JP4967113B2 - New transition metal extractant that does not extract iron - Google Patents
New transition metal extractant that does not extract iron Download PDFInfo
- Publication number
- JP4967113B2 JP4967113B2 JP2005320869A JP2005320869A JP4967113B2 JP 4967113 B2 JP4967113 B2 JP 4967113B2 JP 2005320869 A JP2005320869 A JP 2005320869A JP 2005320869 A JP2005320869 A JP 2005320869A JP 4967113 B2 JP4967113 B2 JP 4967113B2
- Authority
- JP
- Japan
- Prior art keywords
- iron
- transition metal
- extractant
- compound
- ions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Pyridine Compounds (AREA)
- Removal Of Specific Substances (AREA)
- Extraction Or Liquid Replacement (AREA)
Description
本発明は、新規カルボン酸アミド化合物、前記化合物を含有する、鉄以外の遷移金属の抽出剤、並びに前記抽出剤を用いた鉄以外の遷移金属の抽出方法に関する。 The present invention relates to a novel carboxylic acid amide compound, an extractant for transition metals other than iron containing the compound, and a method for extracting a transition metal other than iron using the extractant.
現在、金属の回収に用いられる抽出剤としては、酸素を配位原子とする工業用抽出剤である酸性リン化合物抽出剤(酸性リン酸エステル、酸性ホスホン酸エステル、酸性ホスフィン酸エステル)、中性リン化合物抽出剤(中性リン酸エステル、中性ホスホン酸エステル、中性ホスフィン酸エステル)およびジチオリン酸エステル、多座配位の有機リン化合物抽出剤がある。また、鉄、銅、鉛、亜鉛、カドミウム、ニッケル、コバルトなどの抽出剤としては、カルボン酸を官能基とするバーサティック10やナフテン酸などの抽出剤が開発されており、湿式製錬工業で数多く利用されている。 Currently, as an extractant used for metal recovery, an acidic phosphorus compound extractant (acid phosphate ester, acid phosphonate ester, acid phosphinate ester), which is an industrial extractant having oxygen as a coordination atom, neutral There are phosphorus compound extractants (neutral phosphate esters, neutral phosphonate esters, neutral phosphinate esters) and dithiophosphate esters, multidentate organophosphorus compound extractants. In addition, as extractants for iron, copper, lead, zinc, cadmium, nickel, cobalt and the like, extractants such as Versatic 10 and naphthenic acid having carboxylic acid as a functional group have been developed. Many are used.
これらの金属抽出剤は鉄イオンに対して最も親和性が高い。そのため、鉄及びその他の遷移金属を含有する溶液から、上記の金属抽出剤を用いて低pH領域で抽出を行った場合、鉄イオンが必ず抽出されるため、鉄以外の遷移金属だけを選択的に抽出することができない。鉄以外の遷移金属を利用するには、鉄と鉄以外の遷移金属とを分離する工程が更に必要である。 These metal extractants have the highest affinity for iron ions. Therefore, when extraction is performed from a solution containing iron and other transition metals in the low pH region using the above metal extractant, iron ions are always extracted, so only transition metals other than iron are selectively selected. Can not be extracted. In order to use a transition metal other than iron, a step of separating iron and a transition metal other than iron is further required.
上記の問題点を解決するために、鉄イオンより銅に対して高い選択性を示すヒドロキシオキシム系の工業用抽出剤(LIXシリーズやPシリーズ)が開発された。これらの抽出剤は鉄イオンを抽出するものの、鉄イオンは銅イオンより高pHで抽出されるので、現在、銅の湿式製錬プロセスに利用されている。しかしながら、ヒドロキシオキシム系の抽出剤は、徐々にオキシムが分解するために、逐次的に試薬の追加充填が必要であるという問題がある。 In order to solve the above-mentioned problems, hydroxyoxime-based industrial extractants (LIX series and P series) exhibiting higher selectivity for copper than iron ions have been developed. Although these extractants extract iron ions, since iron ions are extracted at a higher pH than copper ions, they are currently used in copper hydrometallurgical processes. However, the hydroxyoxime-based extractant has a problem that additional filling of reagents is necessary sequentially because the oxime is gradually decomposed.
金属抽出剤に関する特許出願(特許文献1、2等)は数多くなされているが、鉄以外の遷移金属を選択的に抽出する抽出剤として満足できるものは未だ開発されていない。
一般に、金属の分離・回収を行う環境中には鉄イオンが共存していることが多い。鉄イオンを抽出せず、鉄イオン以外の遷移金属イオンを選択的に抽出できる抽出剤が開発されれば、今までの金属の分離・回収技術は大きく変化し、分離プロセスの簡略化、試薬の削減などによる経済的効果など、多大なものが期待される。 In general, iron ions often coexist in an environment where metals are separated and recovered. If an extractant that can selectively extract transition metal ions other than iron ions without the extraction of iron ions is developed, the conventional metal separation and recovery technology will change significantly, simplifying the separation process, A lot of things are expected, such as the economic effects of reduction.
すなわち本発明は、鉄と鉄以外の遷移金属とを含有する溶液から、鉄以外の遷移金属を選択的に抽出することができる、化学的に安定な抽出剤を提供することを目的とする。 That is, an object of the present invention is to provide a chemically stable extractant capable of selectively extracting a transition metal other than iron from a solution containing iron and a transition metal other than iron.
本発明者は以上の問題点を解決するために鋭意研究した結果、鉄を抽出しないが他の遷移金属は抽出できる抽出剤を新規に開発した。
本発明は以下の発明を包含する。
(1)式(I):
As a result of intensive studies to solve the above problems, the present inventor has newly developed an extractant that does not extract iron but can extract other transition metals.
The present invention includes the following inventions.
(1) Formula (I):
(2)(1)記載の化合物を有効成分とする、鉄以外の遷移金属の抽出剤。
(3)鉄以外の遷移金属が銅である、(2)記載の抽出剤。
(4)(2)記載の抽出剤を用いて、遷移金属を含有する水溶液から鉄以外の遷移金属を選択的に抽出することを特徴とする、鉄以外の遷移金属の抽出方法。
(5)鉄以外の遷移金属が銅である、(4)記載の方法。
(2) An extractant for transition metals other than iron, comprising the compound according to (1) as an active ingredient.
(3) The extractant according to (2), wherein the transition metal other than iron is copper.
(4) A method for extracting a transition metal other than iron, wherein the transition metal other than iron is selectively extracted from an aqueous solution containing the transition metal using the extractant according to (2).
(5) The method according to (4), wherein the transition metal other than iron is copper.
本発明により、鉄と鉄以外の遷移金属とを含有する溶液から、鉄以外の遷移金属を選択的に一段階で抽出することができる、化学的に安定な抽出剤が提供される。 The present invention provides a chemically stable extractant that can selectively extract a transition metal other than iron in a single step from a solution containing iron and a transition metal other than iron.
式(I)で表される化合物(以下「本発明の化合物」と称する)は新規化合物である。本発明の化合物は、任意の有機又は無機の酸又は塩基と塩を形成することができる。当該塩もまた本発明の範囲内である。本化合物は実施例記載の方法により調製することができる。 The compound represented by the formula (I) (hereinafter referred to as “the compound of the present invention”) is a novel compound. The compounds of the present invention can form salts with any organic or inorganic acid or base. Such salts are also within the scope of the present invention. This compound can be prepared by the methods described in the Examples.
本発明の化合物において、Rは直鎖状又は分岐鎖状の炭素数1〜18、好ましくは炭素数6〜14、より好ましくは炭素数8〜12のアルキル基又はアルケニル基である。Rがアルケニル基である場合、不飽和結合の数は複数であっても単数であってもよい。Rの好ましい具体例としては2−エチルヘキシル、tert-ドデシル、オクチル、ノニル、デシル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、オレイル基等が挙げられるがこれらには限定されない。本発明の化合物は非常に安定であるため長期間の工業的使用にも耐えるものである。 In the compound of the present invention, R represents a linear or branched alkyl group or alkenyl group having 1 to 18 carbon atoms, preferably 6 to 14 carbon atoms, more preferably 8 to 12 carbon atoms. When R is an alkenyl group, the number of unsaturated bonds may be plural or singular. Preferable specific examples of R include, but are not limited to, 2-ethylhexyl, tert-dodecyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, oleyl group and the like. The compounds of the present invention are very stable and can withstand long-term industrial use.
本発明において「遷移金属」とは周期表の3A〜7A及び1Bの各族の元素だけでなく2B族の亜鉛、カドミウム、水銀の3元素をも含む広義の遷移金属を意味する。本発明の化合物により抽出される遷移金属イオンとしては特に、銅、ニッケル、コバルト、亜鉛、カドミウム、鉛のイオンが挙げられる。本発明の化合物により抽出される金属イオンの選択性は、抽出時の水相のpHにより変動し、例えばpH5以下では銅、ニッケル、コバルト、亜鉛、鉛、及びカドミウムのイオンが選択的に抽出され、pH4.5以下では銅、ニッケル、コバルト、亜鉛、及び鉛のイオンが選択的に抽出され、pH3以下では銅が選択的に抽出される。水相のpHを適宜調節することにより、所望の金属イオンを選択的に抽出することが可能となる。本発明の化合物を用いれば、高pH条件下において鉄イオンは抽出されないため、従来困難であった銅と鉄との分離が可能となる。 In the present invention, the “transition metal” means a transition metal in a broad sense including not only the elements of groups 3A to 7A and 1B of the periodic table but also the elements of group 2B zinc, cadmium and mercury. Examples of transition metal ions extracted by the compound of the present invention include copper, nickel, cobalt, zinc, cadmium and lead ions. The selectivity of metal ions extracted by the compound of the present invention varies depending on the pH of the aqueous phase at the time of extraction. For example, ions of copper, nickel, cobalt, zinc, lead and cadmium are selectively extracted at pH 5 or lower. At pH 4.5 or lower, copper, nickel, cobalt, zinc, and lead ions are selectively extracted, and at pH 3 or lower, copper is selectively extracted. By appropriately adjusting the pH of the aqueous phase, desired metal ions can be selectively extracted. If the compound of the present invention is used, since iron ions are not extracted under high pH conditions, it is possible to separate copper and iron, which has heretofore been difficult.
本発明はまた、本発明の化合物を用いて、鉄と鉄以外の遷移金属とを含有する水溶液から鉄以外の遷移金属のみを選択的に抽出することを特徴とする、鉄以外の遷移金属の抽出方法に関する。 The present invention also uses the compound of the present invention to selectively extract only a transition metal other than iron from an aqueous solution containing iron and a transition metal other than iron. It relates to an extraction method.
抽出工程は遷移金属を含有する水溶液(水相)と本発明の化合物を含有する有機相とを接触させることにより行う。本発明の化合物を有機溶媒に希釈したものを有機相とすることが好ましい。本発明の化合物が常温で液体である場合(例えばN−6−(t−ドデシルアミド)−2−ピリジンカルボン酸は常温で液体である)は、当該化合物自体を希釈することなく有機相として用いてもよい。希釈液として使用できる有機溶媒としては脂肪族化合物から芳香族化合物までの種々の有機溶媒が挙げられ、なかでもトルエン、n−ヘキサン、シクロヘキサン、ベンゼン、キシレン、1,2−ジクロロエタン、クロロホルム、四塩化炭素、あるいはこれらの混合物等が好適である。なお、金属抽出時に抽出剤がゲル化する場合は、改質剤として2−エチルへキシルアルコールを10%程度添加することによって解決できる。 The extraction step is carried out by contacting an aqueous solution containing a transition metal (aqueous phase) with an organic phase containing the compound of the present invention. A compound obtained by diluting the compound of the present invention in an organic solvent is preferably used as the organic phase. When the compound of the present invention is liquid at room temperature (for example, N-6- (t-dodecylamide) -2-pyridinecarboxylic acid is liquid at room temperature), the compound itself is used as an organic phase without dilution. May be. Examples of the organic solvent that can be used as a diluent include various organic solvents from aliphatic compounds to aromatic compounds. Among them, toluene, n-hexane, cyclohexane, benzene, xylene, 1,2-dichloroethane, chloroform, tetrachloride. Carbon or a mixture of these is preferred. In addition, when an extractant gelatinizes at the time of metal extraction, it can be solved by adding about 10% of 2-ethylhexyl alcohol as a modifier.
水相中には、遷移金属イオンが種々のカウンターアニオンととも存在する。水相としては、例えば電子工業において電子材料の製造工程で排出される廃棄物、自動車廃触媒、めっき廃液等の、鉄イオン及びその他の遷移金属イオンを含有する水溶液が使用できる。 In the aqueous phase, transition metal ions are present with various counter anions. As the aqueous phase, for example, an aqueous solution containing iron ions and other transition metal ions such as waste discharged in the manufacturing process of electronic materials in the electronic industry, automobile waste catalyst, plating waste liquid, and the like can be used.
抽出の条件は特に限定されない。例えば、水相と有機相とを1:10〜10:1、より好ましくは1:5〜5:1の容積比で、5〜50℃にて、0.5〜48時間接触させることにより有機相に鉄以外の遷移金属を抽出することができる。 The extraction conditions are not particularly limited. For example, the organic phase is brought into contact by contacting the aqueous phase and the organic phase at a volume ratio of 1:10 to 10: 1, more preferably 1: 5 to 5: 1 at 5 to 50 ° C. for 0.5 to 48 hours. Transition metals other than iron can be extracted in the phase.
有機相に抽出された遷移金属は常法により容易に回収することができる。例えば、有機相と水相とを分離し、分離された有機相から希薄な酸性溶液を用いて遷移金属を逆抽出することができる。
以下本発明を具体的に説明するが本発明は下記の実施例には限定されない。
The transition metal extracted into the organic phase can be easily recovered by a conventional method. For example, the organic phase and the aqueous phase can be separated, and the transition metal can be back extracted from the separated organic phase using a dilute acidic solution.
The present invention will be specifically described below, but the present invention is not limited to the following examples.
本発明の化合物は次のスキームに従い合成することができる。 The compound of the present invention can be synthesized according to the following scheme.
本実施例では上記スキームに従い、N−6−(2−エチルへキシルアミド)−2−ピリジンカルボン酸及びN−6−(t−ドデシルアミド)−2−ピリジンカルボン酸を合成した。 In this example, N-6- (2-ethylhexylamide) -2-pyridinecarboxylic acid and N-6- (t-dodecylamide) -2-pyridinecarboxylic acid were synthesized according to the above scheme.
1. N−6−(2−エチルへキシルアミド)−2−ピリジンカルボン酸の合成
1−1. N−6−(2−エチルへキシルアミド)−2−ピリジンカルボン酸メチルの合成
2,6−ピリジンカルボン酸ジメチル9.5g(0.048mol)、2−エチルへキシルアミン6.5g(0.05mol)、トリエチルアミン4.0g(0.05mol)を200mlクロロホルムに溶解させ、70℃で48時間還流させた。反応終点は、TLC(ヘキサン:酢酸エチル=3:1)により決定した。反応終了後、未反応のアミンを除去するため、生成物を1mol dm−3 HClを加えて分液漏斗により分液し、クロロホルム相を分取した。このクロロホルム相に炭酸水素ナトリウムを加えて分液し、クロロホルム相を分取した後、適量の蒸留水を加え分液した。無水硫酸マグネシウムで脱水し、溶媒を減圧留去し、透明の液体7.8g(59%)を得た。生成物は1H−NMRおよび13C−NMRにより同定した。1H NMR(CDCl3)δ0.97(t,6H),1.43(m,8H),1.61(m,H),3.45(t,2H),4.01(s,3H),8.21(s,NH),8.03−8.4(m,5H)。
1. Synthesis of N-6- (2-ethylhexylamide) -2-pyridinecarboxylic acid
1-1. Synthesis of methyl N-6- (2-ethylhexylamide) -2 -pyridinecarboxylate 9.5 g (0.048 mol) of dimethyl 2,6-pyridinecarboxylate, 6.5 g of 2-ethylhexylamine ( 0.05 mol) and 4.0 g (0.05 mol) of triethylamine were dissolved in 200 ml chloroform and refluxed at 70 ° C. for 48 hours. The reaction end point was determined by TLC (hexane: ethyl acetate = 3: 1). After the reaction was completed, in order to remove unreacted amine, 1 mol dm −3 HCl was added, and the product was separated using a separatory funnel, and the chloroform phase was separated. Sodium chloroform was added to the chloroform phase for liquid separation, and after the chloroform phase was separated, an appropriate amount of distilled water was added for liquid separation. It dehydrated with anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain 7.8 g (59%) of a transparent liquid. The product was identified by 1 H-NMR and 13 C-NMR. 1 H NMR (CDCl 3 ) δ 0.97 (t, 6H), 1.43 (m, 8H), 1.61 (m, H), 3.45 (t, 2H), 4.01 (s, 3H) ), 8.21 (s, NH), 8.03-8.4 (m, 5H).
1−2. N−6−(2−エチルへキシルアミド)−2−ピリジンカルボン酸の合成
6−(2−エチルへキシルアミド)−2−ピリジンカルボン酸メチル7.8g(0.024mol)、THF200ml、0.5N水酸化カリウム80mlの混合物を3時間70℃で還流した。その後、塩酸を用いて混合溶液をpH3,4程度に調整した。遊離酸をクロロホルム200mlで2回抽出し、クロロホルムを蒸留水で数回洗浄した。無水硫酸マグネシウムで脱水し、溶媒を減圧留去して、白色粘性液体7.7g(収率97%)を得た。得られた生成物をヘキサンで数回洗い、デカンテーションを行った。生成物の確認は1H−NMRおよび13C−NMRにより同定を行った。OH、NH基の確認は重水素置換法により確認した。1H NMR(CDCl3)δ0.89(t,6H),1.43(m,8H),1.60(m,H),3.43(t,2H),8.13(br,OH),8.03−8.41(m,5H),8.59(s,NH)。
1-2. Synthesis of N-6- (2-ethylhexylamide) -2-pyridinecarboxylic acid 7.8 g (0.024 mol) of methyl 6- (2-ethylhexylamide) -2-pyridinecarboxylate, 200 ml of THF, A mixture of 80 ml of 0.5N potassium hydroxide was refluxed at 70 ° C. for 3 hours. Thereafter, the mixed solution was adjusted to about pH 3,4 using hydrochloric acid. The free acid was extracted twice with 200 ml of chloroform, and the chloroform was washed several times with distilled water. It dehydrated with anhydrous magnesium sulfate and the solvent was distilled off under reduced pressure to obtain 7.7 g (yield 97%) of a white viscous liquid. The resulting product was washed several times with hexane and decanted. The product was identified by 1 H-NMR and 13 C-NMR. Confirmation of OH and NH groups was confirmed by the deuterium substitution method. 1 H NMR (CDCl 3 ) δ 0.89 (t, 6H), 1.43 (m, 8H), 1.60 (m, H), 3.43 (t, 2H), 8.13 (br, OH) ), 8.03-8.41 (m, 5H), 8.59 (s, NH).
2. N−6−(t−ドデシルアミド)−2−ピリジンカルボン酸の合成
2,6−ピリジンカルボン酸ジメチル4.0g(0.02mol)とPrimene 81−R(登録商標)4.1g(0.02mol)(ロム&ハース社,Molecular weight average 185)、ナトリウムメトキシド1.1g(0.02mol)を100mlトルエンに溶解させ、80℃のシリコンオイルで12時間反応させた。反応終点は、TLC(ヘキサン:酢酸エチル=2:1)により決定した。反応終了後、クロロホルムを加え蒸留水で数回洗った後、溶媒を留去した。生じた粗生成物をカラムクロマトグラフィー(シリカゲル、展開溶媒;ヘキサン:酢酸エチル=5:1)により精製し、黄色液体3.5g(80%)を得た。エステルのアルカリ加水分解によるカルボン酸の合成は1−2と同じ方法で行い、黄色粘性液体2.8g(76%)を得た。生成物の確認は1H−NMRおよび13C−NMRにより同定を行った。1H NMR(CDCl3)δ0.97−1.93(m,25H),8.10(s,NH),7.96−8.37(m,5H)。
2. Synthesis of N-6- (t-dodecylamide) -2 -pyridinecarboxylic acid 4.0 g (0.02 mol) of dimethyl 2,6-pyridinecarboxylate and 4.1 g of Primene 81-R (registered trademark) (0 .02 mol) (Rom & Haas, Molecular weight average 185) and 1.1 g (0.02 mol) of sodium methoxide were dissolved in 100 ml toluene and reacted with silicone oil at 80 ° C. for 12 hours. The reaction end point was determined by TLC (hexane: ethyl acetate = 2: 1). After completion of the reaction, chloroform was added and washed several times with distilled water, and then the solvent was distilled off. The resulting crude product was purified by column chromatography (silica gel, developing solvent; hexane: ethyl acetate = 5: 1) to obtain 3.5 g (80%) of a yellow liquid. The synthesis of carboxylic acid by alkaline hydrolysis of ester was performed in the same manner as in 1-2, and 2.8 g (76%) of a yellow viscous liquid was obtained. The product was identified by 1 H-NMR and 13 C-NMR. 1 H NMR (CDCl 3) δ0.97-1.93 (m, 25H), 8.10 (s, NH), 7.96-8.37 (m, 5H).
本実施例では、N−6−(2−エチルへキシルアミド)−2−ピリジンカルボン酸を抽出剤として用いて、バッチ法により金属イオンの抽出実験を行った。 In this example, an extraction experiment of metal ions was performed by a batch method using N-6- (2-ethylhexylamide) -2-pyridinecarboxylic acid as an extractant.
金属イオンを含有する水相としては、Cu(II)、Ni(II)、Co(II)、Cd(II)、Fe(II)、Pb(II)、Zn(II)、又はMn(II)を1.0×10−3Mの濃度で含有する1Mの硝酸アンモニウム溶液を用いた。水相の初期pHinitialが0〜10となるようにアンモニア水と硝酸より調整した。 Examples of the aqueous phase containing metal ions include Cu (II), Ni (II), Co (II), Cd (II), Fe (II), Pb (II), Zn (II), or Mn (II). Was used at a concentration of 1.0 × 10 −3 M. The aqueous phase was adjusted from aqueous ammonia and nitric acid so that the initial pH initial was 0-10.
一方、有機相としては、抽出剤であるN−6−(2−エチルへキシルアミド)−2−ピリジンカルボン酸を0.01Mの濃度で含有するトルエン溶液(10% 2−エチルヘキシルアルコールを含む)を用いた。 On the other hand, as an organic phase, a toluene solution (containing 10% 2-ethylhexyl alcohol) containing N-6- (2-ethylhexylamide) -2-pyridinecarboxylic acid as an extractant at a concentration of 0.01M. Using.
上記の水相と有機相とを各10mlずつL字管に入れ、恒温槽にて、30℃、24時間振とうした。その後水相を分取し、抽出平衡後の水相のpHをpHメータで測定した。また、水相中の金属イオンの初期濃度([M]aq, initial)及び平衡後の水相中の金属イオン濃度([M]aq)を原子吸光光度計により求めた。有機相の金属イオンの濃度([M]org)は水相と有機相のマスバランスから求めた。抽出率%Eは次式より算出した。 10 ml of each of the above aqueous phase and organic phase was placed in an L-shaped tube and shaken in a thermostatic bath at 30 ° C. for 24 hours. Thereafter, the aqueous phase was fractionated, and the pH of the aqueous phase after the extraction equilibrium was measured with a pH meter. The initial concentration of metal ions in the aqueous phase ([M] aq, initial) and the concentration of metal ions in the aqueous phase after equilibration ([M] aq) were determined using an atomic absorption photometer. The concentration of metal ions in the organic phase ([M] org) was determined from the mass balance between the aqueous phase and the organic phase. The extraction rate% E was calculated from the following formula.
結果を図1に示す。高pH条件下において鉄は抽出されず、銅を始めとして他の遷移金属が抽出されていることが分る。すなわち、鉄以外の遷移金属の選択的抽出が可能である。 The results are shown in FIG. It can be seen that iron is not extracted under high pH conditions and other transition metals such as copper are extracted. That is, selective extraction of transition metals other than iron is possible.
本実施例では、N−6−(t−ドデシルアミド)−2−ピリジンカルボン酸(t−DAPA)(実施例1参照)を抽出剤として用いて、実施例2と同様にして金属イオンの抽出実験を行った。 In this example, extraction of metal ions was performed in the same manner as in Example 2 using N-6- (t-dodecylamide) -2-pyridinecarboxylic acid (t-DAPA) (see Example 1) as an extractant. The experiment was conducted.
t−DAPAによる銅イオンの抽出結果を図2に示す。図2では、実施例2において抽出剤としてN−6−(2−エチルへキシルアミド)−2−ピリジンカルボン酸(EHPA)を使用した銅イオンの抽出実験結果と比較した。
図から明らかにほぼ同様な結果を示している。
The extraction result of copper ions by t-DAPA is shown in FIG. In FIG. 2, it compared with the extraction experiment result of the copper ion which uses N-6- (2-ethylhexylamide) -2-pyridinecarboxylic acid (EHPA) as an extracting agent in Example 2.
Obviously, almost the same results are shown in the figure.
本発明は環境保全、資源回収等の分野で使用できる。 The present invention can be used in fields such as environmental protection and resource recovery.
Claims (4)
[式中、Rは直鎖状又は分岐鎖状の炭素数1〜18のアルキル基又はアルケニル基である]で表される化合物又はその塩を有効成分とする、鉄以外の遷移金属の抽出剤。 Formula (I):
[In the formula, R is a linear or branched alkyl group or alkenyl group having 1 to 18 carbon atoms] or a salt thereof as an active ingredient, an extractant for transition metals other than iron .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005320869A JP4967113B2 (en) | 2005-11-04 | 2005-11-04 | New transition metal extractant that does not extract iron |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005320869A JP4967113B2 (en) | 2005-11-04 | 2005-11-04 | New transition metal extractant that does not extract iron |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007126404A JP2007126404A (en) | 2007-05-24 |
JP4967113B2 true JP4967113B2 (en) | 2012-07-04 |
Family
ID=38149352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005320869A Active JP4967113B2 (en) | 2005-11-04 | 2005-11-04 | New transition metal extractant that does not extract iron |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4967113B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB202108372D0 (en) * | 2021-06-11 | 2021-07-28 | Johnson Matthey Plc | A recycling method for battery and catalyst materials |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ZA82344B (en) * | 1981-02-03 | 1983-11-30 | Ici Plc | Process for the extraction of metal values |
JPH07224038A (en) * | 1994-02-14 | 1995-08-22 | Mitsui Toatsu Chem Inc | Picolinic acid derivative |
PL188035B1 (en) * | 1996-10-07 | 2004-11-30 | Politechnika Poznanska | Hydrophobous extraction solvent for isolating copper (ii) ions from aqueous chloride solutions and method of extracting copper from such solutions |
-
2005
- 2005-11-04 JP JP2005320869A patent/JP4967113B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007126404A (en) | 2007-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Deferm et al. | Purification of indium by solvent extraction with undiluted ionic liquids | |
EP2712940B1 (en) | Scandium extraction method | |
AU2011275014B2 (en) | Method for synthesizing rare earth metal extractant | |
RU2388836C2 (en) | Modification of selectivity of copper/iron in systems for extraction of copper with solvent on base of oxime | |
CN109824532B (en) | Novel process for synthesizing N, N, N ', N' -tetraoctyl-3-oxoglutaramide | |
JP6573115B2 (en) | Amidated phosphate ester compound, extractant, and extraction method | |
US20090178513A1 (en) | Extractants for palladium and method of rapidly separating and recovering palladium using the same | |
JP5504575B2 (en) | Chelate extractant with phosphinic acid as ligand | |
JP5007983B2 (en) | Platinum group metal separation reagent and platinum group metal separation and recovery method using the same | |
Aksamitowski et al. | Selective copper extraction from sulfate media with N, N-dihexyl-N′-hydroxypyridine-carboximidamides as extractants | |
JP5569841B2 (en) | Method for synthesizing rare earth metal extractant | |
JP5398885B1 (en) | Gallium extraction method | |
JP2011125840A (en) | Amide-containing tertiary amine compound and platinum group metal separation/collection using the same | |
JP4967113B2 (en) | New transition metal extractant that does not extract iron | |
CN101193873A (en) | Method for the production of substituted azoles | |
JP5420033B1 (en) | Indium extractant and method for extracting indium using the extractant | |
JP5317273B2 (en) | Metal ion extractant and extraction method | |
Sugita et al. | A comprehensive extraction study using a mono-alkylated diglycolamic acid extractant: Comparison between a secondary amide group and a tertiary amide group | |
JP2714712B2 (en) | Novel ethylenediamine-N, N'-diacetate-N, N'-diacetate alkylamide, diethylenetriamine-N, N ', N "-triacetic acid-N, N" -diacetate alkylamide, and uses thereof | |
JP2011016782A (en) | Method for producing glycolic acid, and glycolic acid-containing composition | |
JP6693646B2 (en) | Recovery method of nickel element | |
JP2007126716A (en) | Extracting agent highly selective for zinc against cadmium, and recovery of zinc | |
JP5429522B2 (en) | Selective recovery of metal ions by alkylpyrazoles. | |
JP5442080B2 (en) | Valuable metal separation method | |
CN102603792B (en) | For the preparation of the method for alkyl phosphate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081030 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111213 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120306 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |