Lubricant for squeeze-drawing
JPH11349975A (en) * 1998-06-03 1999-12-21 Idemitsu Kosan Co Ltd Metal processing oil composition for copper and copper alloy
JP3411834B2 (en) * 1998-09-22 2003-06-03 住友軽金属工業株式会社 Manufacturing method of copper tube using lubricating oil
JP2000263125A (en) * 1999-03-10 2000-09-26 Kobe Steel Ltd Pitting resistant copper or copper alloy tube
JP2002285180A (en) * 2001-03-28 2002-10-03 Sanyo Chem Ind Ltd Base oil for metal processing
JP4126205B2 (en) * 2002-07-25 2008-07-30 出光興産株式会社 Rolling oil composition for copper-based materials

Also Published As

Publication number Publication date
JP2007154054A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
TWI660038B (en) Freezer oil composition
EP1533363B1 (en) Method for providing a refrigeration lubricant composition
EP2947136B1 (en) Refrigerating machine oil and working fluid composition for refrigerating machine
US9951289B2 (en) Refrigeration oil
JP5989989B2 (en) Refrigerator oil composition
US7507348B2 (en) Refrigeration lubricant composition
WO2015111522A1 (en) Working fluid composition for refrigerating machine and refrigerating machine oil
JP2017508829A (en) Dry synthetic cooling lubricant composition
JP5085948B2 (en) Lubricating oil for copper pipe processing and method for producing copper pipe using the same
KR19990067513A (en) Refrigeration oil, refrigeration fluids, and lubrication of refrigeration systems
JP4995481B2 (en) Lubricating oil for copper pipe processing and method for producing copper pipe using the same
KR20190065384A (en) Lubricants for refrigerant systems with low global warming potential
JP4995483B2 (en) Lubricating oil for copper pipe processing and method for producing copper pipe using the same
JP4970778B2 (en) Lubricating oil for copper pipe processing and method for producing copper pipe using the same
JP4970777B2 (en) Lubricating oil for copper pipe processing and method for producing copper pipe using the same
JP2014114396A (en) Refrigerator oil composition
CN115353921A (en) Anti-wear agent for refrigerating machine oil, refrigerating machine oil and working fluid composition
JP4970779B2 (en) Lubricating oil for copper pipe processing and method for producing copper pipe using the same
JPH11209781A (en) Lubricating oil for extractive draw processing
JPH03252497A (en) Lubricating oil for refrigerator
JP4933165B2 (en) Drawing lubricating oil for flux-cored wire for aluminum brazing, and method for drawing flux-cored wire for aluminum brazing using the same
JPH02140298A (en) Lubricating oil useful in fluorocarbon atmosphere
JP5085942B2 (en) Lubricating oil for copper pipe processing and method for producing copper pipe using the same
JP2006124429A (en) Grease base oil
JP2008001824A (en) Lubricating oil for processing copper tube used for absorption type heat-exchanger, and method for producing absorption type heat-exchanger by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120405

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250