JP4962845B2 - Process for producing optically active cyclic amino alcohol - Google Patents

Process for producing optically active cyclic amino alcohol Download PDF

Info

Publication number
JP4962845B2
JP4962845B2 JP2006215182A JP2006215182A JP4962845B2 JP 4962845 B2 JP4962845 B2 JP 4962845B2 JP 2006215182 A JP2006215182 A JP 2006215182A JP 2006215182 A JP2006215182 A JP 2006215182A JP 4962845 B2 JP4962845 B2 JP 4962845B2
Authority
JP
Japan
Prior art keywords
mol
optically active
diphenylmethyl
alcohol
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006215182A
Other languages
Japanese (ja)
Other versions
JP2008037810A (en
Inventor
敦 山川
正雄 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Fine Chemicals Co Ltd
Original Assignee
Toray Fine Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Fine Chemicals Co Ltd filed Critical Toray Fine Chemicals Co Ltd
Priority to JP2006215182A priority Critical patent/JP4962845B2/en
Publication of JP2008037810A publication Critical patent/JP2008037810A/en
Application granted granted Critical
Publication of JP4962845B2 publication Critical patent/JP4962845B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pyrrole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は光学活性環状アミノアルコールの製造法に関する。光学活性環状アミノアルコールは医薬中間体、農薬中間体、液晶材料、香料として有用な化合物である。   The present invention relates to a method for producing an optically active cyclic amino alcohol. Optically active cyclic amino alcohols are useful compounds as pharmaceutical intermediates, agricultural chemical intermediates, liquid crystal materials, and perfumes.

炭素―炭素二重結合を水酸基に変換することを特徴とする光学活性含窒素環状アルコールの合成方法としてはハイドロボレーション反応を経由する方法が知られている。例えばBH・S(CH等から合成したジイソピノカンフェイルボランを用いた不斉ハイドロボレーション続く酸化による光学活性N−置換−3−ピロリジノールの合成が挙げられる(非特許文献1,2,3参照)。また光学活性N−置換−3−ピロリジノール誘導体合成法についても、これらの有機ホウ素化合物と炭素−炭素二重結合の反応後、酸化工程を経て合成した報告例は見られるが(特許文献1)、酸化反応後にアルコールを加えた例は知られていない。
特開2005−120067号公報 ジャーナル・オブ・オーガニック・ケミストリー.,51,4296,(1986)、 ジャーナル・オブ・アメリカンケミカル・ソサイエティ.,108.2049(1986)、 ヘテロサイクルズ,28,1,283(1989)
As a method for synthesizing an optically active nitrogen-containing cyclic alcohol characterized by converting a carbon-carbon double bond to a hydroxyl group, a method via a hydroboration reaction is known. For example, synthesis of optically active N-substituted-3-pyrrolidinol by asymmetric hydroboration followed by oxidation using diisopinocinfeylborane synthesized from BH 3 .S (CH 3 ) 2 or the like (Non-patent Document 1). , 2, 3). In addition, as for the optically active N-substituted-3-pyrrolidinol derivative synthesis method, a report example synthesized through an oxidation step after the reaction of these organic boron compounds and a carbon-carbon double bond can be seen (Patent Document 1). No example of adding alcohol after the oxidation reaction is known.
JP 2005-120067 A Journal of Organic Chemistry. , 51, 4296, (1986), Journal of American Chemical Society. , 108.2049 (1986), Heterocycles, 28, 1,283 (1989)

上記のいずれの場合も原料の含窒素環状オレフィンを塩基性条件下、過酸化水素で酸化を行い対応する光学活性環状アミノアルコールを得ているが、本発明者等は窒素上にジアリールメチル基の付いた含窒素環状オレフィンの場合、通常の酸化処理では酸化反応後の加水分解が十分進行せず光学活性ピロリジノール等の光学活性環状アミノアルコールが低収率でしか得られない場合があることを見出した。   In any of the above cases, the raw material nitrogen-containing cyclic olefin is oxidized with hydrogen peroxide under basic conditions to obtain the corresponding optically active cyclic amino alcohol. In the case of the attached nitrogen-containing cyclic olefin, it was found that hydrolysis after the oxidation reaction does not proceed sufficiently in normal oxidation treatment, and optically active cyclic amino alcohols such as optically active pyrrolidinol may be obtained only in a low yield. It was.

本発明の目的は、光学活性環状アミノアルコールを製造する上で光学純度の高い光学活性環状アミノアルコールを効率良く得ることが出来る工業的製造法を提供することにある。   An object of the present invention is to provide an industrial production method capable of efficiently obtaining an optically active cyclic amino alcohol having high optical purity in producing an optically active cyclic amino alcohol.

本発明者等は、含窒素環状オレフィンを原料に用いた光学活性環状アミノアルコールの製造方法について鋭意検討し、本発明を完成させた。   The present inventors diligently studied a method for producing an optically active cyclic amino alcohol using a nitrogen-containing cyclic olefin as a raw material, and completed the present invention.

すなわち、本発明は「次の3工程、
(第1工程)光学活性ジアルキルボランと一般式(1)
That is, the present invention is “the following three steps,
(First step) Optically active dialkylborane and general formula (1)

Figure 0004962845
Figure 0004962845

(式中RおよびRはアリール基を示し、同一であっても異なっていても良い。且つ、式中nは1〜3の整数のいずれかを意味する)で表される含窒素環状オレフィンを反応させる工程、
(第2工程)前記第1工程で得られた反応液を酸化剤と反応させる酸化工程、
(第3工程)前記第2工程で得られた反応液にアルコールを添加して、ホウ酸トリエステルを分解する分解工程を含むことを特徴とする一般式(2)
(Wherein R 1 and R 2 represent an aryl group, which may be the same or different. In the formula, n represents any one of 1 to 3). Reacting olefins,
(Second step) An oxidation step of reacting the reaction solution obtained in the first step with an oxidizing agent,
(Third step) General formula (2) characterized by including a decomposition step of decomposing boric acid triester by adding alcohol to the reaction solution obtained in the second step.

Figure 0004962845
Figure 0004962845

(式中RおよびRはアリール基を示し、同一であっても異なっていても良い。且つ、式中nは1〜3の整数のいずれかを意味する、また*は不斉炭素)で表される光学活性環状アミノアルコールの製造法」である。 (In the formula, R 1 and R 2 represent an aryl group, and may be the same or different. In the formula, n represents an integer of 1 to 3, and * represents an asymmetric carbon.) Is a process for producing an optically active cyclic amino alcohol represented by

通常の酸化処理では低収率でしか得られない光学活性環状アミノアルコールについても高収率、高光学純度で得られる。   An optically active cyclic amino alcohol that can be obtained only in a low yield by ordinary oxidation treatment can also be obtained in a high yield and high optical purity.

以下本発明を詳細に説明する。   The present invention will be described in detail below.

本発明の製造法は上記した3つの工程を含むものである。   The production method of the present invention includes the three steps described above.

上記光学活性ジアルキルボランの一般的な製造は次のように実施する。一例として光学活性α−ピネンを用いた例を挙げる。テトラヒドロフランに光学活性α−ピネンを添加した後、続いて水素化ホウ素ナトリウムを添加し、最後にトリフルオロボランや硫酸を滴下して光学活性ジアルキルボランを調製する。このような合成方法は、光学活性ジアルキルボランの一例として挙げた前記光学活性α−ピネンを用いたジイソピノカンフェイルボランの他、光学活性2−カレン等の光学活性な二環式モノテルペンを用いた光学活性ビス(2−イソカラニル)ボランなどの光学活性ジアルキルボランにも応用することができる。   The general production of the optically active dialkylborane is carried out as follows. An example using optically active α-pinene is given as an example. After optically active α-pinene is added to tetrahydrofuran, sodium borohydride is subsequently added, and finally trifluoroborane or sulfuric acid is added dropwise to prepare optically active dialkylborane. Such a synthesis method includes optically active bicyclic monoterpenes such as optically active 2-carene, in addition to diisopinocampheylborane using the optically active α-pinene mentioned as an example of optically active dialkylborane. The present invention can also be applied to optically active dialkylboranes such as the optically active bis (2-isocaranyl) borane used.

上記光学活性ジアルキルボランの合成法に従って実施すると、モノアルキルボランを経由してジアルキルボランが系中で発生する。この時、モノアルキルボランとジアルキルボランの間には平衡が存在するため反応溶液中はモノアルキルボランとジアルキルボランの混合物となっている。高い立体選択性を示すのはジアルキルボランであり、モノアルキルボランは立体選択性が低い。   When carried out in accordance with the above-described method for synthesizing optically active dialkylborane, dialkylborane is generated in the system via monoalkylborane. At this time, since an equilibrium exists between the monoalkylborane and the dialkylborane, the reaction solution is a mixture of the monoalkylborane and the dialkylborane. It is dialkylborane that exhibits high stereoselectivity, and monoalkylborane has low stereoselectivity.

本発明において光学活性ジアルキルボランとして用いるに際し、上記方法によって調製されたジアルキルボラン、モノアルキルボラン、ボランの混合物は、混合物のままで用いることができる。   When used as an optically active dialkylborane in the present invention, a mixture of dialkylborane, monoalkylborane and borane prepared by the above method can be used as it is.

