JP4963150B2 - Heat resistant material - Google Patents

Heat resistant material Download PDF

Info

Publication number
JP4963150B2
JP4963150B2 JP2001297450A JP2001297450A JP4963150B2 JP 4963150 B2 JP4963150 B2 JP 4963150B2 JP 2001297450 A JP2001297450 A JP 2001297450A JP 2001297450 A JP2001297450 A JP 2001297450A JP 4963150 B2 JP4963150 B2 JP 4963150B2
Authority
JP
Japan
Prior art keywords
fiber
rope
resistant material
heat
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001297450A
Other languages
Japanese (ja)
Other versions
JP2003105682A (en
Inventor
守 荘司
利明 笹木
栄作 柿倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2001297450A priority Critical patent/JP4963150B2/en
Publication of JP2003105682A publication Critical patent/JP2003105682A/en
Application granted granted Critical
Publication of JP4963150B2 publication Critical patent/JP4963150B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Ropes Or Cables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高温炉や高温ダクトなどの高温にさらされる壁面に適用する断熱材や、壁面に取り付けられている断熱材の間隙に充填する目地材などとして用いるのに好適なロープ状耐熱材に関する。
【0002】
【従来の技術】
高温炉や高温ダクトなどの高温にさらされる壁面に適用する断熱材や断熱材の目地を充填する目地材として、アルミナ・シリカ系セラミック繊維などの無機繊維からなるものが広く用いられている。しかしながら、これらの無機繊維は、高温にさらされると収縮したり、熱劣化したりする。従って、目地にこれらの無機繊維を充填しておいても、高温にさらされている間に収縮して間隙が生じたり、充填してある目地材に亀裂が生じたりして、断熱効果やシール性が低下するという問題がある。使用中における収縮を予め想定して目地材を充填するには、目地材を予め大きく圧縮しておくことが必要であり、加工上困難である。
【0003】
使用中における目地材の収縮を回避する方法として、無機繊維に、バーミキュライトなどを併用して加熱膨張性能を付与することにより、高温下での無機繊維の収縮を吸収し、全体としての収縮を抑える方法が知られている。しかしながら、この方法は目地材の加工上に難点があり、また、800℃を超える高温域での使用には適していない。
【0004】
また、無機繊維の集合体を芯材とし、これを可燃性外装材で被覆したり、又は外面を金属線で袋編みした紐状の耐熱材も提案されている(特開平10−81871、特開平11−30486号公報参照)。しかしながら、これらも加工性に難点があり、また金属線の存在により断熱性が低下するなどの問題がある。
【0005】
【発明が解決しようとする課題】
従って本発明は、可燃物を含まず、加工が容易で、且つ、高温にさらされても収縮が少なく、しかも施工性の良い耐熱材を提供しようとするものである。
【0006】
【課題を解決するための手段】
本発明に係わる耐熱材は、アルミナ繊維ブランケットを裁断して紐状とした、アルミナ繊維からなる紐状の繊維集合体を複数本ロープ状に撚り合わせた構造からなるロープ状耐熱材である。
【0007】
【発明の実施の形態】
本発明に係わるロープ状耐熱材の素材としては、公知のアルミナ繊維を用いる。アルミナ繊維は、実質的にアルミナとシリカとから成る結晶質の繊維で、そのアルミニウムと珪素の比は、Al23とSiO2の重量比に換算して、通常65:35〜99:1である。なかでもAl23:SiO2=72:28〜80:20のムライト組成のものは、高温での安定性と弾力性に優れているので、本発明に係わるロープ状耐熱材の素材として好適である。周知のようにアルミナ繊維は前駆体繊維化法により工業的に大量に製造されている。この方法では、まずアルミニウム塩、好ましくはAlCln(OH)3-nで表される組成の塩基性塩化アルミニウムの濃厚水溶液に、ポリビニルアルコールなどの水溶性高分子を加えて粘稠密な紡糸溶液を調製する。この紡糸溶液を外管から空気が高速で流出し、内管から紡糸溶液が流出する二重管式ノズルを用いて紡糸して前駆体繊維とする。この前駆体繊維を焼成するとアルミナ繊維が得られる。アルミナ繊維の直径は通常1〜50μmであるが、本発明に係わるロープ状耐熱材の素材としては3〜8μmのものを用いるのが好ましい。また、繊維の長さは5mm以上、特に10mm以上であるのが好ましい。繊維長の上限は任意であるが、通常は300mm以下であり、長くても500mm以下である。
【0008】
本発明に係わるロープ状耐熱材は、このアルミナ繊維を細長い紐状の繊維集合体とし、更にこれを複数本撚り合わせた構造のものである。アルミナ繊維を紐状の繊維集合体とするのは任意の方法によることができる。アルミナ繊維そのものは強度が小さく折れやすいが、前駆体繊維は強度もあり且つ柔軟なので、前駆体繊維をその長さ方向に引き揃えつつ撚りをかけて太い紐状とし、次いでこれを焼成することによりアルミナ繊維からなる紐状の繊維集合体とすることができる。焼成は前駆体繊維を集めて紐状としたものについて行っても良く、また紐状のものを複数本撚り合わせてロープ状とした後に行っても良い。また別法として、アルミナ繊維又はその前駆体繊維に有機繊維を混合したものをシート状に成型し、これを帯状に裁断して紐状とし、次いでこれを焼成することによりアルミナ繊維からなる紐状の繊維集合体とすることができる。この場合は、焼成は紐状としたものについて行っても良く、またこれを複数本撚り合わせてロープ状とした後の行っても良い。また更なる別法として前駆体繊維をマット状に集積し、これにニードリングを施した後焼成してブランケットとしたものを紐状に裁断して繊維集合体とすることもできる。紐状の繊維集合体は、その強度を高めるため、それ自体に撚りが施されているのが好ましい。撚りの回数は、通常は5〜100回/m程度である。また紐状の繊維集合体の重量は、通常は0.4〜30g/mであるが、1〜15g/mが好ましい。その嵩密度は0.05〜0.6g/cm3程度が好ましい。この紐状のアルミナ繊維集合体を複数本撚り合わせることにより本発明に係わるロープ状耐熱材が得られる。所望ならば紐状のアルミナ繊維集合体を複数本撚り合わせたものを更に複数本撚り合わせるなど、撚り合わせは複数回反復しても良い。紐状の繊維集合体を撚り合わせてロープ状とするのは、通常のロープ製造法に準じて行うことができる。例えばアルミナ繊維に有機繊維を少量混合したものを薄いシート状に成型し、これを帯状に裁断したものに揉み皮などにより仮撚りを付与して紐状の繊維集合体とする。次いでこの繊維集合体をアップツイスター等により加撚、合糸してロープ状とし、最後に焼成して有機繊維を除去することにより本発明に係わるロープ状耐熱材が得られる。いずれの方法によるものであっても、ロープ状耐熱材は直径が1.5〜120mm、特に3〜50mmであり、引っ張り強度は0.01〜80kg、特に0.03〜30kgであり、重量は1〜2200g/m、特に8〜800g/mであるものが好ましい。またその嵩密度は0.05〜0.6g/cm3が好ましい。一般に嵩密度が小さいと弾力性が小さく、目地材やガスケットなどとして用いた場合に十分なシール性を発現させ難くなる。また嵩密度が大きいものは加工が困難であり、且つ断熱性も低下する。
【0009】
【実施例】
以下に実施例により本発明を更に具体的に説明する。
実施例1
15打/cm2の密度でニードリングが施されているアルミナ繊維ブランケット(嵩密度0.16g/cm3、厚さ7.5mm、平均繊維径4μm、繊維長20〜200mm;組成は、アルミナ72重量%、シリカ28重量%)を、裁断機で幅10mmに裁断して紐状の繊維集合体とした。これに加撚機で30回/mの撚りを施した後3本撚り合わせ、直径22mm、重さ35g/m、引張束強度7kgのロープ状耐熱材とした。このロープ状耐熱材を、外形250mmのパイプの断熱用に巻回施工を施したところ、施工効率に優れ、且つ、アルミナ繊維ブランケットなどで断熱施工を行う場合に発生する材料ロスも殆ど生じなかった。
実施例2
