JP4963143B2 - Metal-to-metal joining method - Google Patents

Metal-to-metal joining method Download PDF

Info

Publication number
JP4963143B2
JP4963143B2 JP2001038470A JP2001038470A JP4963143B2 JP 4963143 B2 JP4963143 B2 JP 4963143B2 JP 2001038470 A JP2001038470 A JP 2001038470A JP 2001038470 A JP2001038470 A JP 2001038470A JP 4963143 B2 JP4963143 B2 JP 4963143B2
Authority
JP
Japan
Prior art keywords
metal
plating layer
plate member
core wire
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001038470A
Other languages
Japanese (ja)
Other versions
JP2002239752A (en
Inventor
健一 花崎
由紀子 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2001038470A priority Critical patent/JP4963143B2/en
Publication of JP2002239752A publication Critical patent/JP2002239752A/en
Application granted granted Critical
Publication of JP4963143B2 publication Critical patent/JP4963143B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Installation Of Indoor Wiring (AREA)
  • Cable Accessories (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Processing Of Terminals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、すずまたはすず合金などからなるめっき層を備えた金属と、他の金属とを接合する金属同士の接合方法に関する。
【0002】
【従来の技術】
例えば、自動車などに配索されるワイヤハーネスは、電線と該電線の端部に取り付けられる端子金具と、を備えている。前記電線は、銅などの金属からなる芯線と、該芯線を被覆する絶縁性の被覆部と、を備えている。端子金具は、導電性の金属からなる母材の表面に、すずなどからなるめっき層が形成されている。
【0003】
【発明が解決しようとする課題】
従来から、前記端子金具と前記電線とを電気的及び機械的に接続する際には、端子金具の一部分を前記電線にかしめるなどしてきた。このため、例えば、自動車などに前記ワイヤハーネスが配索された際に、該自動車の走行中の振動などによって、前記端子金具と電線との電気的な接続が、断線する恐れが生じる。
【0004】
また、半田などを用いたろう付けによって、前記端子金具と前記電線とを電気的及び機械的に接続することも考えられる。半田などを用いたろう付けを用いても、該自動車の走行中の振動などによって前記端子金具と電線との電気的な接続が断線する恐れが生じ、かつ経年変化などによって前記端子金具と電線との電気的な接続が断線する恐れがあった。
【0005】
したがって、本発明の目的は、表面にめっき層が形成された金属に他の金属を確実に接合できる金属同士の接合方法を提供することにある。
【0007】
【課題を解決するための手段】
前記課題を解決し目的を達成するために、請求項1に記載の本発明の金属同士の接合方法は、表面にすずまたはすず合金からなるめっき層が形成された第1金属と、該第1金属とは別体の銅または銅合金からなる第2金属と、を接合する接合方法において、前記第1金属のめっき層に、前記第1及び第2金属とは別体の第3金属を重ね、該第3金属にさらに前記第2金属を重ねて、互いに接合されていない前記第1〜第3金属に対して超音波溶着を行うことで、前記第3金属を介して前記第1金属と前記第2金属とを接合し、前記第3金属は、板状の板部材であり、前記板部材は、インジウム、ビスマス、鉛、カドミウムのうち一つの金属若しくは二つ以上を含んだ合金またははんだからなることを特徴としている。
【0008】
請求項2に記載の本発明の金属同士の接合方法は、表面にめっき層が形成された第1金属と、該第1金属とは別体の第2金属と、を接合する接合方法において、前記第1金属のめっき層に、前記第1及び第2金属とは別体の第3金属を重ね、該第3金属にさらに前記第2金属を重ねて、互いに接合されていない前記第1〜第3金属に対して超音波溶着を行うことで、前記第3金属を介して前記第1金属と前記第2金属とを接合し、前記第3金属は、板状の板部材と、粒状に形成されかつ前記めっき層の厚みより大きい金属粒と、であることを特徴としている。
【0010】
請求項3に記載の本発明の金属同士の接合方法は、請求項に記載の金属同士の接合方法において、前記板部材は、インジウム、ビスマス、鉛、カドミウムのうち一つの金属若しくは二つ以上を含んだ合金またははんだからなることを特徴としている。
【0011】
請求項に記載の本発明の金属同士の接合方法は、請求項に記載の金属同士の接合方法において、前記第1金属は黄銅からなり、第2金属は銅からなり、前記金属粒は黄銅からなることを特徴としている。
【0012】
請求項5に記載の本発明の金属同士の接合方法は、請求項ないし請求項4のうち何れか一項に記載の金属同士の接合方法において、前記めっき層は、すずまたはすず合金からなることを特徴としている。
【0013】
請求項1に記載した本発明の金属同士の接合方法によれば、第1金属のめっき層に第3金属を重ね、さらに第3金属に第2金属を重ねて超音波溶着を行う。なお、前記第3金属は、前記めっき層に馴染みやすい(くっつき易い)ものであるのが望ましい。このため、めっき層と第3金属とが確実に接合し、第3金属と第2金属とが確実に接合する。
【0014】
また、第3金属が板状の板部材であるため、該第3金属と、第1及び第2金属双方と、の接触面積が大きくなる。このため、第3金属と、第1及び第2金属双方と、を確実に接合できる。
【0015】
請求項に記載した本発明の金属同士の接合方法によれば、第1金属のめっき層を第3金属に重ね、さらに第3金属に第2金属を重ねて超音波溶着を行う。なお、前記第3金属は、前記めっき層に馴染みやすい(くっつき易い)ものであるのが望ましい。このため、めっき層と第3金属とが確実に接合し、第3金属と第2金属とが確実に接合する。また、第3金属としてめっき層の厚みより大きな金属粒と、板状の板部材と、を用いる。このため、該板部材と、第1及び第2金属双方と、の接触面積が大きくなるので、超音波溶着を行うと、第3金属と第1及び第2金属双方とを確実に接合できる。さらに、金属粒が、めっき層の厚みより大きいので、超音波溶着を行うと前記金属粒がめっき層を突き破り第1金属の母材と第2金属との双方と確実に接合する。
【0017】
請求項に記載した本発明の金属同士の接合方法によれば、板部材が、インジウム、ビスマス、鉛、カドミウムなどからなる。このため、板部材の融点が比較的低くなり、かつめっき層との馴染みが良くなる。したがって、超音波接合を行うと、第3金属が、第1及び第2金属双方と確実に接合する。
【0018】
請求項に記載した本発明の金属同士の接合方法によれば、金属粒が、黄銅からなるので、黄銅からなる第1金属と銅からなる第2金属との双方と、確実に接合する。
【0019】
請求項に記載した本発明の金属同士の接合方法によれば、第1金属のめっき層に第3金属を重ね、さらに第3金属に第2金属を重ねて超音波溶着を行う。このため、めっき層と第3金属とが確実に接合し、第3金属と第2金属とが確実に接合する。
【0020】
【発明の実施の形態】
以下、本発明の第1の実施形態にかかる金属同士の接合方法を、図1ないし図4を参照して説明する。第1の実施形態にかかる金属同士の接合方法は、図1に示す電線モジュール1を組み立てる方法である。電線モジュール1は、図1に示すように、第1金属としての金属片2と、被覆電線3と、第3金属としての板部材4と、を備えている。
【0021】
金属片2は、板状の母材5と、該母材5の一方または両方の表面に形成されためっき層6と、を備えて、比較的薄い薄板状に形成されている。母材5は、導電性を有する金属からなる。図示例では、母材5は黄銅からなる。めっき層6は、すずまたはすず合金からなる。図示例では、めっき層6は、すずからなる。
【0022】
被覆電線3は、断面形状が丸形に形成されている。被覆電線3は、断面丸形の第2金属としての芯線7と、この芯線7を被覆する被覆部8と、を備えている。芯線7は、前記金属片2とは勿論別体でかつ導電性を有する金属からなる。芯線7は、一本の導電性の導線または、複数の導電性の導線が撚られて構成されている。
【0023】
芯線7は、可撓性を有している。芯線7を構成する導線は、銅または銅合金などからなる。図示例では、芯線7を構成する導線は、銅からなる。即ち、図示例では、芯線7は、銅からなる。被覆部8は、絶縁性と可撓性とを有する合成樹脂からなる。
【0024】
板部材4は、金属片2と芯線7との双方と勿論別体で、かつ比較的薄い薄板状に形成されている。板部材4は、比較的融点の低い金属からなる。板部材4は、前記芯線7を構成する金属と前記めっき層6を構成する金属との双方と、比較的馴染みの良い(合金に成りやすいまたはくっつき易い)金属からなる。
【0025】
板部材4は、インジウム(In)、ビスマス(Bi)、鉛(Pb)、カドミウム(Cd)のうち一つの金属からなるのが望ましい、または、板部材4は、インジウム(In)、ビスマス(Bi)、鉛(Pb)、カドミウム(Cd)のうち二つ以上の合金からなるのが望ましい、または、板部材4は、すずと鉛の合金であるはんだからなるのが望ましい。図示例では、板部材4は、インジウム(In)からなる。
【0026】
前記電線モジュール1は、金属片2のめっき層6に板部材4が重なり、更に該板部材4に芯線7が重なった状態で、金属片2と板部材4とが互いに接合し、板部材4と芯線7とが互いに接合している。このとき、前記板部材4を構成する金属は、芯線7内に拡散している。
【0027】
前記電線モジュール1は、前記金属片2と、板部材4と、芯線7とが、超音波溶着機によって互いに固定されて得られる。超音波溶着機は、図4に示すように、チップ20(工具ホーンともいう)と、このチップ20に相対するアンビル21と、図示しない発振機と、振動子と、ホーンなどを備えている。
【0028】
超音波溶着機は、チップ20とアンビル21との間に互いに溶着する溶着対象物を挟み、これらのチップ20とアンビル21とを互いに近づける方向に加圧した状態で、発振機で振動子を振動させてこの振動をホーン経由でチップ20に伝える。そして、超音波溶着機は、チップ20とアンビル21との間に挟んだ溶着対象物に超音波振動を加えて該対象物を溶着させる。
【0029】
前記電線モジュール1を組み立てる際、即ち、金属片2と板部材4と芯線7とを固定する際には、予め被覆部8の一部分を除去して芯線7の一部分を露出させておく。なお、図示例では、被覆電線3の端部3aに位置する被覆部8を除去している。
【0030】
そして、図4に示すように、めっき層6がチップ20に相対するように、アンビル21に金属片2を重ねる。金属片2のめっき層6に板部材4を重ね、該板部材4に芯線7を重ねる。芯線7にチップ20の先端面を接触させる。こうして、チップ20とアンビル21との間に、金属片2と板部材4と芯線7とを挟む。
【0031】
そして、チップ20とアンビル21とを互いに近づける方向に加圧した後、発振機で振動子を振動させてこの振動をホーン経由でチップ20に伝える。芯線7と板部材4との間と、板部材4とめっき層6との間と、に前述した振動が生じて、比較的融点の低い金属からなるので板部材4の一部分が溶ける。チップ20とアンビル21とが互いに近づく方向に加圧されているので、溶けた板部材4の一部分は、芯線7を構成する銅内に拡散する。こうして、板部材4は、芯線7と金属結合する。
【0032】
また、板部材4とめっき層6との間とに前述した振動が生じており、板部材4はめっき層6と合金になり易い(くっつき易い)金属からなるので、板部材4とめっき層6とは溶融しないで固相のまま互いに金属結合する。こうして、前記板部材4と芯線7とは、所謂超音波溶着(超音波溶接または超音波接合ともいう)によって互いに接合され、板部材4とめっき層6即ち金属片2とは所謂超音波溶着(超音波溶接または超音波接合ともいう)によって互いに接合される。そして、前述した構成の電線モジュール1を得る。
【0033】
前述した電線モジュール1を組み立てる金属同士の接合方法は、例えば、表面にすずなどからなるめっき層が形成された金属としての端子金具に、他の金属としての被覆電線3の芯線7を接合する場合に、好適である。
【0034】
次に、本発明の発明者は、前記金属同士の接合方法で得られた電線モジュール1の接合箇所の断面に、EPMA(Electron Probe Microanalyser)を用いて、X線分光分析を施した。このX線分光分析によって、図2及び図3に示す結果が得られた。図2は、図3に示す実際に得られたX線分光分析の結果を、模式的に示す図である。また、図2中には、図1などと同一部分には、同一符号を付している。さらに、図2中に平行斜線で示す部分は板部材4を示しており、図3中に白っぽく見える部分は同じく板部材4を示している。
【0035】
図2及び図3に示すように、図2中の平行斜線で示す板部材4及び図3中の白っぽく見える板部材4が、芯線7内に拡散している。このため、前述したX線分光分析によって、板部材4と芯線7とが確実に金属的に接合していることが明らかとなった。
【0036】
本実施形態によれば、芯線7とめっき層6との間に比較的融点の低く、芯線7とめっき層6との双方と馴染み易い板部材4を挿入して、金属片2と芯線7とを超音波溶着する。このため、表面にすずなどからなるめっき層6が施されて、銅と接合しづらい金属片2を、該金属片2とは別体の芯線7と確実に接合できる。
【0037】
板部材4が、板状に形成されている。このため、該板部材4と金属片2との接触面積が大きくなり、前記板部材4と芯線7との接触面積が大きくなる。このため、板部材4と金属片2とを確実に接合でき、板部材4と芯線7とを確実に接合できる。したがって、互いに接合しづらくかつ別体の金属片2と芯線7とをより確実に接合できる。
【0038】
次に、参考例にかかる金属同士の接合方法を、図5ないし図7を参照して説明する。なお、前述した第1の実施形態と同一構成部分には同一符号を付して説明を省略する。参考例にかかる金属同士の接合方法で組み立てる電線モジュール1は、図5及び図6に示すように、板部材4の代わりに、第3金属として金属粒10を多数用いる。
【0039】
金属粒10は、勿論、金属片2と芯線7との双方とは別体でかつ粒状に形成されている。金属粒10は、図6に示すように、めっき層6の厚みTより寸法Lが大きい。前記寸法Lは、金属粒10の最も長い寸法を示している。なお、寸法Lは、本明細書に記した金属粒10の大きさを示している。
【0040】
本明細書に記したように金属粒10がめっき層6の厚みTより大きいということは、金属粒10の少なくとも最も長い寸法Lがめっき層6の厚みTより大きいということを示している。なお、図示例では、金属粒10は、球状または楕円体状に形成されており、前記寸法Lは、球状の金属粒10の直径または楕円体状の金属粒10の長径となっている。
【0041】
金属粒10は、導電性を有し、かつめっき層6と同等の堅さまたはめっき層6よりやや硬い金属からなる。図示例では、金属粒10は、黄銅からなる。なお、図示例では、金属粒10は球状または楕円体状であるが、本発明では、金属粒10は適宜の形状に形成されても良いことは勿論である。
【0042】
本参考例にかかる接合方法で得られる電線モジュール1は、図5に示すように、金属片2のめっき層6に芯線7が重なり、かつ、図6に示すように、金属粒10がめっき層6を突き破って母材5と芯線7との双方と接合している。
【0043】
本参考例にかかる金属同士の接合方法においても、前述した第1の実施形態と同様に、前記金属片2と、金属粒10と、芯線7とが、超音波溶着機によって互いに固定されて得られる。
【0044】
前記電線モジュール1を組み立てる際、即ち、金属片2と金属粒10と芯線7とを固定する際には、予め被覆部8の一部分を除去して芯線7の一部分を露出させておく。なお、図示例では、被覆電線3の端部3aに位置する被覆部8を除去している。
【0045】
そして、図7に示すように、めっき層6がチップ20に相対するように、アンビル21に金属片2を重ね、めっき層6に金属粒10を多数置く。さらに、めっき層6と金属粒10との双方に、芯線7を重ねる。芯線7にチップ20の先端面を接触させる。こうして、チップ20とアンビル21との間に、金属片2と金属粒10と芯線7とを挟む。
【0046】
そして、チップ20とアンビル21とを互いに近づける方向に加圧した後、発振機で振動子を振動させてこの振動をホーン経由でチップ20に伝える。芯線7とめっき層6との間に前述した振動が生じる。前記金属粒10がめっき層6と同等の堅さであるまたは前記めっき層6より硬いので、金属粒10がめっき層6の一部を削り取る。そして、前記金属粒10は、寸法Lが厚みTより大きいので、めっき層6を突き破って、母材5と芯線7との双方と接触する。
【0047】
また、芯線7とめっき層6との間に前述した振動が生じているため、金属粒10が母材5と芯線7との双方と接触すると、前記金属粒10と、母材5と芯線7との双方とは溶融しないで固相のまま互いに金属結合する。こうして、金属粒10と芯線7とは、所謂超音波溶着(超音波溶接または超音波接合ともいう)によって互いに接合され、金属粒10と金属片2とは所謂超音波溶着(超音波溶接または超音波接合ともいう)によって互いに接合される。そして、前述した構成の電線モジュール1を得る。
【0048】
さらに、本参考例の金属同士の接合方法も、前述した第1の実施形態と同様に、例えば、表面にすずなどからなるめっき層が形成された金属としての端子金具に、他の金属としての被覆電線3の芯線7を接合する場合に、好適である。
【0049】
本参考例によれば、芯線7とめっき層6との間に、寸法Lが厚みTより大きくかつめっき層6と同等か該めっき層6より硬い金属粒10を、多数を置いて、金属片2と芯線7とを超音波溶着する。金属粒10がめっき層6を突き破るので、該金属粒10が母材5と芯線7との双方に確実に接合する。このため、表面にめっき層6が施されて、銅と接合しづらい金属片2を、該金属片2とは別体の芯線7と確実に接合できる。
【0050】
また、金属粒10が、めっき層6の厚みTより大きくかつめっき層6と同等か該めっき層6より硬いので、該金属粒10がめっき層6を確実に突き破る。このため、金属粒10が、母材5と芯線7との双方と確実に接触して、これら母材5と芯線7との双方と確実に接合する。
【0051】
次に、本発明の第の実施形態にかかる金属同士の接合方法を、図8ないし図13を参照して説明する。なお、前述した第1の実施形態及び参考例と同一構成部分には同一符号を付して説明を省略する。本実施形態にかかる金属同士の接合方法で組み立てる電線モジュール1は、図8及び図9に示すように、第3金属として、板部材4と多数の金属粒10との双方を用いる。勿論、板部材4と多数の金属粒10とは、それぞれ、金属片2と芯線7との双方とは別体である。
【0052】
本実施形態で用いられる金属粒10は、図10から図13に示すように、熱処理などによって、板部材4内にうめ込まれている。さらに、金属粒10は、図13に示すように、一部分が板部材4の両面から突出している。
【0053】
図10及び図11は、金属粒10を多数うめ込んだ板部材4の断面を、電子顕微鏡を用いて拡大して観察した結果である。なお、図10は、図11に示す実際に得られた結果を、模式的に示す図である。
【0054】
また、図10及び図11中では、板部材4を構成する金属を示している部分には符号Aを付し、金属粒10を構成する金属を示している部分には符号Bを付している。なお、図11では、符号Aで示す部分は、比較的黒くなっているとともに、符号Bで示す部分は、前記符号Aで示す部分より白っぽくなっている。
【0055】
図10及び図11に示すように、金属粒10を構成する金属が、板部材4を構成する金属内に、多数分布している。このため、金属粒10が板部材4内に多数分布していることが明らかとなり、金属粒10が板部材4に多数うめ込まれていることが明らかとなった。
【0056】
また、本実施形態で用いられる金属粒10は、図9に示すように、寸法Lが合金層11の厚みTaより大きい。なお、合金層11は、めっき層6と板部材4とからなり、後述する超音波溶着する際の熱などによって前記めっき層6と板部材4とが混ざり合って形成される。また、金属粒10は、図13に示すように、寸法Lが板部材4の厚みTbより大きい。このため、金属粒10は、前述した第2の実施形態と同様に、寸法Lがめっき層6の厚みTより大きい。なお、前記寸法Lは、金属粒10の最も長い寸法を示している。こうして、金属粒10は、板部材4と合金層11とめっき層6の厚みTb,Ta,Tより大きい。
【0057】
金属粒10は、導電性を有し、かつめっき層6と同等の堅さまたはめっき層6よりやや硬い金属からなる。図示例では、金属粒10は、黄銅からなる。なお、図示例では、金属粒10は球状または楕円体状であるが、本発明では、金属粒10は適宜の形状に形成されても良いことは勿論である。
【0058】
本実施形態にかかる接合方法で得られる電線モジュール1は、図8に示すように、金属片2のめっき層6に板部材4が重なりかつ該板部材4に芯線7が重なっている。さらに、図9に示すように、金属片2と板部材4と芯線7との接合箇所では、金属粒10が合金層11を突き破って母材5と芯線7との双方と接合しているとともに、前述した第1の実施形態と同様に、前記板部材4を構成する金属が芯線7内に拡散している。
【0059】
本実施形態にかかる金属同士の接合方法においても、前述した第1の実施形態及び参考例と同様に、前記金属片2と、金属粒10をうめ込んだ板部材4と、芯線7とが、超音波溶着機によって互いに固定されて得られる。
【0060】
前記電線モジュール1を組み立てる際、即ち、金属片2と金属粒10と板部材4と芯線7とを固定する際には、予め被覆部8の一部分を除去して芯線7の一部分を露出させておく。なお、図示例では、被覆電線3の端部3aに位置する被覆部8を除去している。
【0061】
そして、図12に示すように、めっき層6がチップ20に相対するように、アンビル21に金属片2を重ね、該金属片2のめっき層6に金属粒10を多数うめ込んだ板部材4を重ねる。さらに、該板部材4に芯線7を重ねる。芯線7にチップ20の先端面を接触させる。こうして、チップ20とアンビル21との間に、金属片2と金属粒10をうめ込んだ板部材4と芯線7とを挟む。
【0062】
そして、チップ20とアンビル21とを互いに近づける方向に加圧した後、発振機で振動子を振動させてこの振動をホーン経由でチップ20に伝える。芯線7と板部材4との間と、板部材4とめっき層6との間に前述した振動が生じる。比較的融点の低い金属からなるので、板部材4の特に前記チップ20とアンビル21との間に位置する一部分が溶ける。チップ20とアンビル21とが互いに近づく方向に加圧されているので、溶けた板部材4の一部分は、芯線7を構成する銅内に拡散する。こうして、板部材4は、芯線7と金属結合する。
【0063】
板部材4とめっき層6との間に前述した振動が生じているため、めっき層6の特に前記チップ20とアンビル21との間に位置する一部分が溶ける。さらに、板部材4がめっき層6と合金に成りやすい金属からなるので、板部材4とめっき層6とは互いに混ざり合って合金層11となる。
【0064】
また、前記金属粒10がめっき層6と同等の堅さであるまたは前記めっき層6より硬いので、金属粒10がめっき層6の一部を削り取る。そして、金属粒10は、めっき層6を突き破って、母材5と芯線7との双方と接触する。
【0065】
また、芯線7とめっき層6との間に前述した振動が生じているため、金属粒10は、母材5と芯線7との双方と接触すると、これら母材5と芯線7との双方と溶融しないで固相のまま金属結合する。こうして、チップ20とアンビル21とが互いに近づく方向に加圧され、かつ前述した振動が付与されているので、金属粒10は、芯線7と母材5即ち金属片2との双方と所謂超音波溶着(超音波溶接または超音波接合ともいう)によって接合される。こうして、金属片2と芯線7とは、所謂超音波溶着(超音波溶接または超音波接合ともいう)によって互いに接合される。そして、前述した構成の電線モジュール1を得る。
【0066】
さらに、本実施形態の金属同士の接合方法も、前述した第1及び第2の実施形態と同様に、例えば、表面にすずなどからなるめっき層が形成された金属としての端子金具に、他の金属としての被覆電線3の芯線7を接合する場合に、好適である。
【0067】
本実施形態によれば、芯線7とめっき層6との間に、寸法Lが厚みTより大きくかつめっき層6と同等か該めっき層6より硬い金属粒10を多数うめ込んだ板部材4を置いて、金属片2と芯線7とを超音波溶着する。めっき層6と板部材4とが合金層11をなし、かつ金属粒10がめっき層6を突き破り母材5と芯線7との双方と接合する。したがって、表面にめっき層6が施されて、芯線7と接合しづらい金属片2を、該金属片2とは別体の芯線7と確実に接合できる。
【0068】
また、板部材4が、板状に形成されている。このため、該板部材4と金属片2との接触面積が大きくなり、前記板部材4と芯線7との接触面積が大きくなる。このため、板部材4と金属片2とを確実に接合でき、板部材4と芯線7とを確実に接合できる。したがって、互いに接合しづらくかつ別体の金属片2と芯線7とをより確実に接合できる。
【0069】
さらに、金属粒10が、合金層11の厚みTaより大きくかつめっき層6の厚みTより大きい。また、金属粒10が、めっき層6と同等か該めっき層6より硬いので、金属粒10が、母材5と芯線7との双方と確実に接触して、これら母材5と芯線7との双方と確実に接合する。
【0070】
前述した第1及び第2の実施形態では、金属片2に被覆電線3の芯線7を接合する場合を示している。しかしながら、本発明では、被覆電線3の芯線7に限らず、金属片2に多種多様な導電性の金属を接合しても良いことは勿論である。
【0071】
また、本発明では、図14に示すように、アンビル21に金属片2を重ね、該金属片2のめっき層6に金属粒10を多数置き、さらに板部材4を重ねて、該板部材4に芯線7を重ねて、超音波溶着を施して、電線モジュール1を組み立てるようにしても良い。
【0072】
この場合、金属粒10は、勿論寸法Lがめっき層6の厚みより大きい。この場合、板部材4の一部分が芯線7内に拡散するとともに、金属粒10がめっき層6を突き破って母材5と超音波溶着する。こうして、表面にめっき層6が施されて、芯線7と接合しづらい金属片2を、該金属片2とは別体の芯線7と確実に接合できる。
【0073】
【発明の効果】
以上説明したように、請求項1に記載の本発明は、第1金属のめっき層に第3金属を重ね、さらに第3金属に第2金属を重ねて超音波溶着を行う。このため、めっき層と第3金属とが確実に接合し、第3金属と第2金属とが確実に接合する。したがって、表面にめっき層が施された第1金属と、この第1金属とは別体の第2金属と、を確実に接合できる。
【0074】
また、第3金属が板状の板部材であるため、該第3金属と、第1及び第2金属双方と、の接触面積が大きくなる。このため、第3金属と、第1及び第2金属双方と、を確実に接合できる。したがって、表面にめっき層が施された第1金属と、この第1金属とは別体の第2金属と、を確実に接合できる。
【0075】
請求項に記載の本発明は、第1金属のめっき層に第3金属を重ね、さらに第3金属に第2金属を重ねて超音波溶着を行う。このため、めっき層と第3金属とが確実に接合し、第3金属と第2金属とが確実に接合する。したがって、表面にめっき層が施された第1金属と、この第1金属とは別体の第2金属と、を確実に接合できる。また、第3金属としてめっき層の厚みより大きな金属粒と、板状の板部材と、を用いる。このため、該板部材と、第1及び第2金属双方と、の接触面積が大きくなるので、超音波溶着を行うと、第3金属と第1及び第2金属双方とを確実に接合できる。さらに、金属粒が、めっき層の厚みより大きいので、超音波溶着を行うと前記金属粒が第1金属の母材と前記第2金属との双方と確実に接合する。したがって、表面にめっき層が施された第1金属と、この第1金属とは別体の第2金属と、を確実に接合できる。
【0077】
請求項に記載の発明は、板部材が、インジウム、ビスマス、鉛、カドミウムなどからなる。このため、板部材の融点が比較的低くなり、かつめっき層との馴染みが良くなる。したがって、超音波接合を行うと、第3金属が、第1及び第2金属双方と確実に接合する。したがって、表面にめっき層が施された第1金属と、この第1金属とは別体の第2金属と、を確実に接合できる。
【0078】
請求項に記載の発明は、金属粒が黄銅からなるので、黄銅からなる第1金属と銅からなる第2金属との双方と確実に接合する。したがって、表面にめっき層が施された第1金属と、この第1金属とは別体の第2金属と、を確実に接合できる。
【0079】
請求項に記載の発明は、第1金属のめっき層に第3金属を重ね、さらに第3金属に第2金属を重ねて超音波溶着を行う。このため、めっき層と第3金属とが確実に接合し、第3金属と第2金属とが確実に接合する。したがって、表面にめっき層が施された第1金属と、この第1金属とは別体の第2金属と、を確実に接合できる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態にかかる金属同士の接合方法で組み立てられる電線モジュールを示す斜視図である。
【図2】図1に示された電線モジュールの接合箇所にX線分光分析を施して得られた結果を模式的に示す図である。
【図3】図1に示された電線モジュールの接合箇所にX線分光分析を施して得られた結果を示す図である。
【図4】図1に示された電線モジュールの分解斜視図である。
【図5】 参考例にかかる金属同士の接合方法で組み立てられる電線モジュールを示す斜視図である。
【図6】図5中のVI−VI線に沿った断面図である。
【図7】図5に示された電線モジュールの分解斜視図である。
【図8】 本発明の第の実施形態にかかる金属同士の接合方法で組み立てられる電線モジュールを示す斜視図である。
【図9】図8中のIX−IX線に沿った断面図である。
【図10】図8に示された電線モジュールの板部材の断面を拡大した状態を模式的に示す図である。
【図11】図8に示された電線モジュールの板部材の断面を拡大した状態を示す図である。
【図12】図8に示された電線モジュールの分解斜視図である。
【図13】図12中のXIII−XIII線に沿った断面図である。
【図14】本発明の変形例の金属同士の接合方法で組み立てられる電線モジュールの分解斜視図である。
【符号の説明】
2 金属片(第1金属)
4 板部材(第3金属)
6 めっき層
7 芯線(第2金属)
10 金属粒(第3金属)
T めっき層の厚み
L 金属粒の寸法(大きさ)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for joining metals, which joins a metal having a plating layer made of tin or a tin alloy, and another metal.
[0002]
[Prior art]
For example, a wire harness routed in an automobile or the like includes an electric wire and a terminal fitting attached to an end portion of the electric wire. The electric wire includes a core wire made of a metal such as copper and an insulating covering portion that covers the core wire. In the terminal fitting, a plating layer made of tin or the like is formed on the surface of a base material made of a conductive metal.
[0003]
[Problems to be solved by the invention]
Conventionally, when the terminal fitting and the electric wire are electrically and mechanically connected, a part of the terminal fitting is caulked on the electric wire. For this reason, for example, when the wire harness is routed in an automobile or the like, there is a risk that the electrical connection between the terminal fitting and the electric wire is broken due to vibration or the like while the automobile is running.
[0004]
It is also conceivable to electrically and mechanically connect the terminal fitting and the electric wire by brazing using solder or the like. Even when brazing using solder or the like is used, there is a risk that the electrical connection between the terminal fitting and the electric wire may be broken due to vibration during traveling of the automobile, and the terminal fitting and the electric wire may be damaged due to secular change or the like. There was a risk that the electrical connection would break.
[0005]
Therefore, the objective of this invention is providing the joining method of the metals which can join another metal reliably to the metal by which the plating layer was formed in the surface.
[0007]
[Means for Solving the Problems]
In order to solve the problems and achieve the object, the metal-to-metal bonding method according to claim 1 is provided on a surface. Made of tin or tin alloy The first metal on which the plating layer is formed and the first metal are separated from each other. Made of copper or copper alloy In the joining method of joining the second metal, a third metal separate from the first and second metals is stacked on the plating layer of the first metal, and the second metal is further applied to the third metal. Again, For the first to third metals not joined to each other By performing ultrasonic welding, the first metal and the second metal are joined via the third metal, and the third metal is , Board Shaped plate member The plate member is made of one metal of indium, bismuth, lead, cadmium, an alloy containing two or more, or solder. It is characterized by that.
[0008]
The metal-to-metal bonding method of the present invention according to claim 2 is a bonding method of bonding a first metal having a plating layer formed on a surface thereof and a second metal separate from the first metal. A third metal separate from the first and second metals is superimposed on the plating layer of the first metal, and the second metal is further superimposed on the third metal, For the first to third metals not joined to each other By performing ultrasonic welding, the first metal and the second metal are joined via the third metal, and the third metal is , Board And a metal particle formed in a granular shape and having a thickness greater than the thickness of the plating layer.
[0010]
The metal-to-metal bonding method according to the third aspect of the present invention is the following. 2 The metal-to-metal bonding method according to claim 1, wherein the plate member is one metal of indium, bismuth, lead, and cadmium. Or It is characterized by comprising an alloy or solder containing two or more.
[0011]
Claim 4 The metal-to-metal joining method of the present invention described in claim 2 The metal-to-metal bonding method described in 1), wherein the first metal is made of brass, the second metal is made of copper, and the metal particles are made of brass.
[0012]
The metal-to-metal joining method of the present invention according to claim 5 2 In the metal-to-metal bonding method according to any one of claims 4 to 4, the plating layer is made of tin or a tin alloy.
[0013]
According to the metal-to-metal bonding method of the first aspect of the present invention, ultrasonic welding is performed by superimposing the third metal on the plating layer of the first metal and further superimposing the second metal on the third metal. In addition, it is desirable that the third metal is easy to become familiar with (attach to) the plating layer. For this reason, a plating layer and a 3rd metal join reliably, and a 3rd metal and a 2nd metal join reliably.
[0014]
The second Since the three metals are plate-like plate members, the contact area between the third metal and both the first and second metals is increased. For this reason, a 3rd metal and both the 1st and 2nd metal can be joined reliably.
[0015]
Claim 2 According to the metal-to-metal bonding method of the present invention described in The first metal plating layer is superposed on the third metal, and the second metal is superposed on the third metal for ultrasonic welding. In addition, it is desirable that the third metal is easy to become familiar with (attach to) the plating layer. For this reason, a plating layer and a 3rd metal join reliably, and a 3rd metal and a 2nd metal join reliably. Also, As the third metal, metal particles larger than the thickness of the plating layer and a plate-like plate member are used. For this reason, since the contact area between the plate member and both the first and second metals is increased, the third metal and both the first and second metals can be reliably joined by ultrasonic welding. Furthermore, since the metal particles are larger than the thickness of the plating layer, when ultrasonic welding is performed, the metal particles break through the plating layer and reliably join both the base material of the first metal and the second metal.
[0017]
Claim 3 According to the metal-to-metal bonding method of the present invention described in 1), the plate member is made of indium, bismuth, lead, cadmium, or the like. For this reason, melting | fusing point of a plate member becomes comparatively low, and familiarity with a plating layer becomes good. Therefore, when ultrasonic bonding is performed, the third metal is reliably bonded to both the first and second metals.
[0018]
Claim 4 According to the metal-to-metal bonding method of the present invention described in 1. above, the metal particles are made of brass, so that the metal particles are reliably bonded to both the first metal made of brass and the second metal made of copper.
[0019]
Claim 5 According to the metal-to-metal bonding method of the present invention described in the above, ultrasonic welding is performed by superimposing the third metal on the plating layer of the first metal and further superimposing the second metal on the third metal. For this reason, a plating layer and a 3rd metal join reliably, and a 3rd metal and a 2nd metal join reliably.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
The metal-to-metal bonding method according to the first embodiment of the present invention will be described below with reference to FIGS. The metal-to-metal joining method according to the first embodiment is a method of assembling the electric wire module 1 shown in FIG. As shown in FIG. 1, the electric wire module 1 includes a metal piece 2 as a first metal, a covered electric wire 3, and a plate member 4 as a third metal.
[0021]
The metal piece 2 includes a plate-like base material 5 and a plating layer 6 formed on one or both surfaces of the base material 5 and is formed in a relatively thin thin plate shape. The base material 5 is made of a conductive metal. In the illustrated example, the base material 5 is made of brass. The plating layer 6 is made of tin or a tin alloy. In the illustrated example, the plating layer 6 is made of tin.
[0022]
The covered electric wire 3 has a round cross section. The covered electric wire 3 includes a core wire 7 as a second metal having a round cross section and a covering portion 8 that covers the core wire 7. The core wire 7 is made of a metal that is separate from the metal piece 2 and has conductivity. The core wire 7 is formed by twisting one conductive conductor or a plurality of conductive conductors.
[0023]
The core wire 7 has flexibility. The conducting wire constituting the core wire 7 is made of copper or a copper alloy. In the example of illustration, the conducting wire which comprises the core wire 7 consists of copper. That is, in the illustrated example, the core wire 7 is made of copper. The covering portion 8 is made of a synthetic resin having insulating properties and flexibility.
[0024]
The plate member 4 is of course a separate body from both the metal piece 2 and the core wire 7 and is formed in a relatively thin thin plate shape. The plate member 4 is made of a metal having a relatively low melting point. The plate member 4 is made of both a metal constituting the core wire 7 and a metal constituting the plating layer 6 and a metal that is relatively familiar (easily formed into an alloy or easily stuck).
[0025]
The plate member 4 is preferably made of one of indium (In), bismuth (Bi), lead (Pb), and cadmium (Cd), or the plate member 4 is made of indium (In), bismuth (Bi). ), Lead (Pb), and cadmium (Cd). It is preferable that the plate member 4 is made of a solder that is an alloy of tin and lead. In the illustrated example, the plate member 4 is made of indium (In).
[0026]
In the electric wire module 1, the metal piece 2 and the plate member 4 are joined to each other with the plate member 4 overlapping the plating layer 6 of the metal piece 2 and the core wire 7 overlapping the plate member 4. And the core wire 7 are joined to each other. At this time, the metal constituting the plate member 4 is diffused in the core wire 7.
[0027]
The electric wire module 1 is obtained by fixing the metal piece 2, the plate member 4, and the core wire 7 to each other by an ultrasonic welding machine. As shown in FIG. 4, the ultrasonic welder includes a tip 20 (also referred to as a tool horn), an anvil 21 opposed to the tip 20, an oscillator (not shown), a vibrator, a horn, and the like.
[0028]
In the ultrasonic welding machine, an object to be welded is sandwiched between the tip 20 and the anvil 21, and the vibrator is vibrated by the oscillator in a state in which the tip 20 and the anvil 21 are pressurized in a direction approaching each other. Then, this vibration is transmitted to the chip 20 via the horn. Then, the ultrasonic welding machine applies ultrasonic vibration to the welding target object sandwiched between the tip 20 and the anvil 21 to weld the target object.
[0029]
When the electric wire module 1 is assembled, that is, when the metal piece 2, the plate member 4, and the core wire 7 are fixed, a part of the covering portion 8 is removed in advance to expose a part of the core wire 7. In the illustrated example, the covering portion 8 located at the end 3a of the covered electric wire 3 is removed.
[0030]
Then, as shown in FIG. 4, the metal piece 2 is overlaid on the anvil 21 so that the plating layer 6 faces the chip 20. The plate member 4 is overlaid on the plating layer 6 of the metal piece 2, and the core wire 7 is overlaid on the plate member 4. The tip surface of the chip 20 is brought into contact with the core wire 7. Thus, the metal piece 2, the plate member 4, and the core wire 7 are sandwiched between the chip 20 and the anvil 21.
[0031]
Then, after pressurizing the chip 20 and the anvil 21 in a direction to bring them close to each other, the vibrator is vibrated by an oscillator, and this vibration is transmitted to the chip 20 via a horn. The vibration described above is generated between the core wire 7 and the plate member 4 and between the plate member 4 and the plating layer 6, and a part of the plate member 4 is melted because it is made of a metal having a relatively low melting point. Since the tip 20 and the anvil 21 are pressurized in a direction approaching each other, a part of the melted plate member 4 diffuses into the copper constituting the core wire 7. Thus, the plate member 4 is metal-bonded to the core wire 7.
[0032]
In addition, the vibration described above is generated between the plate member 4 and the plating layer 6, and the plate member 4 is made of a metal that is easily alloyed with the plating layer 6. And do not melt and form metal bonds with each other in the solid phase. Thus, the plate member 4 and the core wire 7 are bonded to each other by so-called ultrasonic welding (also referred to as ultrasonic welding or ultrasonic bonding), and the plate member 4 and the plating layer 6, that is, the metal piece 2 are so-called ultrasonic welding ( They are joined together by ultrasonic welding or ultrasonic joining). And the electric wire module 1 of the structure mentioned above is obtained.
[0033]
The metal-to-metal joining method for assembling the electric wire module 1 described above is, for example, a case where the core wire 7 of the covered electric wire 3 as another metal is joined to a terminal fitting as a metal having a plating layer formed of tin or the like on the surface. It is preferable.
[0034]
Next, the inventor of the present invention performed X-ray spectroscopic analysis using EPMA (Electron Probe Microanalyser) on the cross section of the joining portion of the electric wire module 1 obtained by the metal-to-metal joining method. The results shown in FIGS. 2 and 3 were obtained by this X-ray spectroscopic analysis. FIG. 2 is a diagram schematically showing the result of the X-ray spectroscopic analysis actually obtained shown in FIG. In FIG. 2, the same parts as those in FIG. Furthermore, the part shown by parallel oblique lines in FIG. 2 shows the plate member 4, and the part that looks whitish in FIG. 3 shows the plate member 4.
[0035]
As shown in FIGS. 2 and 3, the plate member 4 indicated by the parallel oblique lines in FIG. 2 and the plate member 4 that looks whitish in FIG. 3 are diffused in the core wire 7. For this reason, the X-ray spectroscopic analysis described above revealed that the plate member 4 and the core wire 7 are securely joined metallically.
[0036]
According to the present embodiment, the plate member 4 having a relatively low melting point between the core wire 7 and the plating layer 6 and easily compatible with both the core wire 7 and the plating layer 6 is inserted, and the metal piece 2 and the core wire 7 Ultrasonic welding. For this reason, the plating layer 6 which consists of tin etc. on the surface is given, and the metal piece 2 which is hard to join with copper can be reliably joined to the core wire 7 separate from the metal piece 2.
[0037]
The plate member 4 is formed in a plate shape. For this reason, the contact area between the plate member 4 and the metal piece 2 is increased, and the contact area between the plate member 4 and the core wire 7 is increased. For this reason, the plate member 4 and the metal piece 2 can be reliably joined, and the plate member 4 and the core wire 7 can be reliably joined. Therefore, it is difficult to join each other and the separate metal piece 2 and the core wire 7 can be joined more reliably.
[0038]
next, Reference example A method for joining the metals will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected to the same component as 1st Embodiment mentioned above, and description is abbreviate | omitted. Reference example As shown in FIG. 5 and FIG. 6, the electric wire module 1 assembled by the metal-to-metal bonding method uses a large number of metal particles 10 as the third metal instead of the plate member 4.
[0039]
Of course, the metal particles 10 are formed separately and granular from both the metal piece 2 and the core wire 7. As shown in FIG. 6, the metal particle 10 has a dimension L larger than the thickness T of the plating layer 6. The dimension L indicates the longest dimension of the metal particle 10. In addition, the dimension L has shown the magnitude | size of the metal grain 10 described in this specification.
[0040]
As described in this specification, the fact that the metal particle 10 is larger than the thickness T of the plating layer 6 indicates that at least the longest dimension L of the metal particle 10 is larger than the thickness T of the plating layer 6. In the illustrated example, the metal particle 10 is formed in a spherical or ellipsoidal shape, and the dimension L is the diameter of the spherical metal particle 10 or the major axis of the ellipsoidal metal particle 10.
[0041]
The metal particle 10 is made of a metal that has conductivity and is as hard as the plating layer 6 or slightly harder than the plating layer 6. In the illustrated example, the metal particles 10 are made of brass. In the illustrated example, the metal particles 10 are spherical or ellipsoidal. However, in the present invention, the metal particles 10 may be formed in an appropriate shape.
[0042]
Reference example As shown in FIG. 5, the wire module 1 obtained by the joining method according to 1 is such that the core wire 7 overlaps the plating layer 6 of the metal piece 2, and the metal particles 10 break through the plating layer 6 as shown in FIG. 6. The base material 5 and the core wire 7 are both joined.
[0043]
Reference example Also in the joining method between the metals, the metal piece 2, the metal particles 10, and the core wire 7 are fixed to each other by an ultrasonic welding machine as in the first embodiment described above.
[0044]
When the electric wire module 1 is assembled, that is, when the metal piece 2, the metal particle 10, and the core wire 7 are fixed, a part of the covering portion 8 is removed in advance to expose a part of the core wire 7. In the illustrated example, the covering portion 8 located at the end 3a of the covered electric wire 3 is removed.
[0045]
Then, as shown in FIG. 7, the metal pieces 2 are stacked on the anvil 21 so that the plating layer 6 faces the chip 20, and a large number of metal particles 10 are placed on the plating layer 6. Further, the core wire 7 is overlapped on both the plating layer 6 and the metal particle 10. The tip surface of the chip 20 is brought into contact with the core wire 7. Thus, the metal piece 2, the metal particle 10, and the core wire 7 are sandwiched between the chip 20 and the anvil 21.
[0046]
Then, after pressurizing the chip 20 and the anvil 21 in a direction to bring them close to each other, the vibrator is vibrated by an oscillator, and this vibration is transmitted to the chip 20 via a horn. The vibration described above occurs between the core wire 7 and the plating layer 6. Since the metal particles 10 are as hard as the plating layer 6 or harder than the plating layer 6, the metal particles 10 scrape a part of the plating layer 6. And since the said metal particle 10 has the dimension L larger than the thickness T, it pierces the plating layer 6 and contacts both the base material 5 and the core wire 7. FIG.
[0047]
Moreover, since the vibration mentioned above has arisen between the core wire 7 and the plating layer 6, if the metal particle 10 contacts both the base material 5 and the core wire 7, the metal particle 10, the base material 5, and the core wire 7 will be described. And both do not melt and form metal bonds with each other in the solid phase. Thus, the metal particles 10 and the core wire 7 are joined to each other by so-called ultrasonic welding (also referred to as ultrasonic welding or ultrasonic bonding), and the metal particles 10 and the metal pieces 2 are so-called ultrasonic welding (ultrasonic welding or ultrasonic welding). Are also joined together. And the electric wire module 1 of the structure mentioned above is obtained.
[0048]
further, Reference example In the same way as in the first embodiment described above, for example, the metal wire having a plating layer made of tin or the like is formed on the metal terminal fitting, and the core wire of the covered electric wire 3 as another metal. This is suitable when 7 is joined.
[0049]
Reference example According to the above, between the core wire 7 and the plating layer 6, a large number of metal grains 10 having a dimension L larger than the thickness T and equal to or harder than the plating layer 6 are placed, and the metal piece 2 and the core wire 7 is ultrasonically welded. Since the metal particles 10 break through the plating layer 6, the metal particles 10 are reliably bonded to both the base material 5 and the core wire 7. For this reason, the plating layer 6 is applied to the surface, and the metal piece 2 that is difficult to be joined to copper can be reliably joined to the core wire 7 separate from the metal piece 2.
[0050]
Further, since the metal particle 10 is larger than the thickness T of the plating layer 6 and is equal to or harder than the plating layer 6, the metal particle 10 surely breaks through the plating layer 6. For this reason, the metal particles 10 are surely in contact with both the base material 5 and the core wire 7 and are reliably joined to both the base material 5 and the core wire 7.
[0051]
Next, the first of the present invention 2 A metal-to-metal joining method according to the embodiment will be described with reference to FIGS. The first mentioned above Embodiments and reference examples The same components as those in FIG. As shown in FIGS. 8 and 9, the electric wire module 1 assembled by the metal-to-metal bonding method according to the present embodiment uses both the plate member 4 and a large number of metal particles 10 as the third metal. Of course, the plate member 4 and the many metal grains 10 are separate from both the metal piece 2 and the core wire 7, respectively.
[0052]
As shown in FIGS. 10 to 13, the metal particles 10 used in the present embodiment are embedded in the plate member 4 by heat treatment or the like. Furthermore, as shown in FIG. 13, the metal particles 10 partially protrude from both surfaces of the plate member 4.
[0053]
10 and 11 show the results of observing the cross section of the plate member 4 in which a large number of metal particles 10 are embedded using an electron microscope. FIG. 10 is a diagram schematically showing the results actually obtained shown in FIG.
[0054]
Further, in FIGS. 10 and 11, a part indicating the metal constituting the plate member 4 is denoted by reference symbol A, and a part indicating the metal constituting the metal grain 10 is denoted by reference numeral B. Yes. In FIG. 11, the portion indicated by reference sign A is relatively black, and the portion indicated by reference sign B is whitish than the portion indicated by reference sign A.
[0055]
As shown in FIGS. 10 and 11, a large number of metals constituting the metal particles 10 are distributed in the metal constituting the plate member 4. For this reason, it became clear that many metal particles 10 were distributed in the plate member 4, and it became clear that many metal particles 10 were embedded in the plate member 4.
[0056]
Further, the metal grains 10 used in this embodiment have a dimension L larger than the thickness Ta of the alloy layer 11 as shown in FIG. The alloy layer 11 includes a plating layer 6 and a plate member 4, and is formed by mixing the plating layer 6 and the plate member 4 by heat or the like when ultrasonic welding described later is performed. Further, as shown in FIG. 13, the metal particle 10 has a dimension L larger than the thickness Tb of the plate member 4. For this reason, the metal grains 10 have a dimension L larger than the thickness T of the plating layer 6 as in the second embodiment described above. The dimension L indicates the longest dimension of the metal particle 10. Thus, the metal particles 10 are larger than the thicknesses Tb, Ta, and T of the plate member 4, the alloy layer 11, and the plating layer 6.
[0057]
The metal particle 10 is made of a metal that has conductivity and is as hard as the plating layer 6 or slightly harder than the plating layer 6. In the illustrated example, the metal particles 10 are made of brass. In the illustrated example, the metal particles 10 are spherical or ellipsoidal. However, in the present invention, the metal particles 10 may be formed in an appropriate shape.
[0058]
As shown in FIG. 8, the electric wire module 1 obtained by the joining method according to the present embodiment has the plate member 4 overlapped with the plating layer 6 of the metal piece 2 and the core wire 7 overlapped with the plate member 4. Furthermore, as shown in FIG. 9, at the joining location of the metal piece 2, the plate member 4, and the core wire 7, the metal particles 10 penetrate the alloy layer 11 and are joined to both the base material 5 and the core wire 7. As in the first embodiment, the metal constituting the plate member 4 is diffused in the core wire 7.
[0059]
Also in the method for joining metals according to the present embodiment, as described above. First embodiment and reference example Similarly, the metal piece 2, the plate member 4 in which the metal particles 10 are embedded, and the core wire 7 are obtained by being fixed to each other by an ultrasonic welding machine.
[0060]
When the electric wire module 1 is assembled, that is, when the metal piece 2, the metal particle 10, the plate member 4, and the core wire 7 are fixed, a part of the covering portion 8 is removed in advance to expose a part of the core wire 7. deep. In the illustrated example, the covering portion 8 located at the end 3a of the covered electric wire 3 is removed.
[0061]
Then, as shown in FIG. 12, the plate member 4 in which the metal piece 2 is stacked on the anvil 21 so that the plating layer 6 faces the chip 20, and a large number of metal particles 10 are embedded in the plating layer 6 of the metal piece 2. Repeat. Further, the core wire 7 is overlapped on the plate member 4. The tip surface of the chip 20 is brought into contact with the core wire 7. Thus, the plate member 4 in which the metal piece 2 and the metal particle 10 are embedded and the core wire 7 are sandwiched between the chip 20 and the anvil 21.
[0062]
Then, after pressurizing the chip 20 and the anvil 21 in a direction to bring them close to each other, the vibrator is vibrated by an oscillator, and this vibration is transmitted to the chip 20 via a horn. The vibration described above occurs between the core wire 7 and the plate member 4 and between the plate member 4 and the plating layer 6. Since it is made of a metal having a relatively low melting point, a part of the plate member 4 located between the tip 20 and the anvil 21 is melted. Since the tip 20 and the anvil 21 are pressurized in a direction approaching each other, a part of the melted plate member 4 diffuses into the copper constituting the core wire 7. Thus, the plate member 4 is metal-bonded to the core wire 7.
[0063]
Since the vibration described above is generated between the plate member 4 and the plating layer 6, a part of the plating layer 6 located between the tip 20 and the anvil 21 is melted. Furthermore, since the plate member 4 is made of a metal that easily forms an alloy with the plating layer 6, the plate member 4 and the plating layer 6 are mixed with each other to form the alloy layer 11.
[0064]
Further, since the metal particles 10 are as hard as the plating layer 6 or harder than the plating layer 6, the metal particles 10 scrape a part of the plating layer 6. Then, the metal particles 10 break through the plating layer 6 and come into contact with both the base material 5 and the core wire 7.
[0065]
Moreover, since the vibration mentioned above has arisen between the core wire 7 and the plating layer 6, when the metal particle 10 contacts both the base material 5 and the core wire 7, both of the base material 5 and the core wire 7 It does not melt and bonds to the metal in the solid phase. In this way, since the tip 20 and the anvil 21 are pressurized in a direction approaching each other and the vibration described above is applied, the metal particles 10 are formed by both the core wire 7 and the base material 5, that is, the metal piece 2, so-called ultrasonic waves. They are joined by welding (also referred to as ultrasonic welding or ultrasonic joining). Thus, the metal piece 2 and the core wire 7 are joined to each other by so-called ultrasonic welding (also referred to as ultrasonic welding or ultrasonic bonding). And the electric wire module 1 of the structure mentioned above is obtained.
[0066]
In addition, the metal-to-metal bonding method of the present embodiment is similar to the first and second embodiments described above, for example, to other metal terminal fittings having a plating layer made of tin or the like formed on the surface. It is suitable when joining the core wire 7 of the covered electric wire 3 as a metal.
[0067]
According to this embodiment, the plate member 4 in which a large number of metal particles 10 having a dimension L larger than the thickness T and equal to or harder than the plating layer 6 is embedded between the core wire 7 and the plating layer 6 is provided. Then, the metal piece 2 and the core wire 7 are ultrasonically welded. The plating layer 6 and the plate member 4 form the alloy layer 11, and the metal particles 10 break through the plating layer 6 and are bonded to both the base material 5 and the core wire 7. Therefore, the plating layer 6 is applied to the surface, and the metal piece 2 that is difficult to be joined to the core wire 7 can be reliably joined to the core wire 7 that is separate from the metal piece 2.
[0068]
The plate member 4 is formed in a plate shape. For this reason, the contact area between the plate member 4 and the metal piece 2 is increased, and the contact area between the plate member 4 and the core wire 7 is increased. For this reason, the plate member 4 and the metal piece 2 can be reliably joined, and the plate member 4 and the core wire 7 can be reliably joined. Therefore, it is difficult to join each other and the separate metal piece 2 and the core wire 7 can be joined more reliably.
[0069]
Further, the metal grains 10 are larger than the thickness Ta of the alloy layer 11 and larger than the thickness T of the plating layer 6. Further, since the metal particles 10 are equal to or harder than the plating layer 6, the metal particles 10 are surely in contact with both the base material 5 and the core wire 7, and the base material 5 and the core wire 7 are Securely join to both.
[0070]
Mentioned above 1st and 2nd In the embodiment, the case where the core wire 7 of the covered electric wire 3 is joined to the metal piece 2 is shown. However, in the present invention, it is needless to say that not only the core wire 7 of the covered electric wire 3 but also various conductive metals may be joined to the metal piece 2.
[0071]
Further, in the present invention, as shown in FIG. 14, the metal piece 2 is stacked on the anvil 21, a large number of metal particles 10 are placed on the plating layer 6 of the metal piece 2, and the plate member 4 is further stacked. The electric wire module 1 may be assembled by superimposing the core wire 7 and applying ultrasonic welding.
[0072]
In this case, the metal particle 10 is naturally larger in dimension L than the thickness of the plating layer 6. In this case, a part of the plate member 4 diffuses into the core wire 7, and the metal particles 10 penetrate the plating layer 6 and are ultrasonically welded to the base material 5. Thus, the plating layer 6 is applied to the surface, and the metal piece 2 that is difficult to be joined to the core wire 7 can be reliably joined to the core wire 7 that is separate from the metal piece 2.
[0073]
【Effect of the invention】
As described above, according to the present invention, ultrasonic welding is performed by superimposing the third metal on the plating layer of the first metal and further superimposing the second metal on the third metal. For this reason, a plating layer and a 3rd metal join reliably, and a 3rd metal and a 2nd metal join reliably. Therefore, the 1st metal by which the plating layer was given to the surface and the 2nd metal separate from this 1st metal can be joined certainly.
[0074]
Also, Since the third metal is a plate-like plate member, the contact area between the third metal and both the first and second metals is increased. For this reason, a 3rd metal and both the 1st and 2nd metal can be joined reliably. Therefore, the 1st metal by which the plating layer was given to the surface and the 2nd metal separate from this 1st metal can be joined certainly.
[0075]
Claim 2 The present invention described in The third metal is superposed on the first metal plating layer, and the second metal is superposed on the third metal for ultrasonic welding. For this reason, a plating layer and a 3rd metal join reliably, and a 3rd metal and a 2nd metal join reliably. Therefore, the 1st metal by which the plating layer was given to the surface and the 2nd metal separate from this 1st metal can be joined certainly. Also, As the third metal, metal particles larger than the thickness of the plating layer and a plate-like plate member are used. For this reason, since the contact area between the plate member and both the first and second metals is increased, the third metal and both the first and second metals can be reliably joined by ultrasonic welding. Furthermore, since the metal grains are larger than the thickness of the plating layer, the ultrasonic welding makes it possible for the metal grains to reliably join both the base material of the first metal and the second metal. Therefore, the 1st metal by which the plating layer was given to the surface and the 2nd metal separate from this 1st metal can be joined certainly.
[0077]
Claim 3 In the invention described in 1), the plate member is made of indium, bismuth, lead, cadmium, or the like. For this reason, melting | fusing point of a plate member becomes comparatively low, and familiarity with a plating layer becomes good. Therefore, when ultrasonic bonding is performed, the third metal is reliably bonded to both the first and second metals. Therefore, the 1st metal by which the plating layer was given to the surface and the 2nd metal separate from this 1st metal can be joined certainly.
[0078]
Claim 4 In the invention described in, since the metal particles are made of brass, both the first metal made of brass and the second metal made of copper are reliably bonded. Therefore, the 1st metal by which the plating layer was given to the surface and the 2nd metal separate from this 1st metal can be joined certainly.
[0079]
Claim 5 In the invention described in (1), the third metal is overlapped on the plating layer of the first metal, and the second metal is further overlapped on the third metal to perform ultrasonic welding. For this reason, a plating layer and a 3rd metal join reliably, and a 3rd metal and a 2nd metal join reliably. Therefore, the 1st metal by which the plating layer was given to the surface and the 2nd metal separate from this 1st metal can be joined certainly.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an electric wire module assembled by a metal joining method according to a first embodiment of the present invention.
FIG. 2 is a diagram schematically showing a result obtained by performing X-ray spectroscopic analysis on a joint portion of the electric wire module shown in FIG. 1;
3 is a view showing a result obtained by performing X-ray spectroscopic analysis on a joint portion of the electric wire module shown in FIG. 1; FIG.
4 is an exploded perspective view of the electric wire module shown in FIG. 1. FIG.
[Figure 5] Reference example It is a perspective view which shows the electric wire module assembled by the joining method of the metals concerning.
6 is a cross-sectional view taken along line VI-VI in FIG.
7 is an exploded perspective view of the electric wire module shown in FIG.
[Fig. 8] Fig. 8 2 It is a perspective view which shows the electric wire module assembled with the joining method of the metals concerning embodiment of this.
9 is a cross-sectional view taken along line IX-IX in FIG.
10 is a view schematically showing an enlarged state of a cross section of a plate member of the electric wire module shown in FIG. 8. FIG.
11 is a view showing a state in which a cross section of a plate member of the electric wire module shown in FIG. 8 is enlarged. FIG.
12 is an exploded perspective view of the electric wire module shown in FIG. 8. FIG.
13 is a cross-sectional view taken along line XIII-XIII in FIG.
FIG. 14 is an exploded perspective view of an electric wire module assembled by a metal-to-metal joining method according to a modification of the present invention.
[Explanation of symbols]
2 Metal piece (first metal)
4 Plate member (third metal)
6 Plating layer
7 Core wire (second metal)
10 Metal grains (third metal)
T Plating layer thickness
L Dimensions of metal particles (size)

Claims (5)

表面にすずまたはすず合金からなるめっき層が形成された第1金属と、該第1金属とは別体の銅または銅合金からなる第2金属と、を接合する接合方法において、
前記第1金属のめっき層に、前記第1及び第2金属とは別体の第3金属を重ね、該第3金属にさらに前記第2金属を重ねて、互いに接合されていない前記第1〜第3金属に対して超音波溶着を行うことで、前記第3金属を介して前記第1金属と前記第2金属とを接合し、
前記第3金属は、板状の板部材であり
前記板部材は、インジウム、ビスマス、鉛、カドミウムのうち一つの金属若しくは二つ以上を含んだ合金またははんだからなることを特徴とする金属同士の接合方法。
In a joining method of joining a first metal having a plating layer made of tin or a tin alloy formed on a surface thereof and a second metal made of copper or a copper alloy separate from the first metal,
The first metal that is not joined to each other is stacked on the first metal plating layer by stacking a third metal separate from the first and second metals, and further stacking the second metal on the third metal . by performing the ultrasonic welding for the third metal, and bonding the second metal and the first metal over the third metal,
The third metal is a plate- like plate member ,
The metal plate joining method , wherein the plate member is made of one metal of indium, bismuth, lead, cadmium, an alloy containing two or more, or solder .
表面にめっき層が形成された第1金属と、該第1金属とは別体の第2金属と、を接合する接合方法において、
前記第1金属のめっき層に、前記第1及び第2金属とは別体の第3金属を重ね、該第3金属にさらに前記第2金属を重ねて、互いに接合されていない前記第1〜第3金属に対して超音波溶着を行うことで、前記第3金属を介して前記第1金属と前記第2金属とを接合し、
前記第3金属は、板状の板部材と、粒状に形成されかつ前記めっき層の厚みより大きい金属粒と、であることを特徴とする金属同士の接合方法。
In the joining method of joining the first metal having the plating layer formed on the surface and the second metal separate from the first metal,
The first metal that is not joined to each other is stacked on the first metal plating layer by stacking a third metal separate from the first and second metals, and further stacking the second metal on the third metal . by performing the ultrasonic welding for the third metal, and bonding the second metal and the first metal over the third metal,
The third metal is a plate- like plate member and metal particles formed in a granular shape and larger than the thickness of the plating layer.
前記板部材は、インジウム、ビスマス、鉛、カドミウムのうち一つの金属若しくは二つ以上を含んだ合金またははんだからなることを特徴とする請求項に記載の金属同士の接合方法。The plate member, indium, bismuth, lead, a bonding method between metals according to claim 2, characterized in that an alloy or solder containing one metal or two or more of the cadmium. 前記第1金属は黄銅からなり、前記第2金属は銅からなり、前記金属粒は黄銅からなることを特徴とする請求項2に記載の金属同士の接合方法。  The metal-to-metal joining method according to claim 2, wherein the first metal is made of brass, the second metal is made of copper, and the metal particles are made of brass. 前記めっき層は、すずまたはすず合金からなることを特徴とする請求項ないし請求項4のうち何れか一項に記載の金属同士の接合方法。The metal-plating method according to any one of claims 2 to 4, wherein the plating layer is made of tin or a tin alloy.
JP2001038470A 2001-02-15 2001-02-15 Metal-to-metal joining method Expired - Fee Related JP4963143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001038470A JP4963143B2 (en) 2001-02-15 2001-02-15 Metal-to-metal joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001038470A JP4963143B2 (en) 2001-02-15 2001-02-15 Metal-to-metal joining method

Publications (2)

Publication Number Publication Date
JP2002239752A JP2002239752A (en) 2002-08-28
JP4963143B2 true JP4963143B2 (en) 2012-06-27

Family

ID=18901437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001038470A Expired - Fee Related JP4963143B2 (en) 2001-02-15 2001-02-15 Metal-to-metal joining method

Country Status (1)

Country Link
JP (1) JP4963143B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111299802A (en) * 2018-12-11 2020-06-19 华夏易能(海南)新能源科技有限公司 Method for connecting flat cable and molybdenum layer, welded structure, and CIGS solar cell

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450595A (en) * 1987-08-21 1989-02-27 Oki Electric Ind Co Ltd Connection of semiconductor device
JPH04212277A (en) * 1990-09-12 1992-08-03 Matsushita Electric Works Ltd Method of connecting terminal to printed wiring board
JP3179002B2 (en) * 1995-10-12 2001-06-25 矢崎総業株式会社 Joint method between conductors and joint structure between conductors
JPH1050758A (en) * 1996-08-01 1998-02-20 Hitachi Ltd Ultrasonic connecting method and connecting structure
WO1998041354A1 (en) * 1997-03-17 1998-09-24 Hitachi, Ltd. Method of solid-phase welding members
JP3893438B2 (en) * 1998-03-17 2007-03-14 新日鉄マテリアルズ株式会社 Semiconductor mounting substrate, semiconductor device, and semiconductor device manufacturing method
JP4372259B2 (en) * 1999-03-16 2009-11-25 Tdk株式会社 Wire connection method, wire connection structure and coil component

Also Published As

Publication number Publication date
JP2002239752A (en) 2002-08-28

Similar Documents

Publication Publication Date Title
JP3472699B2 (en) Connection method of insulated wire
JP3110954B2 (en) Method of joining covered electric wires and joining structure of covered electric wires
US4628150A (en) Bonding and bonded products
JP2002216871A (en) Conductor thin film sheet with electric cable, and manufacturing method of the same
JP3147749B2 (en) Ultrasonic welding method
JP4963143B2 (en) Metal-to-metal joining method
JP2005527105A (en) Solder interconnection for planar circuits
CN111264006B (en) Method and wire arrangement for the materially bonded butt joining of a wire to an electrical contact
JP3823780B2 (en) Friction stir welding method
JP4504529B2 (en) How to connect wires
JP2003334669A (en) Ultrasonic welding device
CN115642415A (en) Terminal, terminal-equipped electric wire, connection structure, and method for manufacturing terminal-equipped electric wire
JP3179002B2 (en) Joint method between conductors and joint structure between conductors
JP3943838B2 (en) Metal-to-metal joining method
JP2014022141A (en) Electric connection member, and method of manufacturing the same
JPH0982375A (en) Electric wire connecting method
JP2001071150A (en) Resistance welding method and structure of resistance welded part, and production of electronic parts and electronic parts
JPH01220494A (en) Multilayer interconnection substrate
JP3853566B2 (en) Connection method of printed wiring board and metal terminal
JP2002163934A (en) Flat type shield harness and manufacturing method of flat type shield harness
JP7041180B2 (en) Wire connection structure and connection method
JPH1145744A (en) Connection structure and connection method of electric wire to terminal and terminal
JP7038980B2 (en) Chip type metal plate resistor manufacturing method
JP2021190210A (en) Conductor connection structure
JP3325221B2 (en) Laser welding structure of bus bar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees