JP4968511B2 - Method for producing insulin-like growth factor-1 (IGF-1) in vivo - Google Patents

Method for producing insulin-like growth factor-1 (IGF-1) in vivo Download PDF

Info

Publication number
JP4968511B2
JP4968511B2 JP2006223710A JP2006223710A JP4968511B2 JP 4968511 B2 JP4968511 B2 JP 4968511B2 JP 2006223710 A JP2006223710 A JP 2006223710A JP 2006223710 A JP2006223710 A JP 2006223710A JP 4968511 B2 JP4968511 B2 JP 4968511B2
Authority
JP
Japan
Prior art keywords
gas
growth factor
insulin
microbubbles
igf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006223710A
Other languages
Japanese (ja)
Other versions
JP2008043906A (en
Inventor
博音 大成
Original Assignee
株式会社 ナノプラネット研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 ナノプラネット研究所 filed Critical 株式会社 ナノプラネット研究所
Priority to JP2006223710A priority Critical patent/JP4968511B2/en
Publication of JP2008043906A publication Critical patent/JP2008043906A/en
Application granted granted Critical
Publication of JP4968511B2 publication Critical patent/JP4968511B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

本発明は、機能性マイクロバブル又は機能性マイクロバブル水の提供に関し、特に生物の体内においてインスリン様成長因子−1(IGF−1)又は成長ホルモンを生成させる機能性マイクロバブル及び機能性マイクロバブル水の提供に関する。   TECHNICAL FIELD The present invention relates to provision of functional microbubbles or functional microbubble water, and in particular, functional microbubbles and functional microbubble water that produce insulin-like growth factor-1 (IGF-1) or growth hormone in the body of an organism. Related to the provision of.

昨今、微細気泡の製造技術及びその利用技術の開発が盛んに行われるようになってきて、重要な産業技術分野を形成するに至っている。
直径が数10μm以下、特に50μm以下の微細な気泡はマイクロバブルといわれ、その作用メカニズム、物理化学的性質、機能等は、未だ十分に解明されていない。
本発明者は、水産養殖及びバイオリアクターに適用可能なガス気泡供給器の開発に取組み、気泡の微細化を追求する過程において、種々の微細気泡発生装置を開発してきた。また、開発した発生装置を池や湖沼等の閉鎖水域の水質改善に用いるため、実証実験を重ね、種々の成果を得てきた。
特願2002−143885号公報
Recently, development of production technology for microbubbles and technology for using the same has been actively conducted, and an important industrial technical field has been formed.
Fine bubbles having a diameter of several tens of μm or less, particularly 50 μm or less are called microbubbles, and their action mechanism, physicochemical properties, functions, and the like have not been fully elucidated.
The present inventor has been working on the development of a gas bubble supply device applicable to aquaculture and bioreactors, and has developed various fine bubble generating devices in the process of pursuing finer bubbles. In addition, in order to use the developed generator to improve the water quality in closed water areas such as ponds and lakes, we have carried out demonstration experiments and obtained various results.
Japanese Patent Application No. 2002-143895

一方、インスリン様成長因子−1(IGF−1)は、疾病予防とアンチエイジングに関わる重要な物質であって、分子量が7500のペプチドで、細胞のアポトーシスを抑制し、細胞の生存、増殖、そして分化に不可欠な重要な物質であることが知られている。
すなわち、インスリン様成長因子−1は、成長ホルモンの末梢での作用発現物質で、筋肉細胞、神経細胞などの細胞の増殖分化に重要な役割を演じるものであり、成長ホルモン欠損症で認められる多くの症候は、インスリン様成長因子−1の産生低下に起因すると考えられ、この病態の観察と成長ホルモン補充による効果の観察から、インスリン様成長因子−1の多彩で重要な作用が判明した。
特開2006−151971号公報
On the other hand, insulin-like growth factor-1 (IGF-1) is an important substance involved in disease prevention and anti-aging, and is a peptide having a molecular weight of 7500, which suppresses cell apoptosis, cell survival, proliferation, and It is known to be an important substance essential for differentiation.
In other words, insulin-like growth factor-1 is a substance that exhibits the action of growth hormone in the periphery, plays an important role in the proliferation and differentiation of cells such as muscle cells and nerve cells, and is often observed in growth hormone deficiency. These symptoms are considered to be caused by a decrease in the production of insulin-like growth factor-1. From the observation of this disease state and the effect of growth hormone supplementation, various and important actions of insulin-like growth factor-1 were revealed.
JP 2006-151971 A

従来の研究結果から、マイクロバブル(MB)の生物作用として、牡蠣やホタテの成長促進作用が認められているが、マイクロバブルを利用して他の有用生物の育生を促進したり、疾病を治癒したりする発明、及びその開発やメカニズムの解明は殆どなされていなかった。
よって本発明は、マイクロバブルを利用して生物の育生を促進したり、疾病の治癒を図るなどの発明技術を提供しようとするものである。
According to the results of previous research, the growth of oysters and scallops has been recognized as a biological action of microbubbles (MB). However, microbubbles can be used to promote the growth of other useful organisms and to cure diseases. However, little has been done to elucidate the invention, its development and mechanism.
Therefore, the present invention intends to provide invention techniques such as promoting the growth of organisms using microbubbles, and curing diseases.