アルミナ繊維前駆体(アルミニウムと珪素の比はAl23とSiO2 として72:28、平均繊維径7μm、繊維長30〜300mm)に、重量比で10%のビニロン繊維を混合し、これをカード機により解繊して26g/m2のシート状とした。これを裁断機で幅40mmの帯状に裁断し、これに皮ベルト式の仮撚り装置(揉み皮)で仮撚りを行い、1.04g/mの紐状の繊維集合体とした。この紐状の繊維集合体を加撚機で2本撚り合わせて一次小縄とし、更にこの一次小縄を10本撚り合わせて二次小縄とした。この二次小縄を合撚機で8本撚り合わせて直径17mmの三次小縄とした。この三次小縄を3本撚り合わせた後、空気中で1250℃で焼成し、直径28mm、重さ225g/m、引張束強度12kgのアルミナ繊維からなるロープ状耐熱材を得た。このロープ状耐熱材を、製鋼用加熱炉の加熱バーナー取り付けフランジのガスケットパッキンとして用いたところ、施工効率に優れ、繰り返し使用に耐えた。
実施例3
アルミナ繊維(平均繊維径4μm、繊維長20〜200mm;組成はアルミナ72重量%、シリカ28重量%)に重量比で15%のビニロン繊維を混合し、これをカード機により解繊して、25g/m2のシート状とした。これを裁断機で幅25mmの帯状に裁断し、皮ベルト式の仮撚り装置(揉み皮)で仮撚りを行い、0.5g/mの紐状の繊維集合体とした。この紐状の繊維集合体を加撚機で2本撚り合わせて一次小縄とし、更にこの一次小縄を10本撚り合わせて二次小縄とした。この二次小縄を合撚機で8本撚り合わせて直径12mmの三次小縄とした。三次小縄を3本撚り合わせた後、空気流通下に800℃で1時間焼成し、直径23mm、重さ200g/m、引張束強度8kgのアルミナ繊維よりなるロープ状耐熱材を得た。
【0010】
【発明の効果】
本発明に係わるロープ状耐熱材は、高温特性に優れているアルミナ繊維から構成されており、容易に製造することが出来、且つ、ロープ状なので施工性にも優れているので、断熱材や目地材などとして用いられるのに好適である。特にロープ状であって適宜変形させて装着可能なので、Oリング溝の様な嵌合溝を有するシール部、狭い間隔のシール部、奥深い隙間などに適用する目地材として用いるのに好適である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat insulating material applied to a wall surface exposed to a high temperature such as a high temperature furnace or a high temperature duct, or a rope-like heat resistant material suitable for use as a joint material filling a gap between heat insulating materials attached to the wall surface. .
[0002]
[Prior art]
As a heat insulating material applied to a wall surface exposed to a high temperature such as a high temperature furnace or a high temperature duct, and a joint material filling the joint of the heat insulating material, those made of inorganic fibers such as alumina / silica ceramic fibers are widely used. However, these inorganic fibers shrink or thermally deteriorate when exposed to high temperatures. Therefore, even if these joints are filled with these inorganic fibers, the joints shrink while being exposed to high temperatures, or cracks occur in the filled joints, resulting in a heat insulation effect and a seal. There is a problem that the performance is lowered. In order to fill the joint material in advance assuming shrinkage during use, the joint material needs to be largely compressed in advance, which is difficult in processing.
[0003]
As a method of avoiding shrinkage of joint materials during use, the shrinkage of inorganic fibers at high temperatures is absorbed and the shrinkage as a whole is suppressed by adding vermiculite etc. to the inorganic fibers to impart heat expansion performance. The method is known. However, this method has difficulties in processing joint materials and is not suitable for use in a high temperature range exceeding 800 ° C.
[0004]
In addition, a string-like heat-resistant material in which an aggregate of inorganic fibers is used as a core and this is covered with a flammable exterior material or the outer surface is bag-knitted with a metal wire has also been proposed (Japanese Patent Laid-Open No. 10-81871, special feature). (See Kaihei 11-30486). However, these also have problems in workability, and there are problems such as a decrease in heat insulation due to the presence of metal wires.
[0005]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a heat-resistant material that does not contain combustible materials, is easy to process, has little shrinkage even when exposed to high temperatures, and has good workability.
[0006]
[Means for Solving the Problems]
Heat-resistant material according to the present invention, it was string-shaped by cutting an alumina fiber blanket, a rope-like heat-resistant material consisting of the combined structure twisted string-like fiber aggregate made of alumina fibers plurality rope.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
