JP4963468B2 - Discharge lamp - Google Patents

Discharge lamp Download PDF

Info

Publication number
JP4963468B2
JP4963468B2 JP2007323848A JP2007323848A JP4963468B2 JP 4963468 B2 JP4963468 B2 JP 4963468B2 JP 2007323848 A JP2007323848 A JP 2007323848A JP 2007323848 A JP2007323848 A JP 2007323848A JP 4963468 B2 JP4963468 B2 JP 4963468B2
Authority
JP
Japan
Prior art keywords
discharge vessel
discharge
cylindrical metal
solder
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007323848A
Other languages
Japanese (ja)
Other versions
JP2009146775A (en
Inventor
勝則 熊
弘喜 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Harison Toshiba Lighting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harison Toshiba Lighting Corp filed Critical Harison Toshiba Lighting Corp
Priority to JP2007323848A priority Critical patent/JP4963468B2/en
Priority to TW097125956A priority patent/TW200926251A/en
Priority to KR1020080069532A priority patent/KR20090064280A/en
Priority to CN2008101301848A priority patent/CN101459034B/en
Publication of JP2009146775A publication Critical patent/JP2009146775A/en
Application granted granted Critical
Publication of JP4963468B2 publication Critical patent/JP4963468B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/36Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
    • H01J61/366Seals for leading-in conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/32Sealing leading-in conductors
    • H01J9/323Sealing leading-in conductors into a discharge lamp or a gas-filled discharge device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133604Direct backlight with lamps

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

本発明は、液晶テレビやノートパソコン等のバックライトの光源として用いられる放電ランプに関する。   The present invention relates to a discharge lamp used as a light source for a backlight of a liquid crystal television, a notebook computer or the like.

液晶ディスプレイのバックライトに用いられる光源の一例として、外面電極放電ランプがある。外面電極放電ランプは、内部に放電媒体が封入され、管内壁面に蛍光体層が形成された放電容器の両端部に外面電極が形成されており、この外面電極間に電力を供給することで可視光を得ることができるランプである。従来、この外部電極には、特開2004−146351号公報(特許文献1)に記載のような、安価で製造も容易な半田電極が使用されていた。   An example of a light source used for a backlight of a liquid crystal display is an external electrode discharge lamp. The outer surface electrode discharge lamp has an outer surface electrode formed on both ends of a discharge vessel in which a discharge medium is enclosed and a phosphor layer is formed on the inner wall surface of the tube. Visible power is supplied between the outer surface electrodes. It is a lamp that can obtain light. Conventionally, as this external electrode, a solder electrode which is inexpensive and easy to manufacture as described in Japanese Patent Application Laid-Open No. 2004-146351 (Patent Document 1) has been used.

しかし、半田電極は、半田剥がれによる接触不良、放熱性の低さなどの問題がある。そこで、最近では、特開2007−134289号公報(特許文献2)、特開2004−179059号公報(特許文献3)、特開2006−114271号公報(特許文献4)に記載されているようなスリーブ状やキャップ状の覆設金属を放電容器の端部に配設した外面電極放電ランプが提案されている。   However, the solder electrode has problems such as poor contact due to solder peeling and low heat dissipation. Therefore, recently, as described in JP 2007-134289 A (Patent Document 2), JP 2004-179059 A (Patent Document 3), and JP 2006-114271 A (Patent Document 4). There has been proposed an outer surface electrode discharge lamp in which a sleeve-like or cap-like covering metal is disposed at the end of a discharge vessel.

特開2004−146351号公報JP 2004-146351 A 特開2007−134289号公報JP 2007-134289 A 特開2004−179059号公報JP 2004-179059 A 特開2006−114271号公報JP 2006-114271 A

しかしながら、特許文献2〜4のような覆設金属を用いた放電ランプにおいて、点灯不良が発生している。この点灯不良について調査したところ、覆設金属が形成された放電容器部分において生じた割れが原因であることがわかった。   However, in the discharge lamp using the covering metal as in Patent Documents 2 to 4, lighting failure has occurred. As a result of investigating this lighting failure, it was found that the cause was a crack generated in the discharge vessel portion where the covering metal was formed.

本発明の目的は、ランプの割れによる点灯不良が抑制された放電ランプを提供することである。   An object of the present invention is to provide a discharge lamp in which lighting failure due to lamp cracking is suppressed.

上記目的を達成するために、本発明の放電ランプは、放電容器の端部に覆設金属及び半田層が形成された放電ランプにおいて、熱膨張係数が前記放電容器の熱膨張係数よりも大きい前記覆設金属を前記放電容器の端部に装着したのち、前記覆設金属を覆うように半田ディッピングによって前記半田層を形成し、前記放電容器の円周方向及び管軸方向に圧縮歪みを残留させたことを特徴とする In order to achieve the above object, a discharge lamp according to the present invention is a discharge lamp in which a covering metal and a solder layer are formed at an end of a discharge vessel, wherein the thermal expansion coefficient is larger than the thermal expansion coefficient of the discharge vessel. After mounting the covering metal on the end of the discharge vessel, the solder layer is formed by solder dipping so as to cover the covering metal, and compressive strain remains in the circumferential direction and the tube axis direction of the discharge vessel. characterized in that was

本発明によれば、ランプの割れによる点灯不良を抑制することができる。   According to the present invention, lighting failure due to lamp cracking can be suppressed.

(第1の実施の形態)
以下、本発明の実施の形態の放電ランプについて図面を参照して説明する。図1は本発明の第1の実施の形態の放電ランプについて説明するための全体図である。
(First embodiment)
Hereinafter, a discharge lamp according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an overall view for explaining a discharge lamp according to a first embodiment of the present invention.

放電ランプの容器は、例えば、軟質ガラスからなる放電容器1で構成されている。放電容器1は両端部が封着により密閉された細長い筒型形状であり、その内部には放電空間11が形成されている。放電空間11には、水銀Hgおよび希ガスからなる放電媒体が封入されている。ここで、希ガスとしてはネオンNeとアルゴンArの混合ガスが適している。また、放電容器1の内面には、少なくともランプの光放出領域を覆う範囲に蛍光体層2が形成されている。蛍光体層2としてはR(赤)、G(緑)、B(青)で発光する単波長蛍光体のほか、RGBを混合した3波長蛍光体などを目的用途に合わせて使用することができる。   The container of the discharge lamp is composed of, for example, a discharge container 1 made of soft glass. The discharge vessel 1 has an elongated cylindrical shape whose both ends are sealed by sealing, and a discharge space 11 is formed in the inside thereof. The discharge space 11 is filled with a discharge medium made of mercury Hg and a rare gas. Here, a mixed gas of neon Ne and argon Ar is suitable as the rare gas. In addition, a phosphor layer 2 is formed on the inner surface of the discharge vessel 1 so as to cover at least the light emission region of the lamp. As the phosphor layer 2, in addition to single-wavelength phosphors that emit light of R (red), G (green), and B (blue), three-wavelength phosphors in which RGB are mixed can be used according to the intended use. .

放電容器1の両端部には、覆設金属として筒状金属3と半田層4が形成されている。詳しくは、半田層4は筒状金属3を覆うように形成されている。つまり、筒状金属3は、その内外表面とも半田層4で覆われた状態になっているが、必ずしも半田層4によって完全に覆われている必要はなく、その一部が外観的に露出していてもよい。ちなみに、筒状金属3は、図2(a)に示したような、もとは板状部31と舌片部32とからなる厚みが0.05〜0.20mmの板状の薄金属板であり、これを(b)のように、板状部31をその両端部の一部同士が重なるように丸めて筒状にし、かつ舌片部32を板状部31の面に対してほぼ垂直に屈曲させることで形成されている。その際、板状部31を丸めたときに上に重なる管軸方向中央側の角部分には、R部311が形成されている。このR部311は、筒状金属3を放電容器1に装着したときに、電界集中により最もコロナ放電の起点となりやすい角部が生じにくくするため、オゾン発生の抑制作用がある。また、筒状金属3の表面には、あらかじめ銅、スズ、亜鉛、銀、金、ニッケルから選択された金属メッキが施されている。これにより放電容器1と筒状金属3との間への半田層4の入り込みが良好になり、半田の充填率を向上させることができる。   At both ends of the discharge vessel 1, a cylindrical metal 3 and a solder layer 4 are formed as covering metal. Specifically, the solder layer 4 is formed so as to cover the cylindrical metal 3. That is, the cylindrical metal 3 is covered with the solder layer 4 on both the inner and outer surfaces, but it is not always necessary to be completely covered with the solder layer 4, and a part of it is exposed in appearance. It may be. Incidentally, the cylindrical metal 3 is a plate-like thin metal plate having a thickness of 0.05 to 0.20 mm, originally composed of the plate-like portion 31 and the tongue piece portion 32, as shown in FIG. As shown in (b), the plate-like portion 31 is rounded so that a part of both end portions thereof are overlapped to form a cylindrical shape, and the tongue piece portion 32 is substantially the same as the surface of the plate-like portion 31. It is formed by bending vertically. At this time, an R portion 311 is formed at the corner portion on the central side in the tube axis direction that overlaps when the plate-like portion 31 is rounded. The R portion 311 has an effect of suppressing ozone generation because the corner portion that is most likely to start corona discharge due to electric field concentration is less likely to occur when the cylindrical metal 3 is attached to the discharge vessel 1. The surface of the cylindrical metal 3 is preliminarily plated with a metal selected from copper, tin, zinc, silver, gold, and nickel. Thereby, the penetration of the solder layer 4 between the discharge vessel 1 and the cylindrical metal 3 becomes good, and the filling rate of solder can be improved.

なお、「覆設金属」とは、少なくとも放電容器1の円周の大部分、例えば、70%以上を覆うような形状の金属であることを意味する。すなわち、薄金属板を巻いて筒状金属3を形成する場合、本実施の形態のように必ずしも一部が重なっている必要はなく、端部が離れたC型の筒状であっても良い。この筒状金属3の材料としては、鉄、ニッケル、銅、コバルト、クロムから選択された金属または合金などが挙げられる。また、半田層4の材料としては、ガラスとのなじみが良好なスズ、スズとインジウムの合金、スズとビスマスの合金に、アンチモン、亜鉛、アルミニウムなどを添加した金属材料などが挙げられる。   The “covering metal” means a metal having a shape that covers at least most of the circumference of the discharge vessel 1, for example, 70% or more. That is, when the cylindrical metal 3 is formed by winding a thin metal plate, it is not always necessary to partially overlap as in the present embodiment, and it may be a C-shaped cylinder with a separated end. . Examples of the material of the cylindrical metal 3 include metals or alloys selected from iron, nickel, copper, cobalt, and chromium. Examples of the material for the solder layer 4 include tin, tin-indium alloy, and a metal material obtained by adding antimony, zinc, aluminum, or the like to a tin-bismuth alloy.

ここで、放電容器1、筒状金属3及び半田層4について、図3を参照して詳しく説明する。図3は放電ランプの端部を説明するための図であり、(a)は図1に示されたX−X’断面図、(b)は範囲Yの拡大図である。なお、図中の矢印は、歪みの方向を示している。   Here, the discharge vessel 1, the cylindrical metal 3, and the solder layer 4 will be described in detail with reference to FIG. 3A and 3B are diagrams for explaining an end portion of the discharge lamp. FIG. 3A is a cross-sectional view taken along the line X-X ′ shown in FIG. 1, and FIG. In addition, the arrow in a figure has shown the direction of distortion.

図3からわかるように、放電容器1の径方向には引っ張り歪みα、円周方向には圧縮歪みβ、管軸方向には圧縮歪みγが残留している。この放電容器1の円周方向及び管軸方向に残留した圧縮歪みβ、γにより、ランプの割れが抑制される。   As can be seen from FIG. 3, a tensile strain α remains in the radial direction of the discharge vessel 1, a compressive strain β remains in the circumferential direction, and a compressive strain γ remains in the tube axis direction. The cracks of the lamp are suppressed by the compressive strains β and γ remaining in the circumferential direction and the tube axis direction of the discharge vessel 1.

ここで、放電容器1への筒状金属3及び半田層4の形成方法について説明する。   Here, a method of forming the cylindrical metal 3 and the solder layer 4 on the discharge vessel 1 will be described.

まず、内部に放電媒体を封入、かつ内壁面に蛍光体層2を塗布した放電容器1を作成し、他方、図2(b)のような筒状金属3を作成する。次に、筒状金属3の開口側を上に向けて配置し、放電容器1の端部をその開口に挿入する。その際、筒状金属3の少なくとも一部の内径を、放電容器1の外径よりも多少小さく形成しておけば、挿入とともにそれらの一部分が接触することになり固定状態を維持することができる。   First, a discharge vessel 1 is prepared in which a discharge medium is enclosed and a phosphor layer 2 is applied to an inner wall surface, and on the other hand, a cylindrical metal 3 as shown in FIG. Next, the cylindrical metal 3 is placed with the opening side facing upward, and the end of the discharge vessel 1 is inserted into the opening. At this time, if the inner diameter of at least a part of the cylindrical metal 3 is formed to be slightly smaller than the outer diameter of the discharge vessel 1, a part thereof comes into contact with the insertion, and the fixed state can be maintained. .

そして、溶融半田が満たされた半田槽に筒状金属3が形成された放電容器1の端部を上から浸漬する半田ディッピングにより、筒状金属3を覆うように半田層4を形成する。このとき、特開2004−146351号公報に記載のような、超音波振動子によって超音波振動させた状態の溶融半田に浸漬する、いわゆる超音波半田ディッピングを行うのがさらに望ましい。超音波半田ディッピングを行うことにより、放電容器1と筒状金属3の間の微小な隙間にも半田層4を充填させることができるので、放電容器1と半田層4の有効接触面積が拡大し、ランプ電圧の低減に繋がるためである。なお、超音波半田ディッピングを行うと、筒状金属3が上側、すなわち筒状金属3が放電容器1の管軸方向中央側にズレやすくなるが、その際、本実施の形態では筒状金属3の舌片部32が放電容器1の端部と接触するため、相対的なズレが防止され、放電容器1に対する筒状金属3の装着位置精度を高めることができる。また、半田ディッピング工程後にエアー乾燥工程を行うことにより、半田層4の表面が滑らかになり、電圧が集中する凹凸の形成が抑制されるので、コロナ放電によるオゾン発生を抑制することができる。   And the solder layer 4 is formed so that the cylindrical metal 3 may be covered by the solder dipping which immerses the edge part of the discharge vessel 1 in which the cylindrical metal 3 was formed in the solder tank filled with the molten solder from the top. At this time, as described in Japanese Patent Application Laid-Open No. 2004-146351, it is more desirable to perform so-called ultrasonic solder dipping, which is immersed in molten solder that is ultrasonically vibrated by an ultrasonic vibrator. By performing ultrasonic solder dipping, the solder layer 4 can be filled into a minute gap between the discharge vessel 1 and the cylindrical metal 3, so that the effective contact area between the discharge vessel 1 and the solder layer 4 is increased. This is because the lamp voltage is reduced. Note that when ultrasonic solder dipping is performed, the cylindrical metal 3 is easily displaced upward, that is, the cylindrical metal 3 is displaced toward the center in the tube axis direction of the discharge vessel 1. In this case, in this embodiment, the cylindrical metal 3 is displaced. Since the tongue piece portion 32 contacts the end portion of the discharge vessel 1, the relative displacement is prevented, and the mounting position accuracy of the cylindrical metal 3 with respect to the discharge vessel 1 can be increased. Further, by performing the air drying process after the solder dipping process, the surface of the solder layer 4 becomes smooth and the formation of unevenness on which the voltage is concentrated is suppressed, so that generation of ozone due to corona discharge can be suppressed.

次に、放電容器1に残留させる歪みの形成方法の一例を説明する。   Next, an example of a method for forming strain that remains in the discharge vessel 1 will be described.

放電容器1の円周方向及び管軸方向に圧縮歪みβ、γを残留させるには、放電容器1の径方向に引っ張り歪みαを残留させる必要がある。そのために、本実施の形態では放電容器1の熱膨張係数よりも熱膨張係数が大きい筒状金属3を用いている。筒状金属3の熱膨張係数が放電容器1の熱膨張係数よりも大きい場合、温度変化による熱収縮量は筒状金属3の方が大きくなるためである。つまり、半田形成後、半田が冷えるまでの過程において、筒状金属3は放電容器1の内側方向に熱収縮するため、放電容器1の径方向には引っ張り歪みが残留し、その結果、円周方向及び管軸方向には、径方向とは反対の圧縮歪みが残留する。その際、径方向の引っ張り歪みが強いほど、円周方向及び管軸方向の圧縮歪みも強くなるので、放電容器1と筒状金属3の熱膨張係数差を調整することで、歪みの強さを調整することができる。なお、残留歪みの種類及びその応力値は、筒状金属3及び半田層4が形成されている放電容器1部分を管軸方向に対して垂直に切断し、その断面を鋭敏色板法(ガラスに生じている歪の状態を、光の光路差により識別する方法)で観察することにより、判断及び測定が可能である。   In order to leave the compressive strains β and γ in the circumferential direction and the tube axis direction of the discharge vessel 1, it is necessary to leave the tensile strain α in the radial direction of the discharge vessel 1. Therefore, in this embodiment, the cylindrical metal 3 having a larger thermal expansion coefficient than the thermal expansion coefficient of the discharge vessel 1 is used. This is because when the thermal expansion coefficient of the tubular metal 3 is larger than the thermal expansion coefficient of the discharge vessel 1, the amount of thermal contraction due to temperature change is larger in the tubular metal 3. That is, after the solder is formed and the solder is cooled, the cylindrical metal 3 is thermally contracted in the inner direction of the discharge vessel 1, so that tensile strain remains in the radial direction of the discharge vessel 1, and as a result, In the direction and the tube axis direction, compressive strain opposite to the radial direction remains. At that time, the stronger the tensile strain in the radial direction, the stronger the compressive strain in the circumferential direction and the tube axis direction. Therefore, by adjusting the difference in thermal expansion coefficient between the discharge vessel 1 and the cylindrical metal 3, the strength of the strain is increased. Can be adjusted. The type of residual strain and its stress value are determined by cutting the discharge vessel 1 portion where the cylindrical metal 3 and the solder layer 4 are formed perpendicularly to the tube axis direction, and observing the cross section with a sensitive color plate method (glass Can be determined and measured by observing the state of the distortion generated in the above by a method of identifying the state of distortion by the optical path difference of light.

下記に本実施の形態の放電ランプの一実施例を示す。なお、以下で説明する試験は特に言及しない限り寸法、材料等はこの仕様に基づいて行っている。   An example of the discharge lamp according to the present embodiment is shown below. The tests described below are based on this specification unless otherwise specified.