光学活性ジアルキルボランの製造に用いる溶媒は、具体例として、テトラヒドロフラン、ジグライム、ジメトキシエタン、トリグライム、テトラヒドロピラン等の脂肪族エーテル、アニソール、エトキシベンゼン等の芳香族エーテル、ベンゼン、キシレン等の炭化水素、クロロホルム、ジクロロメタン、四塩化炭素などのハロゲン化炭化水素などを挙げることができる。好ましくは脂肪族エーテル、芳香族エーテルであり、さらに好ましくは脂肪族エーテルである。   Solvents used for the production of optically active dialkylborane include, as specific examples, aliphatic ethers such as tetrahydrofuran, diglyme, dimethoxyethane, triglyme and tetrahydropyran, aromatic ethers such as anisole and ethoxybenzene, hydrocarbons such as benzene and xylene, Examples thereof include halogenated hydrocarbons such as chloroform, dichloromethane, and carbon tetrachloride. Preferred are aliphatic ethers and aromatic ethers, and more preferred are aliphatic ethers.

次に本発明の効果が特に顕著である点で好ましく用いられるジイソピノカンフェイルボランの具体的合成法について示す。   Next, a specific method for synthesizing diisopinocinfeylborane that is preferably used in that the effect of the present invention is particularly remarkable will be described.

一般にはα−ピネンと水素化ホウ素ナトリウムを含む混合液に活性化剤を添加する。ここで原料の仕込み順序は限定されるものでは無くα−ピネンを最後に添加しても良いが、好ましくは活性化剤を最後に添加する方法であり、混合液の性状はスラリーであっても良い。活性化剤を添加する際の添加温度は好ましく20℃から−30℃であり、さらに好ましくは−10℃から10℃である。活性化剤を添加してからの撹拌温度は好ましくは0℃から30℃であり、さらに好ましくは5℃から25℃である。撹拌時間は3時間から48時間が好ましく、さらに好ましくは5時間から24時間である。
本発明で用いるα−ピネンの旋光度は(+)および(−)いずれでもよく、またその光学純度は50%ee.以上であればよく、このましくは光学純度70%ee.以上であり、さらに好ましくは80%ee.以上である。またα−ピネンの添加量はピロリン誘導体に対して4モル倍以上が望ましい。
In general, an activator is added to a mixture containing α-pinene and sodium borohydride. Here, the order in which the raw materials are charged is not limited, and α-pinene may be added last. Preferably, the activator is added last, and the property of the mixed solution may be a slurry. good. The addition temperature when adding the activator is preferably 20 ° C to -30 ° C, more preferably -10 ° C to 10 ° C. The stirring temperature after adding the activator is preferably 0 ° C to 30 ° C, more preferably 5 ° C to 25 ° C. The stirring time is preferably 3 hours to 48 hours, more preferably 5 hours to 24 hours.
The optical rotation of α-pinene used in the present invention may be either (+) or (−), and its optical purity is 50% ee. The optical purity is preferably 70% ee. Or more, more preferably 80% ee. That's it. The amount of α-pinene added is preferably at least 4 mole times that of the pyrroline derivative.

本発明で用いる水素化ホウ素ナトリウムの形状は特に制限されるものではなく、微粉末状のものから粒状のものまで各種の粒径のものを用いることができる。水素化ホウ素ナトリウムの添加方法も限定されるものではなく、溶媒で希釈した後添加しても良く、また希釈せずにそのまま添加しても良い。また、水素化ホウ素ナトリウムの添加量はピロリン誘導体に対して1.5モル倍以上が望ましい。   The shape of sodium borohydride used in the present invention is not particularly limited, and various particle sizes from fine powder to granular can be used. The method for adding sodium borohydride is not limited, and may be added after diluting with a solvent, or may be added as it is without diluting. Further, the addition amount of sodium borohydride is preferably 1.5 mol times or more with respect to the pyrroline derivative.

本発明で用いる活性化剤とは水素化ホウ素ナトリウムを活性化してジボランを発生させるものであれば様々なものを用いることができるが、ハロゲン化ホウ素、鉱酸、スルホン酸、アルキル酸から選ばれる少なくとも一つを含むことが好ましい。例としてハロゲン化ホウ素や鉱酸やハロゲン化アルミニウムを挙げることができるが、好ましくはハロゲン化ホウ素、鉱酸、ハロゲン化アルミニウムであり、さらに好ましくはハロゲン化ホウ素である。   The activator used in the present invention may be any one that activates sodium borohydride to generate diborane, and is selected from boron halides, mineral acids, sulfonic acids, and alkyl acids. It is preferable to include at least one. Examples include boron halides, mineral acids, and aluminum halides, preferably boron halides, mineral acids, and aluminum halides, and more preferably boron halides.

ハロゲン化ホウ素は、三フッ化ホウ素、三塩化ホウ素、三臭化ホウ素、三ヨウ化ホウ素を表すが、三フッ化ホウ素、三塩化ホウ素などが好ましい。   Boron halide represents boron trifluoride, boron trichloride, boron tribromide, boron triiodide, and boron trifluoride, boron trichloride and the like are preferable.

これら活性化剤は、単独で用いても、また混合して用いてもよく、さらに、溶媒中で錯体として使用しても良い。例えば三フッ化ホウ素・ジメチルエーテル錯体、三フッ化ホウ素ジエチルエーテル錯体、三フッ化ホウ素テトラヒドロフラン錯体、三フッ化ヨウ素・1,4−ジオキサン錯体等が特に好ましく挙げられる。   These activators may be used alone or in combination, and may be used as a complex in a solvent. For example, boron trifluoride / dimethyl ether complex, boron trifluoride diethyl ether complex, boron trifluoride tetrahydrofuran complex, iodine trifluoride / 1,4-dioxane complex and the like are particularly preferable.

また活性化剤の添加量はピロリン誘導体に対して2.0モル倍から2.4モル倍が望ましく、なかでも2.0から2.2モル倍が望ましい。上限としては活性化剤が多すぎると反応率が低下する点から2.4モル倍以下が好ましい。   The addition amount of the activator is preferably 2.0 to 2.4 mol times, more preferably 2.0 to 2.2 mol times with respect to the pyrroline derivative. The upper limit is preferably 2.4 mol times or less because the reaction rate decreases when the amount of the activator is too large.

次に添加する含窒素環状オレフィンに先ほどの混合液を加えるが、逆に混合液を含窒素環状オレフィン溶液に添加してもよい。   Next, the mixed liquid is added to the nitrogen-containing cyclic olefin to be added, but conversely, the mixed liquid may be added to the nitrogen-containing cyclic olefin solution.

また、含窒素環状オレフィンは下記(1)   The nitrogen-containing cyclic olefin is the following (1).

Figure 0004962845
Figure 0004962845

(式中RおよびRはアリール基を示し、同一であっても異なっていても良い。且つ、式中nは1〜3の整数のいずれかを意味する)で表される含窒素環状オレフィンである。 (Wherein R 1 and R 2 represent an aryl group, which may be the same or different. In the formula, n represents any one of 1 to 3). Olefin.

上記一般式(1)におけるR、Rとしては、フェニル基、ナフチル基等の無置換もしくは多置換アリール基もしくはテトラヒドロピリジル基のような複素環が好ましく、特にフェニル基が好ましい。nは、上記のとおり1〜3の整数のいずれかを示すが、2であることが好ましい。 As R < 1 >, R < 2 > in the said General formula (1), unsubstituted or polysubstituted aryl groups, such as a phenyl group and a naphthyl group, or heterocyclic rings, such as a tetrahydro pyridyl group, are preferable, and especially a phenyl group is preferable. n represents an integer of 1 to 3 as described above, but 2 is preferable.

含窒素環状オレフィンの具体例として、1−ジフェニルメチル−1,2−ジヒドロアゼ−ト、1−ジトルイルメチル−1,2−ジヒドロアゼ−ト、1−ジキシリルメチル−1,2−ジヒドロアゼ−ト、1−ジナフチルメチル−1,2−ジヒドロアゼ−ト、1−フェニルナフチルメチル−1,2−ジヒドロアゼート、1−ジフェニルメチル−2−ピロリン、1−ジトルイルメチル−2−ピロリン、1−ジキシリルメチル−2−ピロリン、1−ジナフチルメチル−2−ピロリン、1−フェニルナフチルメチル−2−ピロリン、1−ジフェニルメチル−3−ピロリン、1−ジトルイルメチル−3−ピロリン、1−ジキシリルメチル−3−ピロリン、1−ジナフチルメチル−3−ピロリン、1−フェニルナフチルメチル−3−ピロリン、1−ジフェニルメチル−1,2,3,6−テトラヒドロピリジン、1−ジトルイルメチル−1,2,3,6−テトラヒドロピリジン、1−ジキシリルメチル−1,2,3,6−テトラヒドロピリジン、1−ジナフチルメチル−1,2,3,6−テトラヒドロピリジン、1−ジナフチルメチル−1,2,3,6−テトラヒドロピリジン、1−フェニルナフチルメチル−1,2,3,6−テトラヒドロピリジン、1−ジフェニルメチル−1,2,3,4−テトラヒドロピリジン、1−ジトルイルメチル−1,2,3,4−テトラヒドロピリジン、1−ジキシリルメチル−1,2,3,4−テトラヒドロピリジン、1−ジナフチルメチル−1,2,3,4−テトラヒドロピリジン、1−フェニルナフチルメチル−1,2,3,4−テトラヒドロピリジン、等をあげることができ、好ましくは1−ジフェニルメチル−1,2−ジヒドロアゼ−ト、1−ジフェニルメチル−2−ピロリン、1−ジフェニルメチル−3−ピロリン、1−ジフェニルメチル−1,2,3,6−テトラヒドロピリジン、1−ジフェニルメチル−1,2,3,4−テトラヒドロピリジン、1−フェニルナフチルメチル−1,2−ジヒドロアゼ−ト、1−フェニルナフチルメチル−2−ピロリン、1−フェニルナフチルメチル−3−ピロリン、1−フェニルナフチルメチル−1,2,3,6−テトラヒドロピリジン、1−フェニルナフチルメチル−1,2,3,4−テトラヒドロピリジンである。   Specific examples of the nitrogen-containing cyclic olefin include 1-diphenylmethyl-1,2-dihydroazet, 1-ditoluylmethyl-1,2-dihydroazetate, 1-dixylylmethyl-1,2-dihydroazetate, 1-dinaphthylmethyl-1,2-dihydroazate, 1-phenylnaphthylmethyl-1,2-dihydroazate, 1-diphenylmethyl-2-pyrroline, 1-ditoluylmethyl-2-pyrroline, 1-dixylmethyl 2-pyrroline, 1-dinaphthylmethyl-2-pyrroline, 1-phenylnaphthylmethyl-2-pyrroline, 1-diphenylmethyl-3-pyrroline, 1-ditoluylmethyl-3-pyrroline, 1-dixylmethyl- 3-pyrroline, 1-dinaphthylmethyl-3-pyrroline, 1-phenylnaphthylmethyl-3-pyrroline, 1-diphenyl Methyl-1,2,3,6-tetrahydropyridine, 1-ditoluylmethyl-1,2,3,6-tetrahydropyridine, 1-dixylmethyl-1,2,3,6-tetrahydropyridine, 1-di Naphthylmethyl-1,2,3,6-tetrahydropyridine, 1-dinaphthylmethyl-1,2,3,6-tetrahydropyridine, 1-phenylnaphthylmethyl-1,2,3,6-tetrahydropyridine, 1- Diphenylmethyl-1,2,3,4-tetrahydropyridine, 1-ditolylmethyl-1,2,3,4-tetrahydropyridine, 1-dixylmethyl-1,2,3,4-tetrahydropyridine, 1- Dinaphthylmethyl-1,2,3,4-tetrahydropyridine, 1-phenylnaphthylmethyl-1,2,3,4-tetrahydropyridine, etc. Preferably, 1-diphenylmethyl-1,2-dihydroazete, 1-diphenylmethyl-2-pyrroline, 1-diphenylmethyl-3-pyrroline, 1-diphenylmethyl-1,2,3,6 -Tetrahydropyridine, 1-diphenylmethyl-1,2,3,4-tetrahydropyridine, 1-phenylnaphthylmethyl-1,2-dihydroazetate, 1-phenylnaphthylmethyl-2-pyrroline, 1-phenylnaphthylmethyl- 3-pyrroline, 1-phenylnaphthylmethyl-1,2,3,4-tetrahydropyridine, 1-phenylnaphthylmethyl-1,2,3,4-tetrahydropyridine.

本発明の第1工程では、上記光学活性ジアルキルボランと含窒素環状オレフィンを溶媒中で反応させるが、この第1工程に用いる溶媒は、具体例として、テトラヒドロフラン、ジグライム、ジメトキシエタン、トリグライム、テトラヒドロピラン等の脂肪族エーテル、アニソール、エトキシベンゼン等の芳香族エーテル、ベンゼン、キシレン等の炭化水素、クロロホルム、ジクロロメタン、四塩化炭素などのハロゲン化炭化水素などを挙げることができる。好ましくは脂肪族エーテル、芳香族エーテルであり、さらに好ましくは脂肪族エーテルである。   In the first step of the present invention, the optically active dialkylborane and the nitrogen-containing cyclic olefin are reacted in a solvent. Specific examples of the solvent used in the first step include tetrahydrofuran, diglyme, dimethoxyethane, triglyme, tetrahydropyran. And aliphatic ethers such as anisole and ethoxybenzene, hydrocarbons such as benzene and xylene, and halogenated hydrocarbons such as chloroform, dichloromethane and carbon tetrachloride. Preferred are aliphatic ethers and aromatic ethers, and more preferred are aliphatic ethers.

なお、光学活性ジアルキルボランの合成に用いた溶媒を含む反応系をそのまま第一工程に使用しても良い。   In addition, you may use the reaction system containing the solvent used for the synthesis | combination of optically active dialkyl borane as it is for the 1st process.

第1工程での含窒素環状オレフィンの添加温度は−10℃から20℃が好ましく、さらに好ましくは−5℃から10℃である。また含窒素環状オレフィンを添加した後の撹拌時間は好ましくは30分から3時間であり、さらに好ましくは1時間から2時間である。   The addition temperature of the nitrogen-containing cyclic olefin in the first step is preferably −10 ° C. to 20 ° C., more preferably −5 ° C. to 10 ° C. The stirring time after adding the nitrogen-containing cyclic olefin is preferably 30 minutes to 3 hours, more preferably 1 hour to 2 hours.

次に本発明第2工程について説明する。   Next, the second step of the present invention will be described.

第2工程では、第1工程で得られた反応液を酸化剤と酸化反応させることにより、ホウ酸トリエステルを生成する(酸化工程)が、この酸化工程で用いる酸化剤の具体例として、過酸化水素、過安息香酸、酸素、オキソン等が挙げられ、好ましくは過酸化水素、過安息香酸、過酢酸であり、さらに好ましくは過酸化水素である。酸化剤を反応させる工程では含窒素環状オレフィンを添加して得られた反応液をアルカリ性にした後、酸化剤を添加するのが好ましく、具体的にはpH値が7より大きく、さらに好ましくは8以上である。用いる酸化剤の量は通常含窒素環状オレフィンに対して6当量以上であることが望ましい。   In the second step, the reaction solution obtained in the first step is oxidized with an oxidant to produce boric acid triester (oxidation step). As a specific example of the oxidant used in this oxidation step, excess Examples thereof include hydrogen oxide, perbenzoic acid, oxygen, oxone and the like, preferably hydrogen peroxide, perbenzoic acid and peracetic acid, more preferably hydrogen peroxide. In the step of reacting the oxidizing agent, it is preferable to add the oxidizing agent after making the reaction solution obtained by adding the nitrogen-containing cyclic olefin alkaline, specifically, the pH value is larger than 7, more preferably 8 That's it. Usually, the amount of the oxidizing agent used is preferably 6 equivalents or more with respect to the nitrogen-containing cyclic olefin.

第2工程において酸化反応を行う場合の温度は0℃から30℃が好ましく、さらにこのましくは0℃から20℃である。また酸化剤を添加した後の撹拌時間は0.5時間から3時間が好ましく、より好ましくは、1から2時間である。   The temperature for the oxidation reaction in the second step is preferably from 0 ° C to 30 ° C, more preferably from 0 ° C to 20 ° C. The stirring time after adding the oxidizing agent is preferably 0.5 hours to 3 hours, more preferably 1 to 2 hours.

このように過酸化物を用いたトリアルキルボランの酸化反応によってホウ酸トリアルキルエステルが生じる。一般には系中に存在する水によってホウ酸トリアルキルエステルの加水分解が起こりホウ酸と光学活性環状アミノアルコールを与える。   Thus, trialkyl borane oxidation reaction using a peroxide produces a trialkyl borate ester. In general, water present in the system causes hydrolysis of boric acid trialkyl ester to give boric acid and an optically active cyclic amino alcohol.

しかし本発明者らは上記(1)式で表される含窒素環状オレフィンの場合、対応する光学活性含窒素環状アミノアルコールが低収率でしか得られないという知見を得た。そのため、本発明においては、第3工程として上記第2工程である酸化反応で得られた反応液(酸化反応液)にアルコールを添加してホウ酸トリエステルを分解する工程を行うものである。これにより、極めて高い収率で光学活性環状アミノアルコールが得られるのである。このように第3工程を行うことにより光学活性環状アミノアルコールの収率が顕著に向上する理由は定かではないが、第3工程を行わないと、該当するホウ酸トリアルキルエステルと水が十分混和しないために2層系となるが、水酸基をもつ有機化合物であるアルコールを用いることにより、このホウ酸トリアルキルエステルと混和しやくなり十分に加溶媒分解が起こると考えた。   However, the present inventors have found that in the case of the nitrogen-containing cyclic olefin represented by the above formula (1), the corresponding optically active nitrogen-containing cyclic amino alcohol can be obtained only in a low yield. Therefore, in this invention, the process which decomposes | disassembles boric acid triester by adding alcohol to the reaction liquid (oxidation reaction liquid) obtained by the oxidation reaction which is the said 2nd process as a 3rd process is performed. Thereby, an optically active cyclic amino alcohol can be obtained with a very high yield. The reason why the yield of the optically active cyclic amino alcohol is remarkably improved by performing the third step in this way is not clear, but if the third step is not performed, the corresponding trialkyl borate and water are sufficiently mixed. However, it was considered that the use of alcohol, which is an organic compound having a hydroxyl group, facilitates miscibility with the boric acid trialkyl ester and causes sufficient solvolysis.

そこで本発明では、第2工程で酸化処理した液に対してアルコールを加えてホウ酸トリエステルを分解することにより光学活性アミノアルコールの収率を向上させるものである。この加溶媒分解は、加熱条件下で行うといっそう効率良く進行し、収率の向上効果が顕著となる。   Therefore, in the present invention, the yield of optically active amino alcohol is improved by adding an alcohol to the solution oxidized in the second step to decompose the boric acid triester. This solvolysis proceeds more efficiently when carried out under heating conditions, and the effect of improving the yield becomes remarkable.

さらに本処理を行うことで光学純度が向上するという効果も奏する。
具体的には以下のように行なうことができる。すなわち過酸化物を用いて酸化処理して前記第2工程を行った後、さらにこの酸化反応液にアルコールを添加して加熱する。用いるアルコールは脂肪族アルコールであっても、芳香族アルコールであってもよく、その具体例として、メタノール、エタノール、イソプロパノール等の脂肪族アルコール、フェノール、ベンジルアルコール等の芳香族アルコールを挙げることができ、好ましくはメタノール、エタノール、イソプロパノールである。
Furthermore, the effect that optical purity improves by performing this process is also show | played.
Specifically, it can be performed as follows. That is, after performing the second step by oxidizing with peroxide, alcohol is further added to the oxidation reaction solution and heated. The alcohol used may be an aliphatic alcohol or an aromatic alcohol. Specific examples thereof include aliphatic alcohols such as methanol, ethanol and isopropanol, and aromatic alcohols such as phenol and benzyl alcohol. Preferably, methanol, ethanol and isopropanol are used.

さらに酸化剤を反応させた後に用いるアルコールの使用量は通常含窒素環状オレフィンに対して3モル倍以上が望ましく、さらに4モル倍以上が好ましい。上限としては 生産性の点から5モル倍以下であることが好ましい。   Further, the amount of alcohol used after reacting with the oxidizing agent is usually preferably 3 mol times or more, more preferably 4 mol times or more with respect to the nitrogen-containing cyclic olefin. The upper limit is preferably 5 mol times or less from the viewpoint of productivity.

またアルコール添加時の温度は特に制限されるものではないが、ホウ酸トリエステルを加水分解するという点で好ましくは20℃以上であり、より好ましくは40℃以上でありさらに好ましくは50℃以上である。上限としてはアルコール添加に伴う反応の急激な昇温を抑制する点から60℃以下であることが望ましい。   Moreover, the temperature at the time of alcohol addition is not particularly limited, but is preferably 20 ° C. or higher, more preferably 40 ° C. or higher, further preferably 50 ° C. or higher in terms of hydrolyzing the boric acid triester. is there. The upper limit is preferably 60 ° C. or less from the viewpoint of suppressing the rapid temperature increase of the reaction accompanying the addition of alcohol.

得られる含窒素光学活性アミノアルコールは一般式(2)   The resulting nitrogen-containing optically active amino alcohol is represented by the general formula (2)

Figure 0004962845
Figure 0004962845

(式中RおよびRはアリール基を示し、同一であっても異なっていても良い。且つ、式中nは1〜3のいずれかを意味する、また*は不斉炭素)で表され、具体例として1−ジフェニルメチル−2−アゼチジノール、1−ジトルイルメチル−2−アゼチジノール、1−ジキシリルメチル−2−アゼチジノール、1−ジナフチルメチル−2−アゼチジノール、1−ジフェニルメチル−3−アゼチジノール、1−ジトルイルメチル−3−アゼチジノール、1−ジキシリルメチル−3−アゼチジノール、1−ジナフチルメチル−3−アゼチジノール、1−ジフェニルメチル−2−ピロリジノール、1−ジトルイルメチル−2−ピロリジノール、1−ジキシリルメチル−2−ピロリジノール、1−ジナフチルメチル−2−ピロリジノール、1−ジフェニルメチル−3−ピロリジノール、1−ジトルイルメチル−3−ピロリジノール、1−ジキシリルメチル−3−ピロリジノール、1−ジナフチルメチル−3−ピロリジノール、1−ジフェニルメチル−2−ピペリジノール、1−ジトルイルメチル−2−ピペリジノール、1−ジキシリルメチル−2−ピペリジノール、1−ジナフチルメチル−2−ピペリジノール、1−ジフェニルメチル−3−ピペリジノール、1−ジトルイルメチル−3−ピペリジノール、1−ジキシリルメチル−3−ピペリジノール、1−ジナフチルメチル−3−ピペリジノール、1−ジフェニルメチル−4−ピペリジノール、1−ジトルイルメチル−4−ピペリジノール、1−ジキシリルメチル−4−ピペリジノール、1−ジナフチルメチル−4−ピペリジノール、1−フェニルナフチルメチル−アゼチジノール、1−フェニルナフチルメチル−3−アゼチジノール、1−フェニルナフチルメチル−2−ピロリジノール、1−フェニルナフチルメチル−3−ピロリジノール、1−フェニルナフチルメチル−2−ピペリジノール、1−フェニルナフチルメチル−3−ピペリジノール、1−フェニルナフチルメチル−4−ピペリジノール等を挙げることができ、好ましくは1−ジフェニルメチル−2−アゼチジノール、1−ジフェニルメチル−3−アゼチジノール、1−ジフェニルメチル−2−ピロリジノール、1−ジフェニルメチル−3−ピロリジノール、1−ジフェニルメチル−2−ピペリジノール、1−ジフェニルメチル−3−ピペリジノール、1−ジフェニルメチル−4−ピペリジノールである。 (Wherein R 1 and R 2 represent an aryl group, and may be the same or different. In the formula, n represents any one of 1 to 3, and * represents an asymmetric carbon). Specific examples include 1-diphenylmethyl-2-azetidinol, 1-ditoluylmethyl-2-azetidinol, 1-dixylmethyl-2-azetidinol, 1-dinaphthylmethyl-2-azetidinol, 1-diphenylmethyl-3. -Azetidinol, 1-ditoluylmethyl-3-azetidinol, 1-dixylmethyl-3-azetidinol, 1-dinaphthylmethyl-3-azetidinol, 1-diphenylmethyl-2-pyrrolidinol, 1-ditoluylmethyl-2- Pyrrolidinol, 1-dixylmethyl-2-pyrrolidinol, 1-dinaphthylmethyl-2-pyrrolidinol, 1- Phenylmethyl-3-pyrrolidinol, 1-ditoluylmethyl-3-pyrrolidinol, 1-dixylylmethyl-3-pyrrolidinol, 1-dinaphthylmethyl-3-pyrrolidinol, 1-diphenylmethyl-2-piperidinol, 1-ditoluyl Methyl-2-piperidinol, 1-dixylmethyl-2-piperidinol, 1-dinaphthylmethyl-2-piperidinol, 1-diphenylmethyl-3-piperidinol, 1-ditolylmethyl-3-piperidinol, 1-dixylmethyl -3-piperidinol, 1-dinaphthylmethyl-3-piperidinol, 1-diphenylmethyl-4-piperidinol, 1-ditoluylmethyl-4-piperidinol, 1-dixylmethyl-4-piperidinol, 1-dinaphthylmethyl- 4-piperidinol, 1-phenylnaphthylmethyl-azetidinol, 1-phenylnaphthylmethyl-3-azetidinol, 1-phenylnaphthylmethyl-2-pyrrolidinol, 1-phenylnaphthylmethyl-3-pyrrolidinol, 1-phenylnaphthylmethyl-2-piperidinol, 1- Examples thereof include phenylnaphthylmethyl-3-piperidinol, 1-phenylnaphthylmethyl-4-piperidinol, and preferably 1-diphenylmethyl-2-azetidinol, 1-diphenylmethyl-3-azetidinol, 1-diphenylmethyl-2 -Pyrrolidinol, 1-diphenylmethyl-3-pyrrolidinol, 1-diphenylmethyl-2-piperidinol, 1-diphenylmethyl-3-piperidinol, 1-diphenylmethyl-4-piperidinol.

以下に、実施例により本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.

ここでは1−ジフェニル−3−メチルピロリンによる光学活性1−ジフェニルメチル−3(S)−ピロリジノールの合成例を示す。   Here, a synthesis example of optically active 1-diphenylmethyl-3 (S) -pyrrolidinol by 1-diphenyl-3-methylpyrroline is shown.

なお、生成した1−ジフェニルメチル−3(S)−ピロリジノールの反応収率は、以下に記載した分析条件による高速液体クロマトグラフィーを用いて内標法により算出した。
カラム:CAPCELL PAK C18(SG120) 5μm 150mm*4.6mmφ(資生堂)
移動相:A 5.0mMドデシル硫酸ナトリウム水溶液(pH2.20、リン酸にて調整)/ B :アセトニトリル
組成 :A/B = 65/35(v/v)(20分)
A/B = 65/35(v/v)→ 50/50(v/v) (10分)
A/B = 50/50(v/v) (10分)
A/B = 50/50(v/v)→A/B = 65/35 (v/v) (5分)
A/B = 65/35 (v/v) (10分)
流量 :1.0ml/min
温度 :30℃
検出器:UV(210nm)
保持時間:1−ジフェニルメチル−3−ピロリジノール 22.2分
1−ジフェニルメチル−3−ピロリン 29.0分
The reaction yield of the produced 1-diphenylmethyl-3 (S) -pyrrolidinol was calculated by the internal standard method using high performance liquid chromatography under the analysis conditions described below.
Column: CAPCELL PAK C18 (SG120) 5 μm 150 mm * 4.6 mmφ (Shiseido)
Mobile phase: A 5.0 mM sodium dodecyl sulfate aqueous solution (pH 2.20, adjusted with phosphoric acid) / B: acetonitrile composition: A / B = 65/35 (v / v) (20 minutes)
A / B = 65/35 (v / v) → 50/50 (v / v) (10 minutes)
A / B = 50/50 (v / v) (10 minutes)
A / B = 50/50 (v / v) → A / B = 65/35 (v / v) (5 minutes)
A / B = 65/35 (v / v) (10 minutes)
Flow rate: 1.0 ml / min
Temperature: 30 ° C
Detector: UV (210 nm)
Retention time: 1-diphenylmethyl-3-pyrrolidinol 22.2 minutes
1-diphenylmethyl-3-pyrroline 29.0 minutes

なお、生成した1−ジフェニルメチル−3(S)−ピロリジノールの光学純度は、以下に記載した分析条件による高速液体クロマトグラフィーを用いてS体とR体の比より算出した。
カラム: CAPCELL PAK C18(SG120) 5μm 250mm*4.6mmφ(資生堂)
移動相: 0.03%アンモニア水(pH4.5;酢酸で調整)/メタノール=41/59(v/v)
流量 :1.0ml/min
温度 :40℃
検出器:UV(234nm)
The optical purity of the produced 1-diphenylmethyl-3 (S) -pyrrolidinol was calculated from the ratio of S form to R form using high performance liquid chromatography under the analysis conditions described below.
Column: CAPCELL PAK C18 (SG120) 5 μm 250 mm * 4.6 mmφ (Shiseido)
Mobile phase: 0.03% aqueous ammonia (pH 4.5; adjusted with acetic acid) / methanol = 41/59 (v / v)
Flow rate: 1.0 ml / min
Temperature: 40 ° C
Detector: UV (234 nm)

(参考例)
なお本発明で使用した1−ジフェニルメチル−3−ピロリンは合成によって取得しその方法は以下の通りである。
(Reference example)
The 1-diphenylmethyl-3-pyrroline used in the present invention was obtained by synthesis and the method is as follows.

cis−1,4−ジクロロブテンの合成
滴下漏斗と温度計のついた10L4口フラスコに、トルエン2670.0gとピリジン320.0g(=4.04モル、0.40モル倍)を仕込んだ。そこに塩化チオニル2526.0g(=21.11モル、2.08モル倍)を系中の温度が5〜12℃となるように添加した。続いてcis−1,4−ブテンジオール(890g、10.11モル)を系中の温度が5〜12℃となるように滴下を行った。滴下終了後5℃で2時間撹拌した後、50℃まで昇温し6時間撹拌した。反応液を濃縮し、得られた液は2層に分液した。この液の上層を分離した。上層のトルエン層にはcis−1,4−ジクロロブテンが1122g含有されていた(収率88.7% 8.97モル)。
Synthesis of cis-1,4-dichlorobutene To a 10 L four-necked flask equipped with a dropping funnel and a thermometer, 2670.0 g of toluene and 320.0 g of pyridine (= 4.04 mol, 0.40 mol times) were charged. Thereto was added 2526.0 g (= 21.11 mol, 2.08 mol times) of thionyl chloride so that the temperature in the system was 5 to 12 ° C. Subsequently, cis-1,4-butenediol (890 g, 10.11 mol) was added dropwise so that the temperature in the system was 5 to 12 ° C. After completion of the dropwise addition, the mixture was stirred at 5 ° C. for 2 hours, then heated to 50 ° C. and stirred for 6 hours. The reaction solution was concentrated, and the resulting solution was separated into two layers. The upper layer of this liquid was separated. The upper toluene layer contained 1122 g of cis-1,4-dichlorobutene (yield 88.7% 8.97 mol).

1−ジフェニルメチル−3−ピロリンの合成
滴下漏斗と温度計のついた10Lフラスコに、トルエン790.6gとベンズヒドリルアミン(2622.0g、14.32モル)と水419.02を混合し、cis−1,4−ジクロロブテン(561.8g、4.49モル)のトルエン溶液(1090.2g)を40℃で1.5hかけて滴下した。続いて48%のNaOH水溶液742g(=8.90モル、1.98モル倍)を添加し60℃で10時間撹拌した。続いてトルエン2558.8g、水1610.7gを混合し、35%塩酸を964.9g仕込んだ。反応液には結晶が析出した。遠心分離によって母液と結晶を分離した。母液のトルエン層と水層のうち水層を分離した。トルエン層を濃縮したところ濃縮液には1−ジフェニルメチル−3−ピロリンが829.3gが含有されていた(収率78.4%、3.52モル)。
Synthesis of 1-diphenylmethyl-3-pyrroline To a 10 L flask equipped with a dropping funnel and a thermometer, 790.6 g of toluene, benzhydrylamine (2622.0 g, 14.32 mol) and water 419.02 were mixed, and cis A toluene solution (1090.2 g) of -1,4-dichlorobutene (561.8 g, 4.49 mol) was added dropwise at 40 ° C. over 1.5 h. Subsequently, 742 g (= 8.90 mol, 1.98 mol times) of a 48% NaOH aqueous solution was added and stirred at 60 ° C. for 10 hours. Subsequently, 2558.8 g of toluene and 1610.7 g of water were mixed, and 964.9 g of 35% hydrochloric acid was charged. Crystals precipitated in the reaction solution. The mother liquor and crystals were separated by centrifugation. The aqueous layer was separated from the toluene layer and aqueous layer of the mother liquor. When the toluene layer was concentrated, 829.3 g of 1-diphenylmethyl-3-pyrroline was contained in the concentrated solution (yield 78.4%, 3.52 mol).

実施例1
滴下漏斗と温度計の付いた200ml三つ口フラスコに、テトラヒドロフラン76.4gを仕込み、α−ピネン(光学純度 91%ee) 23.0g(=0.17モル、4.01モル倍)続いて水素化ホウ素ナトリウム2.39g(=0.06モル、1.50モル倍)を添加し撹拌した。内温4〜6℃でトリフルオロボラン・ジエチルエーテル錯体12.1g(=0.08モル、2.02モル倍)を20分間かけて滴下し、室温に戻し25℃まで昇温しながら17時間撹拌した。続いて0〜2℃とし1−ジフェニルメチル−3−ピロリン(10.06g、0.04モル)を添加し0〜2℃で1時間撹拌した。反応1時間における1−ジフェニルメチル−3−ピロリンの転化率は99.4%であった。 この反応液に48%水酸化ナトリウム水溶液13.4g(=0.16モル、3.82モル倍)を添加した。続いて30%過酸化水素水31.78g(=0.28モル、6.67モル倍)を反応液に滴下するがこの時系内が15℃以上に昇温しないように1時間かけて滴下した。続けてメタノール4.09g(=0.13モル、3.04モル倍)を加えた後50℃まで昇温し1時間撹拌した。このとき1−ジフェニルメチル−3(S)−ピロリジノールの収率は91.1%(9.69g、0.04モル)光学純度は76.0%eeであった。
Example 1
A 200 ml three-necked flask equipped with a dropping funnel and a thermometer was charged with 76.4 g of tetrahydrofuran, followed by 23.0 g of α-pinene (91% ee optical purity) (= 0.17 mol, 4.01 mol times). 2.39 g (= 0.06 mol, 1.50 mol times) of sodium borohydride was added and stirred. At an internal temperature of 4 to 6 ° C., 12.1 g (= 0.08 mol, 2.02 mol times) of a trifluoroborane / diethyl ether complex was added dropwise over 20 minutes, returned to room temperature, and raised to 25 ° C. for 17 hours. Stir. Then, it was set to 0-2 degreeC, 1-diphenylmethyl-3-pyrroline (10.06g, 0.04mol) was added, and it stirred at 0-2 degreeC for 1 hour. The conversion rate of 1-diphenylmethyl-3-pyrroline in the reaction for 1 hour was 99.4%. To this reaction solution, 13.4 g (= 0.16 mol, 3.82 mol times) of 48% aqueous sodium hydroxide solution was added. Subsequently, 31.78 g (= 0.28 mol, 6.67 mol times) of 30% hydrogen peroxide solution is added dropwise to the reaction solution, but at this time, it is added dropwise over 1 hour so that the temperature inside the system does not rise to 15 ° C. or higher. did. Subsequently, 4.09 g (= 0.13 mol, 3.04 mol times) of methanol was added, and the mixture was heated to 50 ° C. and stirred for 1 hour. At this time, the yield of 1-diphenylmethyl-3 (S) -pyrrolidinol was 91.1% (9.69 g, 0.04 mol), and the optical purity was 76.0% ee.

実施例2
滴下漏斗と温度計の付いた200ml三つ口フラスコに、テトラヒドロフラン75.7gを仕込み、α−ピネン(光学純度91%ee) 27.3g(=0.20モル、4.82モル倍)続いて水素化ホウ素ナトリウム2.39g(=0.06モル、1.50モル倍)を添加し撹拌した。内温4〜6℃でトリフルオロボラン・ジエチルエーテル錯体12.0g(=0.08モル、2.00モル倍)を20分間かけて滴下し、室温に戻し25℃まで昇温しながら17時間撹拌した。続いて0〜2℃とし1−ジフェニルメチル−3−ピロリン(10.02g、0.04モル)を添加し0〜2℃で1時間撹拌した。反応1時間における1−ジフェニルメチル−3−ピロリンの転化率は99.1%であった。 この反応液に48%水酸化ナトリウム水溶液10.85g(=0.13モル、3.10モル倍)を添加した。続いて30%過酸化水素水30.92g(=0.27モル、6.42モル倍)を滴下するが、
この時系内が15℃以上に昇温しないように1時間かけて滴下した。続けてメタノール4.16g(=0.13モル、3.10モル倍)を加えた後50℃まで昇温し1時間撹拌した。このとき1−ジフェニルメチル−3(S)−ピロリジノールの収率は90%以上、光学純度は84.3%eeであった。
Example 2
A 200 ml three-necked flask equipped with a dropping funnel and a thermometer was charged with 75.7 g of tetrahydrofuran, followed by 27.3 g (= 0.20 mol, 4.82 mol times) of α-pinene (91% ee optical purity). 2.39 g (= 0.06 mol, 1.50 mol times) of sodium borohydride was added and stirred. At an internal temperature of 4 to 6 ° C., 12.0 g (= 0.08 mol, 2.00 mol times) of a trifluoroborane / diethyl ether complex was added dropwise over 20 minutes, returned to room temperature, and raised to 25 ° C. for 17 hours. Stir. Then, it was set to 0-2 degreeC, 1-diphenylmethyl-3-pyrroline (10.02g, 0.04mol) was added, and it stirred at 0-2 degreeC for 1 hour. The conversion rate of 1-diphenylmethyl-3-pyrroline in the reaction for 1 hour was 99.1%. To this reaction solution, 10.85 g (= 0.13 mol, 3.10 mol times) of a 48% aqueous sodium hydroxide solution was added. Subsequently, 30.92 g of 30% hydrogen peroxide solution (= 0.27 mol, 6.42 mol times) is added dropwise.
At this time, it was added dropwise over 1 hour so that the temperature in the system did not rise to 15 ° C. or higher. Subsequently, 4.16 g (= 0.13 mol, 3.10 mol times) of methanol was added, and the mixture was heated to 50 ° C. and stirred for 1 hour. At this time, the yield of 1-diphenylmethyl-3 (S) -pyrrolidinol was 90% or more, and the optical purity was 84.3% ee.

実施例3
滴下漏斗と温度計の付いた200ml三つ口フラスコに、テトラヒドロフラン52.71gを仕込み、α−ピネン(光学純度 91%ee) 34.67g(=0.25モル、6.06モル倍)続いて水素化ホウ素ナトリウム2.39g(=0.063モル、1.50モル倍)を添加し撹拌した。内温4〜6℃でトリフルオロボラン・ジエチルエーテル錯体12.06g(=0.09モル、2.05モル倍)を20分間かけて滴下し、室温に戻し25℃まで昇温しながら20時間撹拌した。続いて−12℃とし1−ジフェニルメチル−3−ピロリン(10.03g、0.04モル)を5分で添加し−12℃で1時間撹拌し。反応1時間における1−ジフェニルメチル−3−ピロリンの転化率は99.9%であった。 この反応液に48%水酸化ナトリウム水溶液10.68g(=0.13モル、3.10モル倍)を添加した。続いて30%過酸化水素水31.14g(=0.28モル、6.67モル倍)を滴下するが、この時系内が15℃以上に昇温しないように1時間かけて滴下した。続けてメタノール4.61g(=0.14モル、3.33モル倍)を加えた後50℃まで昇温し2.5時間撹拌した。このとき1−ジフェニルメチル−3(S)−ピロリジノールの収率は83.4%(8.88g、0.04モル)光学純度は84.5%eeであった。
Example 3
A 200 ml three-necked flask equipped with a dropping funnel and a thermometer was charged with 52.71 g of tetrahydrofuran, followed by 34.67 g of α-pinene (optical purity 91% ee) (= 0.25 mol, 6.06 mol times). 2.39 g (= 0.063 mol, 1.50 mol times) of sodium borohydride was added and stirred. Trifluoroborane / diethyl ether complex (12.06 g) (= 0.09 mol, 2.05 mol times) was added dropwise over 20 minutes at an internal temperature of 4 to 6 ° C., and the temperature was returned to room temperature and raised to 25 ° C. for 20 hours. Stir. Subsequently, the temperature was set to −12 ° C., 1-diphenylmethyl-3-pyrroline (10.03 g, 0.04 mol) was added in 5 minutes, and the mixture was stirred at −12 ° C. for 1 hour. The conversion rate of 1-diphenylmethyl-3-pyrroline in the reaction for 1 hour was 99.9%. To this reaction solution, 10.68 g (= 0.13 mol, 3.10 mol times) of 48% aqueous sodium hydroxide solution was added. Subsequently, 31.14 g of 30% hydrogen peroxide solution (= 0.28 mol, 6.67 mol times) was added dropwise, and at this time, the solution was added dropwise over 1 hour so that the temperature in the system did not rise to 15 ° C. or higher. Subsequently, 4.61 g (= 0.14 mol, 3.33 mol times) of methanol was added, and the mixture was heated to 50 ° C. and stirred for 2.5 hours. At this time, the yield of 1-diphenylmethyl-3 (S) -pyrrolidinol was 83.4% (8.88 g, 0.04 mol), and the optical purity was 84.5% ee.

実施例4
滴下漏斗と温度計の付いた200ml三つ口フラスコに、テトラヒドロフラン49.3gを仕込み、α−ピネン(光学純度 91%ee) 27.5g(=0.20モル、4.82モル倍)続いて水素化ホウ素ナトリウム2.39g(=0.063モル、1.50モル倍)を添加し撹拌した。内温4℃でトリフルオロボラン・ジエチルエーテル錯体11.95g(=0.084モル、2.00モル倍)を20分間かけて滴下し、室温に戻し25℃まで昇温しながら18時間撹拌した。続いて−12〜−10℃とし1−ジフェニルメチル−3−ピロリン(10.02g、0.042モル)を5分で添加し−12℃で1時間撹拌した。反応1時間における1−ジフェニルメチル−3−ピロリンの転化率は99.4%であった。 この反応液に48%水酸化ナトリウム水溶液11.98g(=0.143モル、3.42モル倍)を添加した。続いて30%過酸化水素水30.97g(=0.273モル、6.51モル倍)を反応液に滴下するがこの時系内が15℃以上に昇温しないように1時間かけて滴下した。続けてメタノール4.09g(=0.127モル、3.04モル倍)を加えた後50℃まで昇温し1時間撹拌した。このとき1−ジフェニルメチル−3(S)−ピロリジノールの収率は86.8%(9.24g、0.036モル)光学純度は86.9%eeであった。
Example 4
A 200 ml three-necked flask equipped with a dropping funnel and a thermometer was charged with 49.3 g of tetrahydrofuran, followed by 27.5 g of α-pinene (91% ee optical purity) (= 0.20 mol, 4.82 mol times). 2.39 g (= 0.063 mol, 1.50 mol times) of sodium borohydride was added and stirred. At an internal temperature of 4 ° C., 11.95 g (= 0.084 mol, 2.00 mol times) of a trifluoroborane / diethyl ether complex was added dropwise over 20 minutes, and the mixture was returned to room temperature and stirred for 18 hours while raising the temperature to 25 ° C. . Subsequently, the temperature was set to −12 to −10 ° C., 1-diphenylmethyl-3-pyrroline (10.02 g, 0.042 mol) was added in 5 minutes, and the mixture was stirred at −12 ° C. for 1 hour. The conversion rate of 1-diphenylmethyl-3-pyrroline in the reaction for 1 hour was 99.4%. To this reaction solution, 11.98 g (= 0.143 mol, 3.42 mol times) of a 48% sodium hydroxide aqueous solution was added. Subsequently, 30.97 g of hydrogen peroxide 30% (= 0.273 mol, 6.51 mol times) is added dropwise to the reaction solution, but at this time, it is added dropwise over 1 hour so that the temperature inside the system does not rise to 15 ° C. or higher. did. Subsequently, 4.09 g (= 0.127 mol, 3.04 mol times) of methanol was added, and the mixture was heated to 50 ° C. and stirred for 1 hour. At this time, the yield of 1-diphenylmethyl-3 (S) -pyrrolidinol was 86.8% (9.24 g, 0.036 mol), and the optical purity was 86.9% ee.

比較例1
滴下漏斗と温度計の付いた200ml三つ口フラスコに、テトラヒドロフラン76.4gを仕込み、α−ピネン(光学純度 91%ee) 23.0g(=0.17モル、4.01モル倍)続いて水素化ホウ素ナトリウム2.39g(=0.06モル、1.50モル倍)を添加し撹拌した。内温4℃でトリフルオロボラン・ジエチルエーテル錯体12.1g(=0.08モル、2.02モル倍)を20分間かけて滴下し、室温に戻し25℃まで昇温しながら18時間撹拌した。続いて−12〜−10℃とし1−ジフェニルメチル−3−ピロリン(10.06g、0.04モル)を5分で添加し0〜2℃で1時間撹拌した。反応1時間における1−ジフェニルメチル−3−ピロリンの転化率は99.4%であった。 この反応液に48%水酸化ナトリウム水溶液13.4g(=0.16モル、3.82モル倍)を添加した。続いて30%過酸化水素水31.78g(=0.28モル、6.67モル倍)を−12〜−10℃にした反応液に滴下するがこの時系内が15℃以上に昇温しないように1時間かけて滴下した。このとき1−ジフェニルメチル−3(S)−ピロリジノールの収率は60.4%(6.40g、0.03モル)光学純度は70.3%eeであった。
Comparative Example 1
A 200 ml three-necked flask equipped with a dropping funnel and a thermometer was charged with 76.4 g of tetrahydrofuran, followed by 23.0 g of α-pinene (91% ee optical purity) (= 0.17 mol, 4.01 mol times). 2.39 g (= 0.06 mol, 1.50 mol times) of sodium borohydride was added and stirred. At an internal temperature of 4 ° C., 12.1 g (= 0.08 mol, 2.02 mol times) of a trifluoroborane / diethyl ether complex was added dropwise over 20 minutes, and the mixture was returned to room temperature and stirred for 18 hours while raising the temperature to 25 ° C. . Subsequently, the temperature was set to −12 to −10 ° C., 1-diphenylmethyl-3-pyrroline (10.06 g, 0.04 mol) was added in 5 minutes, and the mixture was stirred at 0 to 2 ° C. for 1 hour. The conversion rate of 1-diphenylmethyl-3-pyrroline in the reaction for 1 hour was 99.4%. To this reaction solution, 13.4 g (= 0.16 mol, 3.82 mol times) of 48% aqueous sodium hydroxide solution was added. Subsequently, 31.78 g (= 0.28 mol, 6.67 mol times) of 30% hydrogen peroxide water is added dropwise to the reaction solution at −12 to −10 ° C. At this time, the temperature of the system is raised to 15 ° C. or higher. The solution was added dropwise over 1 hour. At this time, the yield of 1-diphenylmethyl-3 (S) -pyrrolidinol was 60.4% (6.40 g, 0.03 mol), and the optical purity was 70.3% ee.

比較例2
滴下漏斗と温度計の付いた200ml三つ口フラスコに、テトラヒドロフラン75.7gを仕込み、α−ピネン(光学純度91%ee) 27.3g(=0.20モル、4.82モル倍)続いて水素化ホウ素ナトリウム2.39g(=0.06モル、1.50モル倍)を添加し撹拌した。内温4℃でトリフルオロボラン・ジエチルエーテル錯体12.0g(=0.08モル、2.00モル倍)を20分間かけて滴下し、室温に戻し25℃まで昇温しながら18時間撹拌した。続いて−12℃とし1−ジフェニルメチル−3−ピロリン(10.02g、0.04モル)を5分で添加し−12℃で1時間撹拌した。反応1時間における1−ジフェニルメチル−3−ピロリンの転化率は99.1%であった。 この反応液に48%水酸化ナトリウム水溶液10.85g(=0.13モル、3.10モル倍)を5分間かけて添加するがこの時−8℃まで液温は昇温した。続いて30%過酸化水素水30.92g(=0.27モル、6.42モル倍)を−12℃にした反応液に滴下するがこの時系内が15℃以上に昇温しないように1時間かけて滴下した。このとき1−ジフェニルメチル−3(S)−ピロリジノールの収率は56.0%(5.93g、0.04モル)光学純度は78.9%eeであった。
Comparative Example 2
A 200 ml three-necked flask equipped with a dropping funnel and a thermometer was charged with 75.7 g of tetrahydrofuran, followed by 27.3 g (= 0.20 mol, 4.82 mol times) of α-pinene (91% ee optical purity). 2.39 g (= 0.06 mol, 1.50 mol times) of sodium borohydride was added and stirred. At an internal temperature of 4 ° C., 12.0 g (= 0.08 mol, 2.00 mol times) of a trifluoroborane / diethyl ether complex was added dropwise over 20 minutes, and the mixture was returned to room temperature and stirred for 18 hours while raising the temperature to 25 ° C. . Subsequently, 1-diphenylmethyl-3-pyrroline (10.02 g, 0.04 mol) was added in 5 minutes, and the mixture was stirred at -12 ° C for 1 hour. The conversion rate of 1-diphenylmethyl-3-pyrroline in the reaction for 1 hour was 99.1%. To this reaction solution, 10.85 g (= 0.13 mol, 3.10 mol times) of a 48% sodium hydroxide aqueous solution was added over 5 minutes. At this time, the temperature of the solution rose to -8 ° C. Subsequently, 30.92 g of 30% hydrogen peroxide solution (= 0.27 mol, 6.42 mol times) is added dropwise to the reaction solution at −12 ° C., but at this time, the temperature in the system should not be raised to 15 ° C. or higher. The solution was added dropwise over 1 hour. At this time, the yield of 1-diphenylmethyl-3 (S) -pyrrolidinol was 56.0% (5.93 g, 0.04 mol), and the optical purity was 78.9% ee.

比較例3
滴下漏斗と温度計の付いた200ml三つ口フラスコに、テトラヒドロフラン52.71gを仕込み、α−ピネン(光学純度 91%ee) 34.67g(=0.25モル、6.06モル倍)続いて水素化ホウ素ナトリウム2.39g(=0.063モル、1.50モル倍)を添加し撹拌した。内温4℃でトリフルオロボラン・ジエチルエーテル錯体12.06g(=0.09モル、2.05モル倍)を20分間かけて滴下し、室温に戻し25℃まで昇温しながら18時間撹拌した。続いて−12℃とし1−ジフェニルメチル−3−ピロリン(10.03g、0.04モル)を5分で添加し−12℃で1時間撹拌した。反応1時間における1−ジフェニルメチル−3−ピロリンの転化率は99.9%であった。 この反応液に48%水酸化ナトリウム水溶液10.68g(=0.13モル、3.10モル倍)を添加した。続いて30%過酸化水素水31.14g(=0.28モル、6.67モル倍)を反応液に滴下するがこの時系内が15℃以上に昇温しないように1時間かけて滴下した。このとき1−ジフェニルメチル−3(S)−ピロリジノールの収率は51.3%(8.88g、0.04モル)光学純度は82.3%eeであった。
Comparative Example 3
A 200 ml three-necked flask equipped with a dropping funnel and a thermometer was charged with 52.71 g of tetrahydrofuran, followed by 34.67 g of α-pinene (optical purity 91% ee) (= 0.25 mol, 6.06 mol times). 2.39 g (= 0.063 mol, 1.50 mol times) of sodium borohydride was added and stirred. At an internal temperature of 4 ° C., 12.06 g (= 0.09 mol, 2.05 mol times) of a trifluoroborane / diethyl ether complex was added dropwise over 20 minutes, and the mixture was returned to room temperature and stirred for 18 hours while raising the temperature to 25 ° C. . Subsequently, 1-diphenylmethyl-3-pyrroline (10.03 g, 0.04 mol) was added in 5 minutes, and the mixture was stirred at -12 ° C for 1 hour. The conversion rate of 1-diphenylmethyl-3-pyrroline in the reaction for 1 hour was 99.9%. To this reaction solution, 10.68 g (= 0.13 mol, 3.10 mol times) of 48% aqueous sodium hydroxide solution was added. Subsequently, 31.14 g of 30% hydrogen peroxide solution (= 0.28 mol, 6.67 mol times) was added dropwise to the reaction solution, but this was added dropwise over 1 hour so that the temperature inside the system did not rise to 15 ° C. or higher. did. At this time, the yield of 1-diphenylmethyl-3 (S) -pyrrolidinol was 51.3% (8.88 g, 0.04 mol), and the optical purity was 82.3% ee.

比較例4
滴下漏斗と温度計の付いた200ml三つ口フラスコに、テトラヒドロフラン49.3gを仕込み、α−ピネン(光学純度 91%ee) 27.5g(=0.20モル、4.82モル倍)続いて水素化ホウ素ナトリウム2.39g(=0.06モル、1.50モル倍)を添加し撹拌した。内温4℃でトリフルオロボラン・ジエチルエーテル錯体11.95g(=0.08モル、2.00モル倍)を20分間かけて滴下し、室温に戻し25℃まで昇温しながら18時間撹拌した。続いて−12〜−10℃とし1−ジフェニルメチル−3−ピロリン(10.02g、0.04モル)を−12〜−10℃で1時間撹拌した。反応1時間における1−ジフェニルメチル−3−ピロリンの転化率は99.4%であった。
Comparative Example 4
A 200 ml three-necked flask equipped with a dropping funnel and a thermometer was charged with 49.3 g of tetrahydrofuran, followed by 27.5 g of α-pinene (91% ee optical purity) (= 0.20 mol, 4.82 mol times). 2.39 g (= 0.06 mol, 1.50 mol times) of sodium borohydride was added and stirred. At an internal temperature of 4 ° C., 11.95 g (= 0.08 mol, 2.00 mol times) of a trifluoroborane / diethyl ether complex was added dropwise over 20 minutes, and the mixture was returned to room temperature and stirred for 18 hours while raising the temperature to 25 ° C. . Subsequently, the temperature was set to −12 to −10 ° C., and 1-diphenylmethyl-3-pyrroline (10.02 g, 0.04 mol) was stirred at −12 to −10 ° C. for 1 hour. The conversion rate of 1-diphenylmethyl-3-pyrroline in the reaction for 1 hour was 99.4%.

この反応液に48%水酸化ナトリウム水溶液11.98g(=0.14モル、3.42モル倍)を添加した。続いて30%過酸化水素水30.97g(=0.273モル、6.51モル倍)を反応液に滴下するがこの時系内が15℃以上に昇温しないように1時間かけて滴下した。このとき1−ジフェニルメチル−3(S)−ピロリジノールの収率は49.2%( 5.21g、0.02モル)光学純度は79.8%eeであった。   To this reaction solution, 11.98 g (= 0.14 mol, 3.42 mol times) of a 48% sodium hydroxide aqueous solution was added. Subsequently, 30.97 g of hydrogen peroxide 30% (= 0.273 mol, 6.51 mol times) is added dropwise to the reaction solution, but at this time, it is added dropwise over 1 hour so that the temperature inside the system does not rise to 15 ° C. or higher. did. At this time, the yield of 1-diphenylmethyl-3 (S) -pyrrolidinol was 49.2% (5.21 g, 0.02 mol), and the optical purity was 79.8% ee.

Claims (4)

次の3工程、
(第1工程)光学活性ジアルキルボランと一般式(1)
Figure 0004962845
(式中RおよびRはアリール基を示し、同一であっても異なっていても良い。且つ、式中nは1〜3の整数のいずれかを意味する)で表される含窒素環状オレフィンを溶媒中で反応させる工程、
(第2工程)第1工程で得られた反応液を酸化剤と酸化反応させることによりホウ酸トリエステルを生成する酸化工程、
(第3工程)第2工程で得られた酸化反応液にアルコールを添加して、ホウ酸トリエステルを分解する分解工程を含むことを特徴とする一般式(2)
Figure 0004962845
(式中RおよびRはアリール基を示し、同一であっても異なっていても良い。且つ、式中nは1〜3の整数のいずれかを意味する、また*は不斉炭素)で表される光学活性環状アミノアルコールの製造法。
The next three steps,
(First step) Optically active dialkylborane and general formula (1)
Figure 0004962845
(Wherein R 1 and R 2 represent an aryl group, which may be the same or different. In the formula, n represents any one of 1 to 3). Reacting the olefin in a solvent;
(2nd process) The oxidation process which produces | generates boric acid triester by making the reaction liquid obtained at the 1st process oxidize with an oxidizing agent,
(3rd process) General formula (2) characterized by including the decomposition | disassembly process which adds alcohol to the oxidation reaction liquid obtained at the 2nd process, and decomposes | disassembles boric acid triester.
Figure 0004962845
(In the formula, R 1 and R 2 represent an aryl group, and may be the same or different. In the formula, n represents an integer of 1 to 3, and * represents an asymmetric carbon.) The manufacturing method of optically active cyclic amino alcohol represented by these.
第1工程において用いられる光学活性ジアルキルボランが、ジイソピノカンフェイルボランであることを特徴とする請求項1記載の光学活性環状アミノアルコールの製造法。 2. The method for producing an optically active cyclic amino alcohol according to claim 1, wherein the optically active dialkylborane used in the first step is diisopinocinfeylborane. 第3工程において用いられるアルコールが炭素数1〜4の脂肪族アルコールであることを特徴とする請求項1または2記載の光学活性環状アミノアルコールの製造法。 The method for producing an optically active cyclic amino alcohol according to claim 1 or 2, wherein the alcohol used in the third step is an aliphatic alcohol having 1 to 4 carbon atoms. 第3工程においてアルコールの使用量が、第1工程で使用した含窒素環状オレフィンに対して3モル倍以上であることを特徴とする請求項1〜のいずれか1項記載の光学活性環状アミノアルコールの製造法。 The optically active cyclic amino according to any one of claims 1 to 3 , wherein the amount of alcohol used in the third step is 3 mol times or more based on the nitrogen-containing cyclic olefin used in the first step. Alcohol production method.
JP2006215182A 2006-08-08 2006-08-08 Process for producing optically active cyclic amino alcohol Active JP4962845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006215182A JP4962845B2 (en) 2006-08-08 2006-08-08 Process for producing optically active cyclic amino alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006215182A JP4962845B2 (en) 2006-08-08 2006-08-08 Process for producing optically active cyclic amino alcohol

Publications (2)

Publication Number Publication Date
JP2008037810A JP2008037810A (en) 2008-02-21
JP4962845B2 true JP4962845B2 (en) 2012-06-27

Family

ID=39173246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006215182A Active JP4962845B2 (en) 2006-08-08 2006-08-08 Process for producing optically active cyclic amino alcohol

Country Status (1)

Country Link
JP (1) JP4962845B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040863A (en) * 2001-07-27 2003-02-13 Toray Ind Inc Method for producing optically active alcohol
JP2003286255A (en) * 2002-03-28 2003-10-10 Toray Ind Inc Method for producing high-purity optically active cyclic alcohol
JP2003286254A (en) * 2002-03-28 2003-10-10 Toray Ind Inc Method for producing optically active cyclic alcohol
JP4629973B2 (en) * 2003-09-22 2011-02-09 第一三共株式会社 Optically active cyclopropylamine derivative and method for producing the same

Also Published As

Publication number Publication date
JP2008037810A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
JP2007056007A (en) 2,3-bis(dialkylphosphino)pyrazine derivative, method for producing the same, and metal complex using the derivative as ligand
JP2015536922A5 (en)
JP5091760B2 (en) Fullerene derivative and method for producing the same
JP2567430B2 (en) Carbinol derivative and method for producing the same
JP4962845B2 (en) Process for producing optically active cyclic amino alcohol
CN106748693B (en) A kind of synthetic method of alpha-hydroxyacetone compounds
US20090023579A1 (en) Ligand, Method for Producing the Same, and Catalyst Using the Ligand
JP5201620B2 (en) Phosphonium ionic liquid, method for producing biaryl compound and method for using ionic liquid
JP2010126468A (en) Method for producing sulfonamide compound
JP4211682B2 (en) Fullerene derivative and method for producing the same
JP5102505B2 (en) Process for producing optically active dialkylphosphinomethane derivatives
Zhou et al. Hydroperfluoroalkylation of electron-deficient olefins with perfluoroalkyl iodides promoted by zinc/viologen
ES2785157T3 (en) Procedure for the preparation of useful intermediates in the synthesis of antifungal drugs
KR100808258B1 (en) Preparation method of tetraalkoxysilane from silica minerals
RU2349575C1 (en) Method of producing 1-hydroxy-1,2-dihydro[60]fullerene
RU2365575C2 (en) Method of obtaining [(2s)-trans]-1s,5s-6,6-dimethylbicyclo[3,1,1]heptan-2-yl-methanol
JP4305388B2 (en) Method for producing 1,2,4-butanetriol
KR101023260B1 (en) Method of manufacturing tetraalkoxysilane and tetraalkoxysilane manufactured by using the method
JP2019137630A (en) Method for producing 4-pentyn-1-ol
US12110302B2 (en) Metal complex, intermediate, and preparation method and application thereof
JP6215083B2 (en) Alkyl bismuth alkoxide compound and method for producing the same
JPWO2017141692A1 (en) Hydrogen generator, method of generating hydrogen, and method of producing substance
JP4618781B2 (en) Novel proline derivative, method for producing the same, and method for producing optically active secondary alcohol compound using the same
JP5103647B2 (en) Process for producing malonic ester derivative or keto ester derivative and novel compound
JP2001328984A (en) Method for producing mevalolactone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090622

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100303

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120131

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4962845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250