本発明者は、鋭意研究の結果、マイクロバブル又はマイクロバブル含有水を生物に供給すると、細胞の生存、増殖、そして分化に不可欠な重要な物質生物であるインスリン様成長因子−1(IGF−1)の生成を促進することを見いだした。
本願発明は、該発見に基づいてなされたもので下記構成の生体(ただしヒトを除く。)内にインスリン様成長因子−1(IGF−1)を生成させる方法に係るものである。
As a result of diligent research, the present inventor has provided insulin-like growth factor-1 (IGF-1) which is an important substance organism essential for cell survival, proliferation and differentiation when microbubbles or water containing microbubbles is supplied to an organism. ) Was found to promote the generation of
The present invention has been made on the basis of the discovery and relates to a method for producing insulin-like growth factor-1 (IGF-1) in a living body (except human) having the following constitution.

[1] 気体と液体との混合液よりなる気液二相流体を、内側形状が円筒形又は円錐形の容器内で毎分20,000〜40,000回転(毎秒約330〜670回転)させて、同容器の中心部に液体及び気体の2相旋回流を形成させ、その2相旋回流の回転軸に沿って気体の負圧空洞部を形成させて、旋回気体空洞部を形成させ、その旋回によって気体を千切り、かつ粉砕して製造される、発生時に直径が10〜40μmで、電位が−40〜−100mVの微細気泡を含む機能性マイクロバブル水中に、生体(ただしヒトを除く。)を浸漬することにより生体内にインスリン様成長因子−1(IGF−1)を生成させる方法。
[1] A gas-liquid two-phase fluid composed of a mixture of gas and liquid is rotated 20,000 to 40,000 revolutions per minute (about 330 to 670 revolutions per second) in a cylindrical or conical container. Forming a two-phase swirling flow of liquid and gas at the center of the container, forming a negative gas pressure cavity along the rotation axis of the two-phase swirling flow, and forming a swirling gas cavity, A living body (except for humans) is produced in functional microbubble water containing fine bubbles having a diameter of 10 to 40 μm and an electric potential of −40 to −100 mV . how to made insulin-like growth factor -1 (IGF-1) raw in vivo by) immersing the.

本願発明の機能性マイクロバブル又は機能性マイクロバブル水を、単に生物に供与するだけで、生物の血管内、臓器内あるいは皮膚内等の生物の体内にインスリン様成長因子−1(IGF−1)含有濃度を上昇させることができ、特に肝臓や血漿(血液)中のインスリン様成長因子−1を飛躍的に上昇させることができる。
その結果、生物の育生促進や疾病の予防・治癒を図ることができる。
By simply supplying the functional microbubbles or functional microbubble water of the present invention to a living organism, insulin-like growth factor-1 (IGF-1) is introduced into the living organism such as blood vessels, organs or skin of the organism. The content concentration can be increased, and in particular, insulin-like growth factor-1 in the liver and plasma (blood) can be dramatically increased.
As a result, it is possible to promote the growth of organisms and to prevent or cure diseases.