(実施例1)
放電容器1;ER−N(日本電気硝子株式会社製の軟質ガラス)、熱膨張係数=76×10−7/℃、全長=960mm、外径=3.4mm、内径=2.4mm、径方向に引っ張り歪み(応力値=40.2kgf/cm)、円周方向及び管軸方向に圧縮歪み、
放電媒体;水銀Hg、ネオンNeとアルゴンArの混合ガス=60torr、
蛍光体層2;RGBの3波長蛍光体、
筒状金属3;50アロイ(ニッケル=50%、鉄=50%)、熱膨張係数=90×10−7/℃、厚み=0.1mm、表面に銀メッキ、
半田層4;スズ−亜鉛−アンチモン(それぞれ94〜96%、3〜5%、1〜3%)、全長=25mm。
Example 1
Discharge vessel 1; ER-N (soft glass manufactured by Nippon Electric Glass Co., Ltd.), thermal expansion coefficient = 76 × 10 −7 / ° C., full length = 960 mm, outer diameter = 3.4 mm, inner diameter = 2.4 mm, radial direction Tensile strain (stress value = 40.2 kgf / cm 2 ), compressive strain in the circumferential direction and tube axis direction,
Discharge medium; mercury Hg, mixed gas of neon Ne and argon Ar = 60 torr,
Phosphor layer 2; RGB three-wavelength phosphor,
Cylindrical metal 3; 50 alloy (nickel = 50%, iron = 50%), thermal expansion coefficient = 90 × 10 −7 / ° C., thickness = 0.1 mm, silver plating on the surface,
Solder layer 4: tin-zinc-antimony (94-96%, 3-5%, 1-3%, respectively), total length = 25 mm.

この実施例1のランプ、30本について点灯試験を行ったところ、3000時間経過しても全てのランプに割れが発生せず、点灯不良に至ることはなかった。ここで、ランプの割れは、覆設金属と放電容器1の間に生じた応力により発生すると推測される。そのため、放電容器1と筒状金属3の熱膨張係数を同じにするなど、応力が生じないような設計がなされるのが一般的である。しかし、実施例のランプは応力が残留する設計であったにもかかわらず、ランプの割れが発生しなかった。これは、放電容器1の円周方向及び管軸方向に残留する圧縮歪みβ、γが割れを抑制する作用をしたためと考えられる。また、その際の歪による応力値はある程度高い方が良く、具体的には径方向の引っ張り歪みが10kgf/cm以上であるのが望ましい。 When a lighting test was conducted on 30 lamps of Example 1, all the lamps were not cracked even after 3000 hours, and lighting failure did not occur. Here, it is estimated that the crack of the lamp occurs due to the stress generated between the covering metal and the discharge vessel 1. For this reason, the discharge vessel 1 and the cylindrical metal 3 are generally designed so that no stress is generated, for example, by making the thermal expansion coefficients the same. However, even though the lamp of the example was designed to remain stressed, the lamp did not crack. This is presumably because the compressive strains β and γ remaining in the circumferential direction and the tube axis direction of the discharge vessel 1 act to suppress cracking. In addition, the stress value due to the strain at that time is preferably high to some extent, and specifically, the tensile strain in the radial direction is desirably 10 kgf / cm 2 or more.

次に、放電容器1、筒状金属3の材料を変えたときの歪みの種類を確認した。その結果を図4に示す。ここで、PS−94とは、日本電気硝子株式会社製の軟質ガラス、BKUとは、日本電気硝子株式会社製の軟質ガラス、42アロイとは、ニッケル=42%、鉄=58%の合金を示す。   Next, the kind of distortion when changing the material of the discharge vessel 1 and the cylindrical metal 3 was confirmed. The result is shown in FIG. Here, PS-94 is a soft glass manufactured by Nippon Electric Glass Co., Ltd., BKU is a soft glass manufactured by Nippon Electric Glass Co., Ltd., and 42 alloy is an alloy of nickel = 42% and iron = 58%. Show.

結果からわかるように、実施例1、2では放電容器1の径方向に引っ張り歪み、円周方向及び管軸方向に圧縮歪みが残留し、比較例3、4では逆の歪み、比較例5、6では歪みはほとんど残留していない。これらから、歪みの制御では放電容器1と筒状金属3の熱膨張係数に大きく影響することがわかる。したがって、筒状金属3の熱膨張係数が、放電容器1の熱膨張係数よりも大きい金属材料を用いて、放電容器1の径方向に引っ張り歪み、円周方向及び管軸方向に圧縮歪みを残留させるのが望ましい。ただし、筒状金属3の肉厚や半田層4を構成する半田合金の熱膨張係数などにも多少影響される場合もあるので、それらを考慮して適宜調節するのがさらに望ましい。なお、実施例及び比較例のランプについて、点灯試験を行ったところ、実施例1、2が割れに対して最も有効であることがわかった。   As can be seen from the results, in Examples 1 and 2, tensile strain in the radial direction of the discharge vessel 1 and compressive strain remained in the circumferential direction and the tube axis direction. In Comparative Examples 3 and 4, the reverse strain, Comparative Example 5, In 6, almost no distortion remains. From these, it can be seen that distortion control greatly affects the thermal expansion coefficients of the discharge vessel 1 and the cylindrical metal 3. Therefore, using a metal material in which the thermal expansion coefficient of the cylindrical metal 3 is larger than the thermal expansion coefficient of the discharge vessel 1, tensile strain remains in the radial direction of the discharge vessel 1, and compressive strain remains in the circumferential direction and the tube axis direction. It is desirable to let them. However, since the thickness of the cylindrical metal 3 and the coefficient of thermal expansion of the solder alloy constituting the solder layer 4 may be affected to some extent, it is more desirable to adjust appropriately considering these factors. In addition, when the lighting test was done about the lamp | ramp of the Example and the comparative example, it turned out that Example 1, 2 is the most effective with respect to a crack.

ただし、放電容器1の円周方向及び管軸方向の圧縮歪みが強すぎる、すなわち径方向の引っ張り歪みが強すぎるとクラックの原因になるおそれがある。発明者の試験によれば応力値が80kgf/cmよりも高くなるとクラックが発生しやすくなる傾向が確認された。したがって、放電容器1の径方向に引っ張り歪みの応力値は、80kgf/cm以下、さらに望ましくは60kgf/cm以下になるように設計するのが最適である。そのためには、42アロイ、50アロイ、52アロイ(ニッケル=52%、鉄=48%の合金)、426アロイ(ニッケル=42%、クロム6%、鉄=52%の合金)、476アロイ(ニッケル=47%、クロム6%、鉄=47%の合金)などの金属をガラスにうまく組み合わせればよい。 However, if the compressive strain in the circumferential direction and the tube axis direction of the discharge vessel 1 is too strong, that is, if the radial tensile strain is too strong, it may cause cracks. According to the inventor's test, it was confirmed that cracks tend to occur when the stress value is higher than 80 kgf / cm 2 . Therefore, it is optimal to design the stress value of the tensile strain in the radial direction of the discharge vessel 1 to be 80 kgf / cm 2 or less, more desirably 60 kgf / cm 2 or less. For this purpose, 42 alloy, 50 alloy, 52 alloy (nickel = 52%, iron = 48% alloy), 426 alloy (nickel = 42%, chromium 6%, iron = 52% alloy), 476 alloy (nickel) = 47%, chromium 6%, iron = 47% alloy) and the like may be successfully combined with glass.

したがって、第1の実施の形態では、筒状金属3を覆うように半田層4が形成されている放電容器1の円周方向に圧縮歪みβ、管軸方向に圧縮歪みγを残留させたことにより、その圧縮歪みβ及びγが割れを抑制するように作用するため、ランプの割れによる点灯不良を抑制することができる。なお、圧縮歪みβ及びγは、筒状金属3として熱膨張係数が、放電容器1の熱膨張係数よりも大きい材料を使用すれば形成されやすい。   Therefore, in the first embodiment, the compressive strain β is left in the circumferential direction and the compressive strain γ is left in the tube axis direction of the discharge vessel 1 in which the solder layer 4 is formed so as to cover the cylindrical metal 3. Thus, the compression strains β and γ act so as to suppress cracking, so that lighting failure due to lamp cracking can be suppressed. The compressive strains β and γ are easily formed if a material having a thermal expansion coefficient larger than that of the discharge vessel 1 is used as the cylindrical metal 3.

(第2の実施の形態)
図5は、本発明の第2の実施の形態の放電ランプについて説明するための図である。これ以降の実施の形態の各部については、第1の実施の形態の放電ランプの各部と同一部分は同一符号で示し、その説明を省略する。
(Second Embodiment)
FIG. 5 is a diagram for explaining a discharge lamp according to a second embodiment of the present invention. About each part of embodiment after this, the same part as each part of the discharge lamp of 1st Embodiment is shown with the same code | symbol, and the description is abbreviate | omitted.

本実施の形態では、放電容器1の両端部にカップ電極51、インナーリード52、アウターリード53及びビーズガラス54からなる電極マウント5が封着されており、放電容器1から外部に突出したアウターリード53と両端部外表面に形成された筒状金属3とが半田層4を介して電気的に接続されている。つまり、第1の実施の形態は外部電極型の放電ランプだが、本実施の形態は、カップ電極51が電極、筒状金属3及び半田層4が給電部として作用する内部電極型の放電ランプである。この実施形態のランプでは、例えば、放電容器1としてBKU、筒状金属3として50アロイを使用することにより、円周方向及び管軸方向に圧縮歪みβ及びγを残留させている。   In the present embodiment, the electrode mount 5 made of the cup electrode 51, the inner lead 52, the outer lead 53 and the bead glass 54 is sealed at both ends of the discharge vessel 1, and the outer lead protruding outside from the discharge vessel 1. 53 and the cylindrical metal 3 formed on the outer surfaces of both ends are electrically connected through the solder layer 4. That is, the first embodiment is an external electrode type discharge lamp, but the present embodiment is an internal electrode type discharge lamp in which the cup electrode 51 serves as an electrode, the cylindrical metal 3 and the solder layer 4 serve as a power feeding portion. is there. In the lamp of this embodiment, for example, BKU is used as the discharge vessel 1 and 50 alloy is used as the cylindrical metal 3, so that the compressive strains β and γ remain in the circumferential direction and the tube axis direction.

したがって、第2の実施の形態でも、第1の実施の形態と同様にランプの割れによる点灯不良を抑制することができる。   Therefore, also in the second embodiment, it is possible to suppress a lighting failure due to a crack of the lamp as in the first embodiment.

なお、本発明の実施の形態は上記に限られるわけではなく、例えば次のように変更してもよい。   The embodiment of the present invention is not limited to the above, and may be modified as follows, for example.

放電容器1の断面形状は、真円に限らず、楕円、一部に直線部分を有する扁平などであってもよい。   The cross-sectional shape of the discharge vessel 1 is not limited to a perfect circle, and may be an ellipse, a flat shape having a straight portion in part, or the like.

覆設金属として、図6のような有底開口状のキャップ金属3を用いても良い。   As the covering metal, a cap metal 3 having a bottomed opening as shown in FIG. 6 may be used.

また、図7のように、覆設金属として形成した筒状金属3のエッジに研磨等により斜面部312を形成することで、半田層4の管軸方向中央側の端部を放電容器1にスロープ状に形成するのが望ましい。これにより、コロナ放電によるオゾン発生を抑制できる。   In addition, as shown in FIG. 7, by forming a slope portion 312 on the edge of the cylindrical metal 3 formed as a covering metal by polishing or the like, the end portion on the center side in the tube axis direction of the solder layer 4 is formed in the discharge vessel 1. It is desirable to form it in a slope shape. Thereby, ozone generation by corona discharge can be suppressed.

また、放電容器1への筒状金属3及び半田層4の形成工程において、筒状金属3を放電容器1と一部接触、その他は接触させないで装着して、放電容器1との間に隙間6を形成したのち、半田層4を形成するのが望ましい。これにより、図8のように放電容器1と筒状金属3との間に半田が入り込みやすくなるので、半田の充填率を上げることができる。   In addition, in the step of forming the cylindrical metal 3 and the solder layer 4 on the discharge vessel 1, the cylindrical metal 3 is mounted with the discharge vessel 1 partially in contact with the other, but not in contact with others. After forming 6, it is desirable to form the solder layer 4. As a result, the solder can easily enter between the discharge vessel 1 and the cylindrical metal 3 as shown in FIG. 8, so that the filling rate of the solder can be increased.

本発明の第1の実施の形態の放電ランプについて説明するための全体図。The whole figure for demonstrating the discharge lamp of the 1st Embodiment of this invention. 筒状金属について説明するための図。The figure for demonstrating a cylindrical metal. 放電ランプの端部を説明するための図。The figure for demonstrating the edge part of a discharge lamp. 放電容器及び筒状金属の材料を変えたときの歪みについて説明するための図。The figure for demonstrating distortion when changing the material of a discharge vessel and a cylindrical metal. 本発明の第2の実施の形態の放電ランプについて説明するための図。The figure for demonstrating the discharge lamp of the 2nd Embodiment of this invention. 本発明の変形例1について説明するための図。The figure for demonstrating the modification 1 of this invention. 本発明の変形例2について説明するための図。The figure for demonstrating the modification 2 of this invention. 本発明の変形例3について説明するための図。The figure for demonstrating the modification 3 of this invention.

符号の説明Explanation of symbols

1 放電容器
11 放電空間
2 蛍光体層
3 筒状金属
31 板状部
32 舌片部
4 半田層
α 引っ張り歪み
β、γ 圧縮歪み
DESCRIPTION OF SYMBOLS 1 Discharge vessel 11 Discharge space 2 Phosphor layer 3 Cylindrical metal 31 Plate part 32 Tongue piece part 4 Solder layer α Tensile strain β, γ Compression strain

Claims (2)

放電容器の端部に覆設金属及び半田層が形成された放電ランプにおいて、
熱膨張係数が前記放電容器の熱膨張係数よりも大きい前記覆設金属を前記放電容器の端部に装着したのち、前記覆設金属を覆うように半田ディッピングによって前記半田層を形成し、前記放電容器の円周方向及び管軸方向に圧縮歪みを残留させたことを特徴とする放電ランプ。
In the discharge lamp in which the covering metal and the solder layer are formed at the end of the discharge vessel,
After the covering metal having a thermal expansion coefficient larger than the thermal expansion coefficient of the discharge vessel is attached to the end of the discharge vessel, the solder layer is formed by solder dipping so as to cover the covering metal, and the discharge A discharge lamp characterized in that compressive strain remains in the circumferential direction of the vessel and in the tube axis direction.
前記半田層は、超音波半田ディッピングによって形成したことを特徴とする請求項に記載の放電ランプ。 The discharge lamp according to claim 1 , wherein the solder layer is formed by ultrasonic solder dipping.
JP2007323848A 2007-12-14 2007-12-14 Discharge lamp Expired - Fee Related JP4963468B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007323848A JP4963468B2 (en) 2007-12-14 2007-12-14 Discharge lamp
TW097125956A TW200926251A (en) 2007-12-14 2008-07-09 Discharge lamp and manufacturing method thereof
KR1020080069532A KR20090064280A (en) 2007-12-14 2008-07-17 Discharge lamp and manufacturing method thereof
CN2008101301848A CN101459034B (en) 2007-12-14 2008-07-31 Discharge lamp and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007323848A JP4963468B2 (en) 2007-12-14 2007-12-14 Discharge lamp

Publications (2)

Publication Number Publication Date
JP2009146775A JP2009146775A (en) 2009-07-02
JP4963468B2 true JP4963468B2 (en) 2012-06-27

Family

ID=40769806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007323848A Expired - Fee Related JP4963468B2 (en) 2007-12-14 2007-12-14 Discharge lamp

Country Status (4)

Country Link
JP (1) JP4963468B2 (en)
KR (1) KR20090064280A (en)
CN (1) CN101459034B (en)
TW (1) TW200926251A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009266721A (en) * 2008-04-28 2009-11-12 Nec Lighting Ltd External electrode fluorescent lamp and its manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003015127A1 (en) * 2001-08-06 2003-02-20 Koninklijke Philips Electronics N.V. Low-pressure gas discharge lamps
JP3686894B2 (en) * 2002-11-28 2005-08-24 Necライティング株式会社 Discharge lamp
JP4249689B2 (en) * 2003-11-25 2009-04-02 Necライティング株式会社 External electrode type discharge lamp and manufacturing method thereof
US7423367B2 (en) * 2005-08-25 2008-09-09 Lantis Robert M Design of high power pulsed flash lamps
JP2007157632A (en) * 2005-12-08 2007-06-21 Matsushita Electric Ind Co Ltd Cold cathode discharge lamp, backlight unit, and manufacturing process for cold cathode discharge lamp
JP2007234267A (en) * 2006-02-28 2007-09-13 Harison Toshiba Lighting Corp Inverter circuit for multiple lamps

Also Published As

Publication number Publication date
KR20090064280A (en) 2009-06-18
JP2009146775A (en) 2009-07-02
CN101459034B (en) 2012-06-27
CN101459034A (en) 2009-06-17
TW200926251A (en) 2009-06-16

Similar Documents

Publication Publication Date Title
TW200522125A (en) Outer electrode type discharge lamp with removal of outer electrode light leak
TWI240941B (en) Low pressure discharge lamp
JP4963468B2 (en) Discharge lamp
JP4972172B2 (en) Discharge lamp
JP4309393B2 (en) External electrode type discharge lamp, method for manufacturing the same, and liquid crystal display device
JP2007501493A (en) ELECTRODE SYSTEM WITH NEW TYPE OF CONNECTIONS, RELATED LAMP WITH ELECTRODE SHEET, AND METHOD OF MANUFACTURING THE CONNECTIONS
US6121729A (en) Metal halide lamp
JP4373460B2 (en) Discharge lamp and backlight
JP2009193768A (en) Short arc high-pressure discharge lamp
JP2009187802A (en) Discharge lamp
JP2007157632A (en) Cold cathode discharge lamp, backlight unit, and manufacturing process for cold cathode discharge lamp
JP2006085983A (en) External electrode discharge lamp and its manufacturing method
JP2009187801A (en) Discharge lamp and its manufacturing method
JP2009224185A (en) Discharge lamp and manufacturing method therefor
JP2006147387A (en) Low-pressure discharge lamp
JP2009266477A (en) Discharge lamp and backlight
JP2009224270A (en) Discharge lamp
KR101092234B1 (en) Electrode set in the CCFL and CCFL thereof
KR101037332B1 (en) Cold cathode fluorescent lamp, light source of electric equipment having the same, liquid display device having the light source, and electrode member for the cold cathode fluorescent lamp
JP2008084770A (en) Manufacturing method of lamp
JP2010186567A (en) Electrode for cold cathode discharge tube, and cold cathode discharge tube
JP2006351460A (en) Cold cathode fluorescent lamp and backlight unit
US20100045162A1 (en) Fluorescent lamp
JP2009200032A (en) Discharge lamp and backlight
JP2005025976A (en) Sealing lead wire and cold cathode fluorescent lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100820

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees