JP4963353B2 - Method for producing silicon carbide mixed crystal - Google Patents

Method for producing silicon carbide mixed crystal Download PDF

Info

Publication number
JP4963353B2
JP4963353B2 JP2005247843A JP2005247843A JP4963353B2 JP 4963353 B2 JP4963353 B2 JP 4963353B2 JP 2005247843 A JP2005247843 A JP 2005247843A JP 2005247843 A JP2005247843 A JP 2005247843A JP 4963353 B2 JP4963353 B2 JP 4963353B2
Authority
JP
Japan
Prior art keywords
source gas
partial pressure
mixed crystal
condition
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005247843A
Other languages
Japanese (ja)
Other versions
JP2007066982A (en
Inventor
章憲 関
由加里 谷
柴田  典義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Fine Ceramics Center
Toyota Motor Corp
Original Assignee
Japan Fine Ceramics Center
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Fine Ceramics Center, Toyota Motor Corp filed Critical Japan Fine Ceramics Center
Priority to JP2005247843A priority Critical patent/JP4963353B2/en
Publication of JP2007066982A publication Critical patent/JP2007066982A/en
Application granted granted Critical
Publication of JP4963353B2 publication Critical patent/JP4963353B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、炭化珪素系混晶の製造方法に関し、詳しくは、SiMC混晶(M=Ge,Sn)の作製に好適な炭化珪素系混晶の製造方法に関する。   The present invention relates to a method for producing a silicon carbide mixed crystal, and more particularly to a method for producing a silicon carbide mixed crystal suitable for producing a SiMC mixed crystal (M = Ge, Sn).

基板表面にSi源ガスとC源ガスとを含む雰囲気中で炭化珪素を気相成長させる方法が知られており、かかる方法を利用した気相成長の際に、C源ガスの分圧を一定にしてSi源ガスの分圧を高い側と低い側との間を交互に変化させる、あるいはSi源ガスの分圧を一定にしてC源ガスの分圧を高い側と低い側との間を交互に変化させることで、結晶欠陥を伴なわずにSiC結晶を形成し得る技術が知られている。   A method is known in which vapor deposition of silicon carbide is performed in an atmosphere containing Si source gas and C source gas on the substrate surface, and the partial pressure of the C source gas is kept constant during vapor deposition using such a method. The partial pressure of the Si source gas is alternately changed between the high side and the low side, or the partial pressure of the C source gas is changed between the high side and the low side by keeping the partial pressure of the Si source gas constant. A technique is known in which an SiC crystal can be formed without causing crystal defects by alternately changing.

ところが、上記の技術は炭化珪素に限られるものであり、これまで知らている技術のみでは、炭化珪素系の混晶半導体であるSi1-xGexCやSi1-xSnxC等の組成制御を行なうことはできない。 However, the above-described technique is limited to silicon carbide. Only the techniques known so far include silicon carbide-based mixed crystal semiconductors such as Si 1-x Ge x C and Si 1-x Sn x C. Composition control cannot be performed.

上記に関連して、結晶装置内に複数の原料または原料ガスを所定の時間間隔で交互に導入し、単分子層のエピタキシャル結晶成長を交互に行なう方法がある(例えば、特許文献1参照)。この方法では、トリエチルガリウム(TEG)およびアルシン(AsH3)の導入/停止を交互に繰り返して行なうことでGaAsを得ることが記載されている。
特許2987379号
In relation to the above, there is a method in which a plurality of raw materials or raw material gases are alternately introduced into a crystal apparatus at predetermined time intervals, and epitaxial crystal growth of a monomolecular layer is alternately performed (see, for example, Patent Document 1). This method describes that GaAs is obtained by alternately repeating the introduction / stop of triethylgallium (TEG) and arsine (AsH 3 ).
Japanese Patent No. 2987379

しかしながら、SiC結晶中にSiに置換してGeやSnなどの他の金属元素を取り込んで混晶とすることは容易ではなく、上記した方法では、炭化珪素(SiC)のSiの一部を他の金属M(GeやSn)に置換してSi1-xxC混晶を成膜することはできない。すなわち、SiC結晶にGeまたはSnを添加して混晶を作製する場合、GeまたはSnは融点が混晶の作製温度より低く蒸気圧が高いために、添加量の制御が容易でなく、また組成比を0.1以上にすることも難しく、容易に組成制御を行なうことは困難である。 However, it is not easy to substitute other metal elements such as Ge and Sn by substitution for Si in the SiC crystal to form a mixed crystal. In the above-described method, a part of Si of silicon carbide (SiC) is not obtained. It is not possible to form a Si 1-x M x C mixed crystal by substituting with metal M (Ge or Sn). That is, when a mixed crystal is prepared by adding Ge or Sn to a SiC crystal, the melting point of Ge or Sn is lower than the preparation temperature of the mixed crystal and the vapor pressure is high. It is difficult to make the ratio 0.1 or more, and it is difficult to easily control the composition.

多様な半導体デバイスの実現の観点からは、組成の変化によってバンドギャップ、屈折率、格子定数などの制御が可能なことから、炭化珪素系の混晶半導体(Si1-xGexC、Si1-xSnxCなど)は期待されているものの、従来の技術では、未だその製造方法は確立されていないのが現状である。 From the viewpoint of realizing various semiconductor devices, since the band gap, refractive index, lattice constant, and the like can be controlled by changing the composition, silicon carbide based mixed crystal semiconductors (Si 1-x Ge x C, Si 1 -x Sn x C, etc.) is expected, but the manufacturing method has not yet been established in the conventional technology.

本発明は、上記に鑑みなされたものであり、SiC結晶中にGeまたはSnを容易に取り込んでSi1-xxC混晶の組成制御が容易に行なえ、結晶欠陥が少なく良質で所望組成からなるSi1-xxC混晶を得ることができる炭化珪素系混晶の製造方法を提供することを目的とし、該目的を達成することを課題とする。 The present invention has been made in view of the above, and easily incorporates Ge or Sn into a SiC crystal to easily control the composition of the Si 1-x M x C mixed crystal, has a high quality and desired composition with few crystal defects. is intended to provide a Si 1-x M x C mixed crystal can be obtained a method of manufacturing a silicon carbide based mixed crystal consisting of, and aims to achieve the objective.

本発明は、主成分であるSi源ガスとC源ガス、並びに添加成分であるGe源ガスまたはSn源ガスのうち少なくとも一種の原料ガスの分圧を所定時間で周期的に変化させることが、SiC結晶中にSiに置換してGeまたはSnを取り込むのに有用であるとの知見を得、かかる知見に基づいて達成されたものである。   In the present invention, the partial pressure of at least one source gas of the Si source gas and the C source gas as the main components and the Ge source gas or the Sn source gas as the additive component may be periodically changed over a predetermined time period. The inventors have obtained knowledge that it is useful for incorporating Ge or Sn by substituting Si into SiC crystals, and have been achieved based on such knowledge.

前記目的を達成するために、本発明の炭化珪素系混晶の製造方法は、C源ガスとSi源ガスとM(GeまたはSn)源ガスとを基板表面に供給してSi1−xC混晶の例えば薄膜を形成するものであり、具体的には、少なくともM源ガスが供給されている間はC源ガスを供給すると共に、前記M源ガスの分圧pに対する前記Si源ガスの分圧pSiの比率(pSi/p)が大きい条件と小さい条件とを交互に(好ましくは繰り返し)切り替えて、Si源ガスおよびM源ガスの供給を行なうようにしたものである。
少なくともM源ガスの分圧を高くするときには、C源ガスの分圧を高くすることが好ましい。また、C源ガスは、一定の分圧で供給することが好ましい。
In order to achieve the above object, a method for producing a silicon carbide based mixed crystal according to the present invention supplies Si source gas, Si source gas, and M (Ge or Sn) source gas to the substrate surface to produce Si 1-x M. is intended to form, for example, a thin film of x C mixed crystal, specifically, with at least while M source gas is supplied to supply the C source gas, the relative partial pressure p M of the M source gas Si The source gas and the M source gas are supplied by alternately switching (preferably repeatedly) a condition in which the ratio of the source gas partial pressure p Si (p Si / p M ) is large and small. is there.
When increasing the partial pressure of at least the M source gas, it is preferable to increase the partial pressure of the C source gas. The C source gas is preferably supplied at a constant partial pressure.

本発明の炭化珪素系混晶の製造方法においては、Ge源ガスまたはSn源ガスを供給する際に、少なくともM(GeまたはSn)源ガスが供給されている間はC源ガスを供給すると共に、Si源ガスの供給量との関係で、前記M源ガスの分圧pに対する前記Si源ガスの分圧pSiの比率(pSi/p)が大きい条件と小さい条件とを交互に切り替えるようにし、製造過程にpSi/pの比が小さくなる、すなわちSi量に対するM量の多い雰囲気となる時間帯を周期的に形成することで、SiC結晶へのGeまたはSnの取り込みを促進することができるので、SiGeC混晶またはSiSnC混晶を容易にかつ所望の組成に制御して作製することができる。しかも、混晶の成長性のみならず、GeまたはSn含量の少ない若しくは含まないSiC結晶の成長を損なうこともない。 In the method for producing a silicon carbide mixed crystal according to the present invention, when supplying the Ge source gas or the Sn source gas, the C source gas is supplied at least while the M (Ge or Sn) source gas is supplied. A condition where the ratio (p Si / p M ) of the partial pressure p Si of the Si source gas to the partial pressure p M of the M source gas is large and small is alternately set in relation to the supply amount of the Si source gas. By switching, the ratio of p Si / p M becomes small during the manufacturing process, that is, by periodically forming a time zone in which an atmosphere with a large amount of M with respect to the amount of Si is formed, Ge or Sn can be incorporated into the SiC crystal. Since it can be promoted, the SiGeC mixed crystal or the SiSnC mixed crystal can be easily and controlled to have a desired composition. In addition, the growth of SiC crystals with little or no Ge or Sn content is not impaired, as well as the growth of mixed crystals.

本発明においては、M源ガスとして、有機金属化合物のガスを用いることが効果的である。Ge源ガスまたはSn源ガスのうち、特に有機金属化合物ガスを選択的に用いることで、原料ガスの時点で既にGe−C結合またはSn−C結合を有しているので、SiC結晶へのGeまたはSnの取り込みが容易であり、SiGeC混晶またはSiSnC混晶を容易に作製することができる。   In the present invention, it is effective to use an organic metal compound gas as the M source gas. Of the Ge source gas or Sn source gas, in particular, an organometallic compound gas is selectively used, so that Ge—C bonds or Sn—C bonds are already present at the time of the raw material gas. Alternatively, Sn can be easily taken in, and a SiGeC mixed crystal or a SiSnC mixed crystal can be easily produced.

また、M源ガスを供給する場合、M源ガスの分圧pを低くするときにはC源ガスの分圧を低くし、M源ガスの分圧pを高くするときにはC源ガスの分圧を高くするように制御されるのが有効である。特にM源ガスの分圧が高いときに、C源ガスの分圧を高くすることで、よりGe−C結合またはSn−C結合の形成を促進でき,SiC結晶へのGeまたはSnの取り込みをより容易に行なえる。 Also, when supplying M source gas, the partial pressure of the C source gas when high low comb the partial pressure of the C source gas, a partial pressure p M of M source gas when to lower the partial pressure p M of M source gas It is effective to be controlled to increase the value. In particular, when the partial pressure of the M source gas is high, by increasing the partial pressure of the C source gas, the formation of Ge—C bonds or Sn—C bonds can be further promoted, and the incorporation of Ge or Sn into the SiC crystal can be promoted. It can be done more easily.

本発明によれば、SiC結晶中にGeまたはSnを容易に取り込んでSi1-xxC混晶の組成制御が容易に行なえ、結晶欠陥が少なく良質で所望組成からなるSi1-xxC混晶を得ることができる炭化珪素系混晶の製造方法を提供することができる。 According to the present invention, incorporating easily Ge or Sn in the SiC crystal Si 1-x M x C mixed crystal composition control is easily performed, the crystal defects consisting of desired composition at least good quality Si 1-x M A method for producing a silicon carbide based mixed crystal capable of obtaining an x C mixed crystal can be provided.

以下、図面を参照して、本発明の炭化珪素系混晶の製造方法の実施形態について詳細に説明する。   Hereinafter, an embodiment of a method for producing a silicon carbide mixed crystal of the present invention will be described in detail with reference to the drawings.

(第1実施形態)
本発明の炭化珪素系混晶の製造方法の第1実施形態を図1〜図2を参照して説明する。本実施形態の炭化珪素系混晶の製造方法は、C源ガスとSi源ガスとGe源ガスとを、C源ガスの分圧pCを一定とすると共に、Si源ガスの分圧pSiとGe源ガスの分圧pGeの比率pSi/pGeが大きい条件(条件1)と小さい条件(条件2)とを交互に繰り返して供給するようにしたものである。
(First embodiment)
1st Embodiment of the manufacturing method of the silicon carbide type mixed crystal of this invention is described with reference to FIGS. In the method for producing a silicon carbide mixed crystal of the present embodiment, the C source gas, the Si source gas, and the Ge source gas have a constant partial pressure p C of the C source gas and a partial pressure p Si of the Si source gas. And a condition (condition 1) in which the ratio p Si / p Ge of the partial pressure p Ge of the Ge source gas is high and a condition (condition 2) in which the ratio is small are alternately supplied repeatedly.

本実施形態では、図1に示すCVD装置を用い、C源ガスとしてC22を、Si源ガスとしてSiH2Cl2を、Ge源ガスとGe(C254を供給してSi1-xGexC混晶(炭化珪素系混晶)を作製する場合を中心に説明する。 In the present embodiment, the CVD apparatus shown in FIG. 1 is used to supply C 2 H 2 as the C source gas, SiH 2 Cl 2 as the Si source gas, and Ge source gas and Ge (C 2 H 5 ) 4. A description will be made mainly on the case of producing a Si 1-x Ge x C mixed crystal (silicon carbide mixed crystal).

図1に示すように、CVD装置は、不図示の水素ボンベから水素ガスが供給されると共にガス中の不純物を取り除く水素純化器11と水素純化器11に接続されたマスフローコントローラ(MFC)12および圧力調整弁V1を備える供給管30とで構成された水素ガス供給系、水素希釈したSiH2Cl2ガスボンベ15と圧力調整弁V2、マスフローコントローラ(MFC)13およびガス流切替え弁V3を備える供給管31とで構成されたSi源ガス供給系、水素希釈したC22ガスボンベ16と圧力調整弁V4、マスフローコントローラ(MFC)14およびガス流切替え弁V5を備える供給管32とで構成されたC源ガス供給系、並びに、M源ガス〔ここではGe(C254〕を充填したステンレス製のバブラー容器18と、供給管30およびバブラー容器18を連通し、バブラー容器18へのキャリアガスを制御するマスフローコントローラ(MFC)17を備えた供給管33と、一端でバブラー容器18と接続され、バブラー容器18の内圧を調整する圧力調整弁V6およびガス流切替え弁V7を備えた配管34とで構成されたM源ガス供給系を備えている。バブラー容器18は、恒温槽19で覆われており、容器温度の制御が行なえるようになっている。 As shown in FIG. 1, the CVD apparatus is supplied with hydrogen gas from a hydrogen cylinder (not shown) and removes impurities in the gas, and a mass flow controller (MFC) 12 connected to the hydrogen purifier 11 and Hydrogen gas supply system comprising a supply pipe 30 provided with a pressure regulating valve V1, a supply pipe comprising a hydrogen diluted SiH 2 Cl 2 gas cylinder 15, a pressure regulating valve V2, a mass flow controller (MFC) 13 and a gas flow switching valve V3. 31, a Si source gas supply system composed of 31, a C 2 H 2 gas cylinder 16 diluted with hydrogen, a pressure adjustment valve V 4, a mass flow controller (MFC) 14, and a supply pipe 32 including a gas flow switching valve V 5. A source gas supply system, and a stainless bubbler container 18 filled with an M source gas [Ge (C 2 H 5 ) 4 here], The supply pipe 30 and the bubbler container 18 communicate with each other, a supply pipe 33 having a mass flow controller (MFC) 17 for controlling the carrier gas to the bubbler container 18 is connected to the bubbler container 18 at one end, and the internal pressure of the bubbler container 18 is reduced. An M source gas supply system including a pressure adjusting valve V6 to be adjusted and a pipe 34 having a gas flow switching valve V7 is provided. The bubbler container 18 is covered with a thermostatic bath 19 so that the container temperature can be controlled.

供給管30、31および32並びに配管34は各々、さらに配管を介してSi1-xGexC混晶を作製するための石英反応管20の一端において連通されており、石英反応管20の他端には、石英反応管20の内圧を調整するバルブV8および排気ポンプ22が取り付けられた排出管24が接続されている。 The supply pipes 30, 31 and 32 and the pipe 34 are further communicated with each other at one end of the quartz reaction tube 20 for producing the Si 1-x Ge x C mixed crystal via the pipe. Connected to the end is a valve V8 for adjusting the internal pressure of the quartz reaction tube 20 and a discharge tube 24 to which an exhaust pump 22 is attached.

石英反応管20は、石英壁で構成された内部中空の管状体であり、管内部には基板を保持するための図示しないグラファイト製基板ホルダー(サセプタ)が設けられている。この石英反応管20の外側には、高周波加熱装置21が併設されており、管外壁を介して内部を誘導加熱できるようになっている。加熱は、1100〜1800℃の範囲内で好適に行なうことができる。   The quartz reaction tube 20 is an internal hollow tubular body composed of a quartz wall, and a graphite substrate holder (susceptor) (not shown) for holding the substrate is provided inside the tube. A high-frequency heating device 21 is provided outside the quartz reaction tube 20 so that the inside can be induction-heated through an outer wall of the tube. Heating can be suitably performed within a range of 1100 to 1800 ° C.

また、ガス流切替え弁V3、V5、V7には、一端に排出ポンプ23が取り付けられた排出管25の分岐端が接続されており、不図示のPC(パーソナルコンピュータ)による自動制御によってガス流切替え弁が自動的に切り替えられることにより、各ガス供給系が排出管25と連通するように切り替えられ、排出管25から外部に排出できるようになっている。   The gas flow switching valves V3, V5, and V7 are connected to a branch end of a discharge pipe 25 having a discharge pump 23 attached to one end, and the gas flow is switched by automatic control by a PC (personal computer) (not shown). By automatically switching the valves, each gas supply system is switched to communicate with the discharge pipe 25 and can be discharged from the discharge pipe 25 to the outside.

CVD装置を起動すると、Si源ガス供給系とバブラー容器18を備えたM源ガス供給系とから、図2に示すように、分圧pSiと分圧pGeとの差の大きい条件1(比率pSi/pGeが大きい条件)で各ガスが供給される。具体的には、C源ガスとしてC22ガスを、分圧pSi、分圧pGeよりも高い一定の分圧で供給を開始すると共に、分圧pGeに対する分圧pSiを大きくしてSiH2Cl2とGe(C254とを同時に供給する。 When the CVD apparatus is started, as shown in FIG. 2, the condition 1 (the difference between the partial pressure p Si and the partial pressure p Ge is large, from the Si source gas supply system and the M source gas supply system including the bubbler container 18. Each gas is supplied under the condition that the ratio p Si / p Ge is large. Specifically, the supply of C 2 H 2 gas as a C source gas at a partial pressure p Si and a constant partial pressure higher than the partial pressure p Ge is started, and the partial pressure p Si with respect to the partial pressure p Ge is increased. Then, SiH 2 Cl 2 and Ge (C 2 H 5 ) 4 are supplied simultaneously.

条件1の時間経過後、C22ガスの供給を前記同様に一定分圧で継続すると共に、分圧pSiと分圧pGeとの差の小さい条件2(比率pSi/pGeが小さい条件)に切り替えて各ガスが供給される。具体的には、分圧がpSi>pGeの範囲内で、分圧pSiを下げると共に分圧pGeを高め、分圧pGeと分圧pSiとの分圧差を小さくしてSiH2Cl2とGe(C254との供給を行なう。分圧pSiを小さくすることにより、Geの取り込み効率を向上させることができる。 After the time of condition 1, the supply of C 2 H 2 gas is continued at a constant partial pressure as described above, and condition 2 where the difference between partial pressure p Si and partial pressure p Ge is small (ratio p Si / p Ge is Each gas is supplied by switching to a smaller condition. Specifically, when the partial pressure is in the range of p Si > p Ge , the partial pressure p Si is lowered and the partial pressure p Ge is increased, and the partial pressure difference between the partial pressure p Ge and the partial pressure p Si is reduced to reduce SiH. 2 Cl 2 and Ge (C 2 H 5 ) 4 are supplied. By reducing the partial pressure p Si , the Ge uptake efficiency can be improved.

この場合、交互供給を行なう条件1および条件2の繰返間隔、すなわち各条件の継続時間を長くしたときには、Geの取り込み量の少ない層と多い層とが交互に形成されるが、繰返間隔(継続時間)を充分に短くすることにより、相互拡散を起こして取り込み量の均一な単一の層を形成することが可能である。   In this case, when the repetition interval of conditions 1 and 2 for performing alternate supply, that is, when the duration of each condition is increased, a layer having a small amount of Ge uptake and a layer having a large amount of Ge are alternately formed. By sufficiently shortening (duration time), it is possible to form a single layer having a uniform uptake by causing mutual diffusion.

そして、条件2の時間経過後は、上記と同様にして条件1と条件2とが交互に繰り返し行なわれる。条件1と条件2とを交互に繰り返す期間は、目的や形成しようとする膜の性状等に応じて適宜選択することができる。上記において、条件1の継続時間は0.1〜60秒が好ましく、条件2の継続時間は0.1〜60秒が好ましい。条件1の継続時間と条件2の継続時間とは、同一時間としてもよいし、いずれか一方が他方より長くなるようにしてもよい。   Then, after the time of condition 2 has elapsed, condition 1 and condition 2 are alternately repeated in the same manner as described above. The period in which the condition 1 and the condition 2 are alternately repeated can be appropriately selected according to the purpose and the properties of the film to be formed. In the above, the duration of condition 1 is preferably 0.1 to 60 seconds, and the duration of condition 2 is preferably 0.1 to 60 seconds. The duration of condition 1 and the duration of condition 2 may be the same time, or one of them may be longer than the other.

C源ガスとしては、C22ガス以外に、CH4、C38、C24、CCl4などのガスが好適である。 As the C source gas, gases such as CH 4 , C 3 H 8 , C 2 H 4 , and CCl 4 are suitable in addition to the C 2 H 2 gas.

Si源ガスとしては、SiH2Cl2ガス以外に、SiH4、Si26、SiH3CH3、SiH(CH33などのガスが好適である。 As the Si source gas, gases such as SiH 4 , Si 2 H 6 , SiH 3 CH 3 , and SiH (CH 3 ) 3 are suitable in addition to the SiH 2 Cl 2 gas.

Ge源ガスとしては、Ge(C254以外に、GeH4、GeH(CH33などのガスが好適であり、中でも、有機金属化合物(特にGe(C254、GeH(CH33など)のガスがより好ましい。 As the Ge source gas, in addition to Ge (C 2 H 5 ) 4 , gases such as GeH 4 and GeH (CH 3 ) 3 are suitable, and among them, organometallic compounds (particularly Ge (C 2 H 5 ) 4 , A gas such as GeH (CH 3 ) 3 is more preferable.

上記では、条件1における分圧pGeを、条件2における分圧pSiを各々ある程度保ち、SiC結晶内にGe、Siがいずれも含有されるように制御して供給を行なうようにしたが、必ずしもこれらの分圧を保つ必要はなく、条件1では分圧pGeが実質的に0(ゼロ)となる条件とし、条件2では分圧pSiが実質的に0(ゼロ)となる条件として行なってもよい。つまり、実質的にSi源ガスとGe源ガスとを交互に切り替えて供給するようにすることで、GeのSiC結晶中への取り込みが更に容易になり、Si源ガスおよびGe源ガスの総供給比に近い組成比を有するSi1-xGexC混晶を得ることができる。 In the above, the partial pressure p Ge in condition 1, each maintaining a certain degree of partial pressure p Si under the condition 2, Ge in the SiC crystal, but to perform the control to supply as Si is contained none, It is not always necessary to maintain these partial pressures. In condition 1, the partial pressure p Ge is substantially 0 (zero), and in condition 2, the partial pressure p Si is substantially 0 (zero). You may do it. That is, by substantially alternately switching and supplying the Si source gas and the Ge source gas, the incorporation of Ge into the SiC crystal is further facilitated, and the total supply of the Si source gas and the Ge source gas is achieved. A Si 1-x Ge x C mixed crystal having a composition ratio close to that can be obtained.

また、図2に示すように、条件2ではGe源ガスの分圧pGeを高めているが、条件2において分圧pGeを高めると共に、C源ガスの分圧pCも高めることによって、Ge−C結合の形成を促進でき、SiC結晶へのGeの取り込みをより容易に行なえる。分圧pGeを高める場合、C源ガスの分圧pCの高める程度(割合)はpC(条件2)/pC(条件1)=2〜4とするのが効果的である。 Further, as shown in FIG. 2, but to enhance the partial pressure p Ge of the condition 2 Ge source gas, to increase the partial pressure p Ge in condition 2, by increasing also the partial pressure p C of C source gases, Formation of a Ge—C bond can be promoted, and incorporation of Ge into a SiC crystal can be performed more easily. When the partial pressure p Ge is increased, it is effective that the degree (ratio) of increasing the partial pressure p C of the C source gas is p C (condition 2) / p C (condition 1) = 2-4.

本実施形態では、条件1と条件2とを交互に繰り返して行なうようにしたが、条件1及び条件2の2条件を繰り返す以外に、目的等に応じて3条件以上を繰り返し行うようにしてもよい。   In the present embodiment, the condition 1 and the condition 2 are alternately repeated. However, in addition to repeating the conditions 1 and 2, three or more conditions may be repeated depending on the purpose. Good.

(第2実施形態)
本発明の炭化珪素系混晶の製造方法の第2実施形態を図2を参照して説明する。本実施形態は、第1実施形態で用いたM源ガス(Ge源ガス)をSn源ガスに代えて供給し、Si1-xSnxC混晶(炭化珪素系混晶)を作製するようにしたものである。
(Second Embodiment)
2nd Embodiment of the manufacturing method of the silicon carbide type mixed crystal of this invention is described with reference to FIG. In the present embodiment, the M 1 source gas (Ge source gas) used in the first embodiment is supplied instead of the Sn source gas to produce a Si 1-x Sn x C mixed crystal (silicon carbide based mixed crystal). It is a thing.

なお、C源ガスおよびSi源ガスは第1実施形態で使用したものを用いることができ、第1実施形態と同様の構成要素には同一の参照符号を付してその詳細な説明を省略する。   The C source gas and the Si source gas can be the same as those used in the first embodiment, and the same reference numerals are given to the same components as those in the first embodiment, and detailed description thereof is omitted. .

本実施形態では、図1に示すCVD装置を用いて、バブラー容器18を備えたM源ガス供給系から、Sn源ガスとしてSn(CH34を、図2に示すように第1実施形態と同様にして、分圧pSiと分圧pSnとの差の大きい条件1(比率pSi/pSnが大きい条件)と、分圧pSiと分圧pSnとの差の小さい条件2(比率pSi/pSnが小さい条件)とを繰り返して供給する。 In the present embodiment, Sn (CH 3 ) 4 is used as Sn source gas from the M source gas supply system provided with the bubbler container 18 using the CVD apparatus shown in FIG. 1, as shown in FIG. In the same manner as above, Condition 1 where the difference between the partial pressure p Si and the partial pressure p Sn is large (condition where the ratio p Si / psn is large) and Condition 2 where the difference between the partial pressure p Si and the partial pressure p Sn is small. (Conditions where the ratio p Si / psn is small) are repeatedly supplied.

具体的には、C源ガスとしてC22ガスを、分圧pSi、分圧pSnよりも高い一定の分圧で供給を開始すると共に、分圧pSnに対する分圧pSiを大きくしてSiH2Cl2とSn(CH34とを同時に供給し、条件1の時間経過後、分圧がpSi>pSnの範囲内で、分圧pSiを下げると共に分圧pSnを高め、分圧pSnと分圧pSiとの分圧差を小さくしてSiH2Cl2とSn(CH34との供給を行なう。 Specifically, supply of C 2 H 2 gas as a C source gas at a constant partial pressure higher than the partial pressure p Si and the partial pressure p Sn is started, and the partial pressure p Si with respect to the partial pressure p Sn is increased. Then, SiH 2 Cl 2 and Sn (CH 3 ) 4 are supplied at the same time. After the time of Condition 1, the partial pressure is within the range of p Si > p Sn and the partial pressure p Si is lowered and the partial pressure p Sn enhanced, by reducing the partial pressure difference between the divided p Sn and partial pressure p Si to supply the SiH 2 Cl 2 and Sn (CH 3) 4.

第1実施形態の場合と同様、交互供給を行なう条件1および条件2の繰返間隔(継続時間)を長くしたときには、Snの取り込み量の少ない層と多い層とが交互に形成されるが、繰返間隔(継続時間)を充分に短くすることにより相互拡散を起こして取り込み量の均一な単一の層を形成することができる。条件1の継続時間と条件2の継続時間とは、同一時間としてもよいし、いずれか一方が他方より長くなるようにしてもよい。   As in the case of the first embodiment, when the repetition interval (duration) of the condition 1 and condition 2 in which the alternate supply is performed is increased, a layer with a small amount of Sn uptake and a layer with a large amount of Sn are alternately formed. By making the repetition interval (duration) sufficiently short, interdiffusion can occur and a single layer with a uniform uptake can be formed. The duration of condition 1 and the duration of condition 2 may be the same time, or one of them may be longer than the other.

また、第1実施形態でM源ガスとしてGe源ガスを供給する場合と同様に、条件2では、分圧pSnを高めると共に、C源ガスの分圧pCも高めることによって、Sn−C結合の形成を促進でき、SiC結晶へのSnの取り込みをより容易に行なえる。分圧pSnを高める場合、分圧pSnに対するC源ガスの分圧pCの高める程度(割合)は、pC(条件2)/pC(条件1)=2〜4とするのが効果的である。 Similarly to the case where the Ge source gas is supplied as the M source gas in the first embodiment, in condition 2, the partial pressure p Sn is increased, and the partial pressure p C of the C source gas is also increased, whereby Sn—C Bond formation can be promoted, and Sn can be incorporated into the SiC crystal more easily. When the partial pressure p Sn is increased, the degree (ratio) of increasing the partial pressure p C of the C source gas with respect to the partial pressure p Sn is set to p C (condition 2) / p C (condition 1) = 2-4. It is effective.

Sn源ガスとしては、SnH4、Sn(CH34、Sn(C254、SnH(CH33などのガスが好適であり、中でも、有機金属化合物(特にSn(CH34、Sn(C254、SnH(CH33など)のガスがより好ましい。 As the Sn source gas, gases such as SnH 4 , Sn (CH 3 ) 4 , Sn (C 2 H 5 ) 4 , SnH (CH 3 ) 3 are suitable, and among them, organometallic compounds (particularly Sn (CH 3) ) 4 , Sn (C 2 H 5 ) 4 , SnH (CH 3 ) 3, etc.) are more preferable.

上記では、条件1における分圧pSnを、条件2における分圧pSiを各々ある程度保ち、SiC結晶内にSn、Siがいずれも含有されるように制御して供給を行なうようにしたが、必ずしもこれらの分圧を保つ必要はなく、条件1では分圧pSnが実質的に0(ゼロ)となる条件とし、条件2では分圧pSiが実質的に0(ゼロ)となる条件として行なってもよい。つまり、実質的にSi源ガスとSn源ガスとを交互に切り替えて供給するようにすることで、SnのSiC結晶中への取り込みが更に容易になり、Si源ガスおよびSn源ガスの総供給比に近い組成比を有するSi1-xSnxC混晶を得ることができる。 In the above, the partial pressure p Sn in condition 1, each maintaining a certain degree of partial pressure p Si under the condition 2, Sn in the SiC crystal, but to perform the control to supply as Si is contained none, It is not always necessary to maintain these partial pressures. In condition 1, the partial pressure pSn is substantially 0 (zero), and in condition 2, the partial pressure pSi is substantially 0 (zero). You may do it. That is, by substantially alternately switching and supplying the Si source gas and the Sn source gas, the incorporation of Sn into the SiC crystal is further facilitated, and the total supply of the Si source gas and the Sn source gas is achieved. A Si 1-x Sn x C mixed crystal having a composition ratio close to the above ratio can be obtained.

本実施形態においても、上記のように分圧pSiと分圧pSnとの比率を交互に繰り返して行なうことによって、SiC結晶中にSnを容易に取り込んでSi1-xSnxC混晶の組成を制御することができる。 In the present embodiment, by performing repeated alternately ratio of the partial pressure p Si and the partial pressure p Sn as described above, Si 1-x Sn x C mixed crystal incorporating easily Sn in the SiC crystal The composition of can be controlled.

上記の各実施形態においては、C源ガスの分圧pCを一定にし、この状態でSi源ガスの分圧pSiとGe源ガスの分圧pGeまたはSn源ガスの分圧pSnとの比率を交互に繰り返し変化させるようにしたが、C源ガスの分圧pCを一定するのではなく、分圧pSiと分圧pGeまたはSn源ガスの分圧pSnとの比率を既述の条件1および条件2にて交互に変化させつつ、条件1では分圧pCを低くし、条件2では分圧pCを高くするように交互に繰り返して供給を行なう形態も好適である。 In the above embodiments, the partial pressure p C of C source gas constant, and the partial pressure p Sn partial pressure p Ge or Sn source gas partial pressure p Si and Ge source gas of the Si source gas in this state However, instead of keeping the partial pressure p C of the C source gas constant, the ratio of the partial pressure p Si and the partial pressure p Ge or the partial pressure p Sn of the Sn source gas is changed. while changing alternately in aforementioned conditions 1 and 2, to lower the condition 1, the partial pressure p C, forms for supplying repeated alternately so as to increase the condition 2, partial pressure p C also suitable is there.

このとき、条件1における分圧pGeまたは分圧pSnを、条件2における分圧pSiを各々ある程度保ち、SiC結晶内にGeもしくはSnとSiとが含有されるように供給を行なってもよいし、条件1では分圧pGeまたは分圧pSnが実質的に0(ゼロ)となる条件とし、条件2では分圧pSiが実質的に0(ゼロ)となる条件として行なうようにしてもよい。これにより、既述したように、SnまたはGeのSiC結晶中への取り込みが更に容易になり、Si源ガスおよびSn源ガスもしくはGe源ガスの総供給比に近い組成比を有するSi1-xSnxC混晶またはSi1-xGexC混晶を得ることができる。 At this time, the partial pressure p Ge or partial pressure p Sn in condition 1, each maintaining a certain degree of partial pressure p Si under the condition 2, be subjected to supply so that the Ge or Sn and Si contained in the SiC crystal In condition 1, the partial pressure p Ge or the partial pressure p Sn is substantially 0 (zero), and in condition 2, the partial pressure p Si is substantially 0 (zero). May be. Thus, as already described, Sn or incorporation of Ge into the SiC crystal becomes easier, Si 1-x having a composition ratio close to the total feed ratio of Si source gas and the Sn source gas or Ge source gas A Sn x C mixed crystal or a Si 1-x Ge x C mixed crystal can be obtained.

以下、実施例によって本発明をより具体的に説明する。但し、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

(実施例1):Si1-xGexC混晶
−CVD装置の準備−
まず、図1に示す構成と同様にして構成されたCVD装置を準備した。
(Example 1): Si 1-x Ge x C mixed crystal-preparation of CVD apparatus-
First, a CVD apparatus configured similarly to the configuration shown in FIG. 1 was prepared.

−Si1-xGexC混晶の作製−
市販の8°オフSi面4H−SiC(0001)基板(以下、SiC基板と称する。)を用意し、これを洗浄してCVD装置の石英反応管20の内部に設置した。洗浄は、アセトンまたはエタノール(有機溶剤)を用いて第1次洗浄を行なった後、フッ酸エッチング、純粋洗浄を行ない、さらに窒素ガスを吹き付けて乾燥させて行なった。
−Preparation of Si 1-x Ge x C mixed crystal−
A commercially available 8 ° off-Si surface 4H—SiC (0001) substrate (hereinafter referred to as SiC substrate) was prepared, cleaned, and placed inside the quartz reaction tube 20 of the CVD apparatus. The cleaning was performed by first cleaning with acetone or ethanol (organic solvent), followed by hydrofluoric acid etching and pure cleaning, and further sprayed with nitrogen gas and dried.

次に、CVD装置を起動し、SiC基板が設置された石英反応管20に、水素ガス供給系から水素ガスを供給して水素ガス雰囲気とし、水素ガス雰囲気中、圧力1.33×103Pa(10torr)で30分間かけて1650℃まで昇温した。 Next, the CVD apparatus is started and hydrogen gas is supplied from the hydrogen gas supply system to the quartz reaction tube 20 on which the SiC substrate is installed to form a hydrogen gas atmosphere, and the pressure is 1.33 × 10 3 Pa in the hydrogen gas atmosphere. The temperature was raised to 1650 ° C. over 30 minutes at (10 torr).

その後、石英反応管20内を1650℃に保持したまま、Si源ガス供給系、C源ガス供給系、M源ガス供給系から、図3に示すように、C22ガスを一定の分圧pCで供給しながら、条件1および条件2によるSiH2Cl2ガスとGe(C254ガスとの交互供給を2時間継続し、SiC基板上にSiGeC薄膜を成長させた。なお、条件1および条件2の詳細は下記の通りである。薄膜成長を終了した後、H2ガスとC22ガスとの供給を継続しながら温度を低下させた。 Thereafter, while the quartz reaction tube 20 is maintained at 1650 ° C., C 2 H 2 gas is separated from the Si source gas supply system, the C source gas supply system, and the M source gas supply system as shown in FIG. While supplying at a pressure p C , alternating supply of SiH 2 Cl 2 gas and Ge (C 2 H 5 ) 4 gas under conditions 1 and 2 was continued for 2 hours to grow a SiGeC thin film on the SiC substrate. Details of conditions 1 and 2 are as follows. After completing the thin film growth, the temperature was lowered while the supply of H 2 gas and C 2 H 2 gas was continued.

〔条件1〕H2=500sccm、C22=0.065sccm、SiH2Cl2=0.13sccm、Ge(C254=0.02sccmの成分条件にて5秒間
〔条件2〕H2=500sccm、C22=0.065sccm、SiH2Cl2=0sccm、Ge(C254=0.02sccmの成分条件にて5秒間
[Condition 1] H 2 = 500 sccm, C 2 H 2 = 0.065 sccm, SiH 2 Cl 2 = 0.13 sccm, Ge (C 2 H 5 ) 4 = 0.02 sccm for 5 seconds [Condition 2] H 2 = 500 sccm, C 2 H 2 = 0.065 sccm, SiH 2 Cl 2 = 0 sccm, Ge (C 2 H 5 ) 4 = 0.02 sccm for 5 seconds

−評価1−
得られたSiGeC薄膜について、膜性状およびGe組成比の評価を行なった。
1.膜性状
SiGeC薄膜の膜面は鏡面状態であり、走査型電子顕微鏡(SEM)により断面観察して測定した膜厚は約2μmであった。SiGeC薄膜を反射高速電子回折(RHEED)により回折パターンを評価したところ、回折パターンはスポット状であり、エピタキシャル成長が確認された。また、ラマン分光測定法により、3C構造の結晶が混入されていない4H構造であることが確認された。
-Evaluation 1
The obtained SiGeC thin film was evaluated for film properties and Ge composition ratio.
1. Film Properties The film surface of the SiGeC thin film was in a mirror state, and the film thickness measured by cross-sectional observation with a scanning electron microscope (SEM) was about 2 μm. When the diffraction pattern of the SiGeC thin film was evaluated by reflection high-energy electron diffraction (RHEED), the diffraction pattern was spot-like, and epitaxial growth was confirmed. Further, it was confirmed by a Raman spectroscopic measurement method that the 4H structure does not contain 3C structure crystals.

2.Ge組成比
X線光電子分光法(XPS)により、結晶薄膜のSiとGeとの定量分析を行なった。その結果、Ge組成比は1.8atomic%であった。また、本実施形態において、Ge(C254ガスの温度を一定に保ってキャリアガス量を変化させ、キャリアガス量(C22ガスの量)の変化に対するGe組成比(atomic%)の変化をプロットした。プロットした結果を図4に示す。図4に示すように、Ge組成比はキャリアガス量の増加にしたがって直線的に増加しており、Ge組成の精密制御が可能であった。
2. Ge composition ratio Quantitative analysis of Si and Ge of the crystalline thin film was performed by X-ray photoelectron spectroscopy (XPS). As a result, the Ge composition ratio was 1.8 atomic%. In the present embodiment, the Ge composition ratio (atomic) with respect to the change in the amount of carrier gas (the amount of C 2 H 2 gas) is changed by keeping the temperature of the Ge (C 2 H 5 ) 4 gas constant. %) Is plotted. The plotted results are shown in FIG. As shown in FIG. 4, the Ge composition ratio increased linearly as the amount of carrier gas increased, and the Ge composition could be precisely controlled.

(実施例2):Si1-xSnxC混晶
実施例1において、M源ガス(Ge(C254ガス)をSn(CH34ガスに代えると共に、条件1および条件2を下記に示す条件3および条件4に各々変更し、図5に示すように供給を行なったこと以外、実施例1と同様にして、SiC基板上にSiSnC薄膜を成長させた。なお、条件3および条件4の詳細は下記の通りである。
(Example 2): Si 1-x Sn x C mixed crystal In Example 1, the M source gas (Ge (C 2 H 5 ) 4 gas) was replaced with Sn (CH 3 ) 4 gas, and conditions 1 and A SiSnC thin film was grown on the SiC substrate in the same manner as in Example 1 except that 2 was changed to the conditions 3 and 4 shown below and the supply was performed as shown in FIG. Details of conditions 3 and 4 are as follows.

〔条件3〕H2=500sccm、C22=0.065sccm、SiH2Cl2=0.13sccm、Sn(CH34=0sccmの成分条件にて5秒間
〔条件4〕H2=500sccm、C22=0.065sccm、SiH2Cl2=0sccm、Sn(CH34=0.04sccmの成分条件にて5秒間
[Condition 3] 5 seconds under component conditions of H 2 = 500 sccm, C 2 H 2 = 0.065 sccm, SiH 2 Cl 2 = 0.13 sccm, Sn (CH 3 ) 4 = 0 sccm [Condition 4] H 2 = 500 sccm , C 2 H 2 = 0.065 sccm, SiH 2 Cl 2 = 0 sccm, Sn (CH 3 ) 4 = 0.04 sccm for 5 seconds

−評価2−
得られたSiSnC薄膜について、膜性状およびSn組成比の評価を行なった。
1.膜性状
SiSnC薄膜の膜面は鏡面状態であり、実施例1と同様にして測定した膜厚は約2μmであった。SiSnC薄膜を反射高速電子回折(RHEED)により回折パターンを評価したところ、回折パターンはスポット状であり、エピタキシャル成長が確認された。また、ラマン分光測定法により、3C構造の結晶が混入されていない4H構造であることが確認された。
-Evaluation 2-
The obtained SiSnC thin film was evaluated for film properties and Sn composition ratio.
1. Film Properties The film surface of the SiSnC thin film was in a mirror state, and the film thickness measured in the same manner as in Example 1 was about 2 μm. When the diffraction pattern of the SiSnC thin film was evaluated by reflection high-energy electron diffraction (RHEED), the diffraction pattern was spot-like, and epitaxial growth was confirmed. Further, it was confirmed by a Raman spectroscopic measurement method that the 4H structure does not contain 3C structure crystals.

2.Sn組成比
X線光電子分光法(XPS)により、結晶薄膜のSiとSnとの定量分析を行なった。その結果、Sn組成比は1.5atomic%であった。
2. Sn composition ratio Quantitative analysis of Si and Sn of the crystal thin film was performed by X-ray photoelectron spectroscopy (XPS). As a result, the Sn composition ratio was 1.5 atomic%.

(実施例3):Si1-xGexC混晶
実施例1において、分圧pCを一定にした状態で相対的に分圧pSiとpGeとの比率を一定間隔で交互に変化させる制御を、分圧pCをも変化させて行なうようにすると共に、条件1および条件2を下記に示す条件5および条件6に各々変更し、図6に示すように供給を行なったこと以外、実施例1と同様にして、SiC基板上にSiGeC薄膜を成長させた。なお、条件5および条件6の詳細は下記の通りである。
(Example 3): Si 1-x Ge x C mixed crystal In Example 1, the ratio of the partial pressures p Si and p Ge is alternately changed at regular intervals while the partial pressure p C is constant. In addition to changing the partial pressure p C , the conditions 1 and 2 are changed to the conditions 5 and 6 shown below, respectively, and the supply is performed as shown in FIG. In the same manner as in Example 1, a SiGeC thin film was grown on the SiC substrate. Details of conditions 5 and 6 are as follows.

〔条件5〕H2=500sccm、C22=0.05sccm、SiH2Cl2=0.13sccm、Ge(C254=0.02sccmの成分条件にて5秒間
〔条件6〕H2=500sccm、C22=0.10sccm、SiH2Cl2=0sccm、Ge(C254=0.02sccmの成分条件にて5秒間
[Condition 5] 5 seconds under component conditions of H 2 = 500 sccm, C 2 H 2 = 0.05 sccm, SiH 2 Cl 2 = 0.13 sccm, Ge (C 2 H 5 ) 4 = 0.02 sccm [Condition 6] 5 seconds under component conditions of H 2 = 500 sccm, C 2 H 2 = 0.10 sccm, SiH 2 Cl 2 = 0 sccm, Ge (C 2 H 5 ) 4 = 0.02 sccm

−評価3−
得られたSiGeC薄膜について、膜性状およびGe組成比の評価を行なった。
1.膜性状
SiGeC薄膜の膜面は鏡面状態であり、実施例1と同様にして測定した膜厚は約2μmであった。SiGeC薄膜を反射高速電子回折(RHEED)により回折パターンを評価したところ、回折パターンはスポット状であり、エピタキシャル成長が確認された。また、ラマン分光測定法により、3C構造の結晶が混入されていない4H構造であることが確認された。
-Evaluation 3-
The obtained SiGeC thin film was evaluated for film properties and Ge composition ratio.
1. Film Properties The film surface of the SiGeC thin film was in a mirror state, and the film thickness measured in the same manner as in Example 1 was about 2 μm. When the diffraction pattern of the SiGeC thin film was evaluated by reflection high-energy electron diffraction (RHEED), the diffraction pattern was spot-like, and epitaxial growth was confirmed. Further, it was confirmed by a Raman spectroscopic measurement method that the 4H structure does not contain 3C structure crystals.

2.Ge組成比
X線光電子分光法(XPS)により、結晶薄膜のSiとGeとの定量分析を行なった。その結果、Ge組成比は2.5atomic%であった。Ge源ガスであるGe(C254の供給量(分圧pGe)が同じである実施例1との比較において、Ge組成比が1.8atomic%であった実施例1に対して、C源ガスであるC22の供給量(分圧pC)を一定間隔で交互に変化させるようにした結果、SiC結晶中へのGeの取り込みを約30%増加させることができた。
2. Ge composition ratio Quantitative analysis of Si and Ge of the crystalline thin film was performed by X-ray photoelectron spectroscopy (XPS). As a result, the Ge composition ratio was 2.5 atomic%. Compared with Example 1 in which the supply amount (partial pressure p Ge ) of Ge (C 2 H 5 ) 4 that is a Ge source gas is the same as in Example 1, the Ge composition ratio was 1.8 atomic%. As a result of alternately changing the supply amount (partial pressure p C ) of the C source gas C 2 H 2 at regular intervals, the incorporation of Ge into the SiC crystal can be increased by about 30%. It was.

本発明の第1実施形態で用いたCVD装置を示す概略構成図である。It is a schematic block diagram which shows the CVD apparatus used in 1st Embodiment of this invention. 本発明の第1および第2実施形態におけるC源ガス、Si源ガスおよびGe源ガスの供給タイミングを示す説明図である。It is explanatory drawing which shows the supply timing of C source gas, Si source gas, and Ge source gas in 1st and 2nd embodiment of this invention. 実施例1でのC源ガス、Si源ガスおよびGe源ガスの供給タイミングを示す説明図である。It is explanatory drawing which shows the supply timing of C source gas in Example 1, Si source gas, and Ge source gas. キャリアガス流量とGe濃度との関係を示す関係図である。It is a relationship figure which shows the relationship between carrier gas flow volume and Ge density | concentration. 実施例2でのC源ガス、Si源ガスおよびSn源ガスの供給タイミングを示す説明図である。It is explanatory drawing which shows the supply timing of C source gas in Example 2, Si source gas, and Sn source gas. 実施例3でのC源ガス、Si源ガスおよびGe源ガスの供給タイミングを示す説明図である。It is explanatory drawing which shows the supply timing of C source gas in Example 3, Si source gas, and Ge source gas.

符号の説明Explanation of symbols

15…SiH2Cl2ガスボンベ
16…C22ガスボンベ
18…M源ガスを充填したバブラー容器
20…石英反応管
15 ... SiH 2 Cl 2 gas cylinder 16 ... C 2 H 2 gas cylinder 18 ... Bubbler container 20 filled with M source gas ... Quartz reaction tube

Claims (5)

C源ガスとSi源ガスとM(GeまたはSn)源ガスとを基板表面に供給してSi1−xC混晶を形成する炭化珪素系混晶の製造方法であって、
少なくともM源ガスが供給されている間はC源ガスを供給すると共に、
前記M源ガスの分圧pに対する前記Si源ガスの分圧pSiの比率(pSi/p)が大きい条件と小さい条件とを交互に切り替えて、前記Si源ガスおよび前記M源ガスの供給を行なうことを特徴とする炭化珪素系混晶の製造方法。
A method for producing a silicon carbide-based mixed crystal in which a Si 1-x M x C mixed crystal is formed by supplying a C source gas, a Si source gas, and an M (Ge or Sn) source gas to a substrate surface,
While supplying C source gas at least while M source gas is supplied,
The Si source gas and the M source gas are alternately switched between a condition in which the ratio (p Si / p M ) of the partial pressure p Si of the Si source gas to the partial pressure p M of the M source gas is large and small. A method for producing a silicon carbide-based mixed crystal characterized by comprising the steps of:
少なくとも前記M源ガスの分圧を高くするときには、前記C源ガスの分圧を高くする請求項1に記載の炭化珪素系混晶の製造方法。 2. The method for producing a silicon carbide based mixed crystal according to claim 1, wherein at least the partial pressure of the M source gas is increased, the partial pressure of the C source gas is increased . 前記供給は、前記小さい条件がpSi/p<1を満たす期間を含むように行なう請求項1又は請求項2に記載の炭化珪素系混晶の製造方法。 3. The method for producing a silicon carbide based mixed crystal according to claim 1, wherein the supplying is performed so that the small condition includes a period satisfying p Si / p M <1. 前記C源ガスを一定の分圧で供給する請求項1〜請求項3のいずれか1項に記載の炭化珪素系混晶の製造方法。   The method for producing a silicon carbide based mixed crystal according to any one of claims 1 to 3, wherein the C source gas is supplied at a constant partial pressure. 前記M源ガスの分圧pを低くするときには前記C源ガスの分圧を低くし、前記M源ガスの分圧pを高くするときには前記C源ガスの分圧を高くする請求項1〜請求項4のいずれか1項に記載の炭化珪素系混晶の製造方法。 Claim low comb the partial pressure of the C source gas when to lower the partial pressure p M of the M source gas, when increasing the partial pressure p M of the M source gas to increase the partial pressure of the C source gas 1 The manufacturing method of the silicon carbide type mixed crystal of any one of Claims 4-5.
JP2005247843A 2005-08-29 2005-08-29 Method for producing silicon carbide mixed crystal Active JP4963353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005247843A JP4963353B2 (en) 2005-08-29 2005-08-29 Method for producing silicon carbide mixed crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005247843A JP4963353B2 (en) 2005-08-29 2005-08-29 Method for producing silicon carbide mixed crystal

Publications (2)

Publication Number Publication Date
JP2007066982A JP2007066982A (en) 2007-03-15
JP4963353B2 true JP4963353B2 (en) 2012-06-27

Family

ID=37928862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005247843A Active JP4963353B2 (en) 2005-08-29 2005-08-29 Method for producing silicon carbide mixed crystal

Country Status (1)

Country Link
JP (1) JP4963353B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4857698B2 (en) * 2005-10-05 2012-01-18 トヨタ自動車株式会社 Silicon carbide semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821539B2 (en) * 1985-04-25 1996-03-04 キヤノン株式会社 Deposited film formation method
JP3443379B2 (en) * 1999-03-23 2003-09-02 松下電器産業株式会社 Method for growing semiconductor film and method for manufacturing semiconductor device
JP3707726B2 (en) * 2000-05-31 2005-10-19 Hoya株式会社 Silicon carbide manufacturing method, composite material manufacturing method
JP4560245B2 (en) * 2001-06-29 2010-10-13 キヤノン株式会社 Photovoltaic element

Also Published As

Publication number Publication date
JP2007066982A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
JP3707726B2 (en) Silicon carbide manufacturing method, composite material manufacturing method
JP4537484B2 (en) Growth method using nanostructure adaptive layer and HVPE for producing high quality compound semiconductor material
KR101478331B1 (en) Method for producing epitaxial silicon carbide single crystal substrate
EP2484816B1 (en) Method for production of laminate
US8409350B2 (en) Gallium nitride crystal growth method, gallium nitride crystal substrate, epi-wafer manufacturing method, and epi-wafer
WO2008087452A1 (en) Production of single-crystal semiconductor material using a nanostructure template
JP4158139B2 (en) Thin film manufacturing method and apparatus
US8722526B2 (en) Growing of gallium-nitrade layer on silicon substrate
JP2005536054A (en) Deposition of amorphous silicon-containing films
EP1754251A1 (en) Low temperature epitaxial growth of silicon-containing films using uv radiation
JP2662396B2 (en) Method of forming crystalline deposited film
JP2006117512A (en) Method for producing silicon carbide single crystal and silicon carbide single crystal grown by the method, single crystal ingot and silicon carbide single crystal wafer
CN106169497A (en) Silicon carbide substrate and the manufacture method of silicon carbide substrate
US20030038302A1 (en) Nitride semiconductor growing process
EP0241204B1 (en) Method for forming crystalline deposited film
JP4963353B2 (en) Method for producing silicon carbide mixed crystal
TWI254465B (en) Method of manufacturing III-V group compound semiconductor
KR101972056B1 (en) Synthesis of Silica Nanowires Using Amorphous Silicon
JP4702712B2 (en) Tubular SiC molded body and method for producing the same
JP3909690B2 (en) Method for producing SiC film by epitaxial growth
KR100594626B1 (en) Method for forming nitride layer using atomic layer deposition
JP3461819B2 (en) Manufacturing method of semiconductor crystal film
JP3574494B2 (en) Nitride compound semiconductor crystal growth method and growth apparatus
JP2001168031A (en) Polycrystalline silicon layer, method of growing it, and semiconductor device
JP2704224B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120323

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250