本発明に係るマイクロバブル、マイクロバブル水及びインスリン様成長因子−1(IGF−1)について、説明する。
「マイクロバブル、マイクロバブル水について」
本願発明に係るマイクロバブル(機能性マイクロバブル)は、気体と液体との混合液よりなる気液二相流体を、内側形状が円筒形又は円錐形の容器内で毎分20,000〜40,000回転あるいは毎秒約300〜700回転させて、同容器の中心部に液体及び気体の2相旋回流を形成させ、その2相旋回流の回転軸に沿って気体の負圧空洞部を形成させて、旋回気体空洞部を形成させ、その旋回によって気体を千切り、かつ粉砕して製造され、発生時に直径が10〜40μmで、電位が−40〜−100mVの微細気泡となっているものである。
そして、発生後は所定の寿命を持って徐々に微細化し、消滅し溶解するものせる。
ここで、所定の寿命とは、大気圧が作用する水面近くの常圧の場合は数秒前後であり、高圧になるに従いその寿命がより長くなる。
すなわち、高圧下において発生時に好ましくは30μm以下の気泡径を有し、発生後は前記微細気泡に比べ、より長い寿命を持って徐々に微細化し、水中での上昇過程において消滅・溶解する微細気泡で、高圧下とは1気圧以上の深い水面下をいう。
本願発明のマイクロバブルは、その発生時の大きさにおいて略5μm〜略40μmの直径のものである。
このようなマイクロバブルの物理的特性として、発生時に直径が10〜40μmで、電位が−40〜−100mVの微細気泡で、その後、気泡径が小さくなるに従い、その電位量の絶対値は逆比例して増加するものである。
また、数百ミクロン〜数ミリメートル、あるいはそれ以上の気泡径の気泡(以下、通常気泡という)と比較して、表面張力が極端に大きく、内圧が高い。マイクロバブルが消滅する際の内圧は、数千気圧にも達するといわれている。
また、そのマイクロバブルの消滅・溶解時には、暗闇で自発光が確認できる程の高エネルギーを有するものであり、これを観測している。
The microbubble, microbubble water and insulin-like growth factor-1 (IGF-1) according to the present invention will be described.
"About microbubbles and microbubble water"
The microbubble according to the present invention (functional microbubble) is a gas-liquid two-phase fluid composed of a mixture of gas and liquid, and has an inner shape of 20,000 to 40,000 per minute in a cylindrical or conical container. 000 revolutions or about 300 to 700 revolutions per second to form a two-phase swirling flow of liquid and gas at the center of the container, and form a gas negative pressure cavity along the rotation axis of the two-phase swirling flow The swirling gas cavity is formed, and the swirling gas is shredded and pulverized to produce fine bubbles having a diameter of 10 to 40 μm and a potential of −40 to −100 mV when generated. .
And after generation | occurrence | production, it refines | miniaturizes gradually with a predetermined lifetime, and it will lose | dissolve and melt | dissolve.
Here, the predetermined life is around several seconds in the case of normal pressure near the water surface where atmospheric pressure acts, and the life becomes longer as the pressure increases.
That is, a fine bubble that has a bubble diameter of preferably 30 μm or less when generated under high pressure, gradually becomes finer with a longer life after the occurrence, and disappears / dissolves in the rising process in water. And under high pressure means deep below the water surface of 1 atmosphere or more.
The microbubbles of the present invention are those having a diameter of about 5 μm to about 40 μm at the time of generation.
As the physical characteristics of such microbubbles, the absolute value of the potential amount is inversely proportional to the microbubbles with a diameter of 10 to 40 μm and a potential of −40 to −100 mV when they are generated. And increase.
In addition, the surface tension is extremely large and the internal pressure is high as compared with bubbles having a bubble diameter of several hundred microns to several millimeters or more (hereinafter referred to as normal bubbles). The internal pressure when the microbubbles disappear is said to reach several thousand atmospheres.
In addition, when the microbubbles disappear and dissolve, they have such high energy that self-luminescence can be confirmed in the dark, and this is observed.

上述のようなマイクロバブルは、発生後比較的短時間で微細化し、消滅・溶解する過程において、強大な熱及び光のエネルギーを放出する。そのエネルギーの供給によって、生物の生理活性を促進させ、特に生体の血流促進を実現し、新陳代謝を高める気泡である。すなわち、マイクロバブルの発するエネルギーによって、生理活性を制御する物質が生体内に生成され、その結果として生理活性が促進されるものと推測される。
また、生理活性の結果として、生物本来の成長促進補助を大幅に可能とする。
そして、本願発明のマイクロバブルは、低温水中に身体又は身体の一部を浸した場合に、血流促進を図ることができる気泡でもある。ここで低温水とは、略37度C〜略40度C程度の温水を意味するが、本願発明に係るマイクロバブルの血流促進の作用により、より高温での入浴と同等の血流促進効果を得ることができる。また、身体の一部、例えば足及び脛に前記マイクロバブルを当てても血流促進を図ることができる。
さらに、溶存酸素濃度を高めることによる生理活性機能と、上述のように気泡自体による生理活性機能を共に備えている。
本願発明のマイクロバブルの発生過程においては、円筒状のスペースを構成する円周の接線方向に向けて液体を圧送することにより、円筒状スペースの軸線に沿って旋回流を生成させ、その旋回流の中心軸付近に負圧領域を形成させ、その負圧領域の一端から外部の気体が吸込まれ、その気体が前記負圧領域の他端に向って通過することによって、細かい紐状の旋回気体空洞部を形成させ、その旋回気体空洞部が前記圧送液により、縮径されて先細りとなり、千切られ、かつ、静液体に臨むことにより生成される。
The microbubbles as described above release powerful heat and light energy in the process of becoming finer and disappearing / dissolving in a relatively short time after generation. The supply of energy promotes the biological activity of the organism, in particular, promotes blood flow in the living body, and is a bubble that enhances metabolism. That is, it is presumed that a substance that controls physiological activity is generated in the living body by the energy generated by the microbubbles, and as a result, the physiological activity is promoted.
In addition, as a result of physiological activity, the growth promotion assistance inherent in living organisms can be greatly made possible.
And the microbubble of this invention is a bubble which can aim at blood-flow promotion, when a body or a part of body is immersed in low-temperature water. Here, the low-temperature water means hot water of about 37 ° C. to about 40 ° C. However, the blood flow promoting effect equivalent to that of bathing at a higher temperature due to the blood flow promoting action of the microbubbles according to the present invention. Can be obtained. In addition, blood flow can be promoted even if the microbubbles are applied to a part of the body, for example, a foot and a shin.
Furthermore, it has both the physiologically active function by increasing the dissolved oxygen concentration and the physiologically active function by the bubbles themselves as described above.
In the microbubble generation process of the present invention, a swirl flow is generated along the axis of the cylindrical space by pumping liquid toward the tangential direction of the circumference constituting the cylindrical space, and the swirl flow A negative pressure region is formed in the vicinity of the central axis of the gas, an external gas is sucked from one end of the negative pressure region, and the gas passes toward the other end of the negative pressure region, whereby a fine string-like swirling gas A hollow portion is formed, and the swirling gas hollow portion is reduced in diameter by the pressure-feeding liquid, becomes tapered, is chopped, and is generated by facing a static liquid.

次に、本願発明に係るマイクロバブルの気泡径は、均一であり、気泡同士の合体や分裂が起こり難く、極めて優れた分散性を示す。これに対して、通常気泡は、酸素吸収効率が悪く、また生理活性を起こさせることができない。
マイクロバブルが発生及びはじける際に生成される音エネルギーが、約キロヘルツ〜数10キロヘルツ程度の振動で伝達される。
マイクロバブルは水中に長時間滞留する。マイクロバブルは、比較的短時間で消滅するが、同時にマイクロバブル発生装置からは大量のマイクロバブルが連続的に発生し続けることから、マイクロバブル全体として滞留する性質を備えている。
Next, the bubble diameters of the microbubbles according to the present invention are uniform, and coalescence and splitting of the bubbles hardly occur, and extremely excellent dispersibility is exhibited. In contrast, normal bubbles have poor oxygen absorption efficiency and cannot cause physiological activity.
The sound energy generated when the microbubbles are generated and popped is transmitted by vibrations of about kilohertz to several tens of kilohertz.
Microbubbles stay in water for a long time. The microbubbles disappear in a relatively short time, but at the same time, a large number of microbubbles are continuously generated from the microbubble generator, and therefore, the microbubbles are retained as a whole.

「インスリン様成長因子−1(IGF−1)について」
[生体の恒常性維持における知覚神経の役割]
ヒトを含めて生物は、常に様々な環境の変化にさらされている。これらの環境の変化に対して、生物は、神経系、内分泌系、および免疫系の3つのシステムを巧妙に協調させて対応し、生体内部を一定の状態に維持している。生体内部の恒常性を保つ機能は、ホメオスターシスと呼ばれ、この機能が、正常に作動しているおかげで、我々は生命を維持できるのである。
生体に対する環境変化、例えば、「怪我をする」が起これば、これは、神経系や免疫系によって認識され、それぞれ、痛み、および細菌の侵入という情報として、中枢(脳)へ伝達される。中枢神経系は、全身の神経系および内分泌系を活性化させ、それぞれ、自律神経機能の活性化、およびステロイドなどのホルモン分泌亢進などの効果を惹起し、生体内の恒常性を維持しようとする。
この様に、知覚神経系は、レーダー網のように、全身に張り巡らされ、全身の状況の些細な変化をも感知し、環境の変化をいち早く中枢へ伝え、その後の環境の変化に対応するための重要な生体反応を惹起する上で、重要な役割を担っている。
About insulin-like growth factor-1 (IGF-1)
[Role of sensory nerve in maintaining homeostasis]
Living organisms including humans are constantly exposed to various environmental changes. Living organisms respond to these environmental changes by skillfully coordinating the three systems of the nervous system, endocrine system, and immune system, and maintain the inside of the living body in a constant state. The function of maintaining homeostasis inside the living body is called homeostasis, and thanks to the normal functioning of this function, we can maintain life.
When an environmental change to the living body, for example, “injuries” occurs, this is recognized by the nervous system and the immune system, and is transmitted to the center (brain) as information on pain and invasion of bacteria, respectively. The central nervous system activates the nervous system and endocrine system of the whole body, and activates autonomic nervous function and enhances the secretion of hormones such as steroids to maintain homeostasis in the living body. .
In this way, the sensory nervous system is stretched throughout the body like a radar network, senses even minor changes in the situation of the whole body, quickly transmits environmental changes to the center, and responds to subsequent environmental changes. It plays an important role in inducing important biological reactions.

[生体防御反応と臓器保護機構]
前述の様に、怪我をすると、免疫系では、細菌の侵入などを感知した白血球が活性化され、細菌の侵入から生体を守るための生体防御反応が展開される。細菌の侵入により、白血球の中でも、単球と呼ばれる細胞がまず活性化される。単球は、実際に細菌と戦う兵隊である好中球と呼ばれる細胞に戦いの指令を送る。この指令物質は、古くはガン細胞を殺す働きがあったことから、腫瘍壊死因子と呼ばれている。腫瘍壊死因子は、好中球を活性化し、好中球から、細菌を殺す武器である活性酸素種や蛋白分解酵素を放出させる。また、腫瘍壊死因子は、細菌などの攻撃で傷害された細胞を除去する働きをも持っている。傷害された細胞は、細胞死(アポトーシス)と呼ばれる機序によって除去される。
[Bioprotective response and organ protection mechanism]
As described above, when injured, the immune system activates leukocytes that sense the invasion of bacteria, and develops a biological defense reaction to protect the living body from the invasion of bacteria. Due to the invasion of bacteria, cells called monocytes are first activated among leukocytes. A monocyte sends a fight command to cells called neutrophils, which are soldiers that actually fight bacteria. This command substance was called tumor necrosis factor because it used to kill cancer cells. Tumor necrosis factor activates neutrophils and releases reactive oxygen species and proteolytic enzymes that are weapons that kill bacteria from neutrophils. Tumor necrosis factor also has a function of removing cells damaged by attacks such as bacteria. Damaged cells are removed by a mechanism called cell death (apoptosis).

知覚神経刺激による臓器保護機構生体に密に張り巡らされた知覚神経のネットワークは、生体の恒常性を攪乱する要因が作用すると、速やかにこれを察知する。
知覚神経表面には、カプサイシンなどのバニロイド化合物に対する受容体(バニロイド受容体.1)が存在する。この受容体は、43℃の熱刺激、pH6以下の酸性環境、低濃度の腫瘍壊死因子やインターロイキン−1などの炎症性サイトカイン、プロスタグランジン、内因性マリファナであるアナンダマイド、ブラジキニン、トロンボキサンA2、およびロイコトリエンなどで活性化される。
すなわち、生体の恒常性をかく乱する要因が作用して、それに対する生体側の反応により生成されるこのような物質により、知覚神経が刺激されるのである。知覚神経が刺激されると、温痛覚が伝達され、生体は熱さや痛みを感じるが、同時に知覚神経末端からカルシトニン遺伝子関連ペプチド(CGRP)という知覚神経で産生されるペプチドを放出する。
CGRPは、血管内皮細胞を活性化し、腫瘍壊死因子の産生を抑制する作用を有する一酸化窒素やプロスタグランジンの産生を促進する。さらに、CGRPは、血管内皮細胞や臓器実質細胞の生存に重要な役割を担うインスリン様成長因子−1の産生も促進する。
Organ Protection Mechanism by Sensory Nerve Stimulation The sensory nerve network, which is tightly stretched around the living body, quickly detects when a factor that disturbs the homeostasis of the body acts.
A receptor for vanilloid compounds such as capsaicin (vanilloid receptor.1) exists on the sensory nerve surface. This receptor is heat-stimulated at 43 ° C., acidic environment at pH 6 or lower, low concentrations of inflammatory cytokines such as tumor necrosis factor and interleukin-1, prostaglandins, endogenous marijuana anandamide, bradykinin, thromboxane It is activated with A2, leukotriene and the like.
That is, the factor which disturbs the homeostasis of a living body acts, and the sensory nerve is stimulated by such a substance generated by the reaction on the living body side. When the sensory nerve is stimulated, a thermal pain sensation is transmitted, and the living body feels heat and pain, but simultaneously releases a peptide produced by the sensory nerve called calcitonin gene-related peptide (CGRP) from the terminal of the sensory nerve.
CGRP promotes the production of nitric oxide and prostaglandins that activate vascular endothelial cells and suppress the production of tumor necrosis factor. Furthermore, CGRP also promotes the production of insulin-like growth factor-1, which plays an important role in the survival of vascular endothelial cells and organ parenchymal cells.

インスリン様成長因子−1(IGF−1):
疾病予防とアンチエイジングに関わる重要な物質インスリン様成長因子−1は、分子量7500ペプチドで、細胞のアポトーシスを抑制し、細胞の生存、増殖、そして分化に不可欠な重要な物質である。
インスリン様成長因子−1は、成長ホルモンの末梢での作用発現物質で、筋肉細胞、神経細胞などの細胞の増殖分化に重要な役割を演じる。成長ホルモン欠損症で認められる多くの症候は、インスリン様成長因子−1の産生低下に起因すると考えられ、この病態の観察と成長ホルモン補充による効果の観察から、インスリン様成長因子−1の多彩で重要な作用が判明した。
インスリン様成長因子−1は、血糖を調節するインスリンと類似したシグナルを細胞に伝達し、血糖を低下させ、糖尿病の軽減に重要であるが、その他にも、蛋白質分解抑制(蛋白同化作用)、血圧低下、心機能の改善、高脂血症の改善、認知機能の上昇、抗うつ作用、アルツハイマー病予防、美肌効果、育毛作用、創傷治癒の促進、抗炎症作用、ナチュラルキラー細胞の活性化による免疫機能活性化作用などの作用が知られている。
また、成長ホルモンのアンチエイジング作用は、インスリン様成長因子−1の作用によるものである。インスリン様成長因子−1は、生体防御反応において、過剰に産生された腫瘍壊死因子によるアポトーシスを抑制するほか、アポトーシスによる細胞欠落を、新たに若い無傷な細胞を分裂増殖させることで、補充する作用を有する。
Insulin-like growth factor-1 (IGF-1):
Important Substance Involved in Disease Prevention and Anti-Aging Insulin-like growth factor-1 is a 7500 peptide having a molecular weight of 7500 and is an important substance essential for cell survival, proliferation and differentiation by suppressing cell apoptosis.
Insulin-like growth factor-1 is a substance that exhibits the action of growth hormone in the periphery, and plays an important role in the proliferation and differentiation of cells such as muscle cells and nerve cells. Many symptoms observed in growth hormone deficiency are thought to be due to decreased production of insulin-like growth factor-1. From the observation of this condition and the effect of growth hormone supplementation, various symptoms of insulin-like growth factor-1 were observed. An important effect was found.
Insulin-like growth factor-1 transmits a signal similar to insulin that regulates blood sugar to cells, lowers blood sugar, and is important for alleviating diabetes, but also inhibits protein degradation (anabolic action), Reduced blood pressure, improved cardiac function, improved hyperlipidemia, increased cognitive function, antidepressant action, Alzheimer's disease prevention, skin beautifying effect, hair growth action, promotion of wound healing, anti-inflammatory action, activation of natural killer cells Actions such as an immune function activation action are known.
The anti-aging action of growth hormone is due to the action of insulin-like growth factor-1. Insulin-like growth factor-1 suppresses apoptosis caused by excessively produced tumor necrosis factor in a host defense reaction, and supplements cell loss due to apoptosis by newly proliferating young intact cells. Have

本発明に係る実施形態を図1に基づいて説明する。
図1は、マウスを40℃の水道水と40℃の本願発明のマイクロバブル水に5分間浸漬した際及びマウスに何も処理をしない際(コントロール)の各種臓器、皮膚、血漿におけるインスリン様成長因子−1(IGF−1)生成率(コントロール(100)に対する比率)を示すものである。
なお、図において「コントロール」は、何もしない、そのままのマウスである。
「40℃水道水」は、40℃の温水にマウスを5分間入れて入浴させた場合であり、
「40℃水道水+マイクロバブル」は、40℃の温水にマイクロバブルを発生させながら、マウスを5分間入浴させた場合である。
すなわち、マウスを40℃の水道水と40℃の本願発明のマイクロバブル水に5分間浸漬してから、マウスの各種臓器、皮膚、血漿におけるインスリン様成長因子−1(IGF−1)生成率を測定した。
そして、その結果を図1に示した(ただし、コントロール(100)に対する比率を示す)。
その結果から、マウスを40℃の水道水に浸漬しただけでも体内のインスリン様成長因子−1濃度は上昇するが、40℃の本願発明のマイクロバブル水に浸漬すると、一層体内のインスリン様成長因子−1濃度は上昇することが明確に解る。
特に肝臓及び血漿(血液)中のインスリン様成長因子−1濃度は飛躍的に上昇することが解った。
以上のことから、本願発明のマイクロバブル又はマイクロバブル水の供与により、生物体内のインスリン様成長因子−1濃度が上昇するため、生物の育生促進や、医療分野において多くの疾患への治療効果が期待できる。
すなわち、生体が急性の過大な、又は慢性の持続するストレスにより、それぞれ、重症感染症や生活習慣病を発症した場合、または、老化が促進されるような場合、マイクロバブルは、インスリン様成長因子−1産生を促進し、若い細胞を分裂させ、臓器の障害、炎症、又は老化の促進を抑制することが期待される。
An embodiment according to the present invention will be described with reference to FIG.
FIG. 1 shows insulin-like growth in various organs, skin, and plasma when a mouse is immersed in 40 ° C. tap water and 40 ° C. microbubble water of the present invention for 5 minutes and when no treatment is performed on the mouse (control). It shows the factor-1 (IGF-1) production rate (ratio to control (100)).
In the figure, “control” is a mouse that does nothing and does nothing.
“40 ° C. tap water” is a case where a mouse is placed in 40 ° C. warm water for 5 minutes to bathe,
“40 ° C. tap water + microbubble” is when the mouse is bathed for 5 minutes while generating microbubbles in warm water at 40 ° C.
That is, after immersing the mouse in 40 ° C tap water and 40 ° C microbubble water of the present invention for 5 minutes, the rate of insulin-like growth factor-1 (IGF-1) production in various organs, skin, and plasma of the mouse was determined. It was measured.
The results are shown in FIG. 1 (however, the ratio to the control (100) is shown).
As a result, the concentration of insulin-like growth factor-1 in the body rises only by immersing the mouse in tap water at 40 ° C., but when immersed in the microbubble water of the present invention at 40 ° C., the insulin-like growth factor in the body is further increased. It can be clearly seen that the -1 concentration increases.
In particular, it has been found that the concentration of insulin-like growth factor-1 in the liver and plasma (blood) increases dramatically.
From the above, since the concentration of insulin-like growth factor-1 in the organism increases due to the provision of microbubbles or microbubble water of the present invention, the growth of organisms is promoted and therapeutic effects on many diseases in the medical field are achieved. I can expect.
That is, when a living body develops severe infection or lifestyle-related disease due to acute excessive or chronic sustained stress, or when aging is promoted, microbubbles are insulin-like growth factors. -1 production, division of young cells, and suppression of organ damage, inflammation, or aging promotion are expected.

マウスを40℃の水道水と40℃の本願発明のマイクロバブル水に5分間浸漬した際の各種臓器、皮膚、血漿におけるインスリン様成長因子−1(IGF−1)生成率(コントロール(100)に対する比率)を示すものである。Insulin-like growth factor-1 (IGF-1) production rate in various organs, skin, and plasma when the mouse is immersed in 40 ° C tap water and 40 ° C microbubble water of the present invention for 5 minutes (relative to control (100)) Ratio).

Claims (1)

気体と液体との混合液よりなる気液二相流体を、内側形状が円筒形又は円錐形の容器内で毎分20,000〜40,000回転(毎秒約330〜670回転)させて、同容器の中心部に液体及び気体の2相旋回流を形成させ、その2相旋回流の回転軸に沿って気体の負圧空洞部を形成させて、旋回気体空洞部を形成させ、その旋回によって気体を千切り、かつ粉砕して製造される、発生時に直径が10〜40μmで、電位が−40〜−100mVの微細気泡を含む機能性マイクロバブル水中に、生体(ただしヒトを除く。)を浸漬することにより生体内にインスリン様成長因子−1(IGF−1)を生成させる方法。 A gas-liquid two-phase fluid composed of a mixture of gas and liquid is rotated at 20,000 to 40,000 revolutions per minute (about 330 to 670 revolutions per second) in a cylindrical or conical container. A two-phase swirling flow of liquid and gas is formed at the center of the container, a negative pressure cavity of the gas is formed along the rotation axis of the two-phase swirling flow, and a swirling gas cavity is formed. A living body (except for humans) is immersed in functional microbubble water containing fine bubbles that are produced by shredding and pulverizing gas and having a diameter of 10 to 40 μm and an electric potential of −40 to −100 mV . how to made insulin-like growth factor -1 (IGF-1) raw in vivo by.
JP2006223710A 2006-08-19 2006-08-19 Method for producing insulin-like growth factor-1 (IGF-1) in vivo Active JP4968511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006223710A JP4968511B2 (en) 2006-08-19 2006-08-19 Method for producing insulin-like growth factor-1 (IGF-1) in vivo

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006223710A JP4968511B2 (en) 2006-08-19 2006-08-19 Method for producing insulin-like growth factor-1 (IGF-1) in vivo

Publications (2)

Publication Number Publication Date
JP2008043906A JP2008043906A (en) 2008-02-28
JP4968511B2 true JP4968511B2 (en) 2012-07-04

Family

ID=39178150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006223710A Active JP4968511B2 (en) 2006-08-19 2006-08-19 Method for producing insulin-like growth factor-1 (IGF-1) in vivo

Country Status (1)

Country Link
JP (1) JP4968511B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156320A (en) * 2006-12-26 2008-07-10 Hydrox Kk Antioxidative functional water
JP2011115326A (en) * 2009-12-02 2011-06-16 Nanoplanet Kenkyusho:Kk Method for annihilating escherichia coli or virus, or inhibiting proliferation thereof
WO2013006169A1 (en) * 2011-07-06 2013-01-10 Empire Technology Development Llc Air purifier
CN103880146A (en) * 2012-12-21 2014-06-25 陈晓波 Plasma water purification device for fish tank needing no water changing

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3318304B2 (en) * 1999-07-30 2002-08-26 野村電子工業株式会社 Gas-liquid mixing device
JP2002143885A (en) * 2000-11-14 2002-05-21 Hirobumi Onari Micro bubble
JP3829170B2 (en) * 2001-05-01 2006-10-04 有限会社情報科学研究所 Gas dissolved liquid medium production system
US8349192B2 (en) * 2003-09-30 2013-01-08 Reo Laboratory Co., Ltd. Method for collapsing microbubbles
JP4080440B2 (en) * 2004-03-05 2008-04-23 独立行政法人産業技術総合研究所 Oxygen nanobubble water and method for producing the same
WO2006019107A1 (en) * 2004-08-18 2006-02-23 Fuki Co., Ltd. Method of generating micro air bubble in liquid and air bubble generating apparatus
DE602004009930T2 (en) * 2004-09-27 2008-02-28 Nestec S.A. Mixing device, coffee machine with such mixing device and application of such mixing device

Also Published As

Publication number Publication date
JP2008043906A (en) 2008-02-28

Similar Documents

Publication Publication Date Title
Farina Jr et al. Curbing inflammation in burn patients
JP4968511B2 (en) Method for producing insulin-like growth factor-1 (IGF-1) in vivo
US20040059388A1 (en) Electrochemical treatment of tissues, especially tumors
EA029314B1 (en) Application of high-shear deformation in medicinal therapy
Nizamutdinov et al. Transcranial near-infrared light in treatment of neurodegenerative diseases
Jani et al. Ozone therapy: the alternative medicine of future
Zhou et al. Combination therapy based on targeted nano drug co-delivery systems for liver fibrosis treatment: A review
WO2008049058A3 (en) Cln2 treatment of alzheimer's disease
Li et al. Biomaterial-based therapeutic strategies for obesity and its comorbidities
TWI580440B (en) The Application of Surface to Cosmetics
Salim et al. Smart biomaterials for enhancing cancer therapy by overcoming tumor hypoxia: a review
KR101970677B1 (en) Health care room having spray nozzle of salt water
JP2014515665A (en) Method for producing a substance with a supersaturated gas, transdermal delivery device and use thereof
EP3015108A1 (en) Carbonated water-containing external preparation for promoting blood circulation, blood circulation-promoting device for same, and blood circulation-promoting method using same
Eldershaw et al. Resiniferatoxin and piperine: capsaicin-like stimulators of oxygen uptake in the perfused rat hindlimb
US8888736B2 (en) High shear application in medical therapy
US20030113315A1 (en) Squalane containing ultra fine particles of burning residue of carbon and method for producing the same
JP2014515666A (en) Method for producing a substance with a supersaturated gas, transdermal delivery device and use thereof
KR100950220B1 (en) Apparatus for producing functional washing water using micro bubble
Hayashi et al. Transient prevention of ethanol-induced gastric lesion by capsaicin due to release of endogenous calcitonin gene-related peptide in rats
Al-Harrasi et al. Olfactory Aromatherapy vs COVID-19: A Systematic Review
WO2016066068A1 (en) Use of metallothionein composite formulation as medication for treating cerebral stroke sequelae by acupoint entry
RU2676836C2 (en) Device for treatment of immune function deficiency and regulation of metabolism
CN1290488C (en) Micro bubble reagent in use for method of blood vessel embolism induced by ultrasonic and method of beauty culture of subtracting fat
KR100952611B1 (en) Apparatus for producing functional washing water using micro bubble

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120308

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4968511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R255 Notification that request for automated payment was rejected

Free format text: JAPANESE INTERMEDIATE CODE: R2525

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R255 Notification that request for automated payment was rejected

Free format text: JAPANESE INTERMEDIATE CODE: R2525

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250