A known alumina fiber is used as a material for the rope-shaped heat-resistant material according to the present invention. The alumina fiber is a crystalline fiber substantially composed of alumina and silica, and the ratio of aluminum to silicon is usually 65:35 to 99: 1 in terms of the weight ratio of Al 2 O 3 and SiO 2. It is. Among them, the mullite composition of Al 2 O 3 : SiO 2 = 72: 28 to 80:20 is excellent in stability and elasticity at high temperature, and is suitable as a material for the rope-like heat-resistant material according to the present invention. It is. As is well known, alumina fibers are industrially produced in large quantities by the precursor fiberization method. In this method, first, a viscous spinning solution is prepared by adding a water-soluble polymer such as polyvinyl alcohol to a concentrated aqueous solution of an aluminum salt, preferably basic aluminum chloride having a composition represented by AlCln (OH) 3-n. Prepare. The spinning solution is spun into a precursor fiber by using a double tube nozzle through which air flows out from the outer tube at a high speed and the spinning solution flows out from the inner tube. When this precursor fiber is baked, an alumina fiber is obtained. The diameter of the alumina fiber is usually 1 to 50 μm, but it is preferable to use a rope-like heat-resistant material according to the present invention having a diameter of 3 to 8 μm. The length of the fiber is preferably 5 mm or more, particularly 10 mm or more. The upper limit of the fiber length is arbitrary, but is usually 300 mm or less, and at most 500 mm.
[0008]
The rope-like heat-resistant material according to the present invention has a structure in which this alumina fiber is formed into a long and slender string-like fiber assembly, and a plurality of these are twisted together. The alumina fiber can be made into a string-like fiber aggregate by any method. Alumina fiber itself is small in strength and easy to break, but the precursor fiber is strong and flexible, so the precursor fiber is twisted while being aligned in the length direction to form a thick string, and then calcined. It can be set as the string-like fiber assembly which consists of an alumina fiber. Firing may be performed on the precursor fibers collected to form a string, or may be performed after twisting a plurality of strings to form a rope. As another method, alumina fibers or precursor fibers mixed with organic fibers are formed into a sheet shape, cut into a strip shape to form a string shape, and then fired to form a string shape made of alumina fibers. The fiber assembly can be made. In this case, the firing may be performed for a string-like shape, or may be performed after a plurality of strands are twisted to form a rope shape. Further, as a further alternative, the precursor fibers are accumulated in a mat shape, subjected to needling, and then fired to form a blanket that is cut into a string shape to form a fiber assembly. In order to increase the strength of the string-like fiber aggregate, it is preferable that the string-like fiber aggregate itself is twisted. The number of twists is usually about 5 to 100 times / m. The weight of the string-like fiber aggregate is usually 0.4 to 30 g / m, but preferably 1 to 15 g / m. The bulk density is preferably about 0.05 to 0.6 g / cm 3 . A rope-shaped heat-resistant material according to the present invention can be obtained by twisting a plurality of the string-like alumina fiber aggregates. If desired, the twisting may be repeated a plurality of times, for example, by twisting a plurality of twisted strand-like alumina fiber aggregates. Twisting the string-like fiber aggregate into a rope shape can be performed according to a normal rope manufacturing method. For example, a mixture of a small amount of organic fibers and alumina fibers is formed into a thin sheet shape, and this is cut into a strip shape, and false twist is applied by a scabbard or the like to form a string-like fiber assembly. Next, the fiber aggregate is twisted and combined with an up twister or the like to form a rope, and finally fired to remove the organic fiber, thereby obtaining the rope-shaped heat-resistant material according to the present invention. Regardless of which method is used, the rope-shaped heat-resistant material has a diameter of 1.5 to 120 mm, particularly 3 to 50 mm, a tensile strength of 0.01 to 80 kg, particularly 0.03 to 30 kg, and a weight of Those having 1 to 2200 g / m, particularly 8 to 800 g / m are preferred. The bulk density is preferably 0.05 to 0.6 g / cm 3 . In general, when the bulk density is small, the elasticity is small, and when used as a joint material or a gasket, it becomes difficult to exhibit sufficient sealing performance. Moreover, the thing with a large bulk density is difficult to process, and heat insulation property also falls.
[0009]
【Example】
The present invention will be described more specifically with reference to the following examples.
Example 1
Alumina fiber blanket that has been subjected to needling at a density of 15 strokes / cm 2 (bulk density 0.16 g / cm 3 , thickness 7.5 mm, average fiber diameter 4 μm, fiber length 20 to 200 mm; composition is alumina 72 (Weight%, silica 28 weight%) was cut into a width of 10 mm with a cutting machine to form a string-like fiber assembly. This was twisted 30 times / m with a twisting machine, and then twisted together to give a rope-like heat-resistant material having a diameter of 22 mm, a weight of 35 g / m, and a tensile bundle strength of 7 kg. When this rope-shaped heat-resistant material was wound for heat insulation of a pipe having an outer diameter of 250 mm, it was excellent in construction efficiency, and almost no material loss occurred when heat insulation was performed with an alumina fiber blanket or the like. .
Example 2
An alumina fiber precursor (the ratio of aluminum to silicon is 72:28 as Al 2 O 3 and SiO 2 , average fiber diameter 7 μm, fiber length 30 to 300 mm) is mixed with 10% vinylon fiber by weight, It was defibrated by a card machine to form a sheet of 26 g / m 2 . This was cut into a strip having a width of 40 mm with a cutting machine, and then subjected to false twisting with a leather belt type false twisting device (sheath skin) to obtain a 1.04 g / m string-like fiber assembly. Two strands of this string-like fiber assembly were twisted with a twisting machine to form a primary rope, and 10 primary ropes were further twisted to form a secondary rope. Eight of these secondary ropes were twisted together with a twisting machine to form a tertiary rope with a diameter of 17 mm. After twisting three of these tertiary ropes, they were fired in air at 1250 ° C. to obtain a rope-like heat-resistant material made of alumina fibers having a diameter of 28 mm, a weight of 225 g / m, and a tensile bundle strength of 12 kg. When this rope-like heat-resistant material was used as a gasket packing for a heating burner mounting flange of a steelmaking heating furnace, it was excellent in construction efficiency and withstood repeated use.
Example 3
Alumina fiber (average fiber diameter 4 μm, fiber length 20-200 mm; composition is 72% by weight alumina, 28% by weight silica) is mixed with 15% vinylon fiber by weight, and this is defibrated by a card machine to obtain 25 g / M 2 sheet. This was cut into a strip having a width of 25 mm with a cutting machine, and false twisted with a leather belt type false twisting device (sheath skin) to obtain a string-like fiber assembly of 0.5 g / m. Two strands of this string-like fiber assembly were twisted with a twisting machine to form a primary rope, and 10 primary ropes were further twisted to form a secondary rope. Eight of these secondary ropes were twisted with a twisting machine to form a tertiary rope with a diameter of 12 mm. After twisting three tertiary ropes, they were fired at 800 ° C. for 1 hour under air flow to obtain a rope-like heat-resistant material made of alumina fibers having a diameter of 23 mm, a weight of 200 g / m, and a tensile bundle strength of 8 kg.
[0010]
【Effect of the invention】
The rope-shaped heat-resistant material according to the present invention is composed of alumina fibers having excellent high-temperature characteristics, can be easily manufactured, and is excellent in workability because it is rope-shaped. It is suitable to be used as a material. In particular, since it is rope-shaped and can be mounted by being appropriately deformed, it is suitable for use as a joint material applied to a seal portion having a fitting groove such as an O-ring groove, a narrow gap seal portion, a deep gap, or the like.

Claims (7)

アルミナ繊維ブランケットを裁断して紐状とした、アルミナ繊維からなる紐状の繊維集合体を複数本ロープ状に撚り合わせた構造からなることを特徴とするロープ状耐熱材。A rope-like heat-resistant material comprising a structure in which a plurality of cord-like fiber aggregates made of alumina fibers are twisted into a rope shape by cutting an alumina fiber blanket into a cord shape . 繊維集合体が、アルミナ繊維の前駆体繊維又はこれと有機繊維とを混合してシート状とし、これを帯状に裁断して紐状としたものを焼成して形成されたものであることを特徴とする請求項1記載のロープ状耐熱材。  The fiber aggregate is formed by firing a precursor fiber of alumina fiber or a mixture of this and an organic fiber into a sheet shape, and cutting this into a strip shape to form a string shape. The rope-like heat-resistant material according to claim 1. 繊維集合体が、アルミナ繊維と有機繊維を混合してシート状とし、これを帯状に裁断して紐状としたものを焼成して形成されたものであることを特徴とする請求項1記載のロープ状耐熱材。  2. The fiber assembly according to claim 1, wherein the fiber assembly is formed by mixing alumina fibers and organic fibers into a sheet shape, cutting the strip into a strip shape, and firing the cord. Rope-like heat-resistant material. 繊維集合体が、撚りが施されているものであることを特徴とする請求項1ないしのいずれかに記載のロープ状耐熱材。The rope-like heat-resistant material according to any one of claims 1 to 3 , wherein the fiber assembly is twisted. 繊維集合体を複数本撚り合わせたものを更に複数本撚り合わせることを1回ないし複数回行った構造を有することを特徴とする請求項1ないしのいずれかに記載のロープ状耐熱材。The rope-shaped heat-resistant material according to any one of claims 1 to 4 , wherein the rope-shaped heat-resistant material has a structure in which a plurality of twisted fiber assemblies are further twisted once or a plurality of times. アルミナ繊維のアルミニウムと珪素の比が、AlとSiOの重量比に換算して、65:35〜99:1であることを特徴とする請求項1ないしのいずれかに記載のロープ状耐熱材。The ratio of aluminum to silicon in the alumina fiber is 65:35 to 99: 1 in terms of a weight ratio of Al 2 O 3 and SiO 2 , according to any one of claims 1 to 5 , Rope-like heat-resistant material. 直径が1.5〜120mmであり、重さが1〜2200g/mであることを特徴とする請求項1ないしのいずれかに記載のロープ状耐熱材。The rope-shaped heat-resistant material according to any one of claims 1 to 6 , having a diameter of 1.5 to 120 mm and a weight of 1 to 2200 g / m.
JP2001297450A 2001-09-27 2001-09-27 Heat resistant material Expired - Fee Related JP4963150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001297450A JP4963150B2 (en) 2001-09-27 2001-09-27 Heat resistant material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001297450A JP4963150B2 (en) 2001-09-27 2001-09-27 Heat resistant material

Publications (2)

Publication Number Publication Date
JP2003105682A JP2003105682A (en) 2003-04-09
JP4963150B2 true JP4963150B2 (en) 2012-06-27

Family

ID=19118528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001297450A Expired - Fee Related JP4963150B2 (en) 2001-09-27 2001-09-27 Heat resistant material

Country Status (1)

Country Link
JP (1) JP4963150B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4671819B2 (en) * 2005-09-09 2011-04-20 中国電力株式会社 Method for reinforcing high-temperature hollow member
WO2015005208A1 (en) * 2013-07-09 2015-01-15 株式会社フルヤ金属 Structure for protecting high thermal device and method for recovering metallic element

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3228444B2 (en) * 1993-02-16 2001-11-12 電気化学工業株式会社 Method for suppressing dust generation of alumina fiber molded body and inorganic fiber molded body
JP2805456B2 (en) * 1995-06-27 1998-09-30 日本グラスファイバー工業株式会社 Backup material for fireproof glass doors
JP2926142B2 (en) * 1996-05-14 1999-07-28 日本グラスファイバー工業株式会社 Non-combustible rope
JP3274836B2 (en) * 1997-05-13 2002-04-15 三菱化学株式会社 Heat resistant material

Also Published As

Publication number Publication date
JP2003105682A (en) 2003-04-09

Similar Documents

Publication Publication Date Title
CN102741377B (en) Multi-layer fire protection material
CN108751748B (en) Basalt chopped fiber impregnating compound
CN107075805A (en) Temperature-resistant heat insulating pad
JP6129558B2 (en) Mounting mat for exhaust gas treatment equipment
CN1868947A (en) Saline soluble inorganic fibres
US10465586B2 (en) Inorganic fibre mats
CN108863258A (en) A kind of fire prevention calcium silicate board and preparation method thereof that high-temperature stability is good
JP4963150B2 (en) Heat resistant material
CN209989698U (en) Flame-retardant inhaul cable
CN105153704A (en) Ceramic-rubber composite material for flame-resistant cable and production method thereof
JPS5813683A (en) Packing for automobile exhaust gas cleaner
JP5414597B2 (en) Braided rope for sealing the coke oven opening and its sealing method
KR20190004268A (en) Construction method of skid pipe and its thermal insulation protection member
US4581882A (en) Refractory fiber rope packing
KR19980086983A (en) Heat-resistant
US4582742A (en) High-temperature fibrous insulation module
JP3274836B2 (en) Heat resistant material
JP3432996B2 (en) Method for producing inorganic fiber block and heat insulating structure
JPH0641727B2 (en) Silencer for internal combustion engine
JPH0667780B2 (en) Alumina fiber molding
JP2515767B2 (en) Extruded building materials with excellent explosion resistance
CN221255886U (en) Flame-retardant wear-resistant building material
CN220020694U (en) Flexible protective layer fireproof cable
CN211873638U (en) Light thermal insulation decorative composite board
CN220189271U (en) Photoelectric composite high-temperature-resistant cable

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080423